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Abstract 
Context: Obesity surveillance is scarce in adolescents, and little is known on whether salivary metabolomics data, emerging minimally invasive 
biomarkers, can characterize metabolic patterns associated with overweight or obesity in adolescents.
Objective: This pilot study aims to identify the salivary molecular signatures associated with body mass index (BMI) in Italian adolescents.
Methods: Saliva samples and BMI were collected in a subset of n = 74 young adolescents enrolled in the Public Health Impact of Metal Exposure 
study (2007-2014). A total of 217 untargeted metabolites were identified using liquid chromatography-high resolution mass spectrometry. Robust 
linear regression was used to cross-sectionally determine associations between metabolomic signatures and sex-specific BMI-for-age z-scores 
(z-BMI).
Results: Nearly 35% of the adolescents (median age: 12 years; 51% females) were either obese or overweight. A higher z-BMI was observed in 
males compared to females (P = .02). One nucleoside (deoxyadenosine) and 2 lipids (18:0-18:2 phosphatidylcholine and dipalmitoyl- 
phosphoethanolamine) were negatively related to z-BMI (P < .05), whereas 2 benzenoids (3-hydroxyanthranilic acid and a phthalate 
metabolite) were positively associated with z-BMI (P < .05). In males, several metabolites including deoxyadenosine, as well as 
deoxycarnitine, hyodeoxycholic acid, N-methylglutamic acid, bisphenol P, and trigonelline were downregulated, while 3 metabolites 
(3-hydroxyanthranilic acid, theobromine/theophylline/paraxanthine, and alanine) were upregulated in relation to z-BMI (P < .05). In females, 
deoxyadenosine and dipalmitoyl-phosphoethanolamine were negatively associated with z-BMI while deoxycarnitine and a phthalate 
metabolite were positively associated (P < .05). A single energy-related pathway was enriched in the identified associations in females 
(carnitine synthesis, P = .04).
Conclusion: Salivary metabolites involved in nucleotide, lipid, and energy metabolism were primarily altered in relation to BMI in adolescents.
Key Words: body mass index, BMI, obesity, metabolomics, adolescents

Obesity has tripled worldwide in the past 4 decades [1-4], be-
coming one of the major public health issues of the 21st cen-
tury. Obesity and overweight are the most frequently 
diagnosed conditions in youth [5]. In 2016, 340 million chil-
dren and adolescents were estimated to be either obese or 
overweight worldwide [2]. Obesity often begins in late child-
hood and either can persist or become morbid during adoles-
cence [6]. Children who are obese or overweight before 
puberty are likely to continue to be obese or overweight 
throughout their adulthood [7], predisposing them to poor 
health and quality of life. Higher body mass index (BMI) 
from an early age is linked to increased mortality risk 
[8-10] through the early onset of chronic diseases, such as 
cardiometabolic diseases [11], cancer [12, 13], musculoskel-
etal disorders [14], immunological impairment [15, 16], de-
lay and impairment of cognitive function [17, 18], or poor 
mental health [19]. Prevention of excess body weight and 
adiposity from an early age can improve long-term health 

and can contribute to diminishing obesity-related costs stem-
ming from poor academic achievement [1, 20, 21] and med-
ical treatment for chronic diseases developing later in 
adulthood [22, 23].

Although obesity and overweight rates in youth have de-
creased in Europe in the past decade, there are differences be-
tween southern and northern European countries. The 
prevalence of obesity in the southern Mediterranean region 
is higher than the rate in the northern region, with Italy being 
among the European countries with the highest proportion 
of obese or overweight youth [24]. A 2018 World Health 
Organization (WHO) report showed a disproportionately 
higher obesity prevalence among boys compared to girls in 
Italy and determined that the prevalence of childhood obes-
ity and overweight in Italian boys could be as high as 21% 
and 42%, respectively [25]. If this trend continues in the 
upcoming years, obesity rates among Italian adolescents 
are expected to surpass the current combined obesity and 
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overweight prevalence of nearly 25% in adolescent males 
and 14% in adolescent females [26].

