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Abstract
We initiate the process of developing a comprehensive low energy demand (LED) innovation
narrative by applying the framework ‘Functions of Innovation Systems’ (FIS) and identifying the
key conditions under which technology interventions can be improved and scaled up over the next
three decades to contribute to climate change mitigation. Several studies have argued that the
potential for LED-focused mitigation is much larger than previously portrayed and have shown
that adopting a wide variety of energy-reducing activities would achieve emissions reductions
compatible with a 1.5 C temperature target. Yet, how realistic achieving such a scenario might be or
what processes would need to be in place to create a pathway to a LED outcome in mid-century,
remain overlooked. This study contributes to understanding LED’s mitigation potential by
outlining narratives of LED innovation in three end-use sectors: industry, transport, and buildings.
Our analysis relies on the FIS approach to assess three innovations in these sectors. A key insight is
that the distinct characteristics of LED technology make enabling social innovations crucial for
their widespread adoption. Finally, we identify a set of eight social enablers required for unlocking
LED pathways.

1. Introduction

The low energy demand (LED) scenarios (Grubler
et al 2018) quantitatively showed that LED technolo-
gies and behaviors could reduce emissions over the
next 30 years compatible with a 1.5 C target. They
used detailed estimates of how low energy use could
become across the whole economy and then used
integrated assessment modeling (IAMs) to evaluate
mid-century impacts on greenhouse gas emissions
and other social indicators. It built on earlier efforts
going back to the 1970s, for example Soft Energy
Paths (Lovins 1976), as well as the International
Energy Agency’s longstanding work on energy effi-
ciency (IEA 2022), but is distinct because of its low
temperature target. The LED results are important
because they showed that the scope of emissions sav-
ings through lower energy use is vast, to the extent

that they enabled the Paris Agreement targets to be
achieved without relying on technological carbon
removal. These insights arose from the authors’ dis-
tinct focus on energy services and whence energy
demand arises–particularly in the context of increas-
ing access to energy services in developing countries.

The original LED paper had a substantial impact
on the climate community. For example, its insights
were prevalent in the IPCC AR6 chapter on energy
demand (Creutzig et al 2022b). However, one prom-
inent critique is that while the paper calculated care-
ful estimates of energy savings, it did not make claims
about how realistic achieving those savings might
be (Keyßer and Lenzen 2021). While (Grubler et al
2018) compared energy use in today’s world to that
in the LED future through IAMs scenario runs, it did
not explicitly characterize how behavioral and social
dynamics would enable the transition to a low-energy
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world (Cordroch et al 2022). For example, it provided
only an overarching view of how digital technolo-
gies may impact energy demand from industry and
adopted a quite specific focus on energy savings due
to the increasing role of services in meeting con-
sumer choices. This set of mechanisms is particu-
larly important given the LED scenario’s emphasis
on energy end-use, the role of consumers, and espe-
cially how they interact with each other. The extent to
which LED approaches are taken seriously as credible
complements to other mitigation efforts depends on
understanding whether a LED world can be realistic-
ally attained over the next three decades; this in turn
depends on a better characterization of the mech-
anisms for a transition to an LED world, which we
describe here as LED innovation.

In this paper, we initiate the process of building
a comprehensive narrative on LED innovation that
describes how LED technologies can improve and
be scaled up to become widely adopted. Following
(Nemet and Greene 2022), LED innovations are
defined as ‘any effort to improve the level and struc-
ture of energy demand’, ‘including LED technologies
and LED services.’ This broad definition allows us
to depart from a purely technological focus towards
the inclusion of human behavior and business mod-
els. We rely on the ‘Functions of Innovation Systems’
(FIS) framework (Bergek et al 2008) to identify
innovation dynamics and adoption timelines con-
sistent with overall LED scenarios. This allows us
to identify conditions and key enablers for the suc-
cessful development and deployment of LED innova-
tion in the context of five key drivers of change that
condition innovation in LED (Grubler et al 2018):
higher living standards, urbanization, digitalization,
novel services, and prosumers. This paper thus rep-
resents a first step towards the generation of nar-
ratives characterized by a comparative systemic per-
spective through both quantitative indicators and
qualitative descriptors to appropriately capture the
many ways LED futures could unfold, given the dis-
tinct characteristics of LED innovations (Nemet and
Greene 2022).

