



Gianni Bosi <sup>1,\*,†</sup> and Magalì Zuanon <sup>2</sup>

- <sup>1</sup> Department of Economics, Business, Mathematics and Statistics, University of Trieste, Via A. Valerio 4/1, 1, 34127 Trieste, Italy
- <sup>2</sup> Dipartimento di Economia e Management, Università di Brescia, 25122 Brescia, Italy
- \* Correspondence: gianni.bosi@deams.units.it; Tel.: +39-040-558-7115
- + Current address: Piazzale Europa, 1, 34127 Trieste, Italy.

**Abstract:** We present some lifting theorems for continuous order-preserving functions on locally and  $\sigma$ -compact Hausdorff preordered topological spaces. In particular, we show that a preorder on a locally and  $\sigma$ -compact Hausdorff topological space has a continuous multi-utility representation if, and only if, for every compact subspace, every continuous order-preserving function can be lifted to the entire space. Such a characterization is also presented by introducing a lifting property of  $\precsim$ -*C*-compatible continuous order-preserving functions on closed subspaces. The assumption of paracompactness is also used in connection to lifting conditions.

Keywords: order-preserving function; locally compact space; continuous multi-utility representation

MSC: 91B16; 03E72; 06A06

# 1. Introduction

The problem concerning the continuous representability of not necessarily total preorders is very interesting not only from a purely mathematical viewpoint, but also for its possible applications to economics and social sciences. General achievements concerning the existence of continuous utility representations were very recently presented by Bosi [1] in the case of nontotal preorders, and by Bosi and Zuanon [2] in the case of total preorders.

Several authors have presented contributions to this topic by following a direct approach, which is mainly based on the existence of a *separable system* or *decreasing scale* in a topological preordered space. Such a notion generalizes the concept of a *scale* in a topological space (see for example, Burgess and Fitzpatrick [3] and Gillman and Jerison [4]). In particular, Herden [5,6] proved very general results in this direction, but also other authors contributed to this field (see, for example, Herden and Pallack [7], Levin [8,9], Mehta [10,11] and Minguzzi [12]).

On the other hand, another possible approach to the existence of continuous representations of preorders by means of one real-valued function is based on *lifting theorems*, which concern the possibility of lifting a continuous (strictly) isotone function from a generic (typically closed or compact) subspace of the topological preordered space to the entire space.

Nachbin [13] generalized to *normally preordered topological spaces* the well-known *Tietze–Urysohn extension theorem* in normal spaces (see, for example, Engelking [14]), according to which it is always possible to lift a continuous real-valued function from a closed subspace of a normal space over the entire space.

Herden [15] was concerned with the possibility of lifting continuous order-preserving functions from (closed) subsets of preordered topological spaces. Further, Herden [16] generalized to arbitrary topological preordered spaces the aforementioned extension result proved by Nachbin and, as a consequence of his main result, characterized the possibility



Citation: Bosi, G.; Zuanon, M. Lifting Theorems for Continuous Order-Preserving Functions and Continuous Multi-Utility. *Axioms* 2023, 12, 123. https://doi.org/ 10.3390/axioms12020123

Academic Editor: Chihhsiong Shih

Received: 23 December 2022 Revised: 17 January 2023 Accepted: 20 January 2023 Published: 27 January 2023



**Copyright:** © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). of lifting every bounded increasing continuous real-valued function from a closed subset of a preordered topological space to the whole space.

Mehta [17] studied a variant of Nachbin's lifting theorem. Recently, some results concerning the extensions of continuous increasing or order-preserving functions were presented by Evren and Hüsseinov [18].

In this paper, we present a lifting theorem for a *closed preorder* (i.e., a preorder which is closed with respect to the product topology), which guarantees the possibility of lifting a continuous real-valued order-preserving function defined on compact or closed subsets of a locally compact topological preordered space. The interest for closed preorders primarily arises in connection to the fact that the condition of being closed is necessary for the existence of a *continuous multi-utility representation*.

We recall that a preorder  $\preceq$  is defined to admit a *continuous multi-utility representation* on a topological space (X, t) if there is a collection  $\mathcal{F}$  of continuous increasing functions such that, for all points  $x, y \in X$ , we have that  $x \preceq y$  if, and only if,  $f(x) \leq f(y)$  for every  $f \in \mathcal{F}$ . It is worth noticing that continuous multi-utility representations, which were first introduced and investigated by Evren and Ok [19] (see also Bosi and Herden [20]), fully characterize the given closed preorder, while order-preserving functions only provide very particular continuous extensions by means of continuously representable total preorders (see, for example, Bosi and Herden [21]).