Although obesity and overweight are heavily influenced by 
genetics [27], physical activity [28], and socioeconomic 
status (SES)-related factors [29], the environment, including 
environmental toxicants [30-32] and dietary exposures [33], 
play a major role in their etiology. Untargeted high- 
throughput metabolomics data provide a unique unified 
approach to measure individual exposures and their health- 
related effects simultaneously. The novel metabolomics 
approaches offer an opportunity to capture changes in en-
dogenous metabolites that may be driven by exogenous 
and endogenous factors, including but not limited to envir-
onmental chemical exposures, lifestyle habits, or perceived 
stress [34, 35].

Metabolomics data have also been shown to be good bio-
markers of environmentally induced diseases [36, 37], involv-
ing weight gain or excess body fat, as well as biomarkers of 
metabolic precursors for obesity-related conditions. In prior 
studies, plasma and serum metabolomic alterations were de-
tected in relation to obesity in adults [38, 39] and animal 
models [40]. According to these studies, obese adults may 
be characterized by higher levels of branched and aromatic 
amino acids, certain carbohydrates, and fatty acid metabo-
lites, which, in turn, may be related to disruption of glucose 
homeostasis and adipose tissue metabolism. However, prior 
studies linking metabolomics data to body weight were con-
ducted mainly in adults [38, 39, 41] or children [42-44], 
and there is a scarcity of studies investigating the metabolo-
mic profiles underlying obesity and overweight in adolescents 
[45-47]. In addition, although saliva can be collected through 
minimally invasive procedures, salivary metabolomics data 
are underutilized to characterize concurrent or early factors 
for diseases, including obesity and overweight [48]. In 
this study, we identified salivary metabolomic signatures 
associated with BMI in a subset of the Public Health Impact 
of Metals Exposure (PHIME) cohort of young Italian 
adolescents.

Materials and Methods
Study Participants
The PHIME cohort is comprised of 733 Italian adolescents re-
cruited from 3 sites in the greater northern Italian area of 
Brescia [49]. These locations were initially selected for their 
geographic characteristics and distance from ferroalloy indus-
trial plants, so that the cohort is comprised of individuals 
with a potential gradient of ambient exposure levels. From par-
ticipant recruitment in 2007 to 2014 through current activity, 
the Bagnolo Mella location has an active ferroalloy plant, the 
former ferroalloy plant in Valcamonica was active from 1910 
to 2001, and Garda Lake has no history of metallurgical or fer-
roalloy industry [50]. Data on sociodemographic factors, BMI, 
lifestyle, and biospecimens were collected between the ages of 
11 and 21 years for each participant at enrollment [49]. 
For this pilot study, 74 participants provided sufficient saliva 
volume for untargeted metabolomics analysis and informed 
consent for sample use. This study was approved by the 
Institutional Review Boards and ethics committees from the 
Icahn School of Medicine at Mount Sinai (STUDY-15-00990) 
and the University of Brescia (PHIME II ID #0034201; June 
7, 2017).

Body Mass Index
Anthropometric measures (height and weight) were collected 
at the enrollment visit between 2007 and 2014 through self- 
report. We calculated BMI (kg/m2) z-scores (z-BMI) standar-
dized on age and sex as indicated by the 2007 WHO growth 
charts using the “anthroplus” package in R (available via: 
https://www.who.int/tools/growth-reference-data-for-5to19- 
years/application-tools). We categorized individuals using the 
z-BMI SDs for descriptive statistics as follows: underweight 
(<−2 SD), normal (≥−2 SD and ≤1 SD), overweight (>1 SD 
and ≤2 SD), and obese (>2 SD) [51].