2. Methodology and scope

2.1. Analytical approach
Following Grubler et al (2018), we focus on three
key high-level sectors—buildings, transport, and
industry—because they provide a useful taxonomy
congruent with the structure of IAMs. Essential
improvements in terms of LED and decarboniza-
tion also arise when these sectors are coupled, such
as vehicle-to-grid applications (Noel et al 2021). In
addition, general purpose technologies with pervas-
ive effects across sectors also play a key role, e.g. digit-
alization (Wilson et al 2020b, Creutzig et al 2022a).

Our comparative case study analysis of innova-
tions relevant in the context of a LED5 follows the
approach of (Hekkert et al 2007), which identifies
seven key FISs: knowledge development, knowledge
diffusion, the guidance of search, resource mobil-
ization, entrepreneurial activities, market formation
and creation of legitimacy. We conceptualize how
the development from nascent adoption to wide-
spread diffusion of three innovations—which dif-
fer in innovation stage and maturity—may support
the achievement of LED with a specific focus on
the relevance of the different functions, and the role
that key actors will play in LED scenarios in vari-
ous sectors. While other innovations are also relev-
ant in the context of LED, the three examples we
discuss here are both relevant for their impact on
energy demand, and widely discussed in both aca-
demic and business circles. A main insight from this
comparative approach is that successful LED innov-
ations involve substantial contributions from, and
interactions among, technological, social, and busi-
ness model innovation. This ultimately leads us to
identify and discuss key enablers and conditions for
further development and widespread uptake relevant
for modelling LED pathways.

2.2. Distinct characteristics of LED innovations
A set of characteristics makes LED innovations dis-
tinct from many other types of innovation (Nemet
and Greene 2022). In our context, these can be sum-
marized as follows:

1. LED innovations favor a movement from a tradi-
tional economy based on goods towards the pro-
vision of Services.However,more efficient service
provision can stimulate more utilization through
short-term and longer rebound effects. Yet, typic-
ally, rebound takes back only some of the energy
savings but not all (Gillingham et al 2016).

2. In contrast to supply-side approaches, LED adop-
tion involves the successful and widespread
application across billions of heterogeneous
Adopters with diverse preferences for services
(Niamir et al 2020b, Nemet and Greene 2022).
Individual energy-related decisions, adopting new
technology or services, are influenced by peer
effects, norms and values (Devine-Wright 2011,

5 LED innovations encompass all endeavors aimed to improve the
level and structure of energy demand, including advancements in
LED technologies and associated LED services. This broad defini-
tion expands the system boundaries of our analysis: from a purely
technological focus towards the inclusion of human behavior and
business models; from a pure focus on energy to consideration of
material use impacts; and from a mere focus on monetary indicat-
ors (e.g. GDP) towards inclusive well-being. Our working assump-
tion is that successful LED innovations are likely to involve sub-
stantial contributions from, and interactions among, technological
innovation, social innovation, and business model innovation.
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Table 1. Summary characteristics of the case studies.

Case study Additive manufacturing (AM) Sharing mobility (SM) Solar prosumers (SP)

Sector Industry Transport Buildings

Innovation focus Technical, business model Infrastructural, technical,
business model,
regulation

Technical, infrastructural,
business model,
regulation

Innovation stagea Market adoption and scale-up
in niche markets for
specialized applications.
Fundamental science and
technology exploration to
prototyping for other
applications.

From prototype to market
adoption and scale-up,
depends on the mobility
mode and geographical
context (e.g. urban/rural,
developing/developed
countries)

Technology mature.
Consumer adoption
nascent.

Distinct characteristics Services: change from
traditional production to
made-on-demand,
customized products.
Adopters: firms
Technology: 3D printing

Services: sharing mobility
infrastructure and
business (e.g., GoGet,
Lime micro-mobility)
Adopters: citizens
Technology: the mobile
applications

Services: renewable
electricity

Adopters: citizens
Technology: solar PVs,
batteries, electric grid

Key demand reduction AM reduces material and
energy demand in prototyping
and customized applications.
Potential reduction in energy
demand varies by sector,
ranging from 4 to 27%.

