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Abstract: Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we
characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained
the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and
iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to
reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately
five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To
obtain a soluble and stable product, the chimera was denatured and renatured together with different
amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit
proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy.
At the 1:5 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological
activity was verified by its ability to both bind specifically cell lines that express ferroportin and to
promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse
J774 macrophage cells, as well as human HepG2 cells, via the hepcidin–ferroportin axis. We conclude
that the chimera retains the properties of both hepcidin and ferritin and might be exploited for
drug delivery.

Keywords: camel hepcidin; human hepcidin; ferroportin; human ferritin H/L chains; iron; mass
spectroscopy; J774 cells; HepG2 cells

1. Introduction

Iron is an essential element for cells and organisms that functions as a cofactor in many
proteins and enzymes for many biochemical processes, such as DNA synthesis, oxygen
transfer and energy metabolism [1].

The cytosolic and ubiquitous human ferritin is composed of H- and L-chains of 182 and
174 amino acids, respectively, that are iron-regulated and co-assemble to form heteropoly-
mers [2]. In mammals, these two subunits have little propensity to form homopolymers, and
the formation of H/L heterodimers, in different proportions, is shown to be preferred, thus
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originating a large number of isoferritins (H24L0, H22L2, . . . , H0L24) with a tissue-specific
distribution [3,4]. The subunits fold in a four-helical bundle that can pack into shells made
of 24 subunits [2]. Any ferritin type containing the H chain with ferroxidase activity is able
to react with ferrous (Fe2+) and induce its oxidation to ferric (Fe3+) and its mineralization
inside the ferritin cavity. Up to 4000 Fe atoms per molecule can be stored, although, in vivo,
the saturation is variable and lower, and iron can be released when needed by a specific
autophagic mechanism named ferritinophagy, which involves binding to a molecule named
NCOA4 and its delivery to phagolysosome for protein degradation [5]. In vitro, the ferritin
iron is stable and does not exchange among molecules, whereas it can be released slowly by
strong Fe(III) chelators, such as desferroxamine [6], or in the presence of reducing agents,
including sulfides [7]. A similar reductive mechanism may also occur in vivo, and it was
reported that various molecules, such as the neurotoxin 6-hydroxydopamine (6-OHDA),
can reduce and release ferritin iron without protein degradation [8].

In mammals, the systemic iron absorption and recycling are regulated by hepcidin via
its binding to the iron exporter ferroportin, its receptor, and inducing its internalization and
degradation [9]. Recently, it has been reported that the carboxy terminus of hepcidin binds
to a metal-binding site of ferroportin and that the presence of iron increases the hepcidin
binding affinity by approximately 80-fold [10].

Here, we characterized both a chimera hepcidin-H ferritin (HepcH:FTH) produced in
E. coli in an insoluble form and its denaturation/renaturation to produce various heteropoly-
meric shells with the L-chain, and we used mass spectrometry to distinguish between
folded and unfolded heteropolymers assembled with different molar ratios. A proteomic
profile was generated for each HepcH-FTH/FTL heteropolymer assembled with specific
molar ratios.

2. Materials and Methods
2.1. HepcH Solubilisation

The insoluble hepcidin–ferritin monomer (HepcH) was first solubilized with urea at
different concentrations; first, from 1 M to 10 M, and then with 6 M guanidine hydrochlo-
ride. All reactions employing HepcH and FTH monomers were made in 6 M guanidine
hydrochloride, 20 mM TRIS, pH 7.4.

2.2. Iron Release from the Insoluble HepcH Monomer

HepcH construct, in 6 M guanidine, was subjected to iron removal with 2 different
reductants—ascorbic acid and tris(2-carboxyethyl)phosphine (TCEP)—and the iron released
was quantified by the ferrozine method [11]. Both reductants, the ascorbic acid and TCEP,
were prepared freshly just before use and added to the reaction mixtures in a large excess:
protein: reductant = 1:110. Ferrozine was prepared freshly and added to the reaction mixture
just before the addition of reductant to discard the presence of free Fe(II) in the protein
prior to reduction. Ferrozine was added in excess: protein: ferrozine = 1:30. The Fe(II)
released was then quantified, thanks to the Fe(II)-Ferrozine complex formation, every hour,
by UV/vis at 562 nm, until a plateau was reached.