We concentrate our attention on locally and  $\sigma$ -compact Hausdorff spaces. We prove that a preorder on a locally and  $\sigma$ -compact Hausdorff space is closed (or equivalently, representable by a continuous multi-utility) if, and only if, for every compact subspace, every continuous order-preserving function can be lifted to the entire space. We further inaugurate the notion of a  $\preceq$ -*C*-*compatible* real-valued function on a topological preordered space (X,  $\preceq$ , t), and we prove that a preorder on a locally and  $\sigma$ -compact Hausdorff space is closed if, and only if, for every closed subspace, every bounded, continuous and  $\preceq$ -*C*-compatible order-preserving function can be lifted to the entire space. Finally, we show that the assumption of  $\sigma$ -compactness cannot be avoided in such a characterization since the aforementioned lifting property from compact subspaces is equivalent to  $\sigma$ -compactness when the topological space is locally compact and paracompact.

#### 2. Basic Concepts

In the sequel,  $\mathbb{N} = \{0, 1, 2, ..., n, n + 1, ...\}$  is the set of natural numbers,  $\mathbb{R}$  the set of real numbers, and [a, b] a non-degenerate (non-trivial) real interval. As usual, we denote by [a, b[, ]a, b] and ]a, b[, respectively, the corresponding half-closed half-open, half-open half-closed and open real intervals, respectively. [0, 1] is the real unit interval. For every set A, we abbreviate by |A| the cardinality of A.  $\Delta_A := \{(a, a) \mid a \in A\}$  is the diagonal of A.

**Definition 1.** A preorder  $\preceq$  on a set X is a binary relation on X satisfying reflexivity and transitivity. The pair  $(X, \preceq)$  is referred to as a preordered set.

The strict part  $\prec$  of a preorder  $\preceq$  on a set *X* is defined to be, for all  $x, y \in X$ ,

$$x \prec y \Leftrightarrow (x \preceq y)$$
 and  $not(y \preceq x)$ .

In the sequel,  $(x, y) \in \prec$  will occasionally replace  $x \prec y$ .

**Definition 2.** A real-valued function f on a preordered set  $(X, \preceq)$  is defined to be (i) Increasing, if, for all  $x, y \in X$ ,

 $x \preceq y \Rightarrow f(x) \leq f(y);$ 

(ii) Order-preserving, if f is increasing and, for all  $x, y \in X$ ,

 $x \prec y \Rightarrow f(x) < f(y).$ 

An increasing (order-preserving) function is sometimes called an *isotone* (respectively, *strictly isotone*) function.

If  $(X, \preceq, t)$  is a *preordered topological space*, *C* is a subset of *X* and *h* is a real-valued function on *X*, then  $t_{|C}, \preceq_{|C}$  and  $h_{|C}$  are the topology on *C*, which is induced by *t*, the restriction of  $\preceq$  to *C*, and, respectively, the restriction of *h* to *C*.

A stands for the topological closure (with respect to *t*) of any subset *A* of *X*. In addition,  $t_{nat}$  will stand for the *natural topology* on  $\mathbb{R}$ .

**Definition 3.** Let  $\preceq$  be a preorder on a topological space (X, t). Then  $\preceq$  is defined to be closed if  $\preceq$  is a closed subset of  $X \times X$  with the product topology  $t \times t$ .

A closed preorder is referred to as a *continuous* preorder by some authors (see, for example, Evren and Ok [19]). For every closed preorder  $\preceq$  on X and every point  $x \in X$ , we have that the sets

$$d(x) := \{ y \in x \mid y \preceq x \}, \ i(x) := \{ z \in x \mid x \preceq z \}$$

are both closed subsets of *X*. It is well known that a preorder  $\preceq$  on *X* that has the property that, for every point  $x \in X$  both sets d(x) and i(x) are closed, is not necessarily closed. However, if a preorder  $\preceq$  is *total*, then the closedness of  $\preceq$  is equivalent to the requirement according to which both sets d(x) and i(x) are closed. This latter property is sometimes referred to as *semiclosedness* (see, for example, Bosi and Herden [22]).

**Definition 4.** Let  $(X, \preceq)$  be a preordered set, and let  $C \neq \emptyset$  be a subset of X. Then a real-valued function f on C is defined to be  $\preceq$ -C-compatible if, for every pair  $(x, y) \in \prec$ , the sets  $\overline{f(C \cap d(x))}$  and  $\overline{f(C \cap i(y))}$  are disjoint.

Let  $E_{\prec}^{C}$  be the family of all pairs  $(x, y) \in \prec$  for which neither  $C \cap d(x)$  nor  $C \cap i(y)$  is empty. Let *f* be a real-valued function on *X*. For every pair  $(x, y) \in E_{\prec}^{C}$ , we set

$$s_x^{\mathbb{C}}(f) := \sup f(\mathbb{C} \cap d(x)), \ i_y^{\mathbb{C}}(f) := \inf f(\mathbb{C} \cap i(y)).$$

Then the following proposition, the simple proof of which may be omitted for the sake of brevity, somewhat characterizes real-valued  $\preceq$ -*C*-compatible functions.