Saliva Collection and Metabolomics Data 
Acquisition

Collection, storage, and laboratory analysis
All participants followed the same protocol for salivary sam-
ple collection (rinsed their mouths twice with Milli-Q ultra-
pure water), and each provided a 2 mL salivary sample after 
morning fasting. Samples were stored at −80 °C. Smokers 
were ineligible for the study. Use of dental products within 
the hour prior to sample collection also rendered the partici-
pant ineligible [52]. Saliva samples and quality control (QC) 
samples (matrix blank and multiple pooled QCs) were ana-
lyzed with liquid chromatography high resolution mass spec-
trometry. Prior to the analysis, all samples were reconstituted 
in 60 µL of 80% acetonitrile for analysis with reverse phase 
chromatography in negative ionization mode and hydropho-
bic interaction chromatography in positive and negative ion-
ization modes, respectively [53-55]. Samples were analyzed 
in a randomized order and pooled QCs injected routinely 
throughout the run. Data acquisition was performed in a sin-
gle batch per mode, and we did not identify any technical con-
cerns across BMI groups (Supplementary Fig. S1) [56]. 
Metabolites were identified based upon in-house database 
matching considering retention time, accurate mass, and 
MS/MS matching (when available) with pure standards ana-
lyzed under the same conditions, providing the highest identi-
fication confidence level (Level 1 or 2) based on Metabolomics 
Standards Initiative criteria [57, 58]. Peaks were identified and 
integrated using the Personal Chemical Database Library and 
Profinder software (Agilent Technologies, Santa Clara, CA, 
USA) to provide semiquantitative measures of intensity for 
each metabolite. There were 434 metabolites detected by the 
3 chromatography methods with different ionization modes 
of which 327 annotations were unique. For duplicate metab-
olites, only the metabolite with higher intensity values were re-
tained for analysis. In a prior pilot evaluation, our team also 
conducted an internal validation indicating a lack of correl-
ation between saliva metabolite intensity and both urine dilu-
tion and specific gravity. Thus, no correction for those 
measures was included in our analyses.

Data Preprocessing
We first removed any metabolites that had at least 50% of 
missing intensity values. Then, remaining missing values of in-
dividual metabolites (∼10.8% of the data) were imputed using 
the individual metabolites’ minimum value across subjects 
divided by √2. Data were log2-transformed to correct for 
any skewness and heteroscedasticity. Then we mean-centered 
the data and scaled it by using the square root of the SD for 
each metabolite (Pareto scaling). Lastly, to create a common 
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scale we normalized the individual metabolites by their mean 
and SD. A total of 217 metabolites were annotated and in-
cluded for analyses.

Covariates
Sex, area of residence (GL, Garda Lake; VC, Valcamonica; 
BM, Bagnolo Mella), and SES were collected at enrollment 
through self-reported questionnaires. A SES index was calcu-
lated based on 2 self-reported SES variables (parental educa-
tional attainment and occupational level) [59] applying 
internationally defined criteria for SES evaluation in a nor-
thern Italian population (Supplementary Table S1) [56]. 
Briefly, educational attainment for both parents was classified 
into 3 levels: low (elementary and junior high school), medium 
(senior high school), and high (degree and post-degree). 
Occupations were grouped into 3 categories based on 
the socioeconomic situation in Italy and factors related to de-
cision latitude and job demand: low-level professions (ie, 
homemaker, skilled/unskilled worker, hospital ancillaries), 
middle-level professions (ie, clerical workers, teachers, educa-
tors, nurses, shop assistants), and high-level professions (ie, 
engineer, entrepreneur, tradesman, craftsman). To obtain 
the final SES index, we combined the highest level of educai-
tion and occupation level across parents (Supplementary 
Table S2) [56]. When 1 parent was not financially present (un-
employed or deceased), we calculated their status as “low.”

