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A B S T R A C T

In managing road infrastructures, a key benchmark is the 85th percentile of vehicle speeds (V85).
While V85 can be derived from spot speed samples, these are often lacking on each urban road.
Thus, prediction models become valuable tools for examining the relationship between V85 and
road characteristics. Although various models exist for rural roads, the impact of roadside
characteristics and markings on V85 in urban road networks has been partially investigated, and
the effect of traffic calming measures remains fragmented.

This study aims to address these gaps by applying a methodology that sheds light on the effects
of some variables that influence V85 on urban roads. Specifically, the methodology selects and
segments roads along the urban road network of the municipality of Brescia (Italy) and collects
data on both road characteristics and 48,000+ spot speed information. Following data cleansing,
it processes these data according to three different multiple regression models to analyse the
influence of various predictors on V85. Once the best model is estimated, its performance is
evaluated, and the final list of significant predictors is obtained.

The results revealed that V85 increases with longer homogeneous segments, greater distance to
successive intersections, bituminous conglomerate roads with more lanes, and the presence of
trees, visible road markings, and posted speed limits. Conversely, V85 decreases in the presence of
on-street parking and other obstacles (e.g., walls and road posts), when the density of road in-
tersections and pedestrian crossings increases, when the left crossbar width increases and when
the land use crossed is commercial or office, residential or industrial. Nevertheless, no significant
effect was found for several traffic calming measures included in the model.

These findings can assist road authorities in verifying road operating conditions and planning
infrastructure interventions to reduce speeds, thereby creating a safer urban environment for all
users.

1. Introduction

High vehicle speed represents a primary element that impacts the likelihood and severity of crashes [1]. For instance, in 2022, 165,
889 crashes occurred in Italy, most of them (73.4 %) in urban areas. 8.1 % of these crashes were attributed to driving behaviour caused
by inappropriate vehicular speed [2]. Furthermore, crashes frequently involve vulnerable road users. To contrast dangerous driving
behaviour, urban roadmanagers increasingly adopt a range of solutions, such as optimal speed limits, road section transformation, and
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Traffic Calming Measures (TCMs) [3–9]. These are some of the potential approaches to achieve safer speeds [10]. As a result, speed
management strategies are expected to achieve the road safety targets set at the European level (i.e., zero deaths on the European roads
in 2050).

The study of the influence of geometric characteristics and the road environment on speed is a well-known topic. Several models
have been proposed, which analysed the effects of predictors such as road axis geometry, cross section geometry, land use on speed
(V85 in Ref. [11,12]), and average speed [13]. Moreover, most of the literature has focused on the estimation of speeds in rural areas to
the detriment of the urban areas [13]. There could be various reasons for this gap, such as less complex driver behaviour [12,14] or
managing higher rural speeds with the aim of promoting safety in rural areas [15,16]. Conversely, the urban environment exhibits a
high degree of heterogeneity. Many factors (e.g., diverse vehicle categories, land uses neighbouring the road, and the presence of
vulnerable users) increase or diminish urban speed and, consequently, the risk of crashes [6,11,17–24]. According to this perspective,
the provision of speed prediction models affords competent road management authorities a valuable and practical decision-support
tool. In fact, practitioners can plan interventions by focusing on elements most impactful on speed while simultaneously enhancing
safety.

A careful review of the literature shows that most of these models estimate operating speed. This specific speed is conventionally
used as a benchmark for managing existing road infrastructures. It is defined as the 85th percentile of speed distributions in free-
flowing traffic conditions and is labelled as V85 [12,24–29]. The computation of V85 is straightforward, assuming that speed data
are available. However, road authorities often lack speed samples for each road, making it challenging to estimate V85 [13]. Further,
this underscores the need to develop speed prediction models that are accessible and easily applicable.

This paper aims to assess how geometric road characteristics and road environments affect V85. Specifically, spot speed mea-
surements were taken along a large portion of the urban road network of Brescia (Italy), resulting in 48,000+ values that were helpful
in calculating V85. Next, V85 was modelled as a random variable with a normal distribution and regressed by multiple linear regression
(MLR) models against variables (e.g., parameters, predictors, or attributes) describing the road characteristics and the related envi-
ronment. Next, the model is refined to enhance the accuracy of estimated values.

The contribution of this paper involves both theory and practice. From the theoretical side, novel predictors are introduced and
analysed in this study that previous literature had not yet considered. Special attention is paid to the possible presence of TCMs.
Individual variables are used to assess the effect of different measures, such as chicanes, speed bumps, and traffic islands, on V85. From
a practical perspective, the proposed model enables the determination of the operating speed for each urban road. Additionally, it
identifies the road variables that exert the most influence on driver behaviour, on which the road authority can take action to improve
safety. Consequently, the prediction model could benefit public authorities and road managers in revamping and enhancing the
infrastructure with the purpose of (i) reducing speed in urban areas, (ii) protecting the most vulnerable users, and (iii) increasing urban
road safety.

The rest of the paper is structured as follows. Section 2 reviews various models that estimate operating speed. Section 3 outlines the
primary concepts and the methodology applied in the research. Section 4 presents the key findings and analyses them in the context of
previous literature. Finally, Section 5 provides conclusions and proposes future developments.

2. Literature review

This section briefly reviews some prediction models for the estimation of V85 in an urban environment. The modelling of V85 has
been studied for approximately thirty years. Most of the studies come from the United States (US), but recently, this modelling has also
been addressed by non-US research groups, including Italian ones. All studies have focused on understanding the main factors
influencing vehicular speed, collecting data using different tools (e.g., GPS or laser devices), and implementing different analysis
methods. They agree that operating speed V85 is influenced by several factors, specifically by the road geometry, the interaction of the
vehicle with other road users, and the surrounding environment [11,27,30,31]. Research has mainly focused on modelling speed
adopted in rural areas [12,14,16,32,[33]]. However, much of it remains to be addressed in the urban context. The reasons for this
divergence could be traced back to a much more heterogeneous urban environment and, consequently, to more complex modelling
than in the rural case [13].

Table 1 concisely summarises some of these studies and is briefly commented on in what follows for the main points.
According to HCM [40], some authors have focused on a specific road type (urban collector by Ref. [30,29]; residential streets by

Ref. [14]), while others have considered a generic urban street [36,37] or a kind of road [11,31]
Most studies have generally analysed segments and portions of roads according to different author definitions. For instance,

Martinelli et al. [13] considered the portion of road comprised between two consecutive signalised intersections or roundabouts.
Al-Bahr et al. [39] established seven segmentation criteria. The segmentation is necessary because road characteristics change quickly
in urban environments, which could make prediction models more accurate.

The literature outlines two types of speed sampling methods: spot speed measurements and continuous measurements. Spot speed
measurements are recorded at specific fixed points on the road network, involving the immediate speed assessment of each vehicle
passing through a designated section. Various devices, e.g., video recorders or laser scanners, are employed for this purpose. However,
the measured speed value may be inaccurate due to improper positioning of the instrument. Moreover, the presence of such equipment
could influence driver behaviour [13]. As a result, the measured speed values would not be representative and, therefore, not useable
in the modelling process without preprocessing and cleaning. Conversely, continuous speed measurements are carried out by
equipping vehicles with mobile devices (e.g., GPS) that can geo-localise and determine the speed of each vehicle [28,37,34]. However,
some drawbacks should be noted. Firstly, a substantial number of drivers is required for diverse road assessments under optimal
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Table 1
Summary of the considered literature.

Author,
year

Country Road
type

Survey
locations

Locations
number

Observed
variable

Survey instrument Sample size Model
applied

Estimated
variable

Significant group of variables R2 (or R2adj)

[30] United
States

UC S 27 SS Traffic counter
(magnetic sensors)

2500/2700 for
each sensor

MLR OS Cross section geometry;
Horizontal and vertical
alignment

0.67

[29] United
States

UC S 27 SS Traffic counter
(magnetic sensors)

2667 SLR OS Horizontal and vertical
alignment

0.63/0.82/0.80

[25] United
States

SA C and T 14 SS Laser and radar gun N/A MLR OS Horizontal and vertical
alignment

0.71/0.83/0.72

[26] United
States

UC/RS C 27 SS Traffic counter
(magnetic sensors)

2601 MEM OS Horizontal and vertical
alignment; Cross section
geometry

0.96

[27] United
States

SA C and T 19 ÷ 36 SS Laser gun N/A MLR OS Other variables 0.75 (0.71)/
0.54 (0.53)

[31] United
States

SA/UA/
UC/LR

T 79 SS Laser gun 35/22/13 MLR OS Other variables 0.86/0.41/0.14

[28] United
States

UC/LR C and T 35 CS GPS device >200 MLR OS Other variables 0.67

[24] Italy UA/UC S 24 SS Laser gun and Video
recording

>1600 MLR OS Cross section geometry 0.97/0.96/0.96

[34] Scotland UA S 107 CS GPS device N/A MLR OS Roadside configuration (0.72)/(0.97)
[14] Japan RS S 85 CS Radar gun 5359 R with

3SLS
OS and MS Cross section geometry;

Roadside configuration
0.56 (0.55)/
0.58 (0.57)

[35] Canada LR/UA S 58 SS NC100 traffic sensors N/A OP DS Cross section geometry N/A
[11] Italy US/UC S 7 SS Laser gun and Video

recording
5339 MLR/

MEM
OS Cross section geometry;

Roadside configuration
(0.93)/(0.99)/
(0.99)

[12] Canada UA/UC S 249 SS Traffic Analyzer ~80000 per
site

GLM OS Cross section geometry;
Roadside configuration;
Other variables

0.78/0.84/0.77

[36] Croatia UR S 24 SS Traffic counter N/A SLR OS Other variables 0.74
[37] Ecuador UR T 45 CS Video VBOX Lite 21/67/45/13/

90/125
MLR OS Other variables (0.94)

[38] Canada RS S 140 SS Pneumatic tubes N/A MLR OS Cross section geometry;
Roadside configuration

N/A

[39] Malaysia UR S 197 CS MOM (Test vehicles
and GPS device)

11812 MLR ATS Cross section geometry; Other
variables

Range
[0.62–0.97]

[13] Italy UC S 52 SS Laser traffic counter 11466 MLR ATS and DSS Cross section geometry;
Roadside configuration

0.81/0.36

As for the symbol ‘/’ reported in the last column, it means that there is more than one model estimated.
Abbreviations given reading by row.
UC= urban collector; S= segments; SS= spot speed; MLR=multiple linear regression; OS= operating speed; SLR= Simple Linear Regression; SA= suburban arterial; C= curve; T= tangents; N/A= not
available; RS= Residential street; MEM=mixed effect models; UA= Urban arterial; LR= local road; CS= continuous speed; R with 3SLS= simultaneous regression with a three-stage least square (3SLS)
estimator; MS=mean speed; OP= ordered probit; DS= discretized speed; GLM= generalized linear model; UR= urban road; MOM=moving observer method; ATS= average traffic speed; DSS= speed
standard deviation;.
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conditions ([28] with 35 drivers [37], with 45 drivers). Furthermore, the presence of a GPS device may induce an “unnatural” driving
behaviour in the driver.

