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Plasmacytoid dendritic cells (pDCs) are the major producers of type I interferons

(IFNs), which are essential to mount antiviral and antitumoral immune responses.

To avoid exaggerated levels of type I IFNs, which pave the way to immune

dysregulation and autoimmunity, pDC activation is strictly regulated by a variety

of inhibitory receptors (IRs). In tumors, pDCs display an exhausted phenotype and

correlate with an unfavorable prognosis, which largely depends on the

accumulation of immunosuppressive cytokines and oncometabolites. This

review explores the hypothesis that tumor microenvironment may reduce the

release of type I IFNs also by a more pDC-specific mechanism, namely the

engagement of IRs. Literature shows that many cancer types express de novo, or

overexpress, IR ligands (such as BST2, PCNA, CAECAM-1 and modified surface

carbohydrates) which often represent a strong predictor of poor outcome and

metastasis. In line with this, tumor cells expressing ligands engaging IRs such as

BDCA-2, ILT7, TIM3 and CD44 block pDC activation, while this blocking is

prevented when IR engagement or signaling is inhibited. Based on this

evidence, we propose that the regulation of IFN secretion by IRs may be

regarded as an “innate checkpoint”, reminiscent of the function of “classical”

adaptive immune checkpoints, like PD1 expressed in CD8+ T cells, which restrain

autoimmunity and immunopathology but favor chronic infections and tumors.

However, we also point out that further work is needed to fully unravel the

biology of tumor-associated pDCs, the neat contribution of pDC exhaustion in

tumor growth following the engagement of IRs, especially those expressed also

by other leukocytes, and their therapeutic potential as targets of combined

immune checkpoint blockade in cancer immunotherapy.
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1 Introduction

The concept of “immune checkpoint” is currently extending to

proteins others than CTLA-4 and PD1, provided their capability to

limit immune responses to a physiologic range while minimizing

tissue damage. As a consequence, the number of novel potential

targets for checkpoint inhibition to awake the immune system

against tumors is rapidly growing, together with the envisioned

combinations to develop more effective and patient-tailored cancer

therapies (1–3). A particular emphasis is being placed on

checkpoints expressed by innate immune cells. Indeed, the

combined targeting of innate and adaptive checkpoints would

unleash T-cell–mediated tumor killing also by rescuing the

activation of the innate arm of immunity (4, 5). Also, innate

checkpoint targeting could turn strategical when genetic

instability prevents the success of T-cell-targeted checkpoint

blockade, given that innate activation is independent of

neoantigen recognition (6). In this scenario, a thorough

understanding of the biology of novel immune checkpoints is a

fundamenta l need for the defin i t ion o f innova t i ve

therapeutic strategies.

Plasmacytoid dendritic cells (pDCs) represent a rare subset of

dendritic cells characterized by the ability to secrete massive

amounts of type-I interferons (IFNs), thus eliciting antiviral and

antitumor responses (7). This review explores the hypothesis that

tumor microenvironment, similar to chronic viral infections, may

reduce the release of type-I IFNs by engaging inhibitory receptors

(IRs) expressed by pDCs (Figure 1, left panel): following a brief

overview of pDC biology and of general mechanisms of pDC

impairment in tumors, we will review the panel of IRs, collect

evidence concerning their contribution in the generation of

exhausted tumor-associated pDCs (TA-pDCs) and describe

existing blocking strategies to rescue the anticancer potential of
Frontiers in Immunology 02
this cell type. In this light, we hypothesize that IRs should be

regarded as “innate immune checkpoints” and further studied as

potential targets for checkpoint blockade in cancer immunotherapy

(Figure 1, right panel).

Articles referenced in the text specifically dealing with pDC IRs

were searched in PubMed database from inception to December

2023 using as search terms: (“name of the receptor”[MeSH Terms]

OR “name of the receptor”[All Fields] OR “alternative name/s of the

receptor”[All Fields]) AND (“human plasmacytoid dendritic

cells”[MeSH Terms] OR “human plasmacytoid dendritic

cells”[All Fields] OR “human pDCs”[All Fields]). Retrieved

papers where manually screened and were selected if related to IR

characterization/biology or cancer or autoimmunity. Only

inhibitory receptors of human pDCs were analyzed. Additional

literature was added to draw up the more general parts of the

review, concerning pDC pathophysiology and IR categorization.
2 Overview of pDC biology

Human pDCs, a rare population of innate cells accounting for

0.1-0.5% of mononuclear cells (8), are continuously produced in the

bone marrow by both myeloid and lymphoid precursors (9). Very

recently, the ontogeny of pDC has been debated and a proposal of a

reclassification of their name was formulated (10, 11). Mouse data

and studies on patients with combined immunodeficiencies

highlighted the role of the transcription factors TCF4 (also

known as E2-2), IRF8 and Ikaros family zinc finger 1 (IKZF1) for

pDC differentiation (12–14). Phenotypic markers of human pDCs

are blood DC antigen 2 (BDCA-2/CD303; also known as C-type

lectin 4C -CLEC4C-), blood DC antigen 4 (BDCA-4/CD304; also

known as C-type lectin 4A -CLEC4A-), Immunoglobulin -like

transcript 7 (ILT7, also known as leukocyte immunoglobulin-like
FIGURE 1

pDC inhibitory receptors as immune checkpoints and potential targets for anticancer immunotherapy. Different ligands from tumor cells may
engage inhibitory receptors (IRs) expressed on pDCs and reduce pDC activation and type I IFN production, potentially leading to poor antitumor
responses (left panel). Therapeutic strategies aimed at preventing IR engagement by ligand-bearing tumors may restore antitumoral pDC activity
(right panel).
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receptor subfamily A member 4 -LILRA4) and the receptor for IL7;

in addition, human pDCs express other non-specific markers such

as CD4, CD45RA, CD68, ILT3 and CD123 (IL-3 receptor) (15). In

mice, pDCs are characterized by the expression of surface markers

CD45R (B220), CD45RA, Ly-6C, Siglec-H, and BST2 (CD317/

PDCA-1) (16).

Under physiologic conditions, human pDCs recirculate through

lymphoid organs via peripheral blood (8). Lymph node entry occurs

across high endothelial venules that express the ligands of L-

selectin, CXCR4 and CMKLR1 (recently named Chemerin1, (17))

that are constitutively expressed by resting, immature pDC (18).

Upon inflammatory conditions, human pDCs can enter the lymph

nodes draining the target tissues guided by the acquired

responsiveness to CCR7 ligands (16, 19–21). The functional role

of CMKLR1- or CCR6/CCR10-mediated recruitment of human

pDCs to non-lymphoid tissues has been documented during

pathological conditions such as autoimmune, allergic and

infectious diseases as well as in tumors (18, 22, 23). Human pDC

can also migrate in response to chemotactic molecules released after

tissue damage such as adenosine, formyl peptides and C3a and C5a

anaphylotoxins (24–26).

pDCs were initially characterized as “natural interferon

producing cells” due to their unique capability to secrete massive

levels of type I IFNs (especially IFN-a) but also type III IFN (27,

28). Indeed, type I and type III IFNs account for about 60% of novel

transcripts of activated pDCs (29). Moreover, pDCs also secrete

proinflammatory cytokines and chemokines and were reported

to present antigens to T lymphocytes (30, 31). Recent studies

suggest that pDCs are a heterogeneous population, although

several questions regarding pDC subsets and functional plasticity

remain unanswered (15). In humans, the expression of CD2 was

proposed to discriminate two different IFN-a producing pDCs

subsets according to CD2 expression, with the CD2high subset

being more effective in IL-12 secretion, in triggering naïve T

lymphocyte proliferation and with a significant survival advantage

over CD2low expressing pDC during stress conditions (32, 33). A

CD5+CD81+CD2high human pDC subset, defined as Axl+ DC,

was also identified. This “non-canonical” pDC subset was found

unable to produce type I IFNs but endowed with the ability to

stimulate B cells and promote the development of T regulatory

(Treg) cells (34). However, these observations were recently

challenged by a different view, supporting the idea that pDC

diversification and functional specialization could occur upon

activation and independently of pre-existing heterogeneity (35).

