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Abstract: This work evaluates the efficiency of three biochar samples toward the adsorption of
manganese, iron, and selenium present in a sample of urban wastewater. The biochar was produced
from the pyrolysis of rice husks at 350 ◦C for 6 h (RHB) and subsequently modified using HCl
(RHBHCl) or NaOH (RHBNaOH) to increase its surface area. The RHBNaOH sample exhibited the
highest removal efficiency for the three metals. The metals’ adsorption removal efficiency for
RHBNaOH was in the order Mn (76%), Se (66%), and Fe (66%), while for RHBHCl, it was Fe (59%), Mn
(30%), and Se (26%). The results show that the as-prepared RHB can remove the metals, even if in low
amounts (Fe (48%), Mn (3%), and Se (39%)). The adsorption removal for the three types of adsorbents
follows the Langmuir isotherm model. Pseudo-first-order and pseudo-second-order models were
used to determine the adsorption mechanism for each of the three adsorbents. Both models showed
a good fit with R2 (>0.9) for the RHBNaOH and RHB sorption of Fe, Mn, and Se. Overall, this work
demonstrates the potential of biochar for the removal of metals from real wastewater.

Keywords: rice husk; biochar; metal adsorption; urban wastewater; adsorption; wastewater
treatment; selenium; manganese; iron

1. Introduction

About 71% of the Earth’s surface is covered by water, with only 2.5% being fresh
water that can be contaminated from a variety of anthropogenic sources, such as municipal,
industrial, and agricultural wastewaters [1]. Common pollutants from these sources include
heavy metals, pesticides, metalloids, pharmaceuticals, polyaromatic hydrocarbons, and
dyes [2]. The consumption of contaminated water is linked to waterborne infections
(cholera, diarrhea, and typhoid) and long-term illnesses (cancer and neurodegenerative
and endocrine disorders). Currently, more than 2.3 billion people worldwide do not have
access to safe drinking water [3].

Metals, such as manganese (Mn), iron (Fe), and selenium (Se), are commonly present in
industrial wastewater [4,5]. These elements can be considered as micronutrients for human
health [6]. However, concentrations above the recommended daily allowance (RDA) have a
detrimental effect on human health. For instance, humans need Mn for enzyme activation,
but exposure to values above RDA may induce respiratory illness and neurodegenerative
disorders [4,5,7]. Selenium plays a positive role in cancer prevention, but an RDA >
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400 µg/day might cause neurodegenerative disorders and dysfunction of the endocrine
system [8–10]. Iron is an essential component of hemoglobin and myoglobin, which
are responsible for transporting oxygen to the body’s tissues and muscles. A long-term
exposure to Fe can damage the liver, pancreas, and heart. In addition, the high concentration
of Fe in water promotes the development of ferrobacteria, which are linked to odor issues
that can generate unpleasant esthetic concerns [4,5]. The World Health Organization
(WHO) guidelines for acceptable drinking water concentrations for Mn, Fe, and Se are
0.05, 0.3 mgL−1, and 40 µgL−1, respectively [8–10]. A wide variety of technologies have
been developed to remove metals from water. Among them are coagulation–flocculation,
membrane filtration, reverse osmosis, chemical precipitation, ion exchange, electrochemical
treatment, and flotation [11–16]. These technologies have several drawbacks, such as high
energy requirements and high operational and maintenance costs. Moreover, some water
treatment technologies are inefficient to remove these pollutants when they are found
at low concentrations [17–20]. On the other hand, adsorption is regarded as a popular
technology to remove a variety of pollutants from water due to its high efficiency, low cost,
and ease of operation [21–24]. It is a technology that can use locally abundant biosorbents,
which can reduce operational costs [25,26].