Various modelling tools were available. The primary modelling techniques have employed MLR models [13,30,31,37]. These
models are user-friendly, easy to interpret, can be assessed straightforwardly using basic statistical methods, and have the capability to
integrate and analyse numerous variables [41,42]. Furthermore, MLR (or SLR) is the most widely adopted technique for speed pre-
diction (see Table 1, column ‘Model applied’). Conversely, other authors have applied more complex models, such as ordered probit
(OP) or mixed effect models (MEM) [11,12,14,26,35]. The OP is like the logistic regression model, but it predicts an ordinal variable
with three or more ordered categories. Conversely, MEM is a statistical technique that analyses data with a hierarchical or correlated
structure, considering both random and fixed variations in the data.

According to previous studies, several variables have a significant effect on explaining speed. These variables can be clustered
according to the following main groups: horizontal and vertical alignment (e.g., degree of curvature – DC, horizontal curve radius – R,
segment width, and longitudinal slope), cross section geometry (e.g., carriageway width, lane width, median width, pedestrian
crossing presence, bus stop density, number of lanes), roadside configuration (e.g., presence of a sidewalk, bike line, presence of curb
or on-street parking) and other variables (e.g., posted speed limits, density of access points, density of trees and poles, land crossed,
traffic composition).

As for horizontal and vertical alignment, a greater degree of curvature decreased V85 [26,30,29], as opposed to R [11,25]. In
addition, a greater length of the investigated element increases speed [12–14,37,34,38]. Conversely, a greater longitudinal slope
decreases operating speed [30,35].

As for cross section geometry, the carriageway width increases V85 [14,24,38]. Unlike Bassani et al. [11], someone has observed
that as the number of lanes increases, speed increases as well [13,14,28,35]. As for lane width, its effect is controversial. In fact, it
increases the speed in Poe andMason [30], Wang et al. [28], Bassani and Sacchi [24], Martinelli et al. [13]; conversely, it decreases the
speed in Bassani et al. [11]; while it has coefficients with alternating signs in Poe and Mason’s [26] model, analysing the velocity at
four distinct points on a curve. Moreover, the effect of the median width is significant [12,24]. Finally, unlike Hamad and Sacchi [38],
the increase in the density of pedestrian crossings decreases the speed [11–13].

As for roadside configuration, the presence of a sidewalk has a negative effect on vehicle speed because it reduces speed [12,13,28,
38], while it has little positive effect in Dihn and Kubot [14] and Eluru et al. [35]. The variation in results may be attributed to the
consideration of local roads at low speeds in the latter two studies as opposed to the former studies, which examined various urban
roads. As for bike roads, their presence increases the speed [13,35,38]. The presence of access points or intersections reduced speed, as
turns are challenging manoeuvres that necessitate a reduction in speed [12,13,28,30,39,34,38]. Moreover, on-street parking nega-
tively influences speed; it is actually beneficial in reducing speed [11,13,28,34,35,38].

As for other variables, posted speed limits (PSL) have a positive effect on speed: the higher speed limits result in higher actual
speeds [11,12,27,24,31,36,35]. As for traffic, Al-Bahr et al. [39] showed that speed decreases with an increase in the Annual Average
Daily Traffic (AADT). Moreover, the presence of trees creates a longitudinal visual obstacle, slowing down vehicular speed [12,28,38].
However, the influence of the presence of poles is uncertain [12,28,38], as well as the effect of TCMs on speed [11,39,34]. Finally, the
effect of land use on speed produced contrasting results. Wang et al. [28] showed that commercial and residential areas positively
influence speed, as opposed to Martinelli et al. [13], whereas close proximity to a school decreases speed [13,38].

Interestingly, in more recent studies, the authors considered more variables related to the surrounding road environment (e.g., land
use, density of intersections, presence of trees/poles) rather than the geometric characteristics of the road (e.g., degree of curvature,
lane width).

As for the fitting performance, most of the studies show a good degree of fit according to the parameters considered (e.g., R2 around
0.80).

Undoubtedly, all these studies have contributed to the estimation of speed1 and provided valuable results for research and practice.
However, some gaps still persist.

First, most of the studies considered a limited number of locations for surveys. If a range of [61÷ 384]2 number of survey locations
is considered, only a relatively low number of studies fall into this range [12,14,25,39,34,38]. This is a potential drawback, as the
models may either be overly precise and, thus, possibly overfitted or have difficulty capturing the variability of the independent
variables [11,26]. Moreover, a small sample leads to restricted representation, sampling bias, lack of diversity, and reduced statistical
robustness. It is also worth noting that while a considerable body of research has focused on modelling the V85 in rural settings, the
existing literature pertaining to urban contexts may benefit from further development [12,13]. Therefore, this study specifically ex-
plores speed in urban areas investigating a large sample of spot speed.

Second, many studies have developed different models depending on the road type (e.g. arterials, collectors, and suburban roads)
relying on a typical US-based classification [12,24,35]. Since each country has its own unique road network structure with varying
characteristics, it is preferable to evaluate the road network by considering the road classification according to the regulations of each
state (in Italy, the main references are MIT, 1992, LL.PP., 1995 and MIT, 2001).

Third, several authors have argued for further studies to assess the effect of new variables on speed prediction and to calibrate
models on different networks [13,24,32,38]. This lack was mainly observed for (i) roadside characteristics because no studies

1 In what follows, the term ’speed’ coincides with V85, except when expressly indicated.
2 Inferential statistics would have indicated a representative statistical sample size of [61 ÷ 384] survey locations, adopting a 95 % confidence

level, 20 % standard deviation for the response variable (expressed as a percentage of the population mean) and 2 % ÷ 5 % error range.
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considered the presence of some elements (e.g., generic obstacles along the road, pavement condition); (ii) roadside markings (e.g.,
vertical, and horizontal signs and PSL signal); and (iii) TCM, because the presence of these elements have been considered only in a
fragmented manner. As for the latter, Obaidet and Mohammad [34], Bassani et al. [11] and Al-Bahr et al. [39] studied the influence of
TCM on speed. They developed different models in which TCMs were predictors. More specifically, Obaidet and Mohammad [34]
adopted the number of bumps along segments. Bassani et al. [11] considered a generic Boolean variable TCM, while Al-Bahr et al. [39]
considered the density of TCM. However, the results could be enhanced for understanding speed variations in the presence of these
measures. In fact, although speed decreases as the number of bumps increases, Obaidet and Mohammad [34] have not reported its
significance. Moreover, they did not consider other possible TCMs either. Bassani et al. [11] found a small but insignificant contri-
bution to speed dispersion, while Al-Bahr et al. [39] discovered that TCMs reduce speed but only under certain carriageway conditions.
Furthermore, neither author reported on what kind of TCMs they considered. Therefore, from this viewpoint, it may be appropriate to
evaluate the influence of TCMs in a comprehensive manner by considering different typologies of measures (e.g., chicanes, speed
bumps, life-saving islands) within a speed prediction model. Although predictive modelling has not produced relevant results, TCMs
still work as more in-depth studies show ([15,43,44]; Vlakved et al., 2022; [6,7]). These studies focused on how speed varies before
and after TCMs, thus evaluating its efficiency. For instance, Berloco et al. [7] found that speed decreases before and after Berlin’s speed
cushions. Moreover, they show that speed decreases more during the morning than in the evening and when the length of the cushion
increases. However, the inclusion of TMCs in the modelling of speed could provide rooms for a more inclusive analysis.

This paper aims to cover all the former gaps.

3. Data and methods

This section provides details on the research context, data collection, data cleansing, and data analysis methods.

3.1. Research context

The research was developed in the urban area of Brescia, an important city in Italy located in the eastern part of the Lombardy
region. Brescia has a population of 195,906 inhabitants, an area of 90.35 km2 and a density of about 2168.54 inhabitants/km2 [45].
Brescia is also the capital of the homonymous province, with more than 1.2 million inhabitants and many important industrial,
commercial, and social areas. These aspects contribute to the daily vehicle traffic [46]. However, high speeds and unsafe road
infrastructure increase the risk of crashes, especially in urban areas where there are vulnerable users [47]. In 2022, in the province of
Brescia, more than 67 % of all crashes occurred in urban areas [2]. From this viewpoint, the development of a model for estimating
operating speed could guide road planning. Acting on the road variables that have the greatest impact on speed could be a solution to
reduce speed, increase the safety of the road environment, and protect pedestrians and cyclists (e.g., Ref. [6]).

3.2. Methodological framework

An overall methodological framework is conceived to estimate the speed. It defines the steps for the application and incorporates
them into the methodology. Fig. 1 provides an illustration of this framework, which is summarised in what follows.

3.2.1. (Step a) - road selection and segmentation
(Step a) selects roads and performs related segmentation. Specifically, roads should represent different conditions in terms of the

geometry of the infrastructure and road environment to include a variety of them for the modelling purpose. Therefore, according to
this vision, the Mobility Office of the municipality of Brescia selected the most varied critical roads, especially those presenting
geometric characteristics which do not comply with Italian Regulations [48,49]. Specifically, a total of 43 roads were surveyed: 30

Fig. 1. Flow chart of the methodological framework adopted in this study.
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were adopted for calibration, and 13 were preserved for validation tasks. They correspond to a splitting ratio of about 70 % and 30 %,
which is usually accepted for modelling [50]. The last value is also higher than the recommended one in Russo et al. [51] and
Martinelli et al. [32], who considered a minimum of 10 % of new roads out of the total number used for the calibration.