The ability to secrete huge amounts of type I IFN makes

pDCs crucial in antiviral immune responses (31) against both RNA

and DNA viruses (36–38). Of note, impaired secretion of type I and

III IFNs caused by heterozygous null mutations in IRF7, a

nonredundant transcription factor for IFN production, was

associated to life-threatening H1N1 influenza A virus or SARS-

CoV2 infections (39, 40). To accomplish this role, pDCs are

equipped with innate immune receptors, primarily represented by

elevated levels of TLR7 and TLR9. In particular, TLR7 detects ssRNA

viruses, but also endogenous RNA and synthetic oligoribonucleotides

or imidazoquinoline compounds. TLR9 recognizes DNA containing

unmethylated CpG-rich DNA sequences, endogenous DNA and
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synthetic CpG DNA. The engagement of TLR7 and TLR9 activates

the recruitment of the adapter protein MyD88 leading to the IRF7-

mediated secretion of type I IFN and to the NF-kB-mediated

secretion of proinflammatory cytokines (41). Studies using

synthetic oligonucleotides demonstrated that the two pathways are

spatially and temporally distinct, depending on the subcellular

compartments in which these TLRs encounter their ligands (42,

43). In addition to TLRs, functional activation of cytosolic DNA-

sensors including cyclic GMP-AMP (cGAMP) synthase (cGAS),

stimulator of IFN gene (STING) and the dsRNA-sensor RIG-I in

human pDCs has been recently described (44, 45). Virus-activated

human pDCs can sustain NK cell functions by inducing NK cell

migration and promoting IFN-g secretion and NK cell cytotoxicity

(46–48).

Besides their role in innate immunity, pDCs also regulate the

activation of adaptive immune responses. Upon activation, pDCs

increase the expression of major histocompatibility complex

(MHC) and costimulatory molecules and were described to

present antigens, both particulate and cell-associated, to CD4+ T

cells and cross-present antigens to CD8+ T cells (49, 50). These

functional pDC properties were demonstrated by specifically

targeting receptors involved in antigen delivery, such as members

of the C-type lectin family (CLR, such as BDCA-2, DEC-205 and

DCIR, see further) or the immunoglobulin receptor FcgRII (CD32),
with specific antibodies coupled to antigens, which were properly

endocytosed, processed and presented (51–55). Activated pDCs

secrete T-cell recruiting chemokines (18) and promote Th-

polarization and differentiation (19, 56–58). Finally, type I IFNs

and IL-6 released by pDCs contribute to drive memory B cell

differentiation into effector plasma cell (59).

pDCs also potentially play a relevant role also in eliciting

antitumor responses, which share many functional similarities

with antiviral immunity (7). Indeed, type I IFNs enhance NK cell

cytotoxicity against tumor cells (60, 61), modulate the activity and/

or survival of lymphocytes (62, 63), suppress the generation of

tumor associated macrophages (64) and also display direct

antitumoral activities by inducing apoptosis and inhibiting the

release of proangiogenic factors (65–68). However, the timing and

duration of type-I IFN release critically condition the efficacy of

antitumor responses, as recently reviewed elsewhere (69, 70),

suggesting that pDC activation needs to be tightly regulated.
3 Impairment of pDC functions
in tumors

Besides being directly associated with two major types of

primary liquid neoplasia, namely Blastic pDC Neoplasm

(BPDCN) and Mature pDC Proliferation (MPDCP) (71), tumor

infiltration by pDCs is reported in several human solid

malignancies including melanoma, head and neck cancer, ovarian

carcinoma and breast cancer (72, 73). Yet, tumor-associated pDCs

(TA-pDCs) generally present a dysfunctional immature phenotype,

with decreased secretion of IFN-a and inability to induce

appropriate T cell responses and were described as negative

prognostic markers in oral, ovarian, melanoma breast cancers and
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others human malignancies (74–78). The following paragraphs will

briefly overview the general mechanisms of pDC induction of

immunosuppression and exhaustion (Figure 2).
3.1 Mechanisms of pDC-dependent
immunosuppression in cancer

TA-pDCs exploit several immunosuppressive molecular

mechanisms contributing to the establishment of a tolerogenic,

protumor microenvironment (73). Among the best characterized,

the expression of OX40L and ICOSL, two surface molecules

involved in Th2/Treg activation (79–81), were described to

promote an immunosuppressive milieu by secreting TGF-b and

IL-10 (82–84). Indeed, Treg activation by ICOSL+ pDCs was

reported in several human cancers, including melanoma (85),

gastric (86), ovarian (80), glioma (87), breast (81), liver (88, 89)

and thyroid gland cancers (90). Increased frequencies of OX40L+

pDC and Th2 T cells were detected in the circulation of melanoma

patients (85), consistent with the Th2-skewing role OX40L

expressed by TA-pDCs, as demonstrated in a melanoma mouse

model (85). Moreover, circulating pDCs from multiple myeloma

patients were found to express high levels of the immune

checkpoint ligand PDL1 (91). On the contrary, in the presence of

PDL1-blocking antibodies, pDCs promoted T cell proliferation and

NK cytotoxicity in patients (91). In accordance, in non-small cell

lung cancer patients undergoing anti-PDL1 therapy, a high intra-

tumoral pDC signature was associated to improved survival (92).

TA-pDCs were also shown to secrete immunosuppressive and

tumor-promoting mediators. Indoleamine 2,3-dioxygenase
Frontiers in Immunology 04
expressing (IDO+) pDCs from melanoma-draining lymph nodes

mediated active immunosuppression in vitro and caused profound

local T cell anergy in vivo through the direct activation of Foxp3+

Tregs which, in turn, upregulated the expression of PDL1 on mouse

DCs (93). TA-pDCs recovered in ascites from ovarian tumor

patients secreted the proangiogenetic factors CXCL8 and TNF-a
(94), while in non-small cell lung cancer patients, tumor-infiltrating

pDCs were reported to cause tumor proliferation via the pro-

angiogenic effects of IL-1a (95). A direct demonstration of the

detrimental role of TA-pDCs comes from a glioma mouse model,

where pDC depletion increased survival by reducing the number of

infiltrating Tregs and their ability to secrete IL-10 (87). Similarly, in

mouse models of breast cancer bone metastasis, pDC depletion

resulted in an overall decreased tumor burden and bone loss via the

activation of CD8+ T cells and a Th1-oriented immune

response (96).
3.2 Mechanisms of pDC exhaustion in
tumor microenvironment

The above described tolerogenic/hypo-functional state of TA-

pDCs is induced by complex and often tumor-type specific

molecular mechanisms (97, 98). Generally, however, the tumor

microenvironment is enriched in immunosuppressive cytokines

and hormones capable of inhibiting pDC maturation and type I

IFN production, such as prostaglandin E2 (PGE2), TGFb, and IL-10
(79, 82, 84, 99). These mediators are produced both by tumor cells

and infiltrating immune cells, including Tregs that pDCs contribute

to foster at the tumor site (83), thus establishing a feedback loop

favoring tumor progression. Tumor-derived PGE2 and TGF-b were

shown to act in synergy to inhibit the production of IFN-a and

TNF-a induced in TLR7- and TLR9-triggered pDCs, by decreasing

TLR membrane expression or by blocking TLR downstream

signaling (99). This finding is consistent with the reduced

capability of TA-pDCs in head and neck cancer patients to

secrete type I IFNs as compared to circulating pDCs (100). The

reduced expression of TLR7 and TLR9 induced by the

immunosuppressive tumor microenvironment in pDCs was also

demonstrated in ovarian and breast cancers (79, 81, 83, 84, 101).