Statistical Analyses
To identify associations between individual metabolites and 
continuous z-BMI scores, we employed robust linear regres-
sion models. Due to the limited sample size of our pilot study, 
we selected the metabolites following the strategy proposed by 
Maccani et al [60]—first based on the effect size (smaller than 
−0.2 or greater than 0.2) and then on the nominal P-value. We 
also provided false discovery rate P-value correction in the 
Supplementary Material [56]. We adjusted all analyses for 
relevant sociodemographic factors based on prior literature, 
including continuous age (years), sex (male vs female), SES in-
dex (medium/low vs high), as well as site of recruitment (GL, 
VC, BM) due to potential differences in exposures. To exam-
ine sex-dimorphic patterns for the relationship between me-
tabolites and BMI, we (1) performed sex-stratified analyses 
and (2) tested interaction effects by using the cross-product 
term of sex and the metabolites of interest. Finally, to help elu-
cidate possible biological mechanisms through which the 
identified metabolites associate with BMI, we conducted path-
way enrichment analyses with MetaboAnalyst (version 3.2) 
using the Small Molecule Pathway Database (http://www. 
smpdb.ca/) as a reference. Pathway enrichment analyses 
were implemented using a hypergeometric test evaluating 
whether a metabolite set is overrepresented. All data were 
processed and analyzed in R (version 4.1.2).

Results
PHIME adolescents were 12.1 years of age at the time of sam-
ple collection (SD = 0.86; age range: 10-14 years; 51% fe-
males) (Table 1). The majority of adolescents lived in 
Bagnolo Mella (57%) and had a medium/low socioeconomic 
status (59%). A total of 65% participants had a normal BMI, 
while 35% were either obese or overweight. Adolescent males 
had higher BMI levels (BMI mean ± SD: 20.6 ± 3.8 kg/m2) 

compared to adolescent females (BMI mean ± SD: 19.9 ±  
3.1 kg/m2) (z-BMI P-value = .022). A suggestive higher 
BMI was reported in adolescents from Garda Lake, with 
higher proportion of overweight and obese adolescents, 
compared to the other 2 regions (z-BMI P-value = .087) 
(Supplementary Table S3) [56]. A descriptive summary 
of the 217 preprocessed metabolites is provided in 
Supplementary Tables S4-S6 [56].

In covariate-adjusted robust models (n = 74), we observed 
negative associations between z-BMI scores and levels 
of purine nucleoside deoxyadenosine [β = −0.30 (95% 
CI: −.52, −.08); P = .008] and 2 lipids: dipalmitoyl- 
phosphoethanolamine [β = −0.25 (95% CI: −.49, −.02); 
P = .037] and 18:0-18:2 phosphatidylcholine (PC) [β =  
−0.25 (95% CI: −.48, −.01); P = .045] (Figs. 1 and 2, 
Supplementary Fig. S2, Supplementary Table S7) [56]. For 
every unit increase in levels of deoxyadenosine and lipid me-
tabolites, there was a 0.30 and 0.25 lower z-BMI score in 
Italian adolescents, respectively. On the other hand, a posi-
tive association was observed between several benzenoids 
and z-BMI, where for every unit increase in the levels of 3-hy-
droxyanthranilic acid and mono (5-carboxy-2-ethylpentyl) 
phthalate (MECPP), there was a 0.38 (95% CI: .11, .65; 
P = .006) and 0.25 (95% CI: .01, .49; P = .047) higher 
z-BMI score, respectively.

Some metabolites showed a sex-specific association with 
z-BMI scores. In sex-stratified analyses, levels of 9 metabolites 
in males and 4 metabolites in females were associated with 
z-BMI. Among those metabolites, deoxyadenosine—previ-
ously identified as negatively associated with z-BMI in overall 
analyses—was depleted in both males [β = −0.37 (95% CI: 
−.70, −.05), P = .025]) and females [β = −0.38 (95% CI: 
−.69, −.07), P = .018]) (Fig. 3, Supplementary Tables S8-S9) 
[56]. In males, deoxycarnitine [β = −0.45 (95% CI: −.86, 
−.03), P = .035], hyodeoxycholic acid [β = −0.47 (95% 
CI: −.89, −.06), P = .026], trigonelline [β = −0.48 (95% 
CI: −.78, −.18), P = .002], and N-methylglutamic acid 
[β = −0.37 (95% CI: −.71, −.02), P = .037] were also 
downregulated in the association with BMI z-scores, whereas 
alanine [β = 0.40 (95% CI: .05, .74), P = .026], 3-hydroxyan-
thranilic acid [β = 0.38 (95% CI: .06, .70), P = .023], and 
theobromine/theophylline/paraxanthine [β = 0.42 (95% CI: 
.08, .75), P = .015] were upregulated in relation to BMI 
z-scores (Fig. 3; Supplementary Table S8) [56]. Additionally, 
levels of bisphenol P were marginally negatively associated 
with z-BMI in males [β = −0.38 (95% CI: −.75, .00), P  
= .049] (Fig. 3; Supplementary Table S8) [56]. In females, lev-
els of dipalmitoyl-phosphoethanolamine [β = −0.38 (95% CI: 
−.72, −.04), P = .032] were downregulated and levels of de-
oxycarnitine [β = 0.39 (95% CI: .03, .74), P = .037] and 
phthalate metabolite MECPP [β = 0.34 (95% CI: .03, .66), 
P = .034] were upregulated in relation to z-BMI (Fig. 3; 
Supplementary Table S9). Sex modified the BMI associations 
with theobromine/theophylline/paraxanthine (P for inter-
action = .026), deoxycarnitine (P for interaction = .005), 
and trigonelline (P for interaction = .016) (Supplementary 
Table S10) [56].

