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Abstract—Surgical competence involves a spectrum of skills 

crucial for surgical trainees, however, the formal study of 

operative teaching and assessment lags other aspects of surgical 

education. Arthroscopy presents technical challenges requiring 

precise coordination and spatial awareness. The present study 

aims to study the feasibility of bridging the gap between the 

operating room and simulation environments. This has been 

achieved by comparing kinematic measurements during 

anterior cruciate ligament (ACL) reconstruction surgeries 

performed by a surgeon in both settings. Using inertial sensors 

and depth cameras, kinematic metrics were recorded and 

analyzed for eight surgical stages replicable across the two 

mentioned environments. The study established a strict protocol 

for operating room access and assessed the usability of sensor 

equipment. This work showed that it is possible to obtain 

kinematics metrics through IMUs inside the operating room, 

even if some discrepancies are present with the training 

environment on a knee mannequin. It has also been investigated 

the possibility of using an Azure Kinect DK as an alternative to 

the IMUs, but some criticalities have been highlighted. 
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I. INTRODUCTION 

Surgical competence encompasses knowledge, technical 

skills, decision-making abilities, communication skills, and 

leadership capabilities. Technical proficiency is crucial for 

surgical trainees, as it serves as quality assurance for their 

future practice [1]. However, the formal study of operative 

teaching and testing has experienced slower development 

compared to other aspects of surgical education [2]. 

Moreover, in recent years, factors such as the European 

Working Time Directive and financial pressures have 

reduced the opportunity for trainees to learn surgical skills, 

posing a risk that some surgeons may not achieve sufficient 

skill levels upon completing their training [3]. The increasing 

attention of the public and media towards the performance of 

doctors has sparked an interest in the development of robust 

methods for assessing technical skills [4]. 

Among the diverse surgery techniques, arthroscopy is 

technically challenging because it requires good visual-

spatial coordination to control tools and translate three-

dimensional structures into two-dimensional images. This is 

typically learned through a step-by-step apprenticeship 

approach in the operating scenario, which is time and money-

inefficient and linked to patient iatrogenic damage [5]. To 

address deficiencies, the emphasis is shifting to outside-the-

operating-room skill learning and assessment tools [6]. 

However, this assessment is largely subjective and lacks 

objectivity. Therefore, to introduce quantitative parameters, 

the idea of this preliminary study is to investigate the existing 

differences between the operating room and the simulation 

scenario performing kinematics measurements on a surgeon 

in both environments. The surgical procedure considered is 

the anterior cruciate ligament (ACL) reconstruction; 

regarding the simulation scenario, the surgery is reproduced 

on a knee mannequin.  

Two different approaches have been adopted: the first one 
consists of the use of inertial sensors (Xsens MTw Awinda, 
The Netherlands), while the other is based on the human body 
skeletonization through RGB depth cameras (Microsoft Azure 
Kinect DK). 

A. Related works 

In the last few years, diverse studies have explored 

assessing resident proficiency in arthroscopic procedures, 

primarily through simulation methods like virtual reality and 

cadaveric models. Tools like the Arthroscopic Surgical Skill 

Evaluation Tool (ASSET) [7] exist; being checklists, they 

rely on evaluation based on experience, but they remain still 

subjective. The interest is so shifting towards the collection 

of quantitative data, for example using motion analysis 

systems. Some of them, as presented in [8] and [9] are 

suitable just for the simulation scenario because they rely on 

wired connections and electromagnetic tracking technology, 

which would impede the correct proceedings of the operation. 

Other studies [10] and [11] propose instead the use of 

wearables sensors, but they are just a few, suggesting a deeper 

investigation.  

The various studies shared a common focus on kinematic 

metrics, particularly those concerning shoulder and elbow 

motion, which were analyzed to determine the angular range 

of motion across the three biomechanical planes. They have 

considered the shoulder add/abduction and flex/extension, 

the elbow flex/extension and prono/supination.  

Another noteworthy parameter considered was the total 

path length, representing the trajectory covered by surgical 

instruments. While virtual simulators, such as those discussed 

in [10], can directly measure this parameter, the present study 

approximated it using the hand trajectory length due to the 

simulation being conducted with a knee mannequin. 



In both [10] and [11] the focus was on understanding how 

the mentioned metrics can be useful to differentiate between 

different dexterity levels among expert, intermediate and 

novice surgeons. They found that experience could be 

identified through kinematic metrics. However, neither study 

explored the similarities between real operating rooms and 

simulation scenarios.  