Conversely, PGE2-exposed pDCs release CXCL8, a chemokine that

promotes tumor cell proliferation, migration/invasion and

stimulates angiogenesis (73, 102). Indeed, pDCs recruited in

malignant ascites from ovarian cancer patients can induce

angiogenesis through the production of TNF-a and CXCL8 (94).

In addition, increased serum levels of IL-10 in hepatocellular

carcinoma patients were reported to induce a substantial

reduction in circulating pDCs, which also displayed an immature

phenotype with decreased HLA-DR, CD80, and CD86 expression

(73, 103). Aberrant release of DAMPs and proinflammatory

cytokines, especially TNF-a, contributes to human pDC hypo-

functionality as well (94). For example, in virus-associated human

cervical cancer, the production of type-I IFNs was impaired by

HMGB1 secreted by transformed keratinocytes (104). Persistent

stimulation of TLRs by nucleic acids released by tumor necrotic
FIGURE 2

Mechanisms of pDC exhaustion and pDC-dependent immune-
suppression in tumors. The tumor microenvironment is enriched in
immunosuppressive cytokines, catabolites and hormones capable of
inhibiting pDC maturation and type I IFN production, such as
prostaglandin E2 (PGE2), TGFb, and IL-10. pDCs favor tumor growth
by inducing effector T cell exhaustion, T reg activation and by
secreting pro-angiogenic factors. IR: inhibitory receptors; IDO:
Indoleamine 2,3-dioxygenase.
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cells may also contribute to TA-pDC exhaustion like in chronic

viral infections (105, 106).

Oncometabolites, such as lactate, create a microenvironment

that is metabolically disadvantageous for several immune cells

including pDCs (107). In mouse breast cancer, elevated lactate

levels impaired the production of type I IFNs by pDCs and

increased tryptophan metabolism and kynurenine, which

participate in the activation of Tregs (108). In addition, in some

tumor microenvironments, pDCs have to compete with tumor cells

for nutrients, which are crucial for the highly metabolically

demanding production of IFNs (109, 110).

All the above cited mechanisms affect different immune cells

within tumors. Paragraph 4 of this review will explore the

hypothesis that an additional, pDC-specific mechanism, may

exist, namely the engagement of inhibitory receptors by ligand-

expressing tumors.
4 IRs expressed by pDCs and their
role in physiology and tumors

pDCs express a large variety of membrane receptors, either

specifically expressed or shared with other immune and non-

immune cells, conveying inhibitory signals that decrease the

production of type I IFNs (Figure 3). The physiological

significance of these receptors is preventing aberrant immune

activation. Indeed, a deregulated and prolonged exposure to IFNs

not only can increase the risk of autoimmunity, but can also

interfere with haematopoiesis leading to lymphopenia (111, 112).

Therefore, in homeostatic conditions, the engagement of IRs

ensures a specific and brief IFN secretion and is crucial to

maintain efficient immune responses while preventing immune-

mediated tissue damage. However, IRs can be hijacked by

pathogens or tumour cells, thus hindering pDC activation. Here,

we will describe pDC-expressed IRs, emphasizing available evidence

for their hijacking in cancer as well as novel blocking strategies

aimed at rescuing the anticancer potential of pDCs.
Frontiers in Immunology 05
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BDCA-2/CD303/CLEC4C is a human pDC-specific phenotypic

marker (Figure 3), downregulated upon pDC maturation and

TLR7/TLR9 triggering (113) and upregulated by IFN-a (37), and

was the first receptor identified to negatively regulate the IFN

response of pDCs (114). Lately, it was also shown to inhibit the

TLR-mediated induction of TNF-related apoptosis-inducing ligand

(TRAIL), thus impairing the capability of activated pDCs to kill

TRAIL receptor-expressing neoplastic or infected cells (115).

BDCA-2 belongs to C-type lectin receptor (CLR) superfamily,

as named after the Calcium-dependent binding of the first identified

member. To date, CLRs are subdivided in 17 subgroups according

to their structure, ligands and phylogeny (116). BDCA-2 belongs to

the group II of CLRs that also includes, in humans, the closely

related Dectin-2, dendritic cell immunoreceptor (DCIR, described

further), DC immune-activating receptor (DCAR), and other

members (117). These receptors are type II transmembrane

proteins, with an extracellular C-terminal domain containing the

carbohydrate recognition domain (CRD), and a short intracellular

tail. In general, CLRs bind glycosylated molecules, a capability

exploited by immune cells to recognize glyco-conjugated

structures in non-self (pathogen-associated molecular patterns, or

PAMPs), damaged-self (damage-associated molecular pattern, or

DAMPs) and altered-self molecules (e.g. tumour-associated

molecular patterns, or TAMPs) (118). Sequence analysis of the

BDCA-2 CRD showed the presence of the tripeptide motif EPN

(Glu-Pro-Asn), predicting the selective binding to the equatorial

configuration of the hydroxyl groups at C3 and C4 of mannose,

glucose, N-acetylglucosamine and fucose (117). Crystallographic

analysis of the core domain of BDCA-2 CRD showed that its basic

architecture is coherent with a typical CLR constituted by two a-
helices and five b-strands (119). Differently from the CRD of other

CLRs, a long loop region connecting a2-helix to b3-strand suggests

the formation of a domain-swapped dimer, devoid of carbohydrate-

binding ability, which may represent a regulatory mechanism that

preserves BDCA-2 binding to galactosylated proteins in the Golgi

apparatus before membrane exposure (119).

The nature and identity of BDCA-2 ligands is eagerly being

sought after. Curiously, in contrast with the predicted mannose, N-

acetyl glucosamine and glucose residues (120), a glycan array

identified asialo-oligosaccharides with terminal galactose as

BDCA-2 ligands (121). The binding ability for galactose–

terminated glycans was subsequently ascribed to the interaction

with a secondary site rather with the primary calcium-dependent

binding site (122). Because serum glycoproteins display asialo-

galactose residues, these were hypothesized to represent BDCA-2

ligands. Indeed, IgG, IgA, IgM but also a2-macroglobulin were

demonstrated to bind BDCA-2, even if with low affinity (123). In

the lack of any evidence of pDC activation following this binding, it

was speculated that serum glycoproteins could compete with other

ligands to maintain circulating pDCs in a quiescent state. In line

with this, altered IgG galactosylation was described in autoimmune

diseases characterized by pDC activation such as rheumatoid

arthritis, primary Sjogren’s syndrome, psoriatic arthritis, and

systemic lupus erythematosus (SLE) (124). Among PAMPs,
FIGURE 3

Inhibitory receptors of pDCs. The picture shows the inhibitory
receptors (IRs) specifically expressed by pDCs (pDC specific) or
shared with other cell types (non pDC specific). IRs signal through
ITAM/ITIM motives present in the cytoplasmic domain of the
receptor or in the associated adapter proteins (FceRIg or DAP12).
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different molecules from both DNA and RNA virus were shown to