Studies show sharing
mobility can reduce GHG
emissions by up to 50%
by 2050

Production close to
consumers and without
combustion reduces
wasted energy. Prosumers,
who both produce and
consume energy, may be
more energy conscious
also.

Existing and potential
public policy instruments

Public support for R&I. AM
included in industrial
strategies. Yet, specific
policies, including standards,
are missing

Pricing /taxation schemes
Subsidies on shared
mobility Nudges and
social movements

Subsidies. But many
regulations hinder
adoption

Concerns Rebound effects,
over-consumerism resulting
from customization

Cyber security Finance in
LMI countries

Financing in LMI
countries, grid integration

a Innovation stage: research (fundamental science and technology exploration), Prototype, Demonstration, Early adoption, Market

adoption and scale-up (Gallagher et al 2006).

Hicks and Ison 2018, Niamir et al 2020c, Creutzig
et al 2022b).

3. LED Technologies are typically small in unit size
and thus characterized by (a) strong potential for
cost reductions and customization through iter-
ative modification and adaptation, (Sweerts et al
2020, Wilson et al 2020a) and (b) amenable to
new business models in the circular economy.
Importantly, general purpose technologies such as
digitalization can pervasively enhance LED ser-
vices (Wilson et al 2020b).

2.3. Case study selection
Among the many possible cases, we selected one for
each sector, which has potential to contribute to LED.

Table 1 provides an overview of the main charac-
teristics of the three case studies: additive manufac-
turing (AM), which has the potential to revolution-
ize the production of goods within the industrial
sector; sharing mobility (SM) as a cutting-edge ser-
vice within the transportation sector; and household
energy users producing electricity with rooftop solar
to become solar prosumers (SP) in the realm of build-
ing infrastructure. These cases exhibit distinct charac-
teristics, including the nature of the services, adopters,
and technologies. They also represent varying stages
of innovation, while all three hold significant prom-
ise for reducing energy demand. Another vital factor
guiding our selection process was the need to illus-
trate the diverse roles of enabling conditions in exped-
iting adoption by end-users.
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3. Three LED innovation case studies

For each of the three case studies, we summarize the
context within which the innovation is emerging, its
potential demand reduction, and the health of its
innovation system functions. For more on the case
study FIS analysis, please see SI1-3.

3.1. Case 1. AM
AM, or 3D printing, is a productionmethod based on
a process of joining materials to make objects from
3D model data, usually layer upon layer (Aboulkhair
et al 2019). Plastics, nylon, metals, and ceramics
can be used. Initially developed for rapid prototyp-
ing, AM could have great potential for larger-scale
(rapid) manufacturing and, consequently, industrial
energy demand reductions and associated emissions
(see tables 1 and SI.1). Its biggest advantages are: (1)
the manufacture of geometrically complex structures
in a single-step process (Reis 2013); (2) major cost
advantages in sectorswhere products need to be adap-
ted to customers’ needs (Aboulkhair et al 2019).

1. Knowledge development: maturity of AM var-
ies greatly by sectors; in no sector is it applied
for large-scale manufacturing (AMFG 2019).
Universities are a main source of codified know-
ledge, but patenting is dominated by the private
sector (Peña et al 2014). Innovation in new
materials and methods for AM is progressing
(Ngo et al 2018).

2. Knowledge diffusion: collaboration among differ-
ent actors required for large-scale application of
AM (Lavoie and Addis 2018). Ngo et al (2018).

3. Guidance of search: many governments consider
AM a technology of interest for industrial policy,
but their strategies differ significantly, ranging
from targeted public R&D funding (Peña et al
2014, McKinsey 2017, Samford et al 2017) to
fostering synergies with existing local indus-
trial strengths (Peña et al 2014, McKinsey 2017,
Samford et al 2017).

4. Resource mobilization: early-stage financing for
AM innovation and funds for further develop-
ment came both from private and public sources.
(Peña et al 2014), including the automotive and
aerospace, military, cement, and metal sectors
(Vora and Sanyal 2020).

5. Entrepreneurial activities: private firms, mostly
located in the US, were active in early tech-
nology development. Multiple major material
manufacturers and key universities are engaging
with AM technologies, establishing partnerships
(McKinsey 2017).