This is where the present study comes in. The novelty of 
the present work lies mainly in the following aspect:  the 
conduction of measurements directly inside the operating 
room in a real surgery. Working in a scenario like that it’s 
critical and implies a strict access protocol and the use of non-
invasive instruments for the surgeon while operating. 

II. METHODOLOGY 

The measurement setup consisted of nine inertial 

measurement units (Xsens MTw Awinda, The Netherlands) 

and a depth camera (Microsoft Azure Kinect DK) running a 

skeletonization algorithm. The selection of IMUs was based 

on their non-invasive nature, as determined through feedback 

from surgeons via a modified version of the System Usability 

Scale. The Azure Kinect DK camera was added to explore the 

potential of gathering data without requiring the surgeon to 

wear sensors. 

A. IMU sensors 

The Xsens MTw Awinda are wireless sensors with a 

communication range of up to 20 meters, a battery life of 6 

hours and can operate in a temperature range of 0°C to 50°C. 

Each sensor weighs 16 grams and has a dimension of 

47x30x13 millimeters. Furthermore, they sample data at 100 

Hz which is a frequency suited for human movements. 

As our kinematic analysis targets the shoulders and elbows, 

we opted to monitor the upper body of the surgeon. Following 

recommendations from the manufacturer, we adopted the 

biomechanics model called "Upper Body no Hands". To 

achieve this, the sensors must be positioned on the surgeon's 

body with the configuration illustrated in Figure 1. 

 
Fig. 1. IMU sensors positioning on the upper body of the surgeon. In 

yellow are highlighted the sensors that should be positioned near the 

wrist, but since the surgeon wore sterile gloves were positioned near 

the elbow.   

After performing the calibration, we gathered kinematic 

data with the motion capture software MVN Analyze, 2023, 

version 2023.2.  

 

B. Depth Camera and Skeletonization 

The depth camera used in this study was the Kinect Azure 

DK, offering synchronized RGB and depth video. We 

selected an RGB video resolution of 1920x1080 pixels and a 

depth video resolution of 640x576 pixels. The acquisition 

was conducted at 30 frames per second, with exposure 

manually set to predefined values to accommodate lighting 

conditions. The camera was positioned in front of the surgeon 

as carefully as possible to avoid obstructing the surgical staff 

and to prevent interference with sterile materials. 

Microsoft provides an SDK for tracking multiple bodies 

in the 3D space; each body consists of a series of keypoints 

connected with segments to reconstruct a skeletonized 

version of the human body. The body tracking SDK 

associates an ID to each body identified in the scene. This is 

not always done in the right manner since sometimes the 

same ID is associated with a different body and so we lose 

the reference to the surgeon which is the only skeleton in 

which we have an interest. To solve the problem of 

misrecognition between bodies’ ID, we developed an 

algorithm that remaps the bodies relying on the position of 

the neck keypoint: frame by frame we analyze this position 

and associate the same ID to the skeleton which has the 

nearest neck keypoint to the previous frame. Then we plot the 

different skeletons and manually select the surgeon by 

comparing the graphs to the video. 

Once the surgeon is identified and the 3D position of the 

keypoints has been extracted, we used the software OpenSim 

[12] to perform the inverse kinematics and compute the joint 

angles. The OpenSim model used to accomplish this task is 

the Rajagopal 2015 [13] appropriately modified, and the 

keypoints used from the skeletonization are the following: 

pelvis, spine chest, left and right shoulders, left and right 

elbows and left and right wrist. The inverse kinematic tool 

provided by OpenSim analyzes each frame of motion, 

calculating generalized coordinates value to position the 

model in a pose that closely aligns with experimental 

keypoints and coordinate data. This alignment is achieved by 

solving a weighted least squares problem, aiming to minimize 

errors in both keypoints and coordinates. 

 

 
Fig. 2. Azure body skeletonization SDK inference on a depth frame from 

the Azure Kinect DK. The scenario is the operating room and it’s 

possible to notice the position of the image segmentation that identifies 

different people and the skeleton key points on each body. 

 

 



C. Experiment protocol 

In this preliminary feasibility assessment phase, the 

primary surgeon from the Department of Bone and Joint 

Surgery at Brescia Hospital was selected as the subject of the 

experiment. This choice ensures that we gather data from an 

expert source, which can then serve as a reference for 

surgeons with varying levels of expertise. The same subject 

performed the surgical procedure once in the operating room 

and once in the simulation environment. 

A strict access protocol has been defined for 

measurements conducted in the operating room, ensuring 

adherence to all safety and sterilization recommendations. 