2.3. Protein Thiol Assay

In parallel to Fe(II) release, thiol quantification with Ellman’s reagent was carried
out [12]. Ellman’s reagent ((5,5-dithio-bis-(2-nitrobenzoic acid), DTNB) was prepared freshly
and added to the reaction mixture just before the addition of reductant to discard the presence
of thiols in the protein prior to reduction. DTNB was added in a large excess: protein: DTNB
= 1:30. The reaction measures by UV/vis were taken every hour at 412 nm for SH-Ellman
formation until a plateau was reached. Prior to the thiol quantification, Ellman’s reagent
(DTNB) was tested if it gave a signal when it reacted with any of the reductants used in
absence of protein. The zero was achieved on the blank. Therefore, a standard curve has been
generated to determine the experimental sulfhydryl concentration present in the sample.
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2.4. Assembly of HepcH-FTH and HepcH-FTL Polymers

In order to obtain stable HecpH-FTH and HepcH-FTL hetheropolymers, the HepcH
monomer was assembled using different molar ratios of HepcH/FTH and HepcH/FTL [13].

2.5. SDS-PAGE

Proteins were analyzed on native and denaturing conditions, respectively, on 7% and
12% PAGE.

2.6. Mass Spectrometry Analysis

Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass
spectrometry (MS) was carried out using AB Sciex 5800 instrument [14].

2.7. Oxidation of Cysteines Present in the Hepcidin after Refolding with Native Ferritins

Cysteine oxidation to disulfide bridges was carried out using a glutathione redox
system (GSH/GSSG), as described by Jordan et al. (2009) [15]. Briefly, the refolded fer-
ritin samples containing the hepcidin construct were dialyzed for 48 h against 0.4 mM
GSH/0.4 mM GSSG at pH 7.5 in cold room in order to slowly oxidize cysteine thiols to disul-
fides in parallel with the gradual removal of the TCEP in order to avoid the intermolecular
disulfide bridges formation, thus enhancing the intramolecular S-S formation. After 48 h
of dialysis, the sample was thoroughly dialyzed at room temperature against Tris 20 mM
pH 7.4 to remove the GSG/GSSG, and the resulting oxidized S-S hepcidin-H-Ferritin sam-
ples were run on a native acrylamide 12% gel. Some precipitation is observed in the samples,
probably due to the formation of large aggregates between different ferritins during the
cysteines oxidation.

2.8. Cellular Studies

Human hepatocellular carcinoma HepG2 and mouse monocyte-macrophage J774 cell
lines (Lombardy and Emilia Romagna Experimental Zootechnic Institute) were cultured
as described by Poli et al. (2011) and Delaby et al. (2005), respectively [16,17]. Briefly,
HepG2 cells were cultured in minimal essential medium (PAA) with 10% fetal bovine
serum (PAA), 40 µg/mL gentamicin and 1 mM L-glutamine. On the other hand, J774 cells
were grown in DMEM (PAA Laboratories GmbH), 10% endotoxin-free fetal bovine serum
(Euroclone), 0.04 mg/mL gentamicin (Euroclone) and 2 mM L-glutamine (PAA Laboratories
GmbH). Both cell lines were maintained at 37 ◦C under 5% CO2. Effects of HepcH-FTH
heteropolymer (ratio 1:5) and synthetic human hepcidin (control) treatments were studied
regarding ferroportin expression in HepG2 and J774 cells, respectively. Expression of
FPN1 was studied in HepG2 cells treated with ferric ammonium citrate (FAC; 100 µM) or
desferrioxamine mesylate (DFO; 100 µM) for 16 h, and with the chimeric protein for 8 h.
Cell lysate proteins (30 µg per line) were separated onto SDS-PAGE, electro-transferred onto
nitrocellulose and analyzed with anti-ferroportin and anti-actin serum.