bind BDCA-2, possibly contributing to pDC exhaustion observed in

chronic infections and, albeit for short term, during the acute phase

of LCMV, HSV-1, VSV and MCMV infections (106). Recently,

HBsAg, HIVgp120 and non-structural-1 (NS1) glycosylated protein

from Zyka virus were shown to bind BDCA-2 and activate its

downstream signaling pathways, leading to impaired type I IFN

production upon TLR7 or TLR9 triggering (125–127). Tumors

exploit modifications of cell surface carbohydrates to increase cell

adhesion and migration, thus promoting invasiveness and

metastasizing, but also to elude effective immune responses (128–

130). For instance, carbohydrate changes of the carcino-embryonic

antigen expressed by human colorectal cancer cells trigger the CLR

DC-SIGN, which inhibits DC maturation and antitumor T cell

activation by (131). Similarly, experiments exploiting a fluorescent

tetramer encoding the BDCA-2 CRD, showed that BDCA-2 binds

to tumor cells (including ovarian, colon, pancreatic carcinoma and

breast adenocarcinoma) but not to non-tumor cells such as primary

B and T cells (121). Cells expressing BDCA-2 ligands impaired the

production of IFN-a following TLR9 stimulation, while ligand-

negative cells did not, unless pre-treated with neuraminidase, which

unmasks BDCA-2 binding sites (121). These findings suggest that

tumor cells may modulate the expression of glycoproteins as a

mechanism to inhibit human pDCs via BDCA-2 triggering.

To date, the only known function of BDCA-2 is the inhibition

of TLR-dependent pDC activation. However, given the lack of well-

defined biological BDCA-2 ligands, most studies investigating the

mechanisms of BDCA-2 activation in pDCs were performed with

crosslinking antibodies. As a result, the nature, the affinity and the

kinetics of BDCA-2 triggering by natural ligands remains largely

unknown and need further elucidation. Available results indicate

that BDCA-2 signal transduction relies on the association with the
Frontiers in Immunology 06
common gamma chain of the Fcϵ receptor (FcϵRIg), driving the

assembly of a B cell receptor-like signalosome (132, 133) (Figure 4,

left panel). Indeed, BDCA-2 triggering promotes the activation of

the tyrosine kinase Syk that recruits the adaptor protein SLP65,

leading, in turn, to phospholipase Cg2 (PLCg2) activation with the

release of inositol 1,4,5-triphosphate and diacyl-glycerol. These

second messengers are required for diverse membrane

functionality including calcium flux. BDCA2 engagement has also

been associated to AKT and MEK1/2-ERK activation (134, 135). To

date, the pathway leading to BDCA-2 inhibition of TLR-dependent

NF-kB activation remains partially elucidated (133), but PLCg2
activation and calcium mobilization were suggested to impair the

recruitment of MyD88 to TLRs through the activation of the serine

phosphatase calcineurin (128, 136) (Figure 4, left panel).

Because of its specificity and inhibitory function, BDCA-2 is an

attractive candidate for therapeutic strategies aimed at targeting

pDCs or at modulating their activity. Bivalent binding by the F(ab)2

domain of anti-BDCA-2 antibodies is essential for BDCA-2

activation (137), while Fc region involvement seems to be

dispensable. In fact, anti-BDCA-2 antibodies devoid of effector

functions block the production of type I IFNs by TLR7/9-

activated pDCs. However, the Fc region of a humanized

monoclonal antibody against BDCA-2 appeared critical for

inhibiting the production of type I IFN stimulated by immune

complexes through internalization of CD32a (138). Regardless this

difference, anti-BDCA-2 antibodies appeared as appealing tools for

the treatment of SLE, where immune-complexes and type I IFNs

play a pathogenetic role. A recent Phase II clinical trial involving

patients with SLE demonstrated that Litifilimab (a humanized

antibody against BDCA-2) could reduce cutaneous and joint

involvement (LILAC ClinicalTrials.gov number NCT02847598)

(139, 140). Another strategy to target BDCA-2 was the generation
FIGURE 4

Model of BDCA-2 and ILT7 signaling. Both receptors associate with the ITAM-bearing adapter FceRIg chain. Receptor triggering activates a BCR-like
signalosome leading to the inhibition of TLR signaling, possibly interfering with the TLR adapter MyD88.
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of a chimeric anti-BDCA-2 antibody (ch122A2), characterized by

low fucose contents in order to increase its affinity for CD16/

FcgRIIIa to activate the antibody-dependent cell-mediated

cytotoxicity. In preclinical settings, ch122A2 induced an efficient

and fast depletion of blood pDC in humanized mice (141). A

proposed clinical application of this antibody is primarily the

treatment of patients with pDC malignancy like BPDCN or pDC-

AML; however, other hematological and solid cancers where pDC

infiltration associates with a poor prognosis may be potential

therapeutic targets.
4.2 ILT7

ILT7/LILRA4/CD85g is the only other pDC-specific IR in

humans (142–144) (Figure 3). Similarly to BDCA-2, its

expression is upregulated by IFN-a (37) and downregulated when

pDCs are activated by TLR agonists or treated with the survival

cytokine IL-3 (142), possibly as a result of reduced transcriptional

expression by activated pDCs (145).

The ILT (also known leukocyte Ig-like receptor-LILR- or

monocyte Ig-like receptor-MIR-) gene family is composed of 11

transmembrane proteins characterized by two or four extracellular

C2-type Immunoglobulin-like domains. ILTs are expressed by

various population of antigen presenting cells in humans and

primates but not in rodents (144, 146). Sequence analysis revealed

the existence of separate subgroups of ILTs: one characterised by a

long intracellular tail bearing immunoreceptor tyrosine-based

inhibitory motifs (ITIMs), one devoid of any transmembrane

domain, and one with short cytoplasmic tails without ITIMs but

characterized by the presence of a charged residue in the

transmembrane domain, which allows the association with

signalling adapter molecules that possess ITAMs.

ILT7, characterized by four extracellular immunoglobulin

domains, belongs to the latter subgroup, displaying a positively

charged arginine residue at position 449 within the predicted

transmembrane segment, through which it associates with FcϵRIg,
the same ITAM-bearing adapter used by BDCA-2 (142). Similar to

BDCA-2, both Src family kinases and Syk are rapidly

phosphorylated after ILT7 crosslinking in human primary pDCs

indicating the onset of ITAM signaling together with prominent

intracellular calcium mobilization (142) (Figure 4, right panel).

In the search for ligands, ILT7 reporter cells were found to be

activated in the presence of human breast carcinoma cells and

melanoma cell lines but not by common laboratory mammalian cell

lines (143). Bone marrow stromal cell antigen 2 (BST2; CD317) was

identified as the ILT7 ligand capable of inducing changes similar to

those observed upon cross-linking by anti-ILT7 antibodies (143).

When ILT7 was cross-linked by either anti–ILT7 antibodies or

recombinant BST2 protein, pDCs stimulated by the TLR9 ligand

CpG oligonucleotide and TLR7 ligand influenza virus produced less

IFN-a and TNF-a. By contrast, the expression of the costimulatory

molecules CD80 and CD86 was not affected (142, 143). Given that

BST2 is robustly induced by IFNs and inflammatory cytokines, its

interaction with ILT7 was identified as a negative feedback

mechanism to prevent prolonged IFN production after viral
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infection (147). In accordance with original experiments showing

constitutive expression of BST2 by cancer cells (143), more recent

observations confirmed BST2 overexpression in myelomas, lung

cancer, breast cancer, colorectal cancer, and pancreatic cancer

(148), which could represent a strong predictor of tumor size,

aggressiveness, and poor patient survival (149, 150). In vitro,

BST2 expression by human breast cancer and melanoma cell lines

could suppress the production of type I IFNs via ILT7 (143). Of

interest, ILT7 was recently found to be modulated in tumor-

infiltrating pDC of melanoma patients (151). These pieces of

evidence strongly suggest that the interaction of BST2 with ILT7

may contribute to tumor immune suppression and pDC–tumor

crosstalk (144).
4.3 Non pDC-specific IRs

Human pDCs express several other membrane receptors

conveying inhibitory signals that, unlike BDCA-2 and ILT7, are

also expressed by other immune or non-immune cells.