First, the surgeon's anthropometric measurements are taken, 

which are crucial for calibrating the IMU sensors. It's 

important to note that this procedure is only necessary the 

first time or when recordings involve a new surgeon. Then, 

the surgeon is equipped with the IMU sensors, and calibration 

takes place. Subsequently, the surgeon enters the operating 

room to perform the surgery. While two individuals are 

permitted to enter the operating room to capture backup 

videos and record the surgery using the Azure Kinect DK, 

one person remains outside the operating room to monitor the 

connection between the IMUs and the laptop, which serves as 

a receiver. 

In the simulation, we aimed to replicate surgical 

procedures as closely as possible, without requiring 

adherence to a strict protocol. There is no need to wear sterile 

clothing, to pay particular attention to other people assisting 

the surgeon and no hitches can happen. So, we set up a room 

with a knee mannequin and all the necessary surgical 

instruments. Then the surgeon is equipped with the IMU 

sensors, and the depth camera starts the recording. 

A real surgical procedure includes a lot of parts or 

movements which are not standard because they depend on 

the patient's ligament level of damage, on the operated knee 

(left or right), and on the experience of the staff assisting the 

surgeon and cannot be replied to in simulation. The 

simulation tasks found in other research do not replicate the 

real tasks but just try to replicate some common movements. 

During the co-design phase with surgeons, we conducted a 

brief analysis to determine which stages should be recorded 

in the operating room and subsequently replicated in the 

simulation. Table 1 presents the selected surgical stages.  

TABLE I.  SURGICAL STAGES REPLICABLE IN SIMULATION 

Surgical stages Surgical gestures 

Femoral tunnel 

1. Femoral pointer positioning (FP) 

2. Femoral tunnel creation (FC) 

3. Traction thread insertion (TI) 

Tibial tunnel 

4. Tibial pointer positioning (TP) 

5. Tibial tunnel creation (TC) 

6. Traction thread taking (TT) 

Graft insertion 

7. Graft positioning (GP) 

8. Graft fixation (GF) 

 

D. Data organization and synchronization 

The two datasets have been synchronized using the 

timestamp and then segmented into eight stages according to 

those reported in Table 1. Finally, the range of motion has 

been computed for both Azure Kinect and Xsens data in each 

stage and allows the comparisons between the two 

instruments and between the operating room and the 

simulation scenario. The range of motion is determined by 

calculating the difference between the 95th and 5th 

percentiles for the joint rotational position for each gesture. 

III. RESULTS 

A. System usability scale 

To understand whether the sensor equipment created 

discomfort or obstacles, a questionnaire was administered to 

the surgeon. The results of this questionnaire are summed up 

in Table 2. 

TABLE II.  SYSTEM USABILITY SCALE  

 

Questions 

Do you 

think it 

might cause 

discomfort 

during the 

surgery? 

Do you think it 

may affect your 

freedom of 

movement? 

Do you think 

there is a risk 

that the device 

may fall? 

Upper t-shirt 

for shoulder 

and stern 

sensors 

NO NO NO 

Band for 

upper arm 

sensors 

NO NO NO 

Band for wrist 

sensors 
YESa NO NO 

a.
 The wrist sensors are not very uncomfortable, but the surgeon must wear gloves, the solution 

adopted is to shift the sensors on the forearms since the Xsens software has performed a good 

calibration despite this change of position. 

The surgeon spontaneously reported that the whole sensor 
setup can cause excessive heat and sweat, especially in the 
warmer months of the year, but this does not impede the use 
of this setup and does not alter the correct unfolding of the 
surgical procedure. 

B. Kinematic results 

The following results refer to a single measurement on the 
same surgeon performing knee arthroscopy in both the 
operating room and on a knee mannequin. Since a single test 
does not bring statistical relevance these are just preliminary 
results to understand the feasibility of the proposed 
measurement methodology and to qualitatively understand 
differences between the simulation and the real surgery. 

Figures 3 to 8 detail the range of motion (ROM) 
concerning elbows and shoulders for each of the previously 
mentioned eight stages. Each figure will display two graphs, 
presenting both Azure and Xsens data in both real and 
simulation scenarios. In each graph, the blue curve represents 
the Xsens data, while the orange one represents the Azure 
data. These results do not show the intra/extra rotation for the 
shoulder and the prono/supination for the elbow because the 
skeletonizer approximates the body segment as one-
dimensional rigid rods, so we do not have any information 
about that degree of freedom. Those angles could just be 
estimated but this approximation is not reliable for the 
comparison with the IMUs data. 