3. Results and Discussion

Hepcidin and ferritin are iron modulator molecules involved in iron homeostasis and
iron storage, respectively [18]. Here, we demonstrated that, after fusing the two proteins, a
bifunctional polymer is obtained with enhanced potential as an iron storage molecule, as
well as an iron homeostasis regulator through ferroportin degradation in HepG2 and J774
cell lines.

3.1. Iron Removal Studies

Our previous work has already demonstrated that the hybrid hepcidin–ferritin–H
construct (HepcH) expressed in E. coli was properly purified as an iron-containing pro-
tein [13]. This was shown by its amber color and by the release of Fe(II) under reluctant
conditions that formed a colored complex with ferrozine. In this study, we analyzed the
Fe(II) release from HepcH and FTH insoluble preparations with two different reductants:
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ascorbic acid and TCEP in the presence of the chelator ferrozine that makes a colored com-
plex that absorbs at 562 nm. The results showed that the HepcH construct releases Fe(II) in
the presence of both the reductants tested, and that the amount of iron released was around
five times bigger than that released by the sole human ferritin FTH (Figure 1; Table 1). In
the absence of reducing agents, no iron was detected (Figure 1, black dashed and dotted
lines), testifying that only the Fe(III) was bound to the HepcH monomer. The iron released
after treatment with ascorbic acid and TCEP reached a concentration of 6.5 and 6.8 µM,
respectively, corresponding to approximately 1.4 Fe atoms per HepcH monomer (Table 1).
On the other hand, only approximately 1 µM of iron was detected after the treatment of the
native FTH monomer with both reluctant agents, showing a negligible absorbance of the
complex at 562 nm (Figure 1, turquoise and yellow dotted lines). The kinetics of the Fe(II)
release from HepcH reached a plateau only after 24–30 h with both reductants (Figure 1),
suggesting that the iron is bound to the protein moiety and not as a free form. The amount
of iron Fe(II) detected in the HepcH construct after reduction with ascorbic acid or TCEP
was at least five times higher than that of the native human ferritin (FTH), and, together
with the slow kinetics of iron released, it suggested that the Fe(II) could form iron–sulfur
clusters with the SH present in the hepcidin structure [19].
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Table 1. Iron concentration of HepcH and FTH monomers after treatment with ascorbic acid and 
TCEP. 

Monomer Reductant Maximum  
Absorbance at 562 nm (after 60 h) 

Fe(II) Concentration 
(µM) 

FTH (9.4 μM) Ascorbic acid 0.048 ± 0.01 1.7 ± 0.10 

Figure 1. Iron release from HepcH subunit. This latter was incubated with the ascorbic acid (hepcH +
ASC + Fz) and TCEP (hepcH + TCEP + Fz) reluctants or without (hepcH + Fz) in presence of ferrozine,
which readily chelates iron with the formation of the Fe (II)-ferrozine complex that absorbs at 562 nm.
Time course of iron release was performed till 96 h and a plateau was shown after 24 h of reaction.
The recombinant human FTH was introduces in the analysis, as control. Results are presented as the
mean of two independent experiments.

Table 1. Iron concentration of HepcH and FTH monomers after treatment with ascorbic acid and TCEP.

Monomer Reductant Maximum Absorbance at 562 nm (after 60 h) Fe(II) Concentration (µM)