Two of these receptors, NKp44 and DCIR, are CLRs (group V

and II, respectively) like BCDA-2, but both express intracellular

ITIMs (Figure 3), which are normally involved in the inhibition of

kinase-mediated signals by recruiting tyrosine phosphatases like Src

homology region 2 domain-containing phosphatase (SHP)-1 or -2.

The ITIM sequence of NKp44 was originally shown to be non-

functional in the attenuation of NK-like cells activation (152), thus

classifying it as a NK cell-triggering receptor. However, its ligation

by the ligand proliferating cell nuclear antigen (PCNA) was later

found to deliver ITIM-dependent inhibitory signals into NK cells

(153). Thus, in NK cells NKp44 works as a dual function receptor,

possibly depending on the streghth of its engagement as described

for many CLRs (154). PCNA overexpression is a hallmark of cancer

virulence and promotes cancer survival via several mechanisms,

including immune evasion through inhibition of NKp44-mediated

NK cell attack. Consistent with this view, downregulation of

endogenous PCNA in pancreas, prostate, breast and brain tumor

cell lines by a siRNA approach and the blockade of NKp44-PCNA

interaction in triple negative breast cancer cells by a monoclonal

antibody increased NK cytotoxicity and tumor killing (155). NKp44

is also constitutively expressed by a small subset of tonsil pDCs and

can be induced in blood pDCs by IL-3 stimulation. In pDCs, NKp44

crosslinking by a specific antibody inhibited the production of IFN-

a in response to TLR9 agonists via the association with the ITAM-

bearing adaptor protein DAP12 (156). In PCNA+ human

melanoma, infiltrating pDCs showed increased NKp44 levels,

which correlated with a low activation level, suggesting that the

interaction of NKp44 with PCNA expressed by melanoma cells

could contribute to pDC dysfunctions typically observed in

melanoma patients. In addition, melanoma patients displaying

higher frequencies of NKp44+ pDCs in their blood were more

likely to have worse clinical outcome (151). However, it was recently

demonstrated that NKp44 engagement by dimers of platelet derived

growth factor (PDGF-DD), another physiologic ligand, enhanced

the secretion of IFN-a induced by a TLR9 ligand (157) suggesting

that NKp44 possibly works as a dual function receptor also in pDCs
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and that its inhibitory role needs to be re-assessed in each specific

tumor context.

DCIR (also known as CLEC4A) is expressed on a variety of

immune cells such as cDCs, B cells and monocytes/macrophages in

addition to pDCs. Due to the presence of an intracellular ITIM

domain (Figure 3), it is generally regarded as an IR (158), although,

like other CLRs (including the above mentioned NKp44) it can

deliver activatory signals in certain cell types and conditions (154).

In human pDCs, DCIR crosslinking inhibited TLR9-induced IFN

production (53, 159). In respect with BDCA-2, pDC inhibition by

DCIR was less effective and TLR9-specific since it could not be

observed when pDCs were stimulated with TLR7 ligands (53). Very

recently, asialo-biantennary N-glycans were shown to represent a

DCIR functional ligand, capable to regulate DC functions in both

humans and mice (160). However, DCIR was previously shown to

interact with several ligands of both pathogenic and endogenous

origin (129). In pDCs, DCIR binding by HCV glycoprotein E2

inhibited the production of type I IFNs by HCV particles through a

rapid AKT and ERK1/2 phosphorylation (134). The recognition of

self-glycans by DCIR prevented autoimmunity in murine models of

rheumatoid arthritis (159). In cancers, DCIR could recognize

aberrant glycosylation in prostatic, gastric and colon cancer

human cell lines (129). In a mouse model of inflammation-

induced colorectal cancer, the administration of antibodies

blocking the interaction of DCIR with asialo-biantennary N-

glycans reduced tumor incidence by reverting the DCIR-

dependent blockade of alarmin recognition by TLRs, suggesting a

crucial role for DCIR in the maintenance of the intestinal immune

system functionality and that DCIR may represent a promising

target for the treatment of colitis and colon cancers (161).

Additionally, skin delivery of DCIR small hairpin RNA delayed

tumor growth in mouse models of bladder and lung tumor by

enhancing T cell mediated immunity and also potentiated the anti-

tumor effects of a DNA vaccine (162).

ILT2, unlike ILT7, bears four intracellular ITIM motifs

(Figure 3) and is broadly expressed on blood pDCs, monocytes, B

cells, cDCs, NK cell subsets and T cells (163). ILT2 engagement

significantly suppresses the ability of DC subsets, including pDCs,

to produce cytokines, upregulate costimulatory molecules, and

stimulate T-cell proliferation (164–166). In humans, whole blood

stimulation with TLR4 and TLR7 agonists increased membrane

expression of ILT2 in pDCs and, consistent with its

immunosuppressive role, IL-10 treatment during TLR stimulation

further increased ILT2 expression (167). ILT2 recognized

pathogens as well as endogeous ligands (165, 166), particularly

non-classical MHC class I molecules (163). Among them, HLA-G

expression has been described in several tumor types, where it

contributed to malignant progression by contrasting immune

surveillance via the interaction with ILT2 and ILT4 (168). In

accordance, anti-HLA strategies were recently proposed as novel

immune checkpoint inhibition approaches in solid cancers (169). In

chronic lymphocytic leukemia, ILT2 expression was significantly

decreased on leukemic cells and increased on NK cells, particularly

in patients with advanced disease and with poor prognostic features.

ILT2 suppressed NK cell activity, which could be restored by ILT2

blockade: in combination with the immunomodulatory drug
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lenalidomide, ILT2 blockade potentiated the elimination of

human leukemic cells (170). Disruption of ILT2 activation with

blocking monoclonal antibodies increased NK cell-mediated IFN-g
production and cytotoxicity against human glioblastoma cell lines,

partially reverting the immunosuppression linked to this

malignancy. In addition, co-treatment with temozolomide

strengthened the antitumor capacity of immune cells treated with

anti-ILT2 (171). Also, Fc-silent antibodies against ILT2 significantly

enhanced antibody-dependent phagocytosis of lymphoma cell lines

when combined with both rituximab and blockade of CD47 (172).

These findings suggest that the blocking of ILT2 may be an

interesting strategy to improve tumor immunotherapy.