1) Right shoulder range of motion 

 
Fig. 3. Right shoulder add/abduction range of motion in both operating 

room (above) and simulation scenario (below). Data from Azure Kinect 

are represented in orange while data from Xsens in blue. 

The differences between ROMs coming from Xsens and 
Azure in the right shoulder add/abduction in the operating 
room range between a minimum of 0 degrees in the GF phase 
to a maximum of 13 degrees in the TC phase, without 
considering the peak at 80 degrees for the TT phase. 
Regarding the simulation environment, the differences in 
terms of ROMs between the two instruments range from 0 
degrees in the TT  phase to a maximum of 13 degrees in the 
GF phase. Considering solely the data coming from Xsens in 
the two environments the ROMs differences range between a 
minimum of 0 degrees in both TP and GF phases to a 
maximum of 20 degrees in the FP phase. 

 
Fig. 4. Right shoulder flex/extension range of motion in both operating 

room (above) and simulation scenario (below). Data from Azure Kinect 

are represented in orange while data from Xsens in blue. 

The differences between ROMs coming from Xsens and 
Azure in the right shoulder flex/extension in the operating 
room range between a minimum of 2 degrees in the GF phase 
to a maximum of 30 degrees in the TC phase, without 
considering the peak at around 80 degrees for the TT phase. 
Regarding the simulation environment, the differences in 
terms of ROMs between the two instruments range from 0 
degrees in the FP  phase to a maximum of 57 degrees in the 
GF phase. Considering solely the data coming from Xsens in 
the two environments the ROMs differences range between a 
minimum of 0 degrees in the TI phase to a maximum of 31 
degrees in the FC phase. 

2) Left shoulder range of motion 

 
Fig. 5. Left shoulder add/abduction range of motion in both operating room 

(above) and simulation scenario (below). Data from Azure Kinect are 

represented in orange while data from Xsens in blue. 

The differences between ROMs coming from Xsens and 
Azure in the left shoulder add/abduction in the operating room 
range between a minimum of 2 degrees in the TP phase to a 
maximum of 21 degrees in the FP phase, without considering 
the peak at 60 degrees for the TT phase. Regarding the 
simulation environment, the differences in terms of ROMs 
between the two instruments range from 3 degrees in the GP  
phase to a maximum of 19 degrees in the GF phase. 
Considering solely the data coming from Xsens in the two 
environments the ROMs differences range between a 
minimum of 0 degrees in the TC phase to a maximum of 13 
degrees in the GF phase. 

 
Fig. 6. Left shoulder flex/extension range of motion in both operating room 

(above) and simulation scenario (below). Data from Azure Kinect are 

represented in orange while data from Xsens in blue. 

The differences between ROMs coming from Xsens and 
Azure in the left shoulder flex/extension in the operating room 
range between a minimum of around 0 degrees in the GP 
phase to a maximum of 56 degrees in the FP phase, without 
considering the peak at 85 degrees for the TT phase. 
Regarding the simulation environment, the differences in 
terms of ROMs between the two instruments range from 3 
degrees in the TT  phase to a maximum of 56 degrees in the 
TC phase. Considering solely the data coming from Xsens in 
the two environments the ROMs differences range between a 
minimum of 0 degrees in the TC phase to a maximum of 42 
degrees in the TI phase. 



3) Right elbow range of motion 

 
Fig. 7. Right elbow flex/extension range of motion in both operating room 

(above) and simulation scenario (below). Data from Azure Kinect are 

represented in orange while data from Xsens in blue. 

The differences between ROMs coming from Xsens and 
Azure in the right elbow flex/extension in the operating room 
range between a minimum of 10 degrees in the GP phase to a 
maximum of 42 degrees in the FP phase, without considering 
the peak at 100 degrees for the TT phase. Regarding the 
simulation environment, the differences in terms of ROMs 
between the two instruments range from 5 degrees in the FC  
phase to a maximum of 23 degrees in the TP phase. 
Considering solely the data coming from Xsens in the two 
environments the ROMs differences range between a 
minimum of 0 degrees in the FC phase to a maximum of 34 
degrees in the FP phase. 

4) Left elbow range of motion 

 
Fig. 8. Left elbow flex/extension range of motion in both operating room 

(above) and simulation scenario (below). Data from Azure Kinect are 

represented in orange while data from Xsens in blue. 