**Proposition 1.** *Let* f *be a real-valued function on a preordered set*  $(X, \preceq)$ *, and let* C *be a subset of* X. *The following conditions, concerning a real-valued function f on* C*, are equivalent:* 

- (i) f is  $\preceq$ -*C*-compatible;
- (ii)  $s_x^C(f) < i_y^C(f)$  for every pair  $(x, y) \in E_{\prec}^C$ ;
- (iii) For every pair  $(x, y) \in E_{\prec}^{C}$ , the following implication holds:

$$f^{-1}(] - \infty, s_x^{\mathbb{C}}(f)]) \cup f^{-1}([i_y^{\mathbb{C}}(f), \infty[) = \mathbb{C} \Rightarrow s_x^{\mathbb{C}}(f) < i_y^{\mathbb{C}}(f))$$

**Definition 5.** Let  $(P, \preceq)$  be a preordered set. Then a subset A of P is said to be decreasing if  $x \in A$  and  $y \preceq x$  imply that  $y \in A$ . Dually, the notion of an increasing subset B of P is expressed.

**Definition 6.** A preorder  $\preceq$  on (X, t) is said to be representable by continuous multi-utility if, for some family  $\mathcal{F}$  of continuous increasing real-valued functions f on  $(X, \preceq, t)$ , the following equivalence is valid for all  $x \in X$  and all  $y \in Y$ :

$$x \preceq y \Leftrightarrow \forall f \in \mathcal{F} (f(x) \le f(y)).$$

**Definition 7.** A preordered topological space  $(X, \leq, t)$  is defined to be normally preordered if, for every pair  $(F_0, F_1)$  of disjoint closed sets,  $F_0$  being decreasing and  $F_1$  being increasing, there exists a

pair of disjoint open sets  $(A_0, A_1)$ , where  $A_0$  is decreasing and contains  $F_0$ , and  $A_1$  is increasing and contains  $F_1$ .

Nachbin [13], Theorem 2 on page 36, proved the following generalization to continuous increasing functions of the *Tietze–Urysohn extension theorem* (see, for example, Engelking [14], Theorem 2.1.8).

**Theorem 1** (Nachbin [13]). Consider a normally preordered topological space  $(X, \leq, t)$ , and let f be a bounded, continuous and increasing real-valued function defined on some closed subset C of X. The function f can be extended to X in such a way that the resulting extension is bounded, continuous and increasing on  $(X, \leq, t)$  if, and only if, for every pair of real numbers r < r', the smallest closed decreasing subset A(r) of X that contains the set  $A_r$  of all points  $x \in C$  such that  $f(x) \leq r$ , and the smallest closed increasing subset B(r') of X that contains the set  $B_{r'}$  of all points  $y \in C$  such that  $r' \leq f(y)$ , are disjoint.

Bosi and Herden [22] used the following definition.

**Definition 8.** A preordered topological space  $(X, \preceq, t)$  is defined to be strongly normally preordered *if, for every pair* (A, B) *of disjoint closed subsets of* X *with*  $not(x \succeq y)$  *for every pair*  $(x, y) \in A \times B$ , *there exists a pair* (U, V) *of disjoint open subsets of* X, *where* U *is decreasing and contains* A, *and* V *is increasing and contains* V.

It is immediate to check that a strongly normally preordered topological space is normally preordered.

### 3. The Lifting Theorems

We are going to show the validity of a general lifting theorem concerning continuous order-preserving functions on compact and, respectively, closed subspaces of a topological space satisfying particular conditions of compactness. In order to prove our theorem, characterizing closed preorders in terms of a lifting property on locally and  $\sigma$ -compact (a topological space (X, t) is said to be *locally compact* if every point in X has an open neighborhood whose closure is compact, and (X, t) is said to be  $\sigma$ -compact if it is a union of countably many compact subsets) Hausdorff topological spaces, we need to use Theorem 1 presented by Evren and Ok [19] and to prove two lemmas, together with a resulting proposition.

**Theorem 2** (Evren and Ok [19]). Every closed preorder  $\leq$  on a locally and  $\sigma$ -compact Hausdorff space (X, t) is representable by a continuous multi-utility.

**Lemma 1.** A preordered locally and  $\sigma$ -compact Hausdorff space  $(X, \preceq, t)$  is strongly normally preordered provided that the preorder  $\preceq$  is closed.