Metabolic pathways potentially involved with BMI-altered 
metabolites in Italian adolescents are plotted in Fig. 4. Across 
the overall and sex-stratified populations, several pathways 
were enriched consistently, though most pathways failed to 
reach statistical significance. Enriched pathways included a 
nucleotide metabolism pathway (purine metabolism) that 
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was overrepresented in relation to z-BMI levels in the overall 
sample (Fig. 4a; P = .139) and in sex-stratified analyses (Figs. 
4b, P = .260; and 4c, P = .139); an amino acid pathway (tryp-
tophan metabolism), which was enriched in both the overall 
sample (Fig. 4a, P = .114) and in males (Fig. 4b, P = .215); 
and an energy pathway (carnitine synthesis), which was over-
represented in both sex-stratified analyses (Fig. 4b, P = .083; 
and Fig. 4c, P = .043). Only carnitine synthesis in females 
was significantly enriched where metabolites attributed to 
higher z-BMI scores were involved in this pathway (Fig. 4c, 
P = .043). Lastly, caffeine metabolism was uniquely enriched 
in males with marginal significance (Fig. 4b, P = .091).

Discussion
In this pilot study, we characterized salivary metabolic 
features linked to BMI z-scores in an Italian population to 
identify salivary molecular signatures associated with obesity 
and overweight at the early stages of adolescence. In the total 
sample, 1 purine nucleoside (deoxyadenosine) and 2 glycero-
phospholipids—a glycerophosphoethanolamine (dipalmitoyl- 
phosphoethanolamine) and a phosphatidylcholine (18:0-18:2 
PC) —were negatively associated with BMI z-scores, while 2 
benzenoids (3-hydroxyanthranilic acid and phthalate metab-
olite MECPP) were upregulated in relation to BMI z-scores. 
In addition, several additional metabolites were dysregulated 
in relation to BMI z-scores in sex-stratified analyses: these me-
tabolites were related to energy metabolism—including lipid 
deoxycarnitine found dysregulated in adolescent males and fe-
males in opposite directions, a downregulated bile acid (hyo-
deoxycholic acid), and 2 amino acid derivatives (alanine and 

N-methylglutamic acid) that were dysregulated in males in op-
posite directions—or were potential dietary compounds— 
theobromine/theophylline/paraxanthine and trigonelline 
found in males. In general, a larger proportion of metabolites 
were altered in males compared to females and a higher z-BMI 
was also found in males.

Our results aligned with previous studies showing associa-
tions between plasma and serum metabolomics data and 
metabolic outcomes. Epidemiological studies have suggested 
that levels of nucleotide metabolites are altered in obese adult 
populations [61, 62] and could play a role in adipocyte func-
tioning [63-65]. Plasma levels of nucleosides—pyrimidines 
and purines—were also found to be dysregulated in relation 
to obesity in children [44]. Furthermore, in experimental stud-
ies, supplementation with deoxyadenosine-derivatives (purine 
nucleosides) has been linked to weight reduction in obese mice 
through microbiome changes [66] and reduction of lipid levels 
and insulin resistance [67].