Leukocyte-Associated Ig-like Receptor-1 (LAIR1) is an ITIM-

bearing immune-IR expressed by the majority of immune cells,

including T cells, B cells, NK cells, monocyte/macrophages,

neutrophils, pDCs, as well as by tumor cells (173). Crosslinking

of LAIR1 in human pDCs inhibited TLR-dependent type I IFN

production, displaying a coordinated regulatory function with

NKp44 (156, 174). Four different types of ligands are described,

including components of the complement system and collagens,

suggesting a potential immune-regulatory function of the

extracellular matrix (175, 176). In a retrospective study, LAIR1

expression was found to associate to poor prognosis in invasive

breast carcinoma (177), but also to resistance to PD1/PD-L1

inhibition in patients (178). Of interest, LAIR1 blockade by

antagonist antibodies inhibited tumor development in a

humanized mouse model by affecting, among others, the

recruitment of pro-tumorigenic pDCs (179). In addition to

blocking antibody, LAIR1-inhibitory signaling can be blocked also

by taking advantage of LAIR2, a natural agonist (180) as proposed

by a work using a dimeric LAIR2 Fc fusion protein to target

collagens in tumors and reverse immune suppression (181). The

potential of LAIR1 blockade in cancer immunotherapy is currently

emerging (179, 182). However, since LAIR1 is widely expressed also

by tumor cells, where it may induce either proliferation or

inhibition depending on the tumor type (173), its therapeutic

exploitation needs to be carefully tailored to each specific

cancer microenvironment.

T cell immunoglobulin and mucin domain-containing protein 3

(TIM3) is a member of the TIM family of immunoregulatory

proteins expressed by pDCs, T cells, regulatory T cells, NK cells,

and myeloid cells. TIM3 lacks intracellular inhibitory signaling

motifs and the precise intracellular signalling mechanism remains

poorly elucidated (183). Different mechanisms were proposed for

TIM-3-induced suppression of IFN production in pDCs activated

by nucleic acids. Chiba and colleagues highlighted the ability of

TIM3 to bind and sequester HMGB1 away from TLR, thus avoiding

the sensing of tumour-derived nucleic acids bound to HMGB1

itself. In contrast, Schwartz and colleagues suggested that TIM3

could act by recruiting IRF7 into acidic lysosomes, thus promoting

the degradation of proteins important for IFN-a production (184,

185). Tumour cells can exert immunosuppression by expressing

TIM3 ligands such as galectin-9 and CEACAM-1 (186, 187).

Increased serum levels of galectin-9 was found in cancer patients

and predicted poor response to treatment in high grade serous

ovarian carcinoma and in adult leukemia patients (188). Consistent
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with a suppressive function in the tumour microenvironment,

TIM3 was found upregulated in lung tumor-infiltrating pDCs

(167, 184). One group showed that galectin-9 could block TLR-

induced pDC activation in vitro and in a murine model also via the

engagement of CD44 (189), a widely-expressed adhesion receptor

involved in cancer metastasizing and regulation of T cell responses

(190). In human pDCs, CD44 engagement by galectin-9 impaired

mTOR-dependent TLR activation (189).

Finally, also the triggering of the CD300a/c glycoproteins by

crosslinking antibodies was shown to decrease type I IFN and TNF-

a secretion by human pDCs stimulated with TLR7 and TLR9

ligands (191). CD300 are a group of type I transmembrane

receptors belonging to the B7 family with a single IgV-like

extracellular domain containing 2 disulfide bonds (192). While

CD300a contains several ITIMS in its long intracytoplasmic

domain, CD300c associates with the ITAM-bearing adapters

DAP12 and/or FcϵRIg via a transmembrane glutamic acid residue

(192) (Figure 3). Both receptors are expressed by virtually all

leukocytes and possibly recognize lipids that are exposed on the

outer leaflet of the plasma membrane of dead and activated cell.

CD300 receptors are also highly expressed by human cancer cells,

especially in acute myeloid leukemia (193). To date, their

therapeutic potential in cancer immunotherapy remains to

be elucidated.
5 Therapeutic strategies to restore the
antitumor potential of pDCs

Although being a minor population both in the circulation and

in the tumor microenvironment, evidence described in Section 3

indicates pDCs as interest ing targets for anticancer

immunotherapy. Several therapeutic protocols have been

developed to this end, mostly aiming at reverting the distinctive

feature of immunosuppressive TA-pDCs, i.e. the impaired secretion

of type I IFNs.
5.1 TLR stimulation

The most used approach to stimulate pDC production of type I

IFNs is TLR7 and TLR9 stimulation, either individually or in

combination (194). Indeed, TLR9 engagement by intralesional

administration of CpG ODN nanorings gave promising results in

a thymoma mouse model, where the increased production of IFN-a
by pDCs associated to reduced tumor size and volume (195, 196). In

a melanoma mouse model, CpG-activated pDCs were indispensable

to induce CD8+ T cell antitumor response through cDC activation

(197, 198). Single-stranded RNAs delivered by the positively

charged protein protamine promoted T cell proliferation,

demonstrating that protamine–RNA complexes can be used to

s t imu l a t e h uman DC sub s e t s e x v i v o f o r f u t u r e

immunotherapeutic settings (199). The potent synthetic TLR7

agonist imiquimod, approved for the treatment of basal cell

carcinoma (200), was shown to increase the infiltration of

activated pDCs into melanoma lesions and its combination with
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in late-stage melanoma patients (201). Vidutolimod (202), a virus

like particle containing a TLR9 agonist known as G10, enhanced

IFN-a production by pDCs showing high therapeutic efficacy when

administered alone or in combination with an anti-PD-1 therapy in

patients with melanoma (203, 204). The combined stimulation with

TLR agonists and FLT3L, a growth factor of both cDCs and pDCs,

enhanced cDC antigen presentation and T cell immunity in mouse

models of melanoma (205) and glioma (206). In line with these

observations, the combined administration of imiquimod, FLT3L

and a peptide-based vaccine not only increased the number of

peptide-specific CD8+ T cells but also prompted the mobilization of

cDCs and pDCs in melanoma patients (207). However, selective

delivery of TLR7/9 agonists to pDCs in vivo still needs improving.
5.2 IR targeting

IR blockade may represent an alternative pDC-boosting

strategy, especially in tumors characterized by high levels of

inhibitory ligands or when TLRs are desensitized by continuous

stimulation with exogenous or endogenous ligands.

Many cancer types express de novo, or overexpress, IR ligands

which often represent a strong predictor of poor outcome and

metastasis, as observed for BST2 (148), PCNA (208), HLA-G (168),

galectin-9 (186), CEACAM-1 (186, 187) and modifications of cell

surface carbohydrates capable to trigger CLRs (128–130). It is

conceivable that these ligands abundantly expressed in cancers

contribute to pDC exhaustion by engaging IRs. Indeed, ligand-

expressing tumor cells were found to block pDC activation by

engaging BDCA-2 (121), ILT7 (143), TIM3 (167, 184) or CD44

(189). In this setting, therapeutic strategies preventing receptor

engagement or signaling would revert TA-pDC blockade (Figure 1).

Among such strategies, blocking antibodies were developed against

LAIR1 (179), DCIR (161), ILT2 (170, 171), NKp44 (155) and TIM3

(2) (Figure 5A). As alternative strategies, LAIR1 inhibition was also

achieved via an Fc fusion protein of LAIR2, a natural agonist

capable of sequestering the ligands (181) (Figure 5A), while DCIR

expression was decreased by skin delivery of specific small hairpin

RNA (162) (Figure 5A). As a matter of facts, TIM3 and, to some

extent, ILT2 are already promising emerging targets for checkpoint

blockade (2). Also, DCIR blockade was recently shown to reduce the

incidence of experimental inflammation-induced colon carcinoma

(161) and the potential of LAIR1 blockade in cancer

immunotherapy is rapidly emerging (179, 182). However, these

IRs are expressed by different immune and tumor cells and in most

studies the neat contribution of pDC rescue in the elicited

antitumor response is difficult to deduce or not addressed at all.