**Proof.** Consider two disjoint closed subsets *A* and *B* of *X*, with the property that, for every pair  $(x,y) \in A \times B$ ,  $not(x \succeq y)$ . By Theorem 2,  $\preceq$  is representable by a continuous multi-utility  $\mathcal{F}$ . Therefore, for every pair  $(x,y) \in A \times B$ , there is some continuous increasing function  $f_{xy} \in \mathcal{F}$ ,  $f_{xy} : (X \preceq, t) \rightarrow ([0,1], \leq_{|[0,1]}, t_{nat|[0,1]})$ , with the property that  $f_{xy}(x) = 0$  and  $f_{xy}(y) = 1$  (see Evren and Ok [18], Remark 3). It follows that  $A \times B \subset \bigcup_{(x,y) \in A \times B} f_{xy}^{-1}\left(\left[0, \frac{1}{2}\right]\right) \times f_{xy}^{-1}\left(\left[\frac{1}{2}, 1\right]\right)$ . Since a  $\sigma$ -compact (Hausdorff)

space is Lindelöf (a topological space (X, t) is said to be Lindelöf if every open cover of X has a countable subcover), and since, in addition, finite products of locally and  $\sigma$ -compact Hausdorff spaces are locally and  $\sigma$ -compact Hausdorff spaces, it follows that there is a countable collection  $\{(x_n, y_n)\}_{n \in \mathbb{N}}$  of pairs  $(x_n, y_n) \in A \times B$  such that  $A \times B \subset$  $| | f_{\tau^{-1}u}^{-1} \left( \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \times f_{\tau^{-1}u}^{-1} \left( \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix} \right)$ . Let  $F := \sum \frac{1}{2} \frac{1}{f_{\tau^{-1}u}} f_{\tau^{-1}u}$ . Then  $U := F^{-1} \left( \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \right)$ 

$$\bigcup_{(x_n,y_n)} f_{x_ny_n}^{-1}\left(\left\lfloor 0,\frac{1}{2}\right\rfloor\right) \times f_{x_ny_n}^{-1}\left(\left\lfloor \frac{1}{2},1\right\rfloor\right). \text{ Let } F := \sum_{n\in\mathbb{N}} \frac{1}{2^{n+1}} f_{x_ny_n}. \text{ Then } U := F^{-1}\left(\left\lfloor 0,\frac{1}{2}\right\rfloor\right)$$

and  $V := F^{-1}(\lfloor \frac{1}{2}, 1 \rfloor)$  are two disjoint open subsets of *X*, with the additional property that *U* is decreasing and contains *A*, and *V* is increasing and contains *B*.  $\Box$ 

Let us now show that a continuous increasing function on a closed subset of a strongly normally preordered topological space can be lifted to the entire space in order for it to remain continuous and increasing.

**Lemma 2.** Let  $(X \preceq, t)$  be a strongly normally preordered space. Then the following property holds: "If C is any closed subset of X, and  $f : (C, \preceq_{|C}, t_{|C}) \rightarrow (\mathbb{R}, \leq, t_{nat})$  is any continuous increasing function, then  $F_{|C} = f$  for some continuous increasing function  $F : (X, \preceq, t) \rightarrow (\mathbb{R}, \leq, t_{nat})$ ".

**Proof.** By the above Theorem 1, it suffices to show that, for every pair r < r' of real numbers, the smallest closed decreasing subset A(r) of X that includes the set  $A_r$  of all points  $x \in C$ such that  $f(x) \leq r$ , and the smallest closed increasing subset B(r') of X that includes the set  $B_{r'}$  of all points  $y \in C$  such that  $r' \leq f(y)$  are disjoint. Let, therefore, real numbers r < r' be arbitrarily chosen. Since r < r' and since f is continuous and increasing,  $A_r$  and  $B_{r'}$  are disjoint closed subsets of X such that  $not(x \succeq y)$  for every pair  $(x, y) \in A_r \times B_{r'}$ . Hence, the assumption that  $(X \preceq t)$  is a strongly normally preordered space implies that there exist disjoint open decreasing and increasing subsets U, respectively, V of X, such that  $A_r \subset U$  and  $B_{r'} \subset V$ . It follows that  $X \setminus V$  is a closed decreasing subset of X such that  $A_r \subset X \setminus V$ . This means, in particular, that  $A(r) \subset X \setminus V$ . With help of the observations that A(r) is decreasing, V is increasing,  $A(r) \cap V = \emptyset$  and  $B_{r'} \subset V$ , we may conclude that  $A(r) \cap B_{r'} = \emptyset$  and that  $not(x \succeq y)$  for all pairs  $(x, y) \in A(r) \times B_{r'}$ . Therefore, there exist disjoint open decreasing and increasing subsets H, respectively, W of X, such that  $A(r) \subset H$  and  $B(r') \subset W$ . These inclusions imply that  $X \setminus H$  is a closed increasing subset of X that includes  $B_{r'}$ . It, thus, follows that  $B(r') \subset X \setminus H$ . Therefore, we have that  $A(r) \cap B(r') = \emptyset. \quad \Box$ 

Needless to say, we can put together Lemma 1 and Lemma 2 so that the following proposition holds true.