Four kinds of urban roads were considered, according to MIT [52] and LL.PP. [53].

● ‘Strada urbana interquatiere’ (class E*), which enables the penetration of traffic into a specific territorial area, but also the distri-
bution of traffic to the secondary urban road network.

● ‘Strada urbana di quartiere’ (class E), which enables traffic to penetrate a specific territorial area.
● ‘Strada urbana interzonale’ (class F*), which enables traffic access to specific areas and penetration of local urban roads.
● ‘Strada urbana locale’ (class F), which enables traffic access to specific areas.

Next, each road was divided into homogeneous segments according to the following definition: a segment is a portion of the road
between two intersections with roads that differ by one level in the class of functionality or have the same class of functionality ac-
cording to MIT [52] and LL.PP [53]. Selected roads resulted in a total of 130 segments. When traffic was allowed to travel in both
directions, the segments were analysed accordingly. Segments were surveyed from April 2023 to June 2023 through a primary analysis
of aerial and satellite images and subsequent on-site verification. A total of 240 survey locations (i.e., the section where the spot speed
measurement was taken) spread out on about 38 km of the urban road network were identified and surveyed. The selected roads are
illustrated in Fig. 2 and presented in Table 2, which is self-explanatory.

3.2.2. (Step b) - data collection
Estimating V85 requires the collection of multiple variables concerning road characteristics and spot speed measurements of each

segment. Thus, (step b) gathers these variables from various sources.
Spot speed measurements were collected by a laser traffic scanner. This device works by emitting two laser beams perpendicular to

the road axis. When a vehicle passes in front of the instrument, the vehicle reflects the laser beams, and the device records its spot
speed. The device was placed approximately 1m above the road surface in the midpoint of the selected segment, hidden to avoid any
change in driver behaviour due to its presence. The device records the following: date [dd/mm/yyyy] and time [hh:mm:ss]), spot
speed [km/h], vehicle length [m], and direction of travel (i.e., ascending or descending) for each passing vehicle. Surveys lasted at
least 30 min to gather a representative data sample [32]. Moreover, surveys were conducted during off-peak periods, ensuring that
drivers could reach free-flow driving conditions (i.e., dry roads, no congestion, daylight hours and good weather conditions). For these
reasons, surveys were carried out on weekdays during daylight hours (08:30 a.m.-05:30 p.m.), excluding 12:30 p.m.-02:30 p.m. and
days with severe weather [54–56].

As for the road characteristics, some explanatory variables were identified as possible factors influencing the operating speed (e.g.,
number of lanes, presence of sidewalk, bus stop density), mining from those that are shown to be significant in the group reported in
Table 1 (column ‘Significant group of variables’). In addition, further variables were considered in the analysis carried out on the field.
The quantification of these factors was made for each segment by digital cartography, on-field measurement, and direct measurement.
Table 3 shows the predictors and related statistical parameters (i.e., minimum, maximum, mean, and standard deviation values for
each variable).

Although most of the factors are easy to understand and measure, some are concisely described for ease. The distance to a suc-
cessive intersection (Int) was measured from the point where the laser scanner was located (about the midpoint of the homogeneous
segment) to the next intersection. The right crossbar width (Bdx) and left crossbar width (Bsx) were measured as represented in Figs. 3
and 4 for a divided and single carriageway, respectively. The ratio between the total passing flow and road capacity (Q/C) was
computed by the ratio between the number of vehicles (excluding bicycles) and the capacity of a specific road according to functional
classification [52,53]. The binary variables were identified through digital mapping whereby the presence (1) or absence (0) of each
specific element was recorded. Subsequently, field surveys were carried out to confirm the previously obtained values (0 or 1) and to
assess the remaining binary variables that could not be easily quantified digitally.

3.2.3. (Step c) - data cleaning and data analysis method
Data should be prepared before modelling. Thus, (step c) makes some preprocessing to clean data; next, some data analysis and

modelling are applied to estimate V85. Specifically, spot speed data were downloaded from the laser scanner device, which gathered a
total of 48,147 raw spot speed records. However, some cleaning was applied to the raw spot speed samples before computing the
operating speed of each homogeneous segment. Because cars represent the most impactful quota of traffic in urban areas, only car
speed records were considered. Moreover, these data refer to cars moving in the same travel direction at least 5s after the previous
vehicle (headway≥ 5s) as recommended to identify free-flow traffic conditions ([25]; [57]; [13,24,32]). Therefore, by excluding speed
records that did not respect these conditions, data cleaning returned 14,651 spot car speed records.

Next, spot car speed records were analysed to compute the observed operating speed (i.e., V85,n) for each direction of each ho-
mogeneous segment. The procedure is described below. Let:

● N be the set of all surveyed locations and n ∈ N an individual location.
● V(n) be the set of spot speed records at the location n ∈ N and v ∈ V(n) an individual spot speed record.
● Z be the set of ordered speed classes and z ∈ Z an individual class.
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First, the absolute frequency of the observed instantaneous speed (denoted as Fz,n) is determined as follows:

Fz,n= count if
v∈V(n)

(v∈ z); ∀z ∈ Z; ∀n ∈ N (1)

Second, the relative frequency of the observed instantaneous speed (denoted as fz,n) is computed as follows:

fz,n=
Fz,n

|V(n)|
; ∀z ∈ Z; ∀n ∈ N (2)

Third, the relative cumulative frequency (denoted as f z,n) is calculated as follows:
{
f1,n = f1,n
f z,n = fz− 1,n + fz,n; ∀z ∈ Z : z ≥ 2

; ∀n ∈ N (3)

Fourth, the relative cumulative frequency is plotted on a cartesian plane to depict the cumulative distribution function. The spot
speeds are shown along the X-axis, while the Y-axis represents the percentile value of the distribution. The speed value corresponding
to the 85th percentile represents the observed operating speed, V85,n. Through a graphic analysis of the distribution, the operating
speed can be estimated as follows: (1) move vertically along the Y-axis to the 85th percentile; (2) move horizontally until intercepting
the curve of the relative cumulative frequencies; (3) from this intersection, move vertically until intercepting the X-axis: the new
intersection returns the V85,n. An example of it is provided in Fig. 5.

3.2.4. (Step d) - matrix of variables
The road characteristics and V85,n obtained in the previous steps are summarised within the matrix of variables (step d). Specif-

ically, in this matrix, each row represents a survey location, and each column contains the road characteristics at hand as well as the
V85,n. Each entry of the matrix reports the measured attribute at hand and on the field-measured V85,n. Next, this matrix will be used for
modelling.

3.2.5. (Step e) - full multiple linear regression model
V85,n constitutes a random continuous variable that follows a normal distribution. Therefore, in (step e), a multiple linear regression

model was selected for its inference. It is simple to apply, understand and interpret, and to evaluate with basic statistics (e.g.,

Fig. 2. Surveyed roads considered for the study.
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Table 2
Urban road characteristics and survey sections.

Road name Type of
dataset

Road
class

Road
length

Number of
carriageways

Number of lanes per
carriageway

Posted
Speed
Limit3

Number of
homogeneous
segments4

Number of
survey sections

[− ] [km] [#] [#] [km/h] [#] [#]

Via Ambaraga C F* 0.810 1 1 30 4 43

Via Antonio
Schivardi

C E; F* 0.943 1; 2 1,2 50 3 6

Via Attilio
Franchi

C E 0.780 1 1 50 1 2

Via Branze C E; F* 0.685 1; 2 1 50 3 6
Viale Caduti del

Lavoro
C F* 0.922 1 1 50 3 6

Via Campane C F 0.583 1 1 30 3 6
Via Chiusure C E 1.555 1 1 50 5 9
Via Collebeato V E* 0.368 1 1 50 1 2
Via Conicchio V E* 0.561 1 1 50 1 2
Via Corfù C F* 0.446 1 1 50 1 2
Via Corsica V E 0.484 1 1 50 1 2
Via Costantino

Quaranta
C F 0.292 1 1 50 3 6

Viale della
Bornata

C E* 1.273 2 2 50 3 6

Via della Chiesa V E 0.196 1 1 50 1 2
Via delle Scuole V F* 0.885 1 1 50; 30 2 3
Viale della

Ziziola
C F*; F 1.244 1 1 50 3 6

Via divisione
tridentina

V F 0.233 1 1 50 1 2

Viale Duca degli
Abruzzi

C E* 1.690 1; 2 1; 2 50 6 12

Via Famiglia
Boccacci

V E 0.193 1 1 50 1 2

Via F. Carini –
Via B.
Maggi

C F 1.060 1 1 50; 30 8 15

Via Filippo
Turati

C E* 0.825 1 1 50 2 4

Via Flero C E 2.261 1 1 50 6 12
Via Foro Boario V E* 0.497 1 1 50 1 2
Via Galileo

Galilei
C F 0.690 1 1 50 5 10

Via Genova C F*; F 0.743 1 1 30 3 5
Via Giuseppe

Zola
C F* 0.397 1 1 30 2 4

Via Lamarmora C E* 1.865 2 2; 1 50 6 12
Via Lunga C F* 0.399 1 1 50 2 4
Via Milano C E*; E 2.229 1 1; 2 50; 30 8 16
Via Nona C F* 0.593 1 1 50 3 5
Via Oberdan C E* 1.470 2 1 50 3 6
Via Pietro del

Monte
V E 0.296 1 1 50 1 2

Via Pietro
Marone

V F 0.186 1 1 50 1 1

Via Pusterla C E* 0.817 1 1; 2 50 2 3
Viale Rebuffone

–
Via P.
Boifava

C F* 0.760 1 1 30 2 2

Via Rodi V F* 0.409 1 1 50 1 2
Via S.

Bartolomeo
C E 0.733 1 1 50 4 8

Via S. Eusacchio V E 0.298 1 1 30 1 2

(continued on next page)

3 More than one Posted Speed Limit way be set for some roads owing to different road characteristics.
4 The number of measured sections is double the number of homogeneous segments because normally a segment can be travelled in both di-

rections. If this is not the case, it means that the segment is only travelled in one direction (one-way).
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Ref. [42]). Let.