We further identified a disruption of multiple metabolites 
related to fatty acid oxidation and pathways involved in en-
ergy metabolism. We observed negative associations between 
BMI and glycerophospholipids, namely a glycerophosphoe-
thanolamine (GPE) and a PC—the most common phospholi-
pids in mammalian cell membranes [68]. Changes in PCs 
may be involved in insulin resistance and obesity through al-
teration in oxidative capacity and energy metabolism in the 
mitochondria, as well as via disruption of membrane fluidity 
and decreased lipid regulation [69]. Although findings from 
epidemiological studies linking GPEs or PCs with obesity 
and metabolic disorders are mixed [70-74], several prior 
studies indicated a downregulation of PCs among children 

Table 1. Participant characteristics in the Public Health Impact of Metal Exposure subset and stratified by sex

Baseline characteristic Overall, n = 74 Females, n = 38 Males, n = 36 P-valuea

Age (years), median (IQR) 12 (12, 13) 12 (12, 13) 12 (11, 12) .022*

Age (years), mean (SD) [range] 12.1 (0.86) [10, 14] 12.3 (0.85) [11, 14] 11.9 (0.82) [10, 14]

Socioeconomic status, n (%)b .801

Low 10 (14%) 6 (16%) 4 (11%)

Medium 44 (59%) 21 (55%) 23 (64%)

High 20 (27%) 11 (29%) 9 (25%)

BMI (kg/m2), median (IQR) 19.5 (17.8, 21.8) 19.1 (17.8, 21.6) 20.2 (18.0, 22.7) .416

BMI (kg/m2), mean (SD) [range] 20.3 (3.5) [15.0, 32.1] 19.9 (3.1) [15.0, 29.2] 20.6 (3.8) [15.5, 32.1]

z-BMI, median (IQR)c 0.47 (−0.20, 1.41) 0.14 (−0.31, 0.87) 0.90 (0.13, 1.60) .022*

z-BMI, mean (SD) [range]c 0.58 (1.06) [−1.47, 3.10] 0.31 (1.02) [−1.47, 2.59] 0.87 (1.05) [−1.25, 3.10]

BMI status, n (%)c .109

Normal 48 (65%) 29 (76%) 19 (53%)

Overweight 19 (26%) 7 (18%) 12 (33%)

Obese 7 (9.5%) 2 (5.3%) 5 (14%)

Site, n (%)d 0.763

BM 42 (57%) 21 (55%) 21 (58%)

GL 17 (23%) 10 (26%) 7 (19%)

VC 15 (20%) 7 (18%) 8 (22%)

Abbreviations: BMI, body mass index; IQR, interquartile range. 
aT-tests (age, BMI, z-BMI), Fisher test (BMI status), and chi-square (χ2) test (socioeconomic status, site) performed to assess significant distributions of variables 
between male and female adolescents. 
b“Low” and “medium” categories combined in analyses due to limited sample size of “low” category. 
cBased on the 2007 World Health Organization BMI z-scores. No children were underweight. 
dGL, Garda Lake; VC, Valcamonica; BM, Bagnolo Mella. 
*P-value <.05.
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with obesity [43, 75] and of GPEs among women with 
obesity-related conditions, such as polycystic ovary syndrome 
[74]. In addition, a bile acid—hyodeoxycholic acid—showed 
a negative association with BMI z-scores in males in our study. 
Bile acids are critical for lipid absorption and proper energy 
homeostasis via micellar functions and receptor ligands 
[76, 77]. These nutrient-signaling metabolites can contribute 
to the dysregulation of hepatic lipid and glucose metabolism 
by modulating the energy balance through cell surface and nu-
clear receptors [78]. Previous studies indicated a decrease in 
several bile acids in nonfasting and fasting plasma of obese 
children [44], adolescents [79], and adults [80], consistent 
with our findings in males. We also identified a sex-specific 
association between BMI and levels of deoxycarnitine, a 
precursor of carnitine, which was upregulated in females 
but downregulated in males in the association with BMI. 
Similarly, we identified in females a substantial enrichment 
of carnitine synthesis, a pathway involved in energy metabol-
ism. A dysregulation of carnitine-related pathways suggests a 
potential dysregulation in energy metabolism [81] and disrup-
tion of fatty acid β-oxidation and transport into the mitochon-
dria [82].