FTH (9.4 µM)
Ascorbic acid 0.048 ± 0.01 1.7 ± 0.10

TCEP 0.03 ± 0.00 1.1 ± 0.13

HepcH (9.4 µM) Ascorbic acid 0.182 ± 0.03 6.5 ± 0.50
TCEP 0.19 ± 0.05 6.8 ± 0.45

3.2. Quantification of Free Sulfhydryl Groups

Thiol quantification was performed by an absorbance measurement of purified HepcH
and FTH monomers incubated with DTNB before and after reduction with ascorbic acid
or TCEP. The results showed that the ascorbic acid did not reduce the HepcH and FTH
thiol groups. This could be explained by the auto-oxidation of the ascorbic acid, which
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is significantly enhanced with the addition of increasing concentrations of iron [20]. In
contrast, the TCEP efficiently reduced both protein thiols (Figure 2a versus Figure 2b). The
kinetics of the reduction of HepcH and FTH monomers by the ascorbic acid and TCEP was
monitored for 96 h (Figures S1 and S2), and a maximum absorbance of the cysteine rich
molecule HepcH was observed after 15 h of post-reduction with TCEP (Figure S2e).
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Figure 2. Time course of Ellman’s assay of FTH and HepcH during iron release. (a) Time course of
Ellman’s assay of FTH and HepcH in presence of ascorbic acid reductant showing the absence of
absorption bands at 412 nm. Turquoise dots: FTH reduced with ascorbic acid (FTH + ASC + Ellman).
Black dots: non-reduced FTH (FTH + Ellman, control). Yellow dashes: HepcH reduced with ascorbic
acid (hepcH + ASC + Ellman). Black dashes: non-reduced HepcH (hepcH + Ellman, control). (b) Time
course of Ellman’s assay of FTH and HepcH in presence of TCEP reductant showing the presence of
absorption bands at 412 nm. Yellow dots: FTH reduced with TCEP (FTH + TCEP + Ellman). Turquoise
dashes: HepcH reduced with TCEP (hepcH + TCEP + Ellman). FTH and HepcH subunits reduced
in presence of TCEP showed the presence of absorption bands at 412 nm with a pic after 18 h of
incubation. Results are presented as the mean of two independent experiments.

3.3. Assembly of HepcH-FTH/FTL with Different Molar Ratios

The HepcH insoluble subunit was denatured and then renatured together with wild
type H- and L-ferritin chains with a molar ratio HepcH:FT of 1:5 [13]. Iron removal and
the refolding experiments were carried out under reducing conditions. The presence of
hepcidin at the N-terminus of the HepcH monomer inhibited its spontaneous assembly in a
ferritin 24-mer shell. However, as previously shown, it was able to co-renature together with
native human H- and L-ferritin chains at different molar ratios, such as HepcH:FT of 1:11,
1:5, 1:2, 1:1 and 5:1, producing heteropolymeric ferritin shells [13]. Heteropolymers were
assembled at molar ratios of 1:11, 1:5 and 1:2, and were then analyzed under denaturing
conditions on 12% SDS-PAGE, and under non-denaturing conditions on 7% native-PAGE
(Figure 3a,b). The HepcH-FTH/FTL reassembly performed with an excess of the hepcidin–
ferritin monomer (HepcH:FT of 1:2) was not efficient, and the products had the tendency
to precipitate (Figure 3a,b). However, the reassembly with lower ratios of HepcH:FT of
1:5 and 1:11 showed the ability to produce a protein that was more stable and correctly
refolded after the renaturation procedure (see Materials and Methods section). The results
show that an efficient reassembly to a stable 24-mer shell containing the HepcH, both with
FTH or FTL, occurs only under few HepcH to Ft ratios, and specifically those containing
two, four or eight HepcH subunits per shell.
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3.4. Mass Spectrometry Analysis of the Assembled Polymers