**Proposition 2.** Let  $(X, \preceq, t)$  be a preordered locally and  $\sigma$ -compact Hausdorff space, the preorder  $\preceq$  of which is closed. Then the following property holds:

"If C is any closed subset of X, and  $f : (C, \preceq_{|C}, t_{|C}) \to (\mathbb{R}, \leq, t_{nat})$  is any continuous increasing function, then  $F_{|C} = f$  for some continuous increasing function  $F : (X, \preceq, t) \to (\mathbb{R}, \leq, t_{nat})$ ".

The following theorem characterizes the existence of a continuous multi-utility representation for a preorder on a locally and  $\sigma$ -compact Hausdorff space in terms of lifting properties from closed and, respectively, compact subspaces.

**Theorem 3.** Consider a preordered locally and  $\sigma$ -compact Hausdorff space  $(X, \preceq, t)$ . Then the following conditions are equivalent:

- (*i*)  $\leq$  is representable by a continuous multi-utility;
- (ii) If  $\preceq$  is any closed preorder on (X, t), then the following property is verified: "If C is any closed subset of X, and  $f : (C, \preceq_{|C}, t_{|C}) \rightarrow (\mathbb{R}, \leq, t_{nat})$  is any bounded, continuous, order-preserving and  $\preceq$ -C-compatible function, then  $F_{|C} = f$  for some continuous order-preserving function  $F : (X, \preceq, t) \rightarrow (\mathbb{R}, \leq, t_{nat})$ ";
- (iii) If  $\preceq$  is any closed preorder on (X, t), then the following property is verified:

"If C is any compact subset of X, and  $f : (C, \preceq_{|C}, t_{|C}) \rightarrow (\mathbb{R}, \leq, t_{nat})$  is any continuous order-preserving function, then  $F_{|C} = f$  for some continuous order-preserving function  $F : (X, \preceq, t) \rightarrow (\mathbb{R}, \leq, t_{nat})$ ".

**Proof.** (i)  $\Rightarrow$  (ii) and (i)  $\Rightarrow$  (iii): We prove jointly the two implications for the sake of convenience. Since  $\preceq$  is representable by a continuous multi-utility, we have that  $\preceq$  is

closed by Bosi and Herden [22], Proposition 2.1. We consider a subset *C* of *X* and a continuous order-preserving function  $f : (C, \preceq_{|C}, t_{|C}) \rightarrow (\mathbb{R}, \leq, t_{nat})$ . In order to verify that *f* can be lifted to a continuous order-preserving function  $F : (X, \preceq, t_{nat}) \rightarrow (\mathbb{R}, \leq, t_{nat})$ , according to other suitable assumptions suggested by the consideration of the implication we want to prove, we arbitrarily choose a pair  $(x, y) \in \prec$ , and we define  $C_{xy} := C \cup \{x, y\}$ . We proceed by showing that *f* can be extended to a continuous order-preserving function  $f_{xy} : (C_{xy}, \preceq_{|C_{xy}}, t_{|C_{xy}}) \rightarrow (\mathbb{R}, \leq, t_{nat})$ . Therefore, we distinguish between the following four cases:

Case 1: $C \cap d(x) = \emptyset$  and  $C \cap i(y) = \emptyset$ .Case 2: $C \cap d(x) \neq \emptyset$  and  $C \cap i(y) = \emptyset$ .Case 3: $C \cap d(x) = \emptyset$  and  $C \cap i(y) \neq \emptyset$ .Case 4: $C \cap d(x) \neq \emptyset$  and  $C \cap i(y) \neq \emptyset$ .

The only case that needs particular reflection is the case that both sets  $C \cap d(x)$  and  $C \cap i(y)$  are not empty (i.e., the pair  $(x, y) \in E_{\prec}^{C}$ ). In this case it, clearly, suffices to prove that  $s_x^C(f)$  and  $i_y^C(f)$  exist and that  $s_x^C(f) < i_y^C(f)$ . Indeed, having proved the existence of  $s_x^C(f)$  and  $i_y^C(f)$  as well as the strong inequality  $s_x^C(f) < i_y^C(f)$ , we may assume that  $x \notin C$  or  $y \notin C$ . In this situation, the inequality  $s_x^C(f) < i_y^C(f)$  allows us to set  $f_{xy}(x) := s_x^C(f) + \frac{i_y^C(f) - s_x^C(f)}{4}$  if  $x \notin C$  and  $y \in C$  or  $f_{xy}(y) := i_y^C(f) - \frac{i_y^C(f) - s_x^C(f)}{4}$  if  $x \notin C$  and  $y \notin C$ . It, thus, remains to verify that  $s_x^C(f)$  and  $i_y^C(f)$  exist and that the strong inequality  $s_x^C(f) < i_y^C(f) - \frac{i_y^C(f) - s_x^C(f)}{4}$  if  $x \notin C$  and  $y \notin C$ . It, thus, remains to verify that  $s_x^C(f)$  and  $i_y^C(f)$  exist and that the strong inequality  $s_x^C(f) < i_y^C(f) - i_y^C(f)$  for a sume that  $s_x^C(f) = i_y^C(f) + \frac{i_y^C(f) - s_x^C(f)}{4}$  if  $x \notin C$  and  $y \notin C$ . It, thus, remains to verify that  $s_x^C(f)$  and  $i_y^C(f)$  exist and that the strong inequality  $s_x^C(f) < i_y^C(f)$  holds.