6. Market formation: in 2017 the market for AM
products and services was over $7 billion.
(Thompson et al 2016). Yet, the penetration of
AM technologies is estimated at only 8%, indic-
ating untapped potential (Vora and Sanyal 2020).

However, unit costs do not exhibit economies
of scale, indicating limits to large-scale diffusion
(Sculpteo 2014, Baumers et al 2017, Steenhuis and
Pretorius 2017).

7. Creation of legitimacy: governments and the edu-
cation sector generate legitimacy for AM techno-
logies (e.g. inclusion of AM-relevant and specific
training as part of undergraduate and graduate
curricula) (Reis 2013). Yet, large-scale adoption
of AM is inhibited by technical hurdles and lack
of universal guidelines for metrology, inspection,
and standardization, leading to concerns about IP
protection and vulnerability to cyberattacks.

3.2. Case 2. Shared mobility (SM)
SM, characterized by asset sharing (e.g. a bicycle, e-
scooter, vehicle) and facilitated by information tech-
nology (e.g. apps and the internet), holds promise
for emission reduction and climate change mitiga-
tion (Creutzig et al 2022b). Four business models
have been identified (Santos et al 2018): peer-to-
peer platform (Ballús-Armet et al 2014); short-term
rental managed and owned by a provider (Enoch
and Taylor 2006, Bardhi and Eckhardt 2012, Schaefers
et al 2016); Uber-like service (Wallsten 2015); and
shared ride where private vehicles shared by passen-
gers to a common destination (Liyanage et al 2019,
Shaheen and Cohen 2019). Studies show that SM,
mainly shared automated electric vehicles, cuts GHG
emissions by one-third and 63%–82% per mile com-
pared to a privately owned hybrid vehicle in 2030,
87%–94% lower than a privately owned, gasoline-
powered vehicle in 2014 (Greenblatt and Saxena
2015). Berlin and Lisbon studies demonstrate that
SM could reduce the number of cars by more than
90%, also saving valuable street space for human-
scale activity (Bischoff and Maciejewski 2016, ITF
2016, Martinez and Viegas 2017, Creutzig et al 2019).
The impacts dependon sharing levels—concurrent or
sequential—and the future modal split among public
transit, automated electric vehicle fleets, and shared
or pooled rides.

1. Knowledge development. SM-related services and
technology have reached the developed stage
(PBOT 2011, van der Zee 2016). However,
improvement in service design and deeper integ-
ration of digitalization is needed (Creutzig et al
2019).

2. Knowledge diffusion. As users and shared mobility
providers/business models interact, a reciprocal
flow of insights occurs, shaping the design, func-
tionality, and future iterations of shared mobil-
ity solutions (Ruhrort 2020). This iterative learn-
ing process, often referred to as ‘learning by
using,’ nurtures innovation by incorporating dir-
ect user feedback into the R&D cycle (Hekkert
et al 2007). Consequently, the network’s role tran-
scends traditional knowledge exchange to become

4



Environ. Res. Lett. 19 (2024) 024033 L Niamir et al

a conduit for collaborative innovation, where the
user’s experience not only informs but actively
shapes the direction of shared mobility evolution
(Coretti Sanchez et al 2022, Li 2023).

3. Guidance of search. Private car ownership, fuel,
and parking space taxation; shared mobility
choice architecture and subsidies, and saving
citizens useful time, particularly in big cities,
raised awareness and motivated individuals to
take up these LED services (Weschke et al 2022,
Roca-Puigròs et al 2023). Using these strategies,
service providers and inventors can customize
their efforts to not only meet current needs but
also predict and serve changing preferences and
services. This promotes a more adaptable and
customer-focused approach to developing shared
mobility.

4. Resource mobilization. Both governments and the
private sector (businesses) are investing in design-
ing shared mobility infrastructure and services in
various ways worldwide (Heinitz 2022).

5. Entrepreneurial activities. SM has become wide-
spread globally as an innovative service busi-
ness model (Ma et al 2018, Casprini et al 2019,
Chaudhuri et al 2022). Many small, medium, and
big businesses actively invest in designing and
providing services (Ma et al 2018, Gilibert and
Ribas 2019, Turoń 2022).

6. Market formation. Markets are currently at the
stage of scaling up, improving, and designing new
services and also over space (Casprini et al 2019,
Mouratidis 2022).