● Ṽ85,n be the predicted operating speed at n ∈ N.
● K be the set of predictors and k ∈ K a generic predictor.
● Xk,n be the value of the predictor k ∈ K at location n ∈ N.
● bk be the value of the regression coefficient associated with the predictor k ∈ K.
● C be the constant of the regression (it represents the intercept of the hyperplane).

The MLR model for estimating the operating speed is formalized as follows:

Ṽ85,n=
∑

k∈K

bkXk,n + C; ∀n ∈ N (4)

The coefficient bk indicates the relative importance of each predictor in forecasting Ṽ85,n. The higher the coefficient in the module,
the greater the effect that a marginal variation in the predictor has on Ṽ85,n. The sign of bk is also relevant: a positive value implies that if
the predictor at hand, Xk,n, increases, Ṽ85,n increases as well and vice versa. To determine the coefficient bk and the constant C of MLR,
the ordinary least squares method was utilised by elaborating the records of the calibration dataset. Thus, a full MLR model was set up
by employing all matrix’s predictors.

Next, for further enhancements, it was still fitted, selecting the best factors that influence the Ṽ85,n., trying to achieve a trade-off by a
good overall performance and a low number of predictors. Hence, according to the ‘principle of parsimony,’ it is suggested to include in
the model only the minimum number of predictors for explaining Ṽ85,n. Several methods can be used for this step. In the current study,
three refinement techniques were adopted: (M1) analysis of the p-value for each variable; (M2) analysis of the correlation matrix; and
(M3) application of the forward selection or backward elimination. In approach (M1), predictors with p-value greater than 0.1 (i.e., a
significance of less than 90 %) were excluded from the set of variables making up the full model. In approach (M2), the correlation
matrix was considered to detect if some correlations exist among the factors. A specific predictor is discarded when, compared to
another variable, it has a strong correlation (in this case, < − 0.7; >0.7) and, at the same time, had a weaker correlation with V85,n. In
approach (M3), forward selection and backward elimination were applied. Forward selection consists of inserting one variable at a
time into the empty model, each time selecting the explanatory variable that best explains the variability of the response variable.
Backward elimination is opposed: all variables in the complete model are considered, and through an iterative process, the variable
that least explains the variability is removed each time.

3.2.6. (Step f) - final multiple linear regression model
The best-fit model is identified in (step f). This is done by comparing the adjusted coefficients of determination (denoted as R2

adj) of
the three models. This index indicates the goodness of fit to the observed data, and simultaneously, it enables the comparison of
different models in terms of the number of observed data and predictors. Besides R2

adj, R
2, Test-F and its significance, and the residuals

analysis are used. This last analysis is based on (i) the predicted zero-sum of residuals (i.e., the random disturbance term across all
predictors and observations), (ii) the absence of heteroskedasticity, and (iii) the normal distribution of residuals.

Specifically, let εn = V85,n − Ṽ85,n be the residual at location n ∈ N, and the predicted sum is calculated as follows:
∑

n∈N
εn ≅ 0 (5)

The prediction performance of the final model was further evaluated by computing the mean absolute deviation (MAE) and the root
mean squared error (RMSE). These are negatively oriented scores: the lower the values, the better the model. In addition, the

Table 2 (continued )

Road name Type of
dataset

Road
class

Road
length

Number of
carriageways

Number of lanes per
carriageway

Posted
Speed
Limit3

Number of
homogeneous
segments4

Number of
survey sections

[− ] [km] [#] [#] [km/h] [#] [#]

Via Torricella di
Sopra

C E*; E 1.282 1; 2 1; 2 50 5 10

Via Toscana V F* 0.363 1 1 50 1 2
Via Trento V E* 0.313 2 2 50 1 1
Via Trieste C F* 0.841 1 1 30 5 5
Via Triumplina C E* 2.401 2 2 50 6 12
Via Volturno C E* 1.890 1 1; 2 50; 30 6 11
Total   38.38    130 240

Abbreviations given reading by row.
C = Road for the calibration dataset; F* = ‘Strada urbana interzonale’; E = ‘Strada urbana di quartiere’; F = ‘Strada urbana locale’; V = Road for the
validation dataset; E* = ‘Strada urbana interquatiere’.
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Table 3
Summary characteristics for each factor (and sub-factors).

Response Variable Symbol Unit of measure Data type Data
source

Mean Minimum Maximum Standard
Deviation

The 85th percentile of the distribution of
the free-flow operating speed

V_85m [km/h] Continuous DM 50.13 21 75 10.25

Explanatory Variable Symbol Unit of
measure

Data type Data
source

Mean Minimum Maximum Standard
Deviation

Road Functional Class
‘Strada urbana interquartiere’ E* [− ] Categorical DC 0.3 0 1 0.46
‘Strada urbana quartiere’ E [− ] Categorical DC 0.3 0 1 0.46
‘Strada urbana interzonale’ F* [− ] Categorical DC 0.21 0 1 0.41
+‘Strada urbana locale’+ F [− ] Categorical DC 0.2 0 1 0.4

Horizontal and vertical alignment
Homogeneous segments length L [m] Continuous DC 284.5 52 780 161.7
Slope i [%] Continuous DC − 0.04 − 4.6 5.1 1.18
Distance to successive intersection Int [m] Continuous DM 123 2.9 798.4 111.4

Cross section
Number of carriageways Ncar [n◦] Discrete DC 1.23 1 2 0.42
Number of lanes Nc [n◦] Discrete DC 1.21 1 4 0.44
Lane width Lc [m] Continuous DC 3.26 − 0.3 6.9 0.7
Divided median Cd [− ] Binary DC 0.19 0 1 0.39
Painted or raised median Cc [− ] Binary DC 0.13 0 1 0.33
Right crossbar width Bdx [m] Continuous DC 3.99 0.25 18 2.49
Left crossbar width Bsx [m] Continuous DC 3.36 0 18 2.21
Bus stop density Autk [stop/km] Continuous DC 2.34 0 12.99 2.73
Pedestrian crossing density Datt [crossing/km] Continuous DC 10.81 0 39.47 7.09

Roadside
Presence of trees Al [− ] Binary DC 0.46 0 1 0.5
Presence of other obstacles (e.g.,
presence of wall, road posts)

Ost [− ] Binary DC 0.69 0 1 0.46

Average distance to obstacles Dt [m] Continuous OFM 1.34 0 6.5 1.08
Presence of on-street parking Cp [− ] Binary DC 0.36 0 1 0.48
Access point density Dacc [access/km] Continuous DC 25.37 0 89.34 21.87
Density of intersections Dint [intersection/

km]
Continuous DC 9.25 0 57.69 7.69

Presence sidewalk M [− ] Binary DC 0.66 0 1 0.47
Presence of a protected cycle route Cpr [− ] Binary DC 0.11 0 1 0.31
Presence of an unprotected cycle route Cnpr [− ] Binary DC 0.15 0 1 0.36
Presence of a bus/taxi fast lane Caut [− ] Binary DC 0.01 0 1 0.07
Presence of curb Cu [− ] Binary DC 0.76 0 1 0.43
Presence of a guardrail G [− ] Binary DC 0.06 0 1 0.23
Number traffic lights S [#] Discrete DC 0.5 0 4 0.81

Type of road pavement
Bituminous conglomerate CB [− ] Binary DC 0.97 0 1 0.17
Stone paving PL [− ] Binary DC 0.03 0 1 0.17

Condition of road pavement
Good PCb [− ] Categorical OFM 0.82 0 1 0.39
+Medium+ PCm [− ] Categorical OFM 0.18 0 1 0.39

Road Marking and Sign
Visible road markings O [− ] Binary OFM 0.87 0 1 0.33
Presence of vertical signs V [− ] Binary OFM 0.39 0 1 0.49
Presence of posted speed limit sign Ppsl [− ] Binary OFM 0.14 0 1 0.34
Posted speed limit value PSL [km/h] Continuous OFM 45.5 30 50 8.37

Traffic
Ratio between the total passing flow
and road capacity

Q/C [− ] Continuous DM 0.39 0.03 1.79 0.23

Land crossed
Commercial or office As [− ] Binary OFM 0.61 0 1 0.49
Residential Ar [− ] Binary OFM 0.65 0 1 0.48
Industrial Ap [− ] Binary OFM 0.1 0 1 0.3
School Scu [− ] Binary OFM 0.09 0 1 0.28

Traffic Calming Measures
Artificial bumps density DD [bumps/km] Continuous DM 0.59 0 19.61 2.43
Presence of chicane Ch [− ] Binary OFM 0.04 0 1 0.18
Raised crossing RI [− ] Binary OFM 0.29 0 1 0.45
Traffic island Is [− ] Binary OFM 0.19 0 1 0.39

Symbols "[− ]" means that the variable is without a unit of measure; [#] means per number.
DC = Digital Cartography; DM = Direct Measure; OFM= On the field measurement.
+ Control variables of categorical variables edited in italics +.

S. Raccagni et al. Heliyon 10 (2024) e39459 

10 



coefficient of variation (CoV) was computed. These statistical indicators were estimated as follows:

MAE=
1
|N|

∑

n∈N
|εn| (6)

RMSE=

̅̅̅̅̅̅̅̅̅̅̅∑

n∈N
ε2n

|N|

√
√
√
√

(7)

Fig. 3. Example of divided carriageway.

Fig. 4. Example of a single carriageway.

Fig. 5. Example of V85 computation.
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CoV =
RMSE
∑

n∈N
V85,n

|N|

(8)

Finally, to validate the final model, Ṽ85,n was compared with the observed V85,n derived from a sample of spot speed records measured
along the homogeneous segments of the validation dataset. While Ṽ85,n is estimated by eqn. (4), data validation is carried out by
analysing the residuals between speeds within specific acceptability ranges. All procedures were implemented using both the software
GenStat and MS Excel on a standard personal computer.

4. Results and discussion

According to (step a) and (step b), thirty roads were divided into 116 homogenous segments, namely 215 survey locations (see
Table 1, column ’Type of dataset’, code ’C’), and described through several variables. Simultaneously, spot speed measurements were
taken for each direction of segments where possible.5 Then, data were cleaned and analysed according to (step c), completing the
variables matrix with 200 records of V85,n as shown in (step d).6 V85,n was utilised as the response variable, and it was estimated by
eqns. (1)–(3). Next, eqn. (4) was applied to the matrix to develop a full model for the urban road network, as reported in (step e). Three
distinct techniques were applied separately to provide a trained model.