Let us now concentrate on the implication (i)  $\Rightarrow$  (ii). In this case, since *C* is a closed subset of *X* and (*X*, *t*) is a Hausdorff space, we may conclude that  $C_{xy} := C \cup \{x, y\}$  is a closed subset of *X*. In addition, besides the assumption that *f* is continuous and orderpreserving, we have that *f* is bounded and  $\preceq$ -*C*-compatible. Using the fact that *f* is bounded and continuous on *C* closed, and that d(x) and i(y) are closed due to the closedness of  $\preccurlyeq$ , we have that, actually,  $s_x^C(f) := \max f(C \cap d(x))$  and  $i_y^C(f) := \min f(C \cap i(y))$ , and  $s_x^C(f) < i_y^C(f)$  for every pair  $(x, y) \in E_{\prec}^C$  by condition (ii) of Proposition 1.

Let us now consider the implication (i)  $\Rightarrow$  (iii). Since *C* is a compact subset of *X* and (X, t) is a Hausdorff space, we may conclude that  $C_{xy} := C \cup \{x, y\}$  is a compact subset of *X*. Well, the compactness of *C* implies that there exist points  $v \in C \cap d(x)$  and  $z \in C \cap i(y)$  such that  $f(v) = s_x^C(f)$  and  $f(z) = i_y^C(f)$ . Since *f* is order-preserving, we thus may conclude that  $f(v) = s_x^C(f) < f(z) = i_y^C(f)$ . Let us abbreviate the above considerations by (\*). Since  $C_{xy}$  is compact, there exist real numbers a < b such that  $f_{xy}(C_{xy}) \subset [a, b]$ . Applying (\*), it follows that the real numbers a < b can be chosen in such a way that  $f_{xy} \subset [a, b]$  for all pairs  $(x, y) \in \prec$ .

For both implications, Proposition 2 now implies that every function  $f_{xy}$  can be lifted to a continuous increasing function  $F_{xy} : (X, \preceq, t) \to ([a, b], \leq_{|[a,b]}, t_{|[a,b]})$ . In particular, we may conclude that, for every pair  $(x, y) \in \prec$ , there exists a real number  $\epsilon_{xy} \in ]a, b[$  such that  $(x, y) \in F_{xy}^{-1}([a, \epsilon_{xy}[) \times F_{xy}^{-1}(]\epsilon_{xy}, b])$ . Hence,  $\prec \subset \bigcup_{\substack{(x,y) \in \prec}} F_{xy}^{-1}([a, \epsilon_{xy}[) \times F_{xy}^{-1}(]\epsilon_{xy}, b])$ . Now,

we may apply the results on the Lindelöf property of (X, t) that already have been quoted in the proof of Lemma 1 in order to conclude that there exists a countable family  $\{(x_n, y_n)\}_{n \in \mathbb{N}}$ of pairs  $(x_n, y_n) \in \prec$  such that the inclusion  $\prec \subset \bigcup_{(x_n, y_n) \in \prec} F_{x_n y_n}^{-1}([a, \epsilon_{x_n y_n}[) \times F_{x_n y_n}^{-1}(]\epsilon_{x_n y_n}, b])$ 

holds. Hence, we set  $F := \sum_{n \in \mathbb{N}} \frac{1}{2^{n+1}} F_{x_n y_n}$ . The definition of F allows to conclude that F is a continuous order-preserving real-valued function such that  $F_{|C} = f$ . In this way, we have proven both implications (i)  $\Rightarrow$  (ii) and (i)  $\Rightarrow$  (iii).