Biochar is a carbon material produced by the thermal decomposition of biomass in
an oxygen-free atmosphere [27–33]. It is a highly aromatic compound, made up of layers
of graphene and graphite structures and edge carbon atoms containing functional groups,
such as carboxylic, hydroxyl, and carbonyl units [33–35]. It is an environmentally friendly
adsorbent that can be produced from agricultural, forest, and sewage wastes [36]. Biochar
is a relatively inexpensive material because the raw materials are abundant and do not have
an economic value. It has been reported that biochar is ~six times cheaper than the most
widely used activated carbon [7]. In addition, small pyrolysis reactors can be built with
minimal technical requirements and inexpensive materials (e.g., an oil barrel) [32]. Biochar
has a porous structure, but the pores are clogged with tarry material produced during
the pyrolysis. Consequently, it is usually subjected to a chemical or physical treatment
to increase its specific surface area, porosity, and pore size distribution or to incorporate
functional groups [37–40]. In a chemical modification process, biochar is treated with
strong acids, bases, or chemical oxidants [41]. For instance, biochar obtained from reed
samples increased its adsorption capacity toward pentachlorophenol by six-fold when the
biochar was treated with 1 M HCl for 6 h [42]. Another report showed NaOH impregnation
increased the surface area of wheat straw biochar by 92%, which, in turn, increased by
three-fold its adsorption capacity toward toluene [43].

Biochar Adsorption Mechanism

The surface chemistry of modified or unmodified biochar has a strong sorption ca-
pacity to remove different types of pollutants from wastewater [37,44,45]. However, the
interaction between the adsorbent and adsorbate depends on factors such as the nature of
pollutants, pore volume, specific surface area, the hydrophobicity of the adsorbent, and
surface functionalization [46]. There are several adsorption mechanisms of biochar toward
different organic or inorganic pollutants, such as complexation, precipitation, ion exchange,
electrostatic interaction, hydrophobic interaction, pore–filling interaction, and hydrogen
bond formation [47,48]. Complexation occurs when oxygen-containing functional groups
at the biochar surface interact with the free orbitals of transition metals to form complexes.
Precipitation is an important mechanism for the removal of heavy metals, in which the
pollutant precipitates either in the solution or over the surface of the biochar. For instance,
Pb2+ and Cd2+ usually precipitate at high pH values as hydroxides. The ion exchange
mechanism involves the exchange of ions between the solid (biochar surface) and the liquid
interface. Kílıç et al. [49] observed the release of basic metal ions (Ca2+, Na+, and K+)
during Hg2+ adsorption by an activated sludge biomass, which indicates ion exchange was
the adsorption mechanism. Hydrophobic interaction can be described as the attraction
between organic compounds (hydrophobic substances) with the layers of graphene of the



Water 2024, 16, 698 3 of 16

biochar. Biochar hydrophobicity increases with the pyrolysis temperature. Consequently,
biochar prepared at high temperatures will be efficient for the removal of highly organic
pollutants (dyes or pesticides). The pore-filling mechanism depends upon the nature of the
biochar and the polarity of the organic contaminant [50]. Pore filling is a process in which
the organic contaminants are at the surface of biochar, which has mesopores (2–50 nm) and
micropores (<2 nm). Electrostatic interaction is a mechanism based on the attraction and
repulsion of charges, which is in essence an ionic bond formation. For instance, cationic
pollutants can be adsorbed on the negatively charged surface of biochar [51]. Hydrogen
bonds occur due to the intermolecular attraction between the functional groups on the sur-
face of the biochar (-NH2 or -OH) with organic pollutants that have highly electronegative
atoms, such as F, N, or O [40,46,52].

Biochar has shown its potential for the adsorption of metals, such as Pb, Cd, and
Cu [53,54]. Little attention has been paid to its adsorption capacity toward Mn or Se. In
addition, most of the works reported in the literature were developed using synthetic water.
Both factors hinder the potential of biochar to be used as an inexpensive, efficient, and en-
vironmentally friendly adsorbent to remove a wide variety of metals from real wastewater.
Consequently, in the current work, we prepared a modified biochar from agricultural waste
(rice husk). In addition, we evaluated the adsorption capacity of the modified biochar
toward three metals (Fe, Mn, and Se) found in a sample of urban wastewater collected from
the inlet of a WWTP from Pavia, Italy.