We used MALDI-TOF/TOF-based analysis to characterize the different heteropoly-
mers generated by HepcH assembling with different molar ratios of native H- and L-ferritin
chains. This method was efficient in detecting both HepcH and FTH/FTL subunits of the
assembled polymers. The analysis of the refolded ferritin with a molar ratio HepcH:FT
of 1:5, corresponding to four HepcH per 24 subunits, detected peptides with masses
of 21,296.8496 and 24,338.8965 Da, corresponding, respectively, to the FTH and HepcH
monomers (Figure 4b. The heteropolymers with higher amounts of HepcH with molar
ratios of HepcH:FTH of 1:1 and 5:1, corresponding to 12 and 20 HepcH monomers per
24 subunits, were also analyzed by mass spectroscopy. The results showed that only
FTH subunits were detected, with experimental masses of 21,217.6289 and 21,146.4609,
which correspond to the theoretical mass of the FTH monomer (Figure 5). On the other
hand, the refolded heteropolymer with a molar ratio of HepcH: FT of 1:11, corresponding
to two HepcH per 24 subunits, showed that it was composed of masses of 21,302.3301
and 19,903.3672, corresponding to FTH and FTL (Figures 4a and 6a). We found that
the HepcH monomer was detected only when mixed with FTL with a molar ratio of 1:1
(Figure S6). Native homopolymers of FTH and FTL were also analyzed by mass spec-
troscopy, giving components corresponding to the subunit monomer, dimer, trimer and
tetramer (Figures S4 and S5). Thus, mass spectrometry proved to be an efficient method to
identify the most stable heteropolymer assembled with the molar ratio HepcH:FT of 1:5, by
detecting both HepcH and FTH/L subunits constituting the hybrid molecule.
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Figure 4. High-resolution MALDI-TOF mass analysis of the refolded HepcH-FTH heteropolymer.
(a) MALDI-TOF mass analysis of the refolded HepcH-FTH heteropolymer, assembled using a molar
ratio HepcH:FTH of 1:11, showing masses corresponding to FTH monomers, dimer and trimer.
(b) MALDI-TOF mass analysis of the refolded HepcH-FTH heteropolymer, assembled using a molar
ratio HepcH:FTH of 1:5, showing masses corresponding to HepcH and FTH monomers and FTH dimer.

Figure 5. High-resolution MALDI-TOF/TOF mass analysis of the refolded heteropolymer assembled
with high HepcH:FTH molar ratio. Folded human ferritin homopolymer (in green). HepcH-FTH
heteropolymer, assembled using a molar ratio HepcH:FTH of 1:11 (in red). HepcH-FTH heteropolymer,
assembled using a molar ratio HepcH:FTH of 5:1 (in turquoise). HepcH monomer (in dark blue).
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Figure 6. High-resolution MALDI-TOF/TOF mass analysis of the refolded heteropolymer HepcH-
FTL. (a) MALDI-TOF mass analysis of the refolded HepcH-FTL heteropolymer, assembled using a
molar ratio HepcH:FTL of 1:11, showing masses corresponding to FTL monomer, dimer and trimer.
(b) MALDI-TOF mass analysis of the refolded HepcH-FTL heteropolymer, assembled using a molar
ratio HepcH:FTL of 1:5, showing masses corresponding to HepcH and FTL monomers, FTL dimer
and HepcH dimer.