Approach (M1) involved selecting the most significant variables from the final model (p-value <0.1). As for approach (M2), a
correlation matrix was developed and applied (Appendix 1), while, as for approach (M3), the forward selection was considered, which
yielded the same results as backward elimination. To choose the best-fit model, the R2

adj values of the three refined models were
calculated and reported in Table 4, and then they were compared according to (step f). Table 4 shows the number of observations (i.e.,
the total number of records in the variables matrix used for modelling, excluding records that have a large, standardised residual in
their respective fitting phases), the two coefficients of determination, the Standard Error, the F-test and its significance, and the
number of predictors resulting after the fitting phase.

As Table 4 shows, M3 is the model that best fits the data because it is the most accurate (highest R2
adj and lowest standard error) and

quite compact. Therefore, it is analysed in detail in what follows.
Table 5 shows some regression statistics for the Full Model and the Final Model (i.e., M3). Specifically, both the Full Model and the

Final Model acceptably fit data, as a large F coupled with a small p-value indicates a “good” goodness-of-fit. As expected, the final
model is more accurate, for each parameter reported in Regression Statistics column of Table 5. Indeed, it is characterised by a smaller
number of variables than the full model (i.e., 21 versus 44), and more of these variables are significant at 0.001 level (i.e., 9 versus 4).
As for R2, the final model explains 87.4 % of operating speed variance by the selected predictors, while R2

adj explains 85.8 % of
operating speed variance. Moreover, R2 and R2

adj are two of the best compared to the results of previous works (Table 6).
As for the Standard Error (Table 5), a satisfactory value is obtained, whereby a smaller value indicates a better precision of the best

fit line. Similarly, the F-test demonstrates highly significant results for the chosen model (p-value <0.001) and therefore, both models
have a good fit, but the final is considered.

Table 7 shows both the full model, set up by all variables, and the final model (i.e., M3). Both models are also provided as equations
in Appendix 2 to facilitate understanding. In Table 7, the coefficients (Estimate) and significance (p-value) of the variables are shown.
Specifically, it is worth noting that some of the variables in Table 7 are very significant at 0.001 (they are reported in bold), and others
are significant up to 0.1 (they are reported in italics).7 Therefore, these results demonstrate a relevant significant regression effect.
Moreover, Table 7 shows that some of the predictors are not significant.

The analysis of variables with p-value > 0.1 (i.e., not significant) in the final model is discussed. Specifically, the final model
considers the functional classification of roads [52,53] based on four specific variables (E*, E, F* and F). The non-significance of these
variables may be due to the absence of a specific regulation that assigns a class to existing roads built before the year 2001 in Italy.
Therefore, since many roads were built before that year, this fact may have resulted in a flawed classification of a road, which provided
this unexpected finding. For instance, in Brescia, there are many roads that could be classified differently if a single function is
considered. However, it is interesting to note that as the functional class decreases, the speed decreases (from +1.13 to − 0.54). This
result agrees with experience: for urban roads with a penetration function in an area (i.e., higher hierarchical levels of the network),
speeds increase. Conversely, for urban roads with an access function in an area (i.e., lower hierarchical levels of the network), speeds
decrease. The pavement condition is not significant. The reason for this outcome could depend on the subjectivity of the measure. It
was determined during surveys in a qualitative manner rather than quantitatively through objective measurements, such as the In-
ternational Roughness Index (IRI) parameter. Unlike Eluru et al. [35], the signs of the coefficients bear little relation to experience:
optimal asphalt conditions lead to lower speeds. The presence of a priority lane for buses/taxis (Caut) is insignificant. This result might

5 Speed measurements were not carried out for each direction of travel of each homogeneous segment. This is either due to the lack of security in
carrying out the measurement or to the effective visibility of the laser instrument, which adversely affects the gait of the vehicles.
6 After completing the survey, we calculate the true sampling error: it was estimated as 2.8 %, which is in the admitted range [2%÷ 5 %].
7 The estimation of eqn. (4) includes variables that were significant at least at 0.10 confidence levels. This is because albeit <0.001 is even higher

than the standard 0.05, it can be argued that enabling variables up to 0.10 is appropriate to get a more complete understanding of the results [19,
22].
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depend on the few observations reported in the matrix of variables (step d): only 3 segments have this lane. Thus, more work is
required to show its effect, if any, on the operational speed. Finally, TCMs do not even appear in the final model. The literature revealed
the possibility of introducing different moderating factors in the speed estimation models (e.g., Ref. [11,39,34]); however, the fitting
process shown in (step f) excluded these variables from the whole set. This non-significant result may be due to a combination of two
conditions. The speed measurements were carried out in the middle of the homogeneous segment, while the variables associated with
the TCMs refer to punctual elements (except the chicane), which are not very widespread in the road network and could be located at
different points along the homogeneous segment. For a point element, the speed reduction effect should be felt in the vicinity of the
moderation element ([15,43,44]; Vlakved et al., 2022; [6,7]). For these reasons, TCMs should be further studied in future research,
preferably by selecting more homogeneous segments characterised by the presence of TCMs.

The physical meaning and sign of the significant variables (i.e, p-value ≤ 0.1) is discussed next.
As for horizontal and vertical alignment, the results show that a 1m increase in the length of the homogeneous segment (L) slightly

increases V85, while keeping all other variables constant at their means and confirming previous research ([14,34], for tangent
segment; [12,13,37]). This result is realistic because the longer the road segment, the more a driver will tend to go at a faster speed.
Similar reasoning can be made for the distance to the next intersection (Int): the greater the distance, the greater the V85 of vehicles.

Table 4
Characteristics of refined models resulting from approaches M1, M2 and M3.

P-Value resulting model (M1) Correlation matrix resulting model (M2) Forward selection resulting model (M3)

Number of observations [n] 196 191 191
R2 [%] 78.5 88.9 87.4
R2adj [%] 77.3 85.7 85.8
Standard Error [%] 4.84 3.79 3.70
F test  61.20 28.20 55.80
Significance F  <0.001 <0.001 <0.001
Number of predictors  11+constant 42+constant 21+constant

Table 5
Regression statistics for operating speed regression models.

Regression Statistics Full Model Final Model

DF SS MS DF SS MS

Regression 44 17029. 387.01 21 16051. 764.32
Residual 155 3875. 25.00 169 2315. 13.70
Total 199 20904. 105.04 190 18365. 96.66

R 81.5 87.4
R2adj 76.2 85.8
Standard Error 5.00 3.70

Observations 200 191
F test 15.48 55.80
Significance F <0.001 <0.001

Table 6
Comparison of coefficients of determination for existing models on urban roads.’

Author, year R2 R2
adj

[30] 0.67 
[29] 0.63/0.82/0.80 
[25] 0.71/0.83/0.72 
[26] 0.96 
[27] 0.75/0.54 0.71/0.53
[31] 0.86/0.41/0.14 
[28] 0.67 
[24]  0.97/0.96/0.96
[34]  0.72/0.97
[14] 0.56/0.58 0.55/0.57
[11]  0.93/0.99/0.99
[12] 0.78/0.84/0.77 
[36] 0.74 
[37]  0.94
[39] 0.62 ÷ 0.97 
Our study Full/Final Model 0.82/0.87 0.76/0.86

Some authors provided more models. Results are separated by ‘/’
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As for cross section, the findings indicate that lane width (LW) has no impact on V85. Although many models in the literature have
considered the LW and highlighted its significance [12,13,24,30,34], in this case it is likely that other variables exert a more dominant
influence, thereby shadowing the significance of lane width. Consistent with the literature, V85 increases as the number of lanes (NL)
increases [13,14,28]. An expected finding is that a 1 crossing/km increase in the density of pedestrian crossings (Datt) decreases V85,
while keeping all other variables constant at their means, e.g., Thiessen et al. [12]; Hamad and Sacchi [38]; Martinelli et al. [13]. A 1 m
increase in the left crossbar width (Bsx) decreases V85 while keeping all other predictors constant at their means. This is a novel result
because this predictor has not been investigated in previous studies.

Table 7
Results for operating speed regression models.

Explanatory Variable Symbol Full Model Final Model

Estimate p-
value

Lower 95
%

Upper 95
%

Estimate p-
value

Lower 95
%

Upper 95
%

Constant C 25.9 0.146 − 8.79 60.59 37.03 <.001 31.72 42.34
Road Functional Class
‘Strada urbana interquartiere’ E* − 0.56 0.812 − 5.15 4.03 1.13 0.419 − 1.59 3.85
‘Strada urbana quartiere’ E 0.56 0.764 − 3.09 4.21 0.72 0.540 − 1.57 3.01
‘Strada urbana interzonale’ F* − 0.23 0.884 − 3.37 2.91 − 0.31 0.773 − 2.39 1.77

Horizontal and vertical alignment
Homogeneous segment length L 0.01600 <.001 0.01 0.02 0.01299 <.001 0.01 0.02
Slope i − 0.029 0.929 − 0.67 0.62    
Distance to successive intersection Int 0.00538 0.194 0.00 0.01 0.00649 0.031 0.00 0.01

Cross section
Number of carriageways Ncar − 3.01 0.186 − 7.44 1.42    
Number of lanes Nc 2.49 0.130 − 0.72 5.70 2.983 <.001 1.25 4.72
Lane width Lc − 0.060 0.930 − 1.41 1.29    
Divided median Cd 0.60 0.814 − 4.34 5.54    
Painted or raised median Cc 0.74 0.708 − 3.12 4.60    
Right crossbar width Bdx − 0.052 0.796 − 0.45 0.34    
Left crossbar width Bsx − 0.321 0.106 − 0.71 0.07 − 0.275 0.044 − 0.54 − 0.01
Bus stop density Autk 0.186 0.285 − 0.15 0.53    
Pedestrian crossing density Datt − 0.1445 0.046 − 0.29 0.00 − 0.238 <.001 − 0.33 − 0.14