2. Materials and Methods
2.1. Materials

Rice husks were obtained from farmers in the province of Pavia, Lombardy, Italy. All
chemical reagents used in this study were of analytical grade from Merck (Kenilworth,
NJ, USA). Chemical-grade, 99% pure (SOL S.p.A., Hong Kong, China) nitrogen gas was
employed in the pyrolysis process. Deionized (DI) water was used in all preparation and
treatment processes.

2.2. Sorbent Materials
2.2.1. Raw Rice Husk (RH)

The rice husk (RH) was washed with DI water to remove impurities coming from
the environment and was subsequently dried in an oven at 80 ◦C overnight. Next, it was
ground and sieved using a 1000-micron sieve. Particles lower than 1000 microns were
subjected to a ball milling process using a Premium Line P5 planetary mill: 0.4 g of RH was
milled in tungsten carbide (WC) jars with 10 WC balls (weight = 1 g/ball), at 500 rpm for
2 cycles with a duration of 60 min/cycle under air atmosphere.

2.2.2. Rice Husk Biochar (RHB)

The ball-milled RH was transferred into an alumina boat and pyrolyzed in a tubular
furnace (Carbolite, Sheffield, UK) at 350 ◦C for 6 h with a heating rate of 10 K/min under
N2 flow (200 mL/min).

2.2.3. Chemically Activated Biochar (RHBNaOH)

The pyrolyzed sample (RHB) was activated by soaking the sample in 1 M NaOH (98%,
Sigma Aldrich, Burlington, MA, USA) at room temperature for 12 h. We chose NaOH because
it is an effective, inexpensive activation agent and is less corrosive than KOH [55–58]. The
chosen weight ratio of biochar to NaOH was 2:1. After the alkali treatment, the sample
was washed and soaked using 0.1 M HCl (37% wt. solution, Sigma Aldrich) under constant
agitation until a neutral pH was reached. Next, a vacuum filtration system was used to further
wash the sample using DI water. Finally, the NaOH-activated biochar was dried in an oven at
90 ◦C for 12 h. This sample was labelled as RHBNaOH.
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2.2.4. HCl-Treated Rice Husk (RHBHCl)

The ball-milled RH was treated with 10% wt. HCl for 3 h. After filtration, the solid part
was dried at 90 ◦C in an oven for 20 h and subsequently placed in an oven at 500 ◦C for 8 h at
a heating rate of 10 K/min under N2 gas flow (200 mL/min). The carbonized sample was
cooled up to room temperature under N2 gas flow and subjected to mild grinding using a
mortar and a pestle to obtain a homogeneous powder. This sample was labelled as RHBHCl.

2.3. Characterization

A thermogravimetric analysis (TGA Q5000, TGA Instruments Inc., New Castle, DE,
USA) was carried out for all the samples. The measurements were performed using 5 mg of
powder by heating from room temperature to 1000 ◦C at 5 ◦C/min in an open Pt crucible
under N2 flux. The derivative curve of the mass loss with respect to the temperature (DTG)
was obtained by the Universal Analysis V4.5A software provided by TGA Instruments.
The FTIR spectra of all the samples were acquired using a Nicolet FTIR iS10 spectrometer
(Nicolet, Madison, WI, USA), equipped with aSmart iTR™ Attenuated Total Reflectance
(ATR) Sampling Accessory with diamond plate (Nicolet, Madison, WI, USA). Thirty-two
scans were collected in a wavenumber range from 4000 cm−1 to 600 cm−1 with 4 cm−1 as
the resolution. The surface morphology was analyzed using a scanning electron microscope
(Zeiss EvoMA 10 SEM, Oberkochen, Germany) with an acceleration voltage of 20 kV and
8.5 mm as the working distance of the gold-sputtered samples. The EDX analyses were
performed on all the samples with an Oxford XMax 50 mm2 detector coupled with the
SEM, following the standard method (ASTM E 1508 [59]). The porosimetry was analyzed
by a Sorptomatic 1990 Instrument (ThermoFisher, Waltham, MA, USA) by BET (Brunauer–
Emmett–Teller equation) method using N2 as the adsorption gas. The quantification
of Fe, Mn, and Se was performed using inductively coupled plasma optical emission
spectroscopy (ICP-OES) (Optima 7000, Perkin Elmer, Waltham, MA, USA), following the
standard procedure IRSA-CNR, 3020.