7. Creation of legitimacy. SM is already being adop-
ted by individuals; however, social and data secur-
ity improvement is key to more widespread adop-
tion (Affia and Matulevičius 2022). Despite the
vast potential for new business opportunities,
authorities grapple with the challenge of effect-
ively regulating and structuring SM and its asso-
ciated data.

3.3. Case 3. Residential solar energy prosumers
(SP)
Residential SP, who both consume and produce
energy services (Rathnayaka et al 2012), have strong
potential for energy savings because transmission
losses are avoided and waste heat is not generated
(Lee and Song 2021). In addition, awareness of energy
use associated with adopting solar can lead to energy
saving behavioral changes. In large markets such as
the US, Germany, and China, less than 5% of house-
holds have solar installed so the energy reduction
potential of rooftop solar is an untapped resource
(Denholm and Margolis 2008, Michaels and Parag
2016, Gagnon et al 2018) and the global potential
is vast (Creutzig et al 2017, Haegel et al 2019). The
global mitigation potential of solar energy is 2–7
GT CO2/year in 2030, among the highest of all mit-
igation options (Babiker et al 2022), with rooftops

providing a substantial share. Technologies enabling
SP are mature (O’Shaughnessy et al 2018a), the chal-
lenge being their integration in the grid, a form
of infrastructure design. Therefore, social innova-
tions and behavioral changes, especially peer effects,
have a large role to play. The proliferation of house-
hold energy storage, either standalone or in electric
vehicles, combinedwith digitalization, especially con-
nectivity to the grid, would facilitate a larger role for
SP (Denholm and Margolis 2016). This combination
of development in social drivers and novel technical
innovations is an important aspect within this innov-
ation system.

1. Knowledge development. All technologies enabling
SP are mature: solar panels, energy storage, elec-
tric vehicles, smart meters, and power systems
(O’Shaughnessy et al 2018a). Grid integration at
high levels of solar adoption has been demon-
strated in some areas.

2. Knowledge diffusion: components and know-how
are widely available and transferring grid integra-
tion experience from areas with high solar adop-
tion is now a focus (Heptonstall and Gross 2021).

3. Guidance of search: public policy such as renew-
ables obligations, subsidies, as well as information
programs (like Solsmart in the US) raise aware-
ness and orient expectations of growth. Solar is
very popular (Roddis et al 2019, Hazboun and
Boudet 2020).

4. Resource mobilization. Solar technologies bene-
fit from massive investment globally, but a key
issue is access to finance and investment in low-
to-moderate income (LMI) countries (Schmidt
et al 2019).

5. Entrepreneurial activities. Small businesses play
an active role, e.g. there are many small local
installers in Germany (Neij et al 2017) and over
10 000 installers in the US (O’Shaughnessy et al
2018b). New business models, especially software,
for managing and marketing power at local levels
will be important as well providing finance in LMI
countries (Egli et al 2022).

6. Market formation: adoption has gone beyond
early adopters to more mainstream consumers
(Haegel et al 2019). Grid integration is key
challenge as the share of prosumers increases.
Market development depends on continued cost
reductions, particularly in developing and LMI
countries.

7. Creation of legitimacy. Market growth has con-
ferred legitimacy, such that it is now part of
the policy regime (Horstink et al 2021) although
in some jurisdictions growth has stalled or has
been thwarted by opposing actors. An inclusive
governance approach to regulation and policies
would help establish legitimacy. Peer-to-peer
energy trading, the logical next step for prosumers
(Luo et al 2014), has not yet achieved legitimacy

5



Environ. Res. Lett. 19 (2024) 024033 L Niamir et al

and strong political forces use extant regulations
and natural monopolies to bar the inception of
neighbors buying and selling electricity.