Unfortunately, blocking antibodies for pDC-specific IRs, namely

BDCA-2 and ILT7, are currently unavailable. However, BDCA-2

signaling could be blocked in vitro by saturating ligand-expressing

cells with a tetramer encoding the BDCA-2 CRD or by treating

them with b-(1–4)-galactosidase which removes terminal galactose

that are crucial for BDCA-2 triggering (121, 128–130). In addition,

an anti-BDCA-2 monovalent Fab was unable to activate BDCA-2

and to inhibit type I IFN production (137) suggesting that low
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avidity, monovalent antibodies could be exploited as therapeutic

strategy to block BDCA-2 activation in tumors. Finally, a BDCA-2-

binding antibody engineered to favor the activation of cytotoxicity

efficiently depleted blood pDCs in humanized mice (141), possibly

representing a primary tool for the treatment of pDC malignancies

but also of other cancers where the presence of pDCs associates with

a poor prognosis (Figure 5B).
6 Conclusions and future directions

This review summarizes the current knowledge on the

pathophysiology of IRs expressed by pDCs, with a particular

emphasis on their hijacking in cancer contexts, where pDC

functions are generally reduced or abrogated. This evidence

provides a proof of concept that the regulation of IFN secretion

by pDCs may be regarded as an “innate checkpoint” which, similar

to the “classical” adaptive immune checkpoint PD1 expressed in

CD8+ T cells, restrains autoimmunity and immunopathology but

may favor chronic infections and tumors. Accordingly, IRs may

represent potential targets for innate and adaptive combined cancer

immunotherapy to unleash T-cell–mediated tumor killing.

To date, however, the therapeutical exploitation of IR blockade

to revert pDC exhaustion is hampered by several unanswered

questions. First, the biology of pDCs in tumors is incompletely

understood. For example, in the context of hepatic ischemia-

reperfusion injury following surgical removal of hepatocellular

carcinoma, tolerogenic pDCs associated to a better prognosis

since type I IFNs crucially contributed to early tumor recurrence

(209). Furthermore, OX40+ pDCs were found indispensable to
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response in a mouse model of squamous carcinoma, which growth

accelerated upon pDC depletion (210). pDC exhaustion may also be

tumor- and even stage-specific, as recently shown in colon cancer

where the presence of activated pDCs, as assessed by nuclear

localization of IRF7, associated with increased patient survival

(211). Type I IFNs themselves do play a dual role in cancer

immunity, being protective in the early phases, while increasing

the expression of PD1 and PD-L1 upon prolonged exposures (212).

Thus, timing and duration of pDC activation may represent critical

parameters in antitumor immune responses, requiring to be

thoroughly understood and tightly regulated depending on the

specific tumor context (69, 70). Also tumor-specific mechanisms

of pDC suppression are incompletely known, not only in terms of

IR ligand expression, but also concerning the distribution of IRs on

pDC subsets and the possibility of their simultaneous engagement:

in vitro, the engagement of one single IR is sufficient to block pDC

activation, but no studies so far addressed the result of multiple

engagement nor any possible hierarchical relationship among IRs.

Finally, the expression patterns of “classical” immune checkpoint

receptors (and ligands) on pDC subsets, poorly known to date,

could affect the results of combined checkpoint inhibitor therapies.

We also mentioned that the avidity of IR engagement may

influence to the final response of pDC (213). This is particularly

relevant when IR inhibitory role is assessed by using crosslinking

antibodies, that generally bind with high avidity, for example in the

lack of specific ligands, but may hold true also for natural ligand

endowed with different affinity. In the case of NKp44, PCNA

overexpression by tumors sustained immune evasion through

NKp44-mediated inhibition of both NK cells and pDCs (151), in
A B

FIGURE 5

Strategies of IR targeting. (A) LAIR1 can be blocked to rescue type I IFN production by specific blocking antibodies or by a dimeric LAIR2 Fc fusion
protein that sequesters ligands to membrane LAIR1. Blocking antibody were also developed against DCIR, ILT2, NKp44 and TIM3. (B) anti-BDCA-2
antibodies manipulated to increase their affinity for CD16 induce apoptotic cell death of neoplastic but also, possibly, TA- pDCs by NK cell activation.
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accordance with the inhibitory role described by using crosslinking

antibodies (155). In striking contrast, NKp44 engagement by

PDGF-DD increased the production of type I IFNs by human

pDCs activated with a TLR9 agonist (but, notably, not with a TLR7

agonist) (157). Thus, the role of IRs may differ in specific

cancer context as well as their potential as therapeutic targets.

However, such IR feature may also be exploited for the design of

therapeutic tools, as demonstrated by the different activity of

monovalent Fab fragment or cross-linking bivalent anti-BDCA-2

antibodies (137)

Last but not least, despite some IRs such as TIM3 and ILT2 are

recognized targets for checkpoint blockade (2), they are widely

expressed on immune and even tumor cells and the neat

contribution of pDC exhaustion in tumor growth and the actual

therapeutic significance of pDC rescue via IR blockade remains

difficult to assess. By contrast, the anticancer potential of BDCA-2

and ILT7 blockade received little attention so far, partly depending

on the lack of specific reagents. These IRs definitely deserve

attention as targets in pathological conditions where pDC-specific

modulation is required or pDC depletion can be advantageous.

In conclusion, despite encouraging evidence, more work is

required to fully unravel the effects of IR engagement on pDC

functions in specific tumor microenvironments and to uncover the

beneficial role of therapeutic blockade of pDC-specific IRs in future

immunotherapeutic strategies.
Author contributions

LT: Conceptualization, Writing – original draft. ML: Writing –

original draft. GZ: Visualization, Writing – original draft. VS:

Writing – review & editing. TS: Writing – review & editing. SS:

Conceptualization, Funding acquisition, Supervision, Writing –

review & editing. ADP: Conceptualization, Supervision, Writing –

review & editing. DB: Conceptualization, Funding acquisition,

Supervision, Writing – review & editing.
Frontiers in Immunology 11
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Italian Association for Cancer Research

(AIRC IG-2017/20776 to SS) and Ministero dell’Istruzione,

dell’Università e della Ricerca (MIUR, PRIN Prot. 2017/7J4E75 to

SS, 2017/8ALPCM_005 to DB). ML was the recipient of a fellowship

from AIRC (code 25307).
Acknowledgments

Figures in the article were drawn using BioRender.com

(accessed on 14 February 2024).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.

The reviewer VL declared a shared affiliation with the authors

ML, GZ and SS to the handling editor at the time of review.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, et al. CD47
blockade by Hu5F9-G4 and rituximab in non-hodgkin's lymphoma. N Engl J Med.
(2018) 379:1711–21. doi: 10.1056/NEJMoa1807315

2. Dutta S, Ganguly A, Chatterjee K, Spada S, Mukherjee S. Targets of immune
escape mechanisms in cancer: basis for development and evolution of cancer immune
checkpoint inhibitors. Biol (Basel). (2023) 12:218. doi: 10.3390/biology12020218

3. Stanczak MA, Läubli H. Siglec receptors as new immune checkpoints in cancer.
Mol Aspects Med. (2023) 90:101112. doi: 10.1016/j.mam.2022.101112

4. Lentz RW, Colton MD, Mitra SS, Messersmith WA. Innate immune checkpoint
inhibitors: the next breakthrough in medical oncology? Mol Cancer Ther. (2021)
20:961–74. doi: 10.1158/1535-7163.MCT-21-0041

5. Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, et al.
Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons.
Cell Commun Signal. (2022) 20:44. doi: 10.1186/s12964-022-00854-y