We also observed that several salivary amino acid deriva-
tives involved in endocrine and neurological function were al-
tered in relation to BMI in males. Previous studies using 
plasma or salivary metabolomics showed increased levels of 
branched amino acids in obese children, adolescents, and 
adults [39, 47, 48, 70, 83-86]. An alteration of circulating 

plasma levels of amino acids, which are influenced by diet 
and exercise, may indicate lower muscle utilization [71, 87]. 
In our study, salivary alanine was upregulated in males, 
whereas N-methylglutamic acid was downregulated. While 
N-methylglutamic acid is a derivative of glutamic acid, 
a neurotransmitter that plays a role in cognitive function 
[88, 89], alanine, commonly present in human saliva [90], 
has been suggested to play a role in glucose metabolism via 
the hypothalamic-pituitary-adrenal axis [91]. Also, emerging 
literature points at alanine as a novel biomarker for endocrine 
conditions in humans [92-94].

We also found that some lifestyle chemical exposures, such 
as benzenoids and dietary factors, influenced BMI in this pilot 
study. For instance, 3-hydroxyanthranilic acid is an amino-
benzoic acid involved in tryptophan metabolism that has 
been suggested to play a role in cardiometabolic disease 
[95, 96]. MECPP, a metabolite of di-2-ethylhexyl phthalate, 
was upregulated in the overall sample and in females, consist-
ent with the potential endocrine disruptive role of phthalates 
shown in studies linking di-2-ethylhexyl phthalate metabolites 
and obesity in adult females [97] and adolescent females [98]. 
Furthermore, several patterns of dietary exposures were also 
observed in our sample. An upregulated metabolite related 
to caffeine metabolism (either theobromine, theophylline, or 
paraxanthine) and a likely predictor of chocolate ingestion 
[99-101] and contributing factor to obesity could be indica-
tive of an unhealthy lifestyle in males. Interestingly, trigonel-
line, a plant hormone with anti-inflammatory properties 

Figure 1. Volcano plot showing coefficient estimates (x-axis) and -log10-transformed P-values (y-axis) of the association between individual metabolites 
and body mass index z-score (z-BMI) in the Public Health Impact of Metal Exposure cohort (n = 74). Robust linear regressions were adjusted for age, sex, 
site, and socioeconomic status. A solid black line indicates a P-value of .05, and values above that threshold were nominally statistically significant.
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Figure 2. Scatterplots of the association between body mass index z-score (z-BMI) (y-axis) and levels (x-axis) of deoxyadenosine (a), dipalmitoyl-phosphoethanolamine 
(b), 18:0-18:2 phosphatidylcholine (c), mono (5-carboxy-2-ethylpentyl) phthalate (d), 3-hydroxyanthranilic acid (e) in the Public Health Impact of Metal 
Exposure cohort (n = 74). Box plots adjacent to each figure describe z-BMI median and interquartile range. Dots indicate individual observations and are 
color-coded with the sex of the participant: females (F) in red and males (M) in blue. P-value of the association was reported at the bottom of each plot.

Figure 3. Volcano plots showing coefficient estimates (x-axis) and -log10-transformed P-values (y-axis) of the association between individual metabolites 
and body mass index z-score (z-BMI) in males (n = 36) and females (n = 38). Robust linear regressions were adjusted for age, site, and socioeconomic 
status. A solid black line indicates a P-value of .05, and values above that threshold were nominally statistically significant.
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[102] found in legumes and seeds [103-105], was negatively 
associated with BMI in males in this study. Altogether, envir-
onmental lifestyle exposures and a high-caloric diet may trig-
ger increased oxidative stress and promote inflammation. 
Overall, these findings support the idea that an obesogenic en-
vironment, which we are able to capture through saliva, may 
predispose adolescents to higher risk for obesity and related 
diseases.