4. Unlocking LED technological
innovations pathways

To maximize their potential, LED innovation neces-
sitates coordinated efforts from individuals, busi-
nesses, cities, regions and countries (also see SI.4)
(Stern et al 2007, Grubler et al 2018, Schot and
Kanger 2018). While a substantial focus is placed
on the development and widespread adoption of
new LED technologies, social aspects such as beha-
viors, lifestyle shifts, and more broadly the social
dimension, are also vital components of LED solu-
tions (Creutzig et al 2016, Niamir et al 2020a). By
intertwining technological advancements with beha-
vioral change efforts, LED pathways can lead to more
effective and long-lasting results inmitigating climate
change. While social dimensions are encompassed in
FIS, here we explore them in greater depth. We dis-
cuss eight sets of key social enablers that can facilit-
ate the scaling up technological innovation in support
of LED, contingent on their distinct characteristics
(also see tables SI5.1–3):

1. Behavior and lifestyle changes play a pivotal role
as enabler conditions in the transition to LED.
By influencing individual and collective choices,
these changes contribute significantly to shap-
ing consumption patterns and reducing overall
energy needs. As apparent fromall three case stud-
ies, the successful development and deployment
of technology in a LED scenario needs to go bey-
ond the pure deployment of new technology and
be accompanied by, and favor, meaningful change
in individual behaviors and lifestyle.

2. Peer effects are central to accelerating innova-
tion and spreading the adoption of LED solutions.
Social and cultural processes play an import-
ant role in shaping what actions people take on
climate mitigation, interacting with individual,
structural, institutional and economic drivers
(Thaler and Sunstein 2003).

3. Inclusive governance plays a crucial role in
the deployment of LED innovations to achieve
societal goals. Addressing climate change and
improving human well-being requires an inclus-
ive, equitable, and all-of-society approach. Multi-
level governance and effective institutions can
enable LED pathways by prioritizing inclusive
decision-making, enhancing equitable access to
finance, infrastructure and technology, setting
targets and priorities, and mainstreaming climate
actions across sectors and actors (Niamir and
Pachauri 2023). This approach fosters collabora-
tion and cooperation among government bodies,

businesses, communities, and individuals, ulti-
mately contributing to a more effective and hol-
istic response to the challenges energy demand.

4. Infrastructure design and availability matter
for effective LED measures since there are sys-
tematic interconnections between infrastruc-
ture design and practices (Cass et al 2018).
For example, in urban transport, infrastructure
design and services provision contribute to higher
uptake of LED options (Goodman et al 2014,
Song et al 2017).

5. Finance and investment are crucial because LED
measures tend to be capital intensive, i.e., they
involve up-front costs and generate savings and
benefits over time and require significant infra-
structure to be successfully deployed. Therefore,
access to finance is essential in adopting LED
measures in low- and middle-income countries
where the potential is very large but where access
to capital remains a constraint (Egli et al 2022).

6. Market development and cost reductions can
occur concurrently via learning effects. The gran-
ularity of many LED technologies makes them
amenable to mass production and rapid learning.
Social interactions, such as peer effects, can accel-
erate learning (Neij and Nemet 2022).

7. Regulations and policies are needed so that LED
technologies are further developed and deployed
in a sustainable way and in accordance with mit-
igation and other sustainable development goals.
For example, under emissions regulation (Porter
and Kramer 2006) are accessible to, and for scale-
up LED innovations, and benefits all, not just the
wealthy who could afford it early on, both within
developed and extended to developing countries.
They include investment in social innovations,
behavioral and lifestyle changes through educa-
tion, new norms, and mindsets.

8. Business models. Business will need to part of
the solutions, as business models will have to
adapt to a new way of providing goods and ser-
vices (Markard 2018, O’Shaughnessy et al 2020).
Importantly, investment patterns will change. For
example, the insurance industrymight be affected
by its role as an insurer of third-party liability.

4.1. LED narratives
We offer illustrative LED narratives for the case
studies of AM, SM and SP to highlight the crucial
roles that the eight enablers can play in optimizing
the potential of LED technological innovation (see
figure 1). Because of the distinct characteristics of
these cases, in addition to context and scale, all or
only a few of these enablers may be applicable. Even
though each case is at a different level of maturity,
they are all at an early stage in their development rel-
ative to the level required to achieve 1.5 C.