3.5. Functional Assays of Free and Ferritin Exposed Hepcidins

A mass spectroscopy analysis confirmed the presence of HepcH in the stable 24-mer
shells assembled with FTH or FTL subunits with a molar ratio HepcH:FT of 1:5. Once
refolded, cysteines present in the hepcidin construct (HepcH) were oxidized to disulfide
S-S bridges, which are essential for the folding of biologically functional hepcidin on the
ferritin surface. Two different hepcidin forms were analyzed for their biological activity
toward ferroportin under different conditions. The mouse J774 human HepG2 cells were
initially treated with ferric ammonium citrate (FAC; 100 µM) or desferrioxamine mesylate
(DFO; 100 µM) to modulate the expression of ferroportin. In addition, J774 cells were also
treated with cycloheximide (which blocks new protein expression), and then with different
concentrations of synthetic human hepcidin (0.5 µM, 1 µM and 5 µM) in the presence or
absence of 100 µM FAC. Immunoblotting showed that ferroportin was partially degraded in
comparison to the non-treated cells (Figure 7a, lane 4 to 9 versus lane 1 to 3). When treated
with FAC, ferroportin was more expressed than the untreated cells (Figure 7b, lane 1 and 2
versus lane 3 and 4). Furthermore, cycloheximide did not affect ferroportin expression
in J744 cells (Figure 7b lane 1 versus lane 2) or the biological activity of human hepcidin
toward ferroportin (Figure 7b, lane 2 to 4 versus lane 6 to 7). Ferroportin expression was
increased in HepG2 cells treated with ferric ammonium citrate (FAC; 100 µM) (Figure 7c,
Mock versus FAC). Furthermore, HepG2 cells treated with the 0.5 and 2.6 µM HepcH-FTH
heteropolymer showed a decrease in their FPN protein level in a dose-dependent manner,
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compared to the untreated cells (Figure 7c, lines HepcH-FTH versus lines Mock and FAC).
In HepcG2 cells, HepcH-FTH was effective towards FPN as human hepcidin, which was
used as a control (Figure 7c, line hHepc). The correctly folded heteropolymer (1:5) with
exposed camel hepcidin was also added to the HepG2 cells at concentrations of 0.5 µM and
2.6 µM, proving to also have the potential to bind and degrade the human FPN with the
same efficacy as the human hepcidin (Figure 7, lane hHepc vs. lanes HepcH-FTH). Figure 7
shows that the treatment with cycloheximide, a protein synthesis inhibitor, did not inhibit
human hepcidin activity toward FPN in J774 cells [21]. In this study, we characterized
the bifunctional role of the HepcH-FTH heteropolymer as an iron homeostasis regulator
and iron carrier. It could also be considered as an iron-chelating agent that can be useful
for the clinical treatment of iron-overload syndromes, as well as in the treatment of other
diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis,
neurodegenerative diseases and cancer [22].
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Figure 7. HepcH-FTH (1:5) promotes ferroportin degradation in HepG2 cells treated with iron.
(a) Western blotting analysis of the denaturing 12%SDS-PAGE of J774 cell lysates after treatment with
0.5 µM to 5 µM human hepcidin (lane 4 to lane 9) during 2 h incubation using polyclonal anti-rabbit
ferroportin antibody. Lane 1, mock (control). Lane 2, cells treated with 100 µM FAC for 16 h to
enhance ferroportin expression. Lane 3, cells treated with 10 µM FAC. Lane 4, cells treated with
0.5 µM hepcidin (cells none treated with FAC). Lane 5, cells treated with 0.5 µM hepcidin (cells treated
with 100 µM FAC). Lane 6, cells treated with 1 µM hepcidin (cells none treated with FAC). Lane 7, cells
treated with 1 µM hepcidin (cells treated with 100 µM FAC). Lane 8, cells treated with 5 µM hepcidin
(cells not treated with FAC). Lane 9, cells treated with 5 µM hepcidin (cells treated with 100 µM FAC).
(b) Western blotting analysis of the denaturing PAGE of J774 cell lysates after treatment with 0.5 µM
to 5 µM human hepcidin during 2 h incubation, in the presence of cycloheximide (1 µg/mL), using
polyclonal anti-rabbit ferroportin antibody. Lane 1, mock cells (control). Lane 2, cells treated with 1 µg/mL
cycloheximide. Lane 3, cells treated with 1 µg/mL cycloheximide and 100 µM FAC. Lane 4, cells
treated with 1 µg/mL cycloheximide and 10 µM FAC. Lane 5, cells treated with 1 µg/mL cycloheximide
and 0.5 µM hepcidin. Lane 6, cells treated with 1 µg/mL cycloheximide and 1 µM hepcidin. Lane 7,
cells treated with 1 µg/mL cycloheximide and 5 µM hepcidin. (c) Western blotting analysis of the
denaturing PAGE of cell lysates after treatment with 0.5 µM and 2.6 µM HepcH-FTH (1:5 and 1:11)
during 2 h incubation using polyclonal anti-rabbit ferroportin antibody.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cimb44010009/s1, Figure S1: UV–vis spectra of Ellman’s assay
of the oxidized and reduced forms of FTH subunit; Figure S2: UV–vis spectra of Ellman’s assay of
the oxidized and reduced forms of HepcH hybrid subunit; Figure S3: High-resolution MALDI-TOF
mass analysis of the FTH homopolymer; Figure S4: High-resolution MALDI-TOF mass analysis of
the FTL homopolymer; Figure S5: High-resolution MALDI-TOF mass analysis of the HepcH-FTH
heteropolymer, assembled using a molar ratio HepcH:FTL of 1:1.
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