2.4. Testing Conditions

Adsorption batch tests were performed to determine the adsorption efficiency of the
modified and unmodified biochar toward Fe, Se, and Mn present in an urban wastewater
sample collected at the inlet of a civil wastewater treatment plant (WWTP) located in the
province of Pavia (Italy). The sample was a mixture of domestic and industrial wastewater
(effluents from agri-food, woodworking, chemical-pharmaceutical, and galvanic factories).
The collected urban wastewater was filtrated and kept in a fridge at 4 ◦C until further use.
The initial concentration of the elements obtained by ICP-OES was [Fe] = 0.390 ± 0.103 mg/L,
[Mn] = 0.303 ± 0.040 mg/L, and [Se] = 0.116 ± 0.025 mg/L. The pH of the wastewater was
7.6, and it was not modified during the adsorption tests. For the experiments, 0.25 g of biochar
was weighed and poured into a flask containing 50 mL of urban wastewater. The liquid
sample was kept in agitation at 200 rpm/min at room temperature. Aliquots were taken at
different time intervals (0.5, 3, 6, and 9 h). Each aliquot was filtrated with a syringe filter of
22 µm. The residual concentration of each metal was determined using ICP spectroscopy.
Each experiment was conducted in duplicate at room temperature. The removal efficiency R
(%) was estimated using Equation (1):

R(%) =
(C0 − Ce)

C0
·100 (1)

where C0 (mg L−1) and Ce (mg L−1) are the initial and equilibrium concentration of the
metal, respectively. The adsorption capacity can be calculated using the mass balance
shown in Equation (2):

Qe = (C0 − Ce)×
V
M

(2)

where V represents the total volume of the solution (L) and M is the mass of the adsorbent (g).
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2.5. Adsorption Kinetics

Pseudo-first-order and pseudo-second-order kinetic equations [60–62] were used to
approximate the adsorption rate and mechanism. Equation (3) represents a pseudo-first-
order model.

ln(Qe − Qt) = lnQe − k1t (3)

where k1 is the equilibrium rate constant of the pseudo-first-order model (h−1). The slope
and intercept of the linear graph ln (Qe − Qt) vs. t were used to determine k1 and Qe,
respectively. Equation (4) is a pseudo-second-order model that encompasses all adsorption
processes, including external film diffusion, adsorption, and internal particle diffusion.

t
Qt

=
1

k2Qe
2 +

t
Qe

(4)

The pseudo-second-order adsorption model defines Qe and Qt as the adsorption
capacities of the adsorbent at equilibrium and at time t (h), respectively. k2 is the rate
constant the pseudo-second-order model (g/mg h). Qe and k2 can be calculated, respectively,
from the slope and intercept of the linear plot of t/Qt vs. t.

2.6. Adsorption Isotherm

The adsorption capacity of heavy metals onto the adsorbent can be evaluated using the
two most widely used equations: the Langmuir and Freundlich isotherms. The Langmuir
isotherm, a basic model for the adsorption equilibrium, is applicable over a wide range of
pressures. The Langmuir equation describes some assumptions governing the coverage of
adsorbate molecules on solid surfaces as a function of the partial pressure or concentration
at a constant temperature [63–65]:

1. Adsorption occurs at several active sites on the surface.
2. Each active site attracts only a single molecule.
3. The adsorbing surface is fairly homogeneous.
4. There are no interactions between the adsorbed molecules.