The differences between ROMs coming from Xsens and 
Azure in the left elbow flex/extension in the operating room 
range between a minimum of 4 degrees in the GP phase to a 
maximum of 22 degrees in the TP phase, without considering 
the peak at 100 degrees for the TT phase. Regarding the 
simulation environment, the differences in terms of ROMs 
between the two instruments range from 3 degrees in the TI  
phase to a maximum of 40 degrees in the FP phase. 
Considering solely the data coming from Xsens in the two 
environments the ROMs differences range between a 

minimum of 0 degrees in diverse phases (from FC to TC) to a 
maximum of 16 degrees in the GF phase. 

IV. DISCUSSION 

The present work showed the stages needed to obtain 

kinematics measurements inside the operating room and to 

compare them to those obtained in the simulation 

environments. Starting from the definition of the access 

protocol and the interview with the surgeon to understand the 

feasibility of using IMUs and depth cameras, we managed to 

enter the operating room without obstructing the work of the 

surgical staff and obtaining reliable kinematic data. The 

collected data were then appropriately elaborated to obtain 

the results previously shown.  

Considering the comparison between the two measurement 

systems, the primary observation from the graphs of the 

Azure Data in the operating room is the difference of almost 

70 degrees with respect to Xsens data that occurs in all the 

shoulders and elbow movements in correspondence with the 

TT phase. This is due to occlusions due by the surgeon’s 

assistants which were ahead of the surgeon in phase two. This 

is one of the main criticisms regarding the use of depth 

cameras. In fact, it must be positioned in a way that does not 

obstruct the work of the individuals in the room, while also 

providing the optimal perspective for observing the surgeon. 

Unfortunately, not always, the two requirements are 

compatible and since the first one cannot be disregarded, this 

results sometimes in obstruction to the camera, and some 

stages cannot be properly recorded. However, a depth camera 

has also an advantage with respect to a simple RGB camera. 

In fact, in such a critical environment as the operating room, 

there are a lot of people, all with the same clothes and all near 

each other. This implies that a markerless skeletonizer such 

as the MediaPipe BlazePose framework [14], which bases the 

video inference just on RGB images is not able to correctly 

segment the different people (see Figure 9). 

 
Fig. 9. Instance of frame inference using MediaPipe BlazePose within the 

operating room. It’s important to note that this framework cannot 

differentiate between two individuals wearing identical attire and 

overlapping each other. Consequently, this results in all the keypoints 
of the skeleton being wrongly positioned. 

This problem is solved thanks to the depth camera, as 

already shown previously in Figure 3. 

Another consideration is that the add/abduction of the 

shoulders showed less difference between the two 

instruments in terms of range of motion. This can be 

attributed to the Azure Kinect being positioned frontally to 

the surgeon, making abduction an easier and clearer 



movement to observe. That’s a good result since as shown in 

the literature [11] the add/abduction is one of the main 

movements used to distinguish between surgeons with 

different levels of expertise. That hints that with some 

adjustments in positioning the Azure inside the operating 

room and improvements to the preliminary OpenSim model 

used, the Azure could be a possible solution to monitor 

surgeons’ movements inside the operating room.  

The final observation regards the discrepancy in ranges of 

motion between the simulation environment and the 

operating room considering data coming from Xsens. While 

most stages show minimal differences, certain stages exhibit 

discrepancies of up to 40 degrees. Notably, these differences 

predominantly pertain to the flexion/extension movements of 

the shoulder. As previously explained, the camera's 

positioning favors adduction/abduction movements, 

potentially contributing to this observed variation. 

A limitation of the present study is that we have just a 

single test on the same surgeon for both environments and 

further studies required more trials to statistically assess the 

reliability of the data. Now that the protocol is defined, an 

acquisition campaign will start with the aim of acquiring data 

on different surgeons with different levels of experience to 

increase the variability of the dataset and obtain significant 

statistical results. 

V. CONCLUSIONS 

The present study highlighted the feasibility of entering 

the operating room during an arthroscopic procedure by 

following some recommendations summed up in the access 

protocol. The results demonstrated the feasibility of obtaining 

kinematic metrics through IMUs inside the operating room, 

despite some discrepancies with the training environment 

using a knee mannequin. Additionally, the potential use of an 

Azure Kinect DK as an alternative to IMUs was explored, 

revealing certain challenges. Overall, this study provides 

valuable insights into the practicality and challenges of 

implementing kinematic measurements in surgical 

environments. Of course, just one experiment is not enough, 

so further research is needed to obtain statistical data which 

would provide robust conclusions and validation of the 

proposed measurement method. 
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