(ii)  $\Rightarrow$  (i). Consider a preorder  $\preceq$  on (X, t) satisfying property (ii). In order to show that  $\preceq$  is representable by a continuous multi-utility, consider any pair  $(x, y) \in X \times X$  with  $not(x \succeq y)$ . It suffices to verify that  $f_{xy}(x) < f_{xy}(y)$  for some continuous increasing real-

valued function  $f_{xy}$  on  $(X \preceq, t)$ . Therefore, we set  $C := \{x, y\}$ . Clearly, C is a closed subset of X. Furthermore, the function  $g_{xy} : (C, \preceq_{|C}, t_{|C}) \rightarrow (\mathbb{R}, \leq, t_{nat})$  defined by  $g_{xy}(x) := 0$  and  $g_{xy}(y) := 1$  is a bounded, continuous, order-preserving and  $\preceq$ -C-compatible function on  $(C, \preceq_{|C}, t_{|C})$ . Hence, there exists a continuous order-preserving function  $f_{xy} : (X, \preceq, t) \rightarrow$  $(\mathbb{R}, \leq, t_{nat})$  such that  $f_{xy}(x) = 0$  and  $f_{xy}(y) = 1$ , which implies that  $\preceq$  is representable by a continuous multi-utility.

(iii)  $\Rightarrow$  (i). Consider a preorder  $\preceq$  on (X, t) satisfying property (iii). We proceed as in the proof of the previous implication, by considering any pair  $(x, y) \in X \times X$  with  $not(x \succeq y)$ . Then, we set  $C := \{x, y\}$ . Clearly, C is a compact subset of X. Furthermore, the function  $g_{xy} : (C, \preceq_{|C}, t_{|C}) \rightarrow (\mathbb{R}, \leq, t_{nat})$  defined by  $g_{xy}(x) := 0$  and  $g_{xy}(y) := 1$  is a continuous order-preserving real-valued function on  $(C, \preceq_{|C}, t_{|C})$ . Hence, there exists a continuous order-preserving function  $f_{xy} : (X, \preceq, t) \rightarrow (\mathbb{R}, \leq, t_{nat})$  such that  $f_{xy}(x) = 0$ and  $f_{xy}(y) = 1$ , which implies that  $\preceq$  is representable by a continuous multi-utility. This observation finishes the proof of the implication and, thus, of the theorem.  $\Box$ 

It seems that the postulate of (X, t) being  $\sigma$ -compact cannot be avoided in Theorem 3. Indeed, the following restrictive theorem that is based upon the additional assumption (X, t) to be *paracompact* holds (a topological space (X, t) is said to be *paracompact* if it is Hausdorff and every open cover of X has a locally finite open refinement).

**Theorem 4.** Let (X, t) be a locally compact paracompact topological space. Then the following assertions are equivalent:

- (i) (X, t) is  $\sigma$ -compact;
- (ii) If ∠ is any closed preorder on (X, t), then the following property is verified:
  "If C is any compact subset of X, and f : (C, ∠<sub>|C</sub>, t<sub>|C</sub>) → (ℝ, ≤, t<sub>nat</sub>) is any continuous order-preserving function, then F<sub>|C</sub> = f for some continuous order-preserving function F : (X, ∠, t) → (ℝ, ≤, t<sub>nat</sub>)".

**Proof.** (i)  $\Rightarrow$  (ii). This implication follows from the implication "(i)  $\Rightarrow$  (ii)" of Theorem 3.

(ii)  $\Rightarrow$  (i). This implication is based upon the well-known result that a locally compact topological space is paracompact if and only if it is the direct sum of locally and  $\sigma$ -compact topological spaces (cf., for instance, Grotemeyer [23], Satz 97). In order to prove the validity of assertion (i) it, therefore, suffices to show that (X, t) must be the direct sum of countably many locally and  $\sigma$ -compact topological spaces. Indeed, let us assume, in contrast, that (X, t) is the direct sum of uncountably many locally and  $\sigma$ -compact topological spaces. Then we may assume these summands to be indexed by the ordinal numbers  $\alpha$  that are strictly smaller than some uncountable cardinal number  $\kappa$ , i.e., we may assume X to be given in the form  $X = \bigoplus_{\alpha < \kappa} X_{\alpha}$ , where each summand  $X_{\alpha}$  ( $\alpha < \kappa$ ) is a locally and  $\sigma$ -compact

topological space. Therefore, we consider the binary relation  $\preceq$  on X that is defined by setting

$$:= \{(x, y) \in X \times X \mid \text{ there exist ordinal numbers } \alpha \le \beta < \kappa \text{ such that} \\ x \in X_{\alpha} \text{ and } y \in X_{\beta} \}.$$

Obviously,  $\preceq$  is a closed (continuous) total preorder on (X, t). In addition, since  $\preceq$  contains uncountable well-ordered sub-chains, there cannot exist any compact subset *C* of *X* and any continuous order-preserving function  $f : (C, \preceq_{|C}, t_{|C}) \rightarrow (\mathbb{R}, \leq, t_{nat})$  for which there exists a continuous order-preserving function  $F : (X, \preceq, t) \rightarrow (\mathbb{R}, \leq, t_{nat})$  such that  $F_{|C} = f$ .  $\Box$ 

Consider that the proof of Theorem 4 demonstrates that the assumption that (X, t) is paracompact does not mean a great loss of generality.