Roadside
Presence of trees Al 3.184 <.001 3.18 3.19 1.969 0.003 0.70 3.24
Presence of other obstacles Ost − 2.86 0.009 − 4.98 − 0.74 − 3.12 <.001 − 4.42 − 1.82
Average distance to obstacles Dt 0.140 0.770 − 0.80 1.08    
Presence of on-street parking Cp − 3.75 0.004 − 6.26 − 1.24 − 4.861 <.001 − 6.22 − 3.50
Access point density Dacc − 0.0379 0.129 − 0.09 0.01    
Density of intersections Dint − 0.3796 <.001 − 0.51 − 0.25 − 0.1868 <.001 − 0.28 − 0.09
Presence sidewalk M 0.64 0.570 − 1.57 2.85    
Presence of protected cycle route Cpr 3.11 0.035 − 1.62 4.26    
Presence of unprotected cycle route Cnpr 1.32 0.380 0.25 5.97    
Presence of a bus/taxi fast lane Caut − 6.23 0.243 − 16.64 4.18 − 6.19 0.107 − 13.68 1.30
Presence of curb Cu 0.94 0.468 − 1.59 3.47    
Guardrail G 4.19 0.043 0.17 8.21 2.44 0.078 − 0.25 5.13
Number of traffic light S − 0.406 0.520 − 1.64 0.83    

Type of road pavement
Bituminous conglomerate CB 22.1 0.192 − 10.83 55.03 9.29 <.001 4.80 13.78
Stone paving PL 15.8 0.363 − 18.11 49.71    

Condition of road pavement
Good PCb − 1.61 0.198 − 4.06 0.84 − 0.44 0.596 − 2.06 1.18

Road Marking and Sign
Visible road markings O 3.28 0.086 − 0.44 7.00 3.78 0.002 1.47 6.09
Presence of vertical signs V 0.168 0.854 − 1.62 1.95    
Presence of posted speed limit sign Ppsl 2.10 0.115 − 0.49 4.69    
Posted speed limit value PSL 0.1442 0.060 0.00 0.29 0.1014 0.023 0.02 0.19

Traffic
Ratio between the total passing flow and
road capacity

Q/C − 0.73 0.783 − 5.90 4.44    

Land crossed
Commercial or office As − 3.043 <.001 − 4.17 0.45 − 2.478 <.001 − 3.73 − 1.22
Residential Ar − 1.86 0.116 − 4.17 0.45 − 3.394 <.001 − 4.93 − 1.86
Industrial Ap − 3.17 0.042 − 6.19 − 0.15 − 2.8 0.009 − 4.86 − 0.74
School Scu − 2.03 0.193 − 5.07 1.01    

Traffic Calming
Artificial bumps density DD − 0.173 0.347 − 0.53 0.19    
Presence of chicane Ch − 5.16 0.076 − 10.82 0.50    
Raised crossing RI 2.02 0.069 − 0.14 4.18    
Traffic island Is − 0.59 0.613 − 2.88 1.70    
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As for roadside, the contribution made by the presence of trees (Al) deserves attention. Unlike Wang et al. [28] and Thiessen et al.
[12], who showed that they decrease speed, this research shows an opposite effect on V85, i.e., their presence increases speed. This
result might be justified because trees create a visual barrier that could impede the driver’s perception of any hazard that would require
a reduction in speed. The same reasoning might be applied to the presence of the guardrail (G). Although it is a typical rural feature, it
helps channel the traffic, and thus, its presence could increase the speed because drivers may be considered protected against the
accidental entry of other vehicles or pedestrians. In contrast, the presence of on-street parking (P) is beneficial in reducing the V85, as it
has already been shown in previous studies [11,13,28,35]: cars slow down to park and to prevent possible crashes with parked ve-
hicles. The presence of other obstacles different from trees (e.g., presence of walls, road posts) along the segment (Ost) is beneficial to
reducing the speed and is a novel result. Moreover, a 1 intersection/km increase in the density of intersections (Dint) decreases V85
along the homogeneous segment, while keeping all other variables constant at their means and confirms previous studies [11,28,30].

As for the type of road pavement, the final model only includes roads made of asphalt (CB). An asphalt pavement favours driving
speed because it offers more grip, is usually smooth, has few bumps, and generates less vibration. As a result, the driver will have a
faster gait. No previous studies take this feature into account.

As for road markings and signs, the presence of highly visible horizontal signage can encourage higher speeds because it provides
drivers with clear and immediate information about the road and traffic conditions. This increases drivers’ confidence in road safety
and reduces the need to slow down to search for directions or interpret unclear signals. Additionally, well-defined signage helps clearly
delineate lanes and stopping areas, reducing the risk of conflicts and increasing traffic flow, thus allowing for higher speeds. Moreover,
a 1 km/h increase in the speed limit PSL slightly increases V85, while keeping all other predictors constant at their means: previous
studies were confirmed [11,12,27,24,31,36].

Finally, as for land crossed, all predictors are useful in reducing V85. If the section is in a residential area, the V85 is reduced the
most, by to 3.4 km/h. In addition, if the road crosses several zones at the same time (e.g., commercial and residential areas), the speed
reduction is the sum of the two entries. Compared to the literature, the same results were obtained by Martinelli et al. [13] but in
contrast to Wang et al. [28].

Next, some statistical information is reported to detail the developed model. It includes a comparison between the observed and
estimated V85, an analysis of residuals, and an analysis of the model’s capacity to make predictions.

Fig. 6 shows the
(
V85,n, Ṽ85,n

)
points are spread near the first quadrant bisector. This condition represents the better scenario, which

is close to the ideal situation. For the residual analysis, applying eqn. (5) yields a result of − 0.04, which is very close to zero.
The absence of heteroskedasticity is demonstrated in Fig. 7. The residuals did not show any scheme, but they form a cloud of points.

That means that residuals exhibit a variation of the same amount with higher or lower values of explanatory variables.
Finally, Fig. 8 shows that the frequency distribution of the residual classes (grey dots) overlaps the normal distribution (blue line).

Thus, the model’s residual dispersal conforms well with the normal distribution curve.
Furthermore, the prediction capacity of the model was assessed by computing the mean absolute deviation (MAE), the root mean

squared error (RMSE), and the coefficient of variation (CoV). These statistical parameters were estimated using equations (6)–(8). In
this case, the MAE, RMSE and CoV are 2.77 km/h, 3.48 km/h and 0.06, respectively. Therefore, they are contained: themore the values
tend to zero, the better the model’s prediction performance.

To further validate the newly developed model as a practical tool for estimating and understanding vehicle speeds, the validation
procedure was conducted according to (step f). This involved analysing the residuals obtained by comparing the estimated Ṽ85,n with

Fig. 6. Scattered plots for performance evaluation of developed model.

S. Raccagni et al. Heliyon 10 (2024) e39459 

15 



the observed V85 on additional roads, which were not previously selected for the model calibration. Therefore, several homogeneous
segments were extracted from the 13 roads of the validation dataset (see Table 2, column ’Type of dataset’, code ’V’). Spot speed
measurements and road characteristics were derived as indicated in (step b) and (step c). Spot speeds were used to calculate the
observed V85,n, while road characteristics were used in the model to derive the estimated Ṽ85,n. The two speeds were then compared,
and Fig. 9 shows the residuals of V85 with three ranges of acceptability based on the empirical rule.

As for Standard Deviation (σ = 4.4) of residuals, the accepted intervals have as extremes [-σ;+σ], [-2σ;+2σ], and [-3σ;+3σ], that is
[− 4.4; +4.4], [− 8.8; +8.8], and [− 13.2; +13.2]. Fig. 9 shows that 16 of the 25 residuals fall within the first standard deviation of the
mean [− 4.4; +4.4]. Moreover, the results of MAE, RMSE and CoV (3.87 km/h, 4.41 km/h and 0.08, respectively) further confirmed
that the developed model is applicable to unsampled road segments within the network at hand.

5. Conclusions and research perspectives

Vehicle speed is a relevant driver to road safety. However, the safety can be compromised by excessive speeds. High speeds
significantly increase the probability and severity of crashes, especially those involving vulnerable road users like pedestrians and
cyclists, particularly on urban roads. Although speed is a combination of several factors, including inappropriate driver behaviour,

Fig. 7. Residuals distribution.

Fig. 8. Frequency distribution of residuals.
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strategic intervention on infrastructures can effectively counteract undesirable speed. For this purpose, it is customary to consider the
operating speed (i.e., V85) as benchmark in the management of existing road infrastructure. However, even if the computation of this
speed is simple, speed datasets are limited to only the roads sampled. Accordingly, to support design and planning choices by road
authorities, the proposition of prediction models can be envisaged where the influence of road characteristics on V85 is analysed.

Although the literature provided interesting models for it, this paper contributes to the field in different ways, as follows.

▪ This study has considered many survey locations to better understand the variability of factors as opposed to much research
that has analysed few survey locations. The resulting prediction models provided a good fit of the observed values and
returned statistical indicators higher than those returned from the most of literature.

▪ Unlike other Italian studies, the developed models are applicable to a medium-sized urban area in Northern Italy.
▪ The study introduced new explanatory variables: left crossbar width, visibility of road markings, presence of obstacles,
presence of guardrails, distance to the successive intersection, type of road pavement (all these are significant with p-value ≤
0.1) and the functional class of the road (according to MIT [52]), The new variables expanded the results of previous studies
because they helped refine the V85 estimation.

▪ This study demonstrated that traffic calming measures did not have a significant effect on operational speed, despite being
considered in a comprehensive manner, unlike previous literature.

Some models have been specified, calibrated, and validated using 48,000+ spot speed data on the city of Brescia (Italy). The main
results showed that the best model has the advantage of being simple to apply and is a suitable fit for observed operating speed values.
Moreover, V85 increases when the homogeneous segment length, the distance to successive intersection, increases and the number of
lanes increase. In addition, the presence of trees and guardrails increase V85. Moreover, bituminous conglomerate roads are predictors
that increase V85 as well as visible road markings and posted speed limit value. Conversely, the V85 decreases when the left crossbar
width, the density of pedestrian crossing, and the density of intersections increase. Moreover, it decreases if there is on-street parking
or other obstacles near the lane, and when the road crosses commercial/office, residential areas, or industrial sites. Therefore, these
results could benefit public authorities and road management to revamp and enhance infrastructure with the purpose of, e.g. (i)
reducing speed in urban areas, (ii) protecting the more vulnerable users, (iii) increasing road urban safety and (iv) replanning public
transport networks [58].