The first one, the Langmuir model, indicates a monolayer adsorption mechanism,
with a finite number of adsorption sites on a homogeneous surface. When an adsorbent
is entirely covered by a monolayer, its maximum capacity can be calculated using the
Langmuir isotherm model. The equation for the Langmuir isotherm is shown below
(Equation (5)) [63–65]:

Ce

Qe
=

1
KLQm

+
Ce

Qm
(5)

Qm is the maximum adsorption capacity of the adsorbent material in terms of mg/g,
and KL is the Langmuir constant (L/mg), which is correlated to the adsorption energy
relation. The values of Qm and KL are determined by the linear plot of Ce/Qe versus Ce as the
slope and intercept, respectively. According to Webber and Chakraborty’s definition [66,67],
the efficiency of the adsorption process could be predicted by the dimensionless parameter
RL (Equation (6)):

RL =
1

1 + KLC0
(6)

where C0 is the metal concentration at time zero (mg/L). If RL = 0, the adsorption process
is considered irreversible. An RL value (0 < RL < 1) indicates favorable adsorption, while
a value of RL > 1 represents an unfavorable adsorption. However, in this experimental
work, there was favorable adsorption because all RL values for all metals were found to be
between 0 and 1.

In contrast to Langmuir isomerization, multilayer adsorption at heterogeneous sites
can be performed using the Freundlich empirical model [68]. The Freundlich isotherm
explains multilayer adsorption and expects the energy distribution of adsorbed sites to
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drop exponentially [68,69]. The Freundlich adsorption isotherm model is shown below
(Equation (7)) [68–70].

ln Qe = ln KF +
1
n

ln Ce (7)

where KF and n are constants related to the adsorption capacity of the material and the
intensity of the adsorption, respectively. Both values can be calculated from the slope and
intercept of the plot between lnQe vs. lnCe. When 1/n lies between 0 and 1, the adsorption
is considered favorable. On the other hand, an unfavorable adsorption happens when
n = 0 and the adsorption process is irreversible; when n < 1, the process is favorable; when
n = 1, the process is linear; and when n > 1, the adsorption process is unfavorable [67,71].
The Freundlich equation, which provides information on particle sorption, has numerous
limitations [71,72]:

1. It is simply empirical, with no theoretical foundation.
2. Validity is confined to a fixed concentration range; beyond that point, nonlinearity arises.
3. The constant K might fluctuate as the temperature varies.

However, it resulted not valid for some adsorption data [71,72].

3. Results and Discussion
3.1. Characterization of the Biochar

Figure 1 shows the TGA and DTG curves for the RH, RHB, RHBNaOH, and RHBHCl
samples. For the raw RH, the graph shows four mass loss stages. The first one accounts for
8.4% mass loss with respect to the total weight and takes place between 100 ◦C and 150 ◦C,
and is originated by moisture content. During the second mass loss, between 150 ◦C and
250 ◦C, 18.1% of the mass loss occurs due to the degradation of hemicellulose and the initial
decomposition of lignin. This biomass component begins to decompose at around 160 ◦C,
but the process is sluggish, and the decomposition continues until the temperature reaches
900 ◦C [73]. The third stage of weight loss (48.9%) occurs from 250 ◦C to 400 ◦C and is
due to the degradation of lignin and cellulose [73–75]. The DTG curve shows the highest
degradation rate in this temperature range. The fourth step (400 ◦C–1000 ◦C) accounts
for 11.9% wt of mass loss and occurs due to the continuous elimination of different types
of carbonaceous components [75–77]. The obtained TGA profile of the RH is similar to
those found in the literature for RHs [78,79]. The TGAs for the RHB (Figure 1b), RHBNaOH
(Figure 1c), and RHBHCl (Figure 1d) samples are quite similar. The plots show a first mass
loss around 100 ◦C, due to the elimination of water. For RHB and RHBNaOH, a second mass
loss centered at 500 ◦C indicates the elimination of the remaining volatile organic mass.
This peak shifts toward higher temperatures for the RHBHCl sample because this sample
was subjected to a second heat treatment after HCl impregnation, which already allowed
for the degradation of a larger organic component amount with respect to the other samples.
Finally, RHB, RHBNaOH, and RHBHCl had a third mass loss peak starting at 800 ◦C, which
corresponds to the additional elimination of various carbonaceous components [75–77].