## 4. Conclusions

A lifting theorem was presented for continuous order-preserving functions on locally and  $\sigma$ -compact Hausdorff preordered topological spaces. In particular, we showed that, on such spaces, a preorder is closed (or equivalently, representable by a continuous multiutility) if, and only if, for every compact subspace, every continuous order-preserving function can be lifted to the entire space. A lifting property from closed sets was also introduced in such spaces for a bounded, continuous, order-preserving and  $\preceq$ -C-compatible function. We showed that the assumption of  $\sigma$ -compactness cannot be avoided in such a characterization since the aforementioned lifting property is equivalent to  $\sigma$ -compactness when the topological space is locally compact and paracompact.

These theorems are helpful in order to provide necessary and sufficient conditions on a topology on a preordered set, according to which every closed preorder is representable by a continuous multi-utility. The corresponding more general results will be presented in a future paper.

**Author Contributions:** Methodology, G.B. and M.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

#### References

- 1. Bosi, G. Continuous Order-Preserving Functions for All Kind of Preorders. Order 2022. [CrossRef]
- Bosi, G.; Zuanon, M. Characterization of Useful Topologies in Mathematical Utility Theory by Countable Chain Conditions. Axioms 2022, 11, 195. [CrossRef]
- Burgess, D.C.J.; Fitzpatrick, M. On separation axioms for certain types of ordered topological space. *Math. Proc. Camb. Philos. Soc.* 1977, 82, 59–65. [CrossRef]
- 4. Gillman, L.; Jerison, M. Rings of Continuous Functions; D. Van Nostrand Company: Princeton, NJ, USA, 1960.
- 5. Herden, G. On the existence of utility functions. *Math. Social Sci.* 1989, 17, 297–313. [CrossRef]
- 6. Herden, G. On the existence of utility functions II. *Math. Social Sci.* **1989**, *18*, 107–117. [CrossRef]
- 7. Herden, G.; Pallack, A. On the continuous analogue of the Szpilrajn theorem. Math. Soc. Sci. 2002, 43, 115–134. [CrossRef]
- 8. Levin, V.L. A continuous utility theorem for closed preorders on a  $\sigma$ —Compact metrizable space. Sov. Math. Dokl. 1983, 28, 715–718.
- 9. Levin, V.L. Measurable utility theorem for closed and lexicographic preference relations. *Sov. Math. Dokl.* **1983**, 27, 639–643.
- 10. Mehta, G.B., Existence of an order-preserving function on a normally preordered space. Bull. Aust. Math. Soc. 1986, 34, 141–147. [CrossRef]
- 11. Mehta, G.B. Some general theorems on the existence of order-preserving functions. Math. Soc. Sci. 1988, 15, 135–143. [CrossRef]
- 12. Minguzzi, E. Convexity and quasi-uniformizability of closed preordered spaces. Topol. Appl. 2013, 160, 965–978. [CrossRef]
- 13. Nachbin, L. Topology and Order; Van Nostrand: Princeton, NJ, USA, 1965.
- 14. Engelking, R. General Topology; Helderman Verlag: Berlin, Germany, 1989.
- 15. Herden, G. Some lifting theorems for continuous utility functions. *Math. Social Sci.* **1989**, *18*, 119–134. [CrossRef]
- 16. Herden, G. On a lifting theorem of Nachbin. *Math. Social Sci.* **1990**, *19*, 37–44. [CrossRef]
- 17. Mehta, G.B. Order extension of order monomorphisms on a preordered topological space. *Int. J. Math. Math. Sci.* **1993**, *16*, 663–668. [CrossRef]
- 18. Evren, Ö.; Hüsseinov, F. Extension of monotonic functions and representation of preferences. Math. Oper. Res. 2021, 46, 1430–1451. [CrossRef]
- 19. Evren, Ö.; Ok, E.A. On the multi-utility representation of preference relations. J. Math. Econom. 2011, 47, 554–563. [CrossRef]
- 20. Bosi, G.; Herden, G. Continuous multi-utility representations of preorders. J. Math. Econom. 2012, 48, 212–218. [CrossRef]
- 21. Bosi, G.; Herden, G. On a possible continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller. *Order* **2006**, *23*, 271–296. [CrossRef]
- 22. Bosi, G.; Herden, G. On continuous multi-utility representations of semi-closed and closed preorders. *Math. Soc. Sci.* 2016, 79, 20–29. [CrossRef]
- 23. Grotemeyer, K.P. Topologie; Mathematisches Institut der Freien Universität: Berlin, Germany, 1966.

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.