6. Mantovani A, Longo DL. Macrophage checkpoint blockade in cancer - back to the
future. N Engl J Med. (2018) 379:1777–9. doi: 10.1056/NEJMe1811699

7. Musella M, Manic G, De Maria R, Vitale I, Sistigu A. Type-I-interferons in
infection and cancer: Unanticipated dynamics with therapeutic implications.
Oncoimmunology. (2017) 6:e1314424. doi: 10.1080/2162402X.2017.1314424
8. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, et al.
Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts
of type I interferon. Nat Med. (1999) 5:919–23. doi: 10.1038/11360

9. Ishikawa F, Niiro H, Iino T, Yoshida S, Saito N, Onohara S, et al. The
developmental program of human dendritic cells is operated independently of
conventional myeloid and lymphoid pathways. Blood. (2007) 110:3591–660.
doi: 10.1182/blood-2007-02-071613

10. Reizis B, Idoyaga J, Dalod M, Barrat F, Naik S, Trinchieri G, et al. Reclassification
of plasmacytoid dendritic cells as innate lymphocytes is premature. Nat Rev Immunol.
(2023) 23:336–7. doi: 10.1038/s41577-023-00864-y

11. Ziegler-Heitbrock L, Ohteki T, Ginhoux F, Shortman K, Spits H. Reclassifying
plasmacytoid dendritic cells as innate lymphocytes. Nat Rev Immunol. (2023) 23:1–2.
doi: 10.1038/s41577-022-00806-0

12. Cisse B, Caton ML, Lehner M, Maeda T, Scheu S, Locksley R, et al. Transcription
factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell
development. Cell. (2008) 135:37–48. doi: 10.1016/j.cell.2008.09.016

13. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J,
et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med.
(2011) 365:127–38. doi: 10.1056/NEJMoa1100066
frontiersin.org

https://www.biorender.com/
https://doi.org/10.1056/NEJMoa1807315
https://doi.org/10.3390/biology12020218
https://doi.org/10.1016/j.mam.2022.101112
https://doi.org/10.1158/1535-7163.MCT-21-0041
https://doi.org/10.1186/s12964-022-00854-y
https://doi.org/10.1056/NEJMe1811699
https://doi.org/10.1080/2162402X.2017.1314424
https://doi.org/10.1038/11360
https://doi.org/10.1182/blood-2007-02-071613
https://doi.org/10.1038/s41577-023-00864-y
https://doi.org/10.1038/s41577-022-00806-0
https://doi.org/10.1016/j.cell.2008.09.016
https://doi.org/10.1056/NEJMoa1100066
https://doi.org/10.3389/fimmu.2024.1360291
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tiberio et al. 10.3389/fimmu.2024.1360291
14. Cytlak U, Resteu A, Bogaert D, Kuehn HS, Altmann T, Gennery A, et al. Ikaros
family zinc finger 1 regulates dendritic cell development and function in humans. Nat
Commun. (2018) 9:1239. doi: 10.1038/s41467-018-02977-8

15. Musumeci A, Lutz K, Winheim E, Krug AB.What makes a pDC: recent advances
in understanding plasmacytoid DC development and heterogeneity. Front Immunol.
(2019) 10:1222. doi: 10.3389/fimmu.2019.01222

16. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ. The
enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and
CD40-ligand. J Exp Med. (1997) 185:1101–11. doi: 10.1084/jem.185.6.1101

17. Kennedy AJ, Davenport AP. International union of basic and clinical
pharmacology CIII: chemerin receptors CMKLR1 (Chemerin. Pharmacol Rev. (2018)
70:174–96. doi: 10.1124/pr.116.013177

18. Sozzani S, Vermi W, Del Prete A, Facchetti F. Trafficking properties of
plasmacytoid dendritic cells in health and disease. Trends Immunol. (2010) 31:270–7.
doi: 10.1016/j.it.2010.05.004

19. Cella M, Facchetti F, Lanzavecchia A, Colonna M. Plasmacytoid dendritic cells
activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol.
(2000) 1:305–10. doi: 10.1038/79747

20. Penna G, Sozzani S, Adorini L. Cutting edge: selective usage of chemokine
receptors by plasmacytoid dendritic cells. J Immunol. (2001) 167:1862–6. doi: 10.4049/
jimmunol.167.4.1862

21. Koda Y, Nakamoto N, Chu PS, Teratani T, Ueno A, Amiya T, et al. CCR9 axis
inhibition enhances hepatic migration of plasmacytoid DCs and protects against liver
injury. JCI Insight. (2022) 7:e159910. doi: 10.1172/jci.insight.159910

22. Albanesi C, Scarponi C, Bosisio D, Sozzani S, Girolomoni G. Immune functions
and recruitment of plasmacytoid dendritic cells in psoriasis. Autoimmunity. (2010)
43:215–9. doi: 10.3109/08916930903510906

23. Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine
and chemotactic signals in dendritic cell migration. Cell Mol Immunol. (2018) 15:346–
52. doi: 10.1038/s41423-018-0005-3

24. Schnurr M, Toy T, Shin A, Hartmann G, Rothenfusser S, Soellner J, et al. Role of
adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid
dendritic cells. Blood. (2004) 103:1391–7. doi: 10.1182/blood-2003-06-1959

25. Gutzmer R, Köther B, Zwirner J, Dijkstra D, Purwar R, Wittmann M, et al.
Human plasmacytoid dendritic cells express receptors for anaphylatoxins C3a and C5a
and are chemoattracted to C3a and C5a. J Invest Dermatol. (2006) 126:2422–9.
doi: 10.1038/sj.jid.5700416

26. Devosse T, Guillabert A, D'Haene N, Berton A, De Nadai P, Noel S, et al. Formyl
peptide receptor-like 2 is expressed and functional in plasmacytoid dendritic cells,
tissue-specific macrophage subpopulations, and eosinophils. J Immunol. (2009)
182:4974–84. doi: 10.4049/jimmunol.0803128

27. Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat
Immunol. (2004) 5:1219–26. doi: 10.1038/ni1141

28. Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid
dendritic cell precursors. Annu Rev Immunol. (2005) 23:275–306. doi: 10.1146/
annurev.immunol.23.021704.115633

29. Ito T, Kanzler H, Duramad O, Cao W, Liu YJ. Specialization, kinetics, and
repertoire of type 1 interferon responses by human plasmacytoid predendritic cells.
Blood. (2006) 107:2423–31. doi: 10.1182/blood-2005-07-2709

30. Hoeffel G, Ripoche AC, Matheoud D, Nascimbeni M, Escriou N, Lebon P, et al.
Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity. (2007)
27:481–92. doi: 10.1016/j.immuni.2007.07.021

31. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells.
Nat Rev Immunol. (2015) 15:471–85. doi: 10.1038/nri3865

32. Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, Glaser C, et al. CD2
distinguishes two subsets of human plasmacytoid dendritic cells with distinct
phenotype and functions. J Immunol. (2009) 182:6815–23. doi: 10.4049/
jimmunol.0802008

33. Bryant C, Fromm PD, Kupresanin F, Clark G, Lee K, Clarke C, et al. A CD2 high-
expressing stress-resistant human plasmacytoid dendritic-cell subset. Immunol Cell
Biol. (2016) 94:447–57. doi: 10.1038/icb.2015.116

34. Zhang H, Gregorio JD, Iwahori T, Zhang X, Choi O, Tolentino LL, et al. A
distinct subset of plasmacytoid dendritic cells induces activation and differentiation of
B and T lymphocytes. Proc Natl Acad Sci USA. (2017) 114:1988–93. doi: 10.1073/
pnas.1610630114
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