To our knowledge, this is the first study identifying salivary 
markers in relation to BMI in adolescents, a population that is 
understudied. One of the major advantages of metabolomics 
data is that they are early biomarkers for health conditions, 
such as metabolic conditions. In addition, the salivary metabo-
lome may provide diagnostically relevant markers for lifestyle 
dietary habits and both oral and metabolic health [106, 107]. 
Several salivary metabolites have been correlated with plasma 
levels previously [106, 108-111], suggesting the potential 
use of salivary markers without the need for blood collection. 
Salivary metabolomics data can become a promising tool for 
screening obesity-related phenotypes due to the minimally 
invasive collection procedures of saliva [48, 106, 111, 112].

Our results should be interpreted with caution and may 
only be generalized to adolescents at early stages of puberty 
with similar lifestyles. Possible study limitations include a 
small sample size, a cross-sectional design, self-reported infor-
mation on height and weight, which is prone to measurement 
error (though likely exerting nondifferential bias towards the 
null), or potential for false positives. To accommodate for the 
small sample size, we included only annotated metabolites 
with high confidence levels (1 or 2), and we then used the 
Maccani et al’s approach to identify our major results. 
However, we acknowledge that our findings did not survive 
the false discovery rate correction of the type I error, as re-
ported in the supplemental material, but they can serve as a ra-
tionale for future studies leveraging salivary metabolomics 
and metabolic data. We also recognize that obesity could be 

an important factor for early onset of puberty, particularly 
in females [113, 114] . Puberty stage could be in the causal 
pathway of such associations and was not accounted for in 
our analyses given that adolescents were 12 years old on aver-
age (range: males 10-14, females: 11-14) and the majority of 
them had already initiated puberty. In addition, although 
our study lacked information about antibiotic intake at the 
time of sample collection, we controlled for several important 
sociodemographic factors related to antibiotic use, such as 
SES [115, 116]. Lastly, our findings may also be affected 
by oral diseases such as periodontal and gum disorders, 
but these tend to co-occur with obesity-related conditions 
[106, 112]. Future studies with salivary samples may not 
only provide insights on the human metabolome in adoles-
cents but also may be useful to interpreting in conjunction 
with the oral microbiome, which altogether can inform on 
potential mechanisms and lifestyle exposures underlying 
obesity in teenagers. Overall, detection of altered nucleoside 
levels, glycerophospholipids, and benzenoids in saliva could 
be relevant biomarkers for early diagnosis of developmental 
or obesity-related conditions in young adolescents, but this 
hypothesis warrants further investigation in larger prospect-
ive cohorts.

Conclusion
We identified associations between salivary metabolomic sig-
natures and BMI in Italian adolescents. Salivary metabolites 
related to nucleotide, lipid, or energy metabolism were pri-
marily altered in relation to BMI, as well as lifestyle-related 
chemicals. These metabolic signatures —including a nucleo-
side, glycerophospholipids, benzenoids, amino acids, a carni-
tine, a bile acid, and dietary derivatives— could be implicated 
particularly in endocrine functions and in biological processes 
involved in the etiology of obesity.

Figure 4. MetaboAnalyst pathway enrichment results in the Public Health Impact of Metal Exposure subset (n = 74). x-axis denotes the – 
log10-transformed P-value, where a higher level of significance is denoted by a red color indicating a lower P-value (statistically significant at P < .05). 
Higher enrichment ratio is indicated by the size of the bubble. Enrichment analyses were performed in MetaboAnalyst (v3.2). (A) Bubble plot showing 
enriched pathways for metabolites associated with z-BMI in robust linear regression in the overall cohort (n = 74). (B) Bubble plot showing enriched 
pathways for metabolites associated with z-BMI in robust linear regression in males (n = 36). (C) Bubble plot showing enriched pathways for metabolites 
associated with z-BMI in robust linear regression in females (n = 38).
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