Although these important results were obtained, this study could be enhanced. While it enabled the identification of the variables
most influential on the V85, the research was constructed and developed according to a straightforward modelling approach and a
limited number of observed operating speed values in the urban network, even if larger than most of the previous literature. Moreover,
the estimation of V85 requires the quantification of a relevant number of variables, which means that data collection is burdensome and
often not immediate. Nevertheless, this study can be replicated in other urban contexts. More specifically, the prediction model could
be applied directly in a different urban area, or a recalibration of the coefficients could be carried out for a specific context. Moreover,
future research could be developed to enhance the results by employing different modelling approaches, elaborating more data, and
analysing the influence of new variables on the speed. From this viewpoint, more innovative models based on machine learning could
be developed to improve prediction performance. These models could leverage their greater ability to describe the intricate

Fig. 9. Validation of final model.
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relationships existing among operating speed and its predictors, as has already been demonstrated in other transportation engineering
fields [59–61]. In addition, new measurements could be conducted to introduce new variables. In this regard, a more specific in-depth
study could investigate the influence of different traffic calming elements on the V85. Though this paper had already tried to examine
such additions, the results are not very appreciable, thus making it appropriate to carry out further analysis. New research could
compare the speed data obtained from laser equipment, as used in this study, with speed data collected by floating car data. Indeed, the
latter refer to real-time data collected from vehicles in motion through GPS tracking systems or onboard sensors. These data provide
detailed information on speed, location, and other traffic metrics. They are particularly valuable for obtaining accurate and up-to-date
data without the need for installing costly devices on roads, enabling more efficient and dynamic traffic management. These data could
be used to analyse and manage urban traffic, monitor road conditions, and improve transportation planning, especially when many
spot speed measurements could not be performed. Besides, the overall methodological framework could be enhanced by integrating
additional elements that can characterize the drivers’ behaviour. For instance, a more in-depth analysis of intersections, differentiating
between types (e.g., signalised, unsignalized) could be significant. This would enable further refinement of the initial segmentation
setup. Finally, this study focuses exclusively on the spot speed of cars. Consequently, the results are primarily applicable to small
vehicles on urban roads, because this study does not consider mixed traffic volumes that can include other types of vehicles.
Nevertheless, it is recommended to extend this study to include a broader range of vehicles to achieve a more comprehensive un-
derstanding of traffic dynamics.
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Raccagni reports a relationship with University of Brescia that includes: funding grants. Benedetto Barabino is an Associate Editor of
Heliyon Journal. If there are other authors, they declare that they have no known competing financial interests or personal re-
lationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors express their gratitude to the Mobility Office of the Municipality of Brescia for their invaluable assistance in selecting a
wide range of critical roads for inclusion in the modelling, particularly those with geometric characteristics that deviate from Italian
regulations.

This paper is part of some research activities developed by the authors within the framework of the “PNRR”: SPOKE 7 “CCAM,
Connected Networks and Smart Infrastructure” - WP4, CUP D83C22000690001.

Finally, one of the authors who worked on this paper was supported during the writing by the University of Brescia Department of
Civil, Environment, Land and Architecture Engineering and Mathematics (DICATAM), which was included within the research grant
“Implementazione di un sistema di monitoraggio della sicurezza del traffico stradale per l’analisi e la mitigazione del rischio di
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Appendix

Appendix 1. Correlation matrix for the factors. The pairs of high correlated variables (correlation coefficient greater than 0.70 o lesser than
− 0.70 are bold edited)
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V85 F1 F2 F3 F4 L Ncar Nc Lc Q/C i M Cpr Cnpr Bdx Bsx Cu Cc Cd As Ar Ap Scu Ppsl

V85 1.00                       
F1 0.50 1.00                      
F2 0.10 − 0.42 1.00                     
F3 − 0.28 − 0.33 − 0.34 1.00                    
F4 − 0.40 − 0.32 − 0.32 − 0.25 1.00                   
L 0.60 0.33 0.09 − 0.07 − 0.40 1.00                  
Ncar 0.30 0.56 − 0.07 − 0.28 − 0.27 0.20 1.00                 
Nc 0.43 0.65 − 0.23 − 0.24 − 0.23 0.37 0.61 1.00                
Lc 0.10 0.12 0.15 − 0.07 − 0.24 − 0.10 0.08 − 0.14 1.00               
Q/C 0.35 0.38 0.18 − 0.19 − 0.46 0.30 0.26 0.05 0.34 1.00              

i 0.06 − 0.05 0.04 0,00 0.02 0.04 − 0.03 − 0.10 0.08 0.10 1.00             
M 0.18 0.05 0.03 − 0.02 − 0.07 0.13 − 0.11 0.07 0.04 0.03 − 0.05 1.00            
Cpr 0.31 0.31 0.03 − 0.22 − 0.17 0.31 0.34 0.44 − 0.07 − 0.01 0.03 0.21 1.00           
Cnpr 0.16 − 0.02 0.15 − 0.18 0.03 0.13 0.07 0.05 − 0.07 0.02 − 0.01 0.12 − 0.10 1.00          
Bdx 0.03 0.04 0.18 − 0.06 − 0.20 0.06 0.28 0.07 0.03 0.17 0.05 − 0.33 0.08 0.10 1.00         
Bsx − 0.10 − 0.22 0.19 0.09 − 0.07 − 0.02 − 0.20 − 0.22 − 0.02 0.1 − 0.05 − 0.11 − 0.14 − 0.04 0.07 1.00        
Cu 0.29 0.24 − 0.04 0,00 − 0.23 0.16 0.17 0.16 0.18 0.14 0.02 0.29 0.20 − 0.18 − 0.05 − 0.03 1.00       
Cc 0.28 0.48 − 0.15 − 0.19 − 0.19 0.17 0.19 0.44 − 0.03 0.28 0.01 0.21 0.31 − 0.13 − 0.1 − 0.16 0.18 1.00      
Cd 0.26 0.45 − 0.03 − 0.25 − 0.23 0.18 .81 0.39 0.14 0.27 − 0.04 − 0.17 0.12 0.16 0.35 − 0.10 0.12 − 0.18 1.00     
As − 0.08 − 0.02 0.19 − 0.04 − 0.17 0.04 0.25 0.12 0.07 0.06 − 0.02 − 0.15 0.11 0.06 0.18 0.09 0.02 0.06 0.12 1.00    
Ar − 0.50 − 0.33 − 0.09 0.22 0.26 − 0.28 − 0.37 − 0.33 − 0.03 − 0.25 − 0.04 − 0.08 − 0.31 − 0.18 − 0.17 − 0.01 − 0.09 − 0.29 − 0.24 − 0.21 1.00   
Ap 0.10 − 0.14 0.18 0.11 − 0.16 0.10 − 0.14 0,00 − 0.09 − 0.04 0,00 0.06 − 0.09 − 0.01 0.07 0.15 0.03 − 0.03 − 0.12 − 0.24 − 0.14 1.00  
Scu 0.02 0.08 − 0.04 − 0.07 0.03 0.04 0.05 0.06 − 0.01 0.06 − 0.01 − 0.08 0.02 0.01 0.17 0.11 − 0.04 − 0.01 0.18 0.06 − 0.08 − 0.1 1.00 
Ppsl 0.05 − 0.10 0.03 − 0.02 0.10 0.01 − 0.11 − 0.05 0,00 − 0.06 0.16 0.19 0.08 0.14 − 0.09 − 0.10 − 0.02 − 0.06 − 0.08 0.05 − 0.08 − 0.13 0.14 1.00
PSL 0.37 0.27 0.20 − 0.16 − 0.37 0.24 0.24 0.25 0,00 0.19 − 0.04 − 0.24 0.03 − 0.08 0.23 0.17 0.15 0.13 0.2 0.13 − 0.17 0.14 − 0.01 − 0.38
O 0.47 0.22 0.19 − 0.02 − 0.44 0.25 0.10 0.15 0.31 0.34 0.09 0.14 0.16 0.04 0.04 0.08 0.51 0.15 0.07 0.05 − 0.22 0.13 − 0.04 0.05
V 0,00 0.07 0.01 − 0.09 − 0.01 0.20 0,00 0.09 − 0.05 0.16 0.05 0.01 0.15 − 0.02 − 0.01 − 0.01 − 0.08 0.22 − 0.12 0.12 0.03 − 0.06 0.05 0.13
Dacc − 0.46 − 0.48 − 0.08 0.24 0.40 − 0.26 − 0.43 − 0.32 − 0.20 − 0.41 0.04 0.03 − 0.23 − 0.15 − 0.19 0.01 − 0.06 − 0.23 − 0.41 − 0.08 0.46 − 0.06 0.01 0.07
Int 0.36 0.05 0.21 − 0.17 − 0.12 0.25 0.10 0.03 0.02 0.23 0.12 0.02 0.09 0.09 0.01 0.04 0,00 0,00 0.10 0.07 − 0.37 0.07 0.03 0.13
Dint − 0.59 − 0.22 − 0.17 0.15 0.30 − 0.41 − 0.20 − 0.15 − 0.14 − 0.26 − 0.13 0.04 − 0.14 − 0.09 − 0.14 0,00 − 0.11 − 0.07 − 0.21 − 0.04 0.39 − 0.11 − 0.10 − 0.07
Al 0.22 0.38 − 0.07 − 0.18 − 0.17 0.04 0.36 0.28 0.16 0.26 − 0.04 − 0.19 0.04 − 0.10 0.25 0.06 0.09 0.08 0.39 0.04 − 0.11 0.10 0.15 − 0.16
Ost − 0.12 − 0.21 0.08 0.11 0.03 0.03 − 0.02 − 0.03 0.16 − 0.03 − 0.05 0.18 − 0.08 0.10 − 0.12 − 0.09 − 0.10 − 0.07 − 0.04 0.08 − 0.02 − 0.03 0.05 0.01
Dt 0.19 0.10 − 0.01 − 0.06 − 0.05 0.13 0.29 0.19 0.08 0.02 − 0.03 0.24 0.06 0.19 0.04 − 0.10 0.20 0.03 0.27 − 0.01 − 0.12 − 0.10 0.09 − 0.07
Cp − 0.44 − 0.35 0.03 0.12 0.24 − 0.22 − 0.19 − 0.23 − 0.16 − 0.19 0.12 − 0.50 − 0.17 − 0.06 0.32 0.16 − 0.41 − 0.28 − 0.12 0.09 0.29 − 0.08 0.03 0.01
Caut 0,00 0.11 − 0.05 − 0.04 − 0.03 0,00 − 0.04 − 0.03 0,00 0.10 0,00 0.05 − 0.03 − 0.02 − 0.03 0.05 0.04 − 0.03 − 0.03 − 0.09 0.05 − 0.02 − 0.02 − 0.03
Autk 0.09 0.06 0.23 0.08 − 0.42 0.07 0.22 0.12 0.06 0.25 − 0.05 − 0.07 − 0.03 0.05 0.27 0.19 0.14 − 0.06 0.24 0.22 − 0.05 0.10 − 0.03 − 0.13
Datt − 0.46 − 0.28 − 0.17 0.09 0.43 − 0.38 − 0.11 − 0.18 − 0.16 − 0.38 0.01 − 0.19 − 0.16 − 0.15 − 0.02 0.02 0,00 − 0.21 − 0.05 − 0.04 0.43 − 0.11 0.02 − 0.03
G 0.30 0.32 − 0.11 − 0.12 − 0.12 0.15 0.18 0.19 0.06 0.14 0,00 0.03 − 0.04 0.06 − 0.02 − 0.09 − 0.02 0.04 0.22 0.02 − 0.33 − 0.08 0.01 0.10
CB 0.35 0.12 − 0.01 − 0.19 0.07 0.16 − 0.04 0.09 0.05 0.05 0.20 − 0.13 0.08 − 0.15 − 0.09 0.07 0.30 0.07 − 0.06 − 0.09 0.01 0.06 − 0.05 − 0.04
PL − 0.34 − 0.11 0.01 0.20 − 0.09 − 0.15 0.04 − 0.08 − 0.06 − 0.05 − 0.20 0.13 − 0.07 0.13 0.08 − 0.10 − 0.31 − 0.07 0.07 0.08 0.01 − 0.06 0.05 0.02
PCb 0.11 0.05 − 0.03 0.15 − 0.16 0.16 0.10 0.04 − 0.08 0.07 − 0.05 0.08 0.09 0,00 0.03 − 0.01 0.38 0.02 0.09 − 0.03 − 0.02 0.07 − 0.09 − 0.12
PCm − 0.11 − 0.05 0.03 − 0.15 0.16 − 0.16 − 0.10 − 0.04 0.08 − 0.07 0.05 − 0.08 − 0.09 0,00 − 0.03 0.01 − 0.38 − 0.02 − 0.09 0.03 0.02 − 0.07 0.09 0.12
S 0.30 0.45 − 0.1 − 0.13 − 0.26 0.38 0.27 0.52 0.04 0.12 0.02 − 0.07 0.16 0.18 0.12 0.01 0.03 0.16 0.28 0.09 − 0.17 0,00 0.01 − 0.06