Figure 2 shows the FTIR spectra acquired from all the samples. First, the RH spectrum
shows a broad peak at 3440 cm−1 due to the O-H stretching vibration of the water molecules
adsorbed on the sample. The former peak is barely visible for the RHB and the RHBNaOH
samples, which were thermally treated after the chemical treatments. The bands for RHB,
RHBNaOH, and RHBHCl are oversimplified, owing to the elimination of several functional
groups during the pyrolysis steps [33,80]. The RH sample shows a weak peak at 2929 cm−1

due to the methylene group -CH2- in hemicellulose and cellulose. This peak disappears for
the RHB due to the pyrolysis step at 350 ◦C. The RH, RHB, and RHBNaOH have a couple
of weak bands between 2000 cm−1 and 2500 cm−1 that correspond to the vibrations of
C≡C and C≡N. For the RH, RHB, and RHBNaOH samples, there is a peak at 1653 cm−1

that denotes the presence of C=C bonds from lignin and cellulose. The peak at around
1630 cm−1 indicates the presence of N-H bonds in RRH, RHB, and RHBNaOH. Both peaks
are absent in the RHBHCl. The peaks between 1500 cm−1 and 1100 cm−1 reflect the presence
of carbonate and carbonate-carboxyl groups in RHBHCl. In the RH, the peaks around
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1153–1300 cm−1 indicate the C-O stretching from an ester or phenol: they are almost
vanished in the pyrolyzed and chemically treated samples. For the RH, the signals at
1080, 898, 796, and 662 cm−1 can be attributed to the stretching vibrations of the siloxane
groups [78]. RHBHCl has a prominent peak at 1051 cm−1 attributed to the siloxane (Si-O-Si)
network vibration modes, indicating a highly condensed silica network [81]. The former
peak is clearly visible in RHBHCl, as reported in the literature [82]. The signal at 794 cm−1

indicates the aromatic C-H out-of-plane bend [83]. The former peaks have a lower intensity
in the pyrolyzed sample.
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Table 1 shows the elemental analysis obtained for all the samples by EDX. For the
RH, carbon, oxygen, and silicon are the main constituents, with Si and O being probably
present in the form of silica. The chemical composition of the RH differs after the pyrolysis
and the chemical modifications. Using EDX, H and N cannot be detected. After pyrolysis
(RHB), C becomes the main component due to the decomposition of lignin, cellulose,
and hemicellulose [33,84]. The end products of pyrolysis are biochar, bio-oil, and syngas
(CO, CO2, CH4, and H2), and the amount of each product is determined by the pyrolysis
temperature, heat flux, N2 flow rate, and residence time [84–86]. The stability of biochar
is increased by the removal of different components in gaseous and volatile forms, which
results in a reduction in the O/C and H/C atomic ratios and the corresponding rise in
aromaticity and the carbon content [87,88].

Table 1. Elemental composition obtained by SEM-EDX of the rice husk (RH), rice husk biochar (RHB),
and NaOH- and HCl-activated biochar samples.