AMLED narrative. By 2050 it is plausible that AM
technologies will have significantly increased their
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Figure 1. Illustrative LED innovation pathways. Lines indicate the cumulative adoption of an LED innovation over time, with key
junctures indicated by knots. Diverging LED innovation pathways (orange to blue) illustrate that interacting choices and actions
by diverse actors—government, business, and civil society—can enable LED innovation adoption. Pathways and opportunities
for action are shaped by the innovation stage, distinct characteristics, and previous actions (or inactions and opportunities
missed) and enabling and constraining conditions. Social innovations can create enabling conditions allowing for steeper
adoption pathways (blue pathways). At the same time, lack of knowledge, finance and investment, institutional and social drivers
as well as poverty and inequity, halt the process (orange pathways). {The concept of the visualization of illustrative pathways is
derived from figure SPM.6 (IPCC 2023)}.

penetration rate, but their potential to contribute to
LED varies by sector: AM could reduce total primary
energy supply in aerospace fuels by between 9 and
35%, from aerospace manufacturing by between 8
and 19% and in the sectors of medical equipment and
tools by between 5 to 19%, and 3%–10%, respect-
ively (Gebler et al 2014). Three critical junctures
exist in the AM narratives. A first is whether the
technology will mature and proof-of-concept will be
achieved for large-scale manufacturing. Achievement
of proof-of-concept in several key areas—such as
metal-based AM or AM based on recycled inputs—
hinges on public support for innovation in the form
of technology-push policies, including R&D invest-
ments and subsidies. Application of AM technologies
in other sectors and their relevance for decarboniza-
tion is dependent on lifestyle changes and developing
a culture of sufficiency which would avoid material
and energy rebound. A second is whether new busi-
nessmodelswill be fostered tomove away from tradi-
tional linear manufacturing and towards on-demand
production. Network effects and changes in busi-
ness models are necessary to promote the scale-up
and give rise to learning-by-using dynamics, includ-
ing increased technology efficiency and lower costs.
Access to finance and investment needs to be granted
to promote adoption among producers and service
providers. A third is whether governance will pro-
mote the necessary behavioral change, mindsets, and

targeted policies to ensure AM achieves deep emis-
sion reductions, circularity, and sufficiency as well as
economic benefits. Tailored public policies, including
regulation and the development of industry stand-
ards, are needed to promote a paradigm shift from
linear and subtractive manufacturing to AM consist-
ent with a deep sustainability transition.

SM LED narrative. Shared mobility innovation
demonstrates various levels of development and
adoption linked to the economic, social, institu-
tional, and financial contexts. For example, tradi-
tional micro-mobility like cycle rickshaws thrive in
developing countries, while bike- and scooter-sharing
systems flourish in developed countries. Drawing
from the literature, several social enablers are relev-
ant and have the potential to significantly influence
the transition toward realizing the full LED innov-
ation potential. Specifically, these enablers include
design and access to technology and infrastruc-
ture, exemplified by carsharing’s global expansion
and shared electric vehicles’ emission reductions (ITF
2017, 2019, 2020). Well-designed, safe and access-
ible infrastructure provides the necessary support to
be effectively utilized and integrated, encouraging
individuals and organizations to embrace and bene-
fit from the advancements (Goodman et al 2014,
Song et al 2017, Creutzig et al 2022b). Policy pack-
ages such as social and behavioral intervention, like
nudges, can influence individuals’ choices in favor
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of SM usage, e.g. ‘walk cycle ride’ campaign (Rojas
López and Wong 2017), while carbon pricing mech-
anisms can affect incentives (Eliasson and Mattsson
2006, Richardson et al 2010). Social movements and
peer effects exist in that individuals are often motiv-
ated by collective sentiments and the behaviors of
their peerswhen embracing new services and lifestyles
(Burghard and Dütschke 2019, Whittle et al 2019).
Another enabler, business models, includes expand-
ing service offerings, fostering collaborative partner-
ships, and optimizing pricing, as well as providing
adequate finance and investment support to ensures
the development and expansion of SM infrastruc-
ture and services, making them more accessible and
attractive to the public.