(continued on next page)

S.Raccagnietal.
Heliyon 10 (2024) e39459 

19 



(continued )

V85 F1 F2 F3 F4 L Ncar Nc Lc Q/C i M Cpr Cnpr Bdx Bsx Cu Cc Cd As Ar Ap Scu Ppsl

DD − 0.15 − 0.16 − 0.07 0,00 0.26 − 0.17 − 0.13 − 0.11 0,00 − 0.18 0.01 − 0.01 − 0.10 − 0.09 − 0.17 − 0.07 − 0.12 − 0.09 − 0.12 − 0.12 0.18 − 0.08 − 0.01 0.05
Ch − 0.11 − 0.12 0.11 0.10 − 0.09 0.17 − 0.10 − 0.09 − 0.04 0.07 0.11 0.08 0.22 − 0.07 − 0.03 0,00 0.11 − 0.07 − 0.09 0.04 0.14 − 0.06 − 0.06 0.32
RI − 0.11 − 0.17 − 0.03 0.02 0.21 − 0.04 0.04 − 0.02 − 0.03 − 0.13 0.02 0.02 0.16 − 0.05 0.02 0.02 − 0.05 − 0.07 − 0.02 0.04 0.12 − 0.18 0.20 0.07
Is 0.09 0.09 0.08 − 0.02 − 0.17 0.07 0.23 0.10 0.06 0.09 0.02 − 0.12 0.12 0.12 0.13 − 0.11 − 0.03 0.21 0.10 0.20 − 0.19 − 0.16 0.04 − 0.08

PSL O V Dacc Int Dint Al Ost Dt Cp Caut Autk Datt G CB PL PCb PCm S DD Ch RI Is

PSL 1.00                      
O 0.18 1.00                     
V − 0.13 0,00 1.00                    
Dacc − 0.24 − 0.28 − 0.1 1.00                   
Int 0,00 0.16 0.04 − 0.18 1.00                  
Dint − 0.24 − 0.29 0.1 0.19 − 0.41 1.00                 
Al 0.28 0.11 − 0.01 − 0.37 − 0.05 − 0.05 1.00                
Ost − 0.21 − 0.14 0.16 0.12 − 0.01 − 0.08 − 0.1 1.00               
Dt 0.11 0.13 0.01 − 0.13 0.03 − 0.15 − 0.01 0.36 1.00              
Cp − 0.12 − 0.23 0.04 0.30 − 0.08 0.12 0.01 − 0.11 − 0.38 1.00             
Caut 0.04 0.03 − 0.06 − 0.06 0,00 0.01 0.08 − 0.11 0.01 − 0.05 1.00            
Autk 0.24 0.21 − 0.15 − 0.14 − 0.01 − 0.15 0.07 − 0.04 0.02 − 0.01 0.03 1.00           
Datt − 0.11 − 0.17 − 0.01 0.33 − 0.23 0.30 0,00 − 0.02 − 0.03 0.26 0,00 − 0.05 1.00          
G − 0.03 0.09 0.08 − 0.18 0.28 − 0.16 0.09 0.07 − 0.09 − 0.09 − 0.02 − 0.04 − 0.21 1.00         
CB 0.34 0.46 0.01 0.07 0.10 − 0.25 0.11 − 0.12 0.02 0.02 0.01 − 0.06 0.10 0.04 1.00        
PL − 0.33 − 0.46 − 0.02 − 0.07 − 0.11 0.26 − 0.10 0.12 − 0.03 − 0.01 − 0.01 0.06 − 0.11 − 0.04 ¡.99 1.00       
PCb 0.18 0.20 − 0.08 − 0.08 − 0.1 − 0.12 0.01 − 0.09 0.15 − 0.27 0.03 0.03 0.05 − 0.23 − 0.01 0.01 1.00      
PCm − 0.18 − 0.20 0.08 0.08 0.10 0.12 − 0.01 0.09 − 0.15 0.27 − 0.03 − 0.03 − 0.05 0.23 0.01 − 0.01 − 1,00 1.00     
S 0.21 0.20 0.06 − 0.30 0.04 − 0.15 0.19 − 0.03 0.10 − 0.06 0.04 0.18 − 0.08 0.23 0.10 − 0.11 − 0.07 0.07 1.00    
DD − 0.21 − 0.09 − 0.06 0.20 0.12 0.01 − 0.16 0.03 0.04 0.11 − 0.02 − 0.09 0.22 − 0.06 0.04 − 0.04 − 0.12 0.12 − 0.11 1.00   
Ch − 0.35 0.07 0.24 0.17 0.05 − 0.04 − 0.06 0.13 − 0.15 0.25 − 0.01 0.06 0.04 − 0.05 0.04 − 0.03 0.02 − 0.02 − 0.05 − 0.05 1,00  
RI − 0.26 − 0.07 0.19 0.15 0.04 0,00 − 0.10 0.26 0.18 0.12 − 0.05 − 0.12 0.23 − 0.15 0.10 − 0.11 0.04 − 0.04 − 0.13 0.37 0.18 1,00 
Is 0.10 0.08 0.02 − 0.18 0,00 − 0.12 0.06 0.01 0.19 0.02 − 0.03 0.16 − 0.02 0,00 − 0.06 0.07 − 0.11 0.11 0.14 0.17 − 0.09 0.12 1,00
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Appendix 2. Full Model e Final Model are provided as equations

Full Model

V85 =25.9 C − 0.56 E* • 0.56 E • − 0.23 F • 0.01600 L • − 0.029 i • 0.00538 Int • − 3.01 Ncar • 2.49 Nc • − 0.060 Lc • 0.60 Cd

• 0.74 Cc • − 0.052 Bdx • − 0.321 Bsx • 0.186 Autk • − 0.1445 Datt • 3184 Al • − 2.86 Ost • 0.140 Dt • − 3.75 Cp

• − 0.0379 Dacc • − 0.3796 Dint • 0.64M • 3.11 Cpr • 1.32 Cnpr • − 6.23 Caut • 0.94 Cu • 4.19 G • − 0.406 S • 22.1 CB

• 15.8 PL • − 1.61 PCb • 3.28 O • 0.168 V • 2.10 Ppsl • 0.1442 PSL • − 0.73 Q/C • − 3043 As • − 1.86 Ar • − 3.17 Ap

• − 2.03 Scu • − 0.173 DD • − 5.16 Ch • 2.02 RI • − 0.59 Is

Final Model

V85 =37.72 C+ 0.419 E* • 0.540 E • 0.773 F • 0.01299 L • 0.00649 Int • 2.983 Nc • − 0.275 Bsx • − 0.238 Datt • 1.969 Al

• − 3.12 Ost • − 4.861 Cp • − 0.1868 Dint • − 6.19 Caut • 2.44 G • 9.29 CB • − 0.44 PCb • 3.78 O • 0.1014 PSL • − 2.478 As

• − 3.394 Ar • − 2.8 Ap
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[43] H. Gonzalo-Orden, H. Pérez-Acebo, A.L. Unamunzaga, M.R. Arce, Effects of traffic calming measures in different urban areas, Transport. Res. Procedia 33 (2018)

83–90.
[44] A. Solowczuk, Effect of traffic calming measures implemented on the approach to the tempo–30 zone on the degree of speed reduction. IOP Conference Series:

materials Science and Engineering 603 (2) (2019) 022044.
[45] ISTAT, Istituto Nazionale di Statistica, Bilancio Demografico Anno 2022, Brescia, Istat.it, 2023.
[46] Lombardia -RL. Regione, Piano Regionale per la Mobilità e i Trasporti, 2016.
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