SP LED narrative. Rooftop solar is mature and
growing rapidly, but at less than 2% of global elec-
tricity supply, its future potential remains large, and
the extent to which that potential is realized depends
highly on social innovations and behavioral change in
particular. Two key junctures in the rooftop PV nar-
rative are 1) whether growth in adoption continues
in existing markets, especially in East Asia, Europe,
and North America, and 2) whether adoption pro-
liferates in emerging low- and middle-income coun-
tries. If both occur, we will see rooftop PV take the
upper pathway to reach well above 10% of the global
electricity supply, perhaps accounting for half of all
PV, which could account for half of electricity sup-
ply. That pathway depends on key social innovations.
Existing market growth depends on governance and
regulation, particularly supportive electric rate struc-
tures, credit for energy storage, and incentives for
reducing demand and would be bolstered by the pro-
liferation of peer-to-peer electricity trading, which
itself requires modification of infrastructure design.
The latter would give consumers more control and
would take full advantage of the granularity that
rooftop solar provides; peer effects combined with
network effects could catalyze further adoption of
rooftop solar. Emerging market growth depends on
all the above, as well as a fundamental change in
finance and investment, particularly credit access,
which is central to improving costs and market
development. Financing for rooftop solar remains
muchmore expensive than in existingmarkets, which
in combination with lower median incomes, lim-
its adoption. Business model innovations that can
provide credit at rates like those in existing markets
would help put rooftop solar on the upper path-
way. One can also imagine a scenario where none
of these supporting social innovations take hold, and
adoption grows at a rate that only grows with over-
all demand leaving its share unchanged. While many
middle pathways exist, an especially problematic one
has supporting social innovations take hold in both
existing and emerging markets, but access to fin-
ance remains a constraint in emerging markets. That
would lead to a tremendous, wasted opportunity both

for the global impact and distribution of the access to
benefits that rooftop solar can provide.

5. Conclusion and directions for further
work

This paper examines three pertinent innovations in
LED through the lens of the FIS framework: AM,
shared mobility, and SP. Furthermore, it discusses
key enablers to unlock their LED potential and
demonstrates ways for scaling them up to widespread
adoption. We highlight that technological innova-
tion is not the sole driver of LED. Rather, realistic-
ally achieving LED requires a range of crucial non-
technological, non-cost aspects of technology dif-
fusion, such as changing behaviors, social norms,
and governance, all in the context of heterogen-
eous agents and the development of local know-
ledge. Consequently, this study underscores the need
for additional bottom–up qualitative and quantitat-
ive research and analysis. This approach can offer
a more in-depth understanding of the complexities
and, potentially, serve as a valuable complement to
addressing the challenges posed by large-scale IAMs.

To present feasible LED scenarios, capture key
enablers and explore (non-linear) solutions, current
scenario modelling needs three key shifts. First, large-
scale IAMs and energy system models could be com-
plemented with modelling approaches which can
more realistically capture heterogeneous effects and
the role of peer effects in technology development
and diffusion. This is the case, for instance, for agent-
based modelling, which has the potential to play an
increasing role in informing large-scale modelling
exercises (Niamir et al 2020a, Edelenbosch et al 2022).
Second, the key role of non-technological drivers in
LED innovation points to the importance to develop
more detailed LED narratives to ground and justify
model results—that is, provide rationales for spe-
cific model constraints to account for changes in life-
style, norms, and beliefs. Finally, available IAMs are
extremely limited in their ability to depict different
policy instruments and mixes. This surely represents
an interesting area of further model development and
is a particularly important one in the context of LED
pathways.

To improve our understanding of LED innova-
tion and narratives alongside our modelling tools,
there are two complementary fruitful avenues of
future work. On the one hand, detailed empirical data
and analysis on LED innovation development and
adoption, particularly in LMI countries, is needed to
characterize the intersections between institutional,
political, environmental, social, and economic factors
which contribute to LED innovation development
and adoption at different scales in different geograph-
ies (Beckage et al 2020, Rubiano Rivadeneira and
Carton 2022). On the other hand, future research
should inform and complement IAMs by distilling
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specific insights regarding policy instrument and
mixes in support of LED innovation. This includes
valuable insights on establishing and promoting
policy motivations, addressing innovation system
failures, improving technologies and services, facilit-
ating behavioral change and LED innovation adop-
tion, enabling new business models, and addressing
adverse consequences of successful adoption—e.g.,
material or energy rebound or distributional reper-
cussions. Attention should be given to the role of local
context both in adoption and policy, especially in LMI
countries and to the combination, timing and stra-
tegic sequencing of policy instruments. Pursuing this
comprehensive research agenda can help unlock the
potential of LED scenarios in the context of urgent
deep decarbonization.
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