Element
% Weight

RH RHB RHB-HCl RH-NaOH

C 39.34 54.97 61.99 61.69
O 47.30 34.08 26.10 30.97
Si 13.36 10.52 11.91 5.46
Ca - 0.29 - 0.33
S - 0.14 - 0.11

Na - - - 1.44

Figure 3 shows the SEM images of all the samples. The RH shows micro-sized frag-
ments with a wavy structure. The pyrolysis step clearly reduces the size of the fragments.
The specific surface area of the RHB is 52 m2/g. The SEM micrograph of RHBNaOH shows
a smooth surface. The surface area of RHBNaOH is 360 m2/g. This clearly indicates that
NaOH activation leads to the formation of porosity. RHBHCl has a smooth morphology
and achieves a surface area of 280 m2/g. The pores can act as highways for ion diffusion.
Additionally, the presence of pores increases the ratio between the surface area and volume
and its effect on the overall specific surface area [33,89].
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3.2. Removal of Metals

Urban wastewater contains a wide variety of organic and inorganic pollutants. These
contaminants may include dyes, heavy metals, surfactants, medicines, pesticides, or per-
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sonal care products. Reports in the literature have demonstrated that various types of
biomasses have an outstanding capacity to remove contaminants from wastewater [90].
It is commonly acknowledged that the adsorption capability of metals toward biochar is
primarily determined by the feedstock properties, pyrolysis temperature, residence time,
and the nature of the target metals.

In this work, the preliminary analysis of an urban wastewater sample, collected at the
inlet of a wastewater treatment plant, showed the presence of various elements, such as
As, B, Ba, Cd, Cr, Fe, Mn, Ni, Pb, Zn, Se, and Sn. However, we evaluated the adsorption
capacity of biochar samples toward Fe, Mn, and Se.

Iron (Fe), Manganese (Mn), and Selenium (Se) Removal

Adsorption batch tests were performed to determine the removal efficiency of RHB,
RHBNaOH, and RHBHCl toward Fe, Se, and Mn, present in an urban wastewater sample
collected from a civil wastewater treatment plant (WWTP) located in the province of Pavia,
Italy. The samples were collected at the WWTP inlet. The pH of the urban wastewater was
7.6, and it was not modified to perform the adsorption experiments.

Figure 4 shows the percentage of metal adsorbed as a function of the interaction time
for each metal and for the three biochar samples (RHB, RHBNaOH, and RHBHCl). The
results show, in all the cases, a positive correlation between the adsorption removal and the
interaction time. The RHBNaOH sample has the highest affinity toward Fe, Mn, and Se, as it
is able to absorb up to 66%, 76%, and 66% after 6 h of interaction time, respectively. The
RHBHCl sample is able to absorb 59% Fe, 30% Mn, and 26% Se after 6 h of interaction time.
RHB is able to adsorb 48% Fe and 40% Se. However, RHB does not show affinity toward
Mn, adsorbing only 2.75%. Table 2 shows the initial concentration (C0) and equilibrium
concentration (Ce) of each metal after 9 h of interaction time.
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Table 2. Initial concentration (C0) of Fe, Mn, and Se collected from urban wastewater and the
equilibrium concentration (Ce) after the adsorption experiments. Experimental conditions: 0.25 g
biochar and 50 mL urban wastewater under agitation at 200 rpm for 9 h.

Type of Biochar

Initial Concentration C0 (mg/L)

Fe Mn Se

0.39 ± 0.103 0.303 ± 0.04 0.116 ± 0.025

Equilibrium Concentration Ce (mg/L)

RHBNaOH 0.133 ± 0.040 0.073 ± 0.018 0.039 ± 0.015
RHBHCl 0.160 ± 0.053 0.212 ± 0.034 0.086 ± 0.020

RHB 0.204 ± 0.063 0.294 ± 0.040 0.070 ± 0.016
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3.3. Removal Mechanisms

The adsorption capacity of an adsorbent strongly depends on the properties of the ad-
sorbent, such as the ionic radius, surface area, electronegativity, and the surface’s functional
groups [91]. Other factors that should be considered are the pH or temperature of the water.
For instance, at pH 7.6, Mn should be present in water as a small cation, Mn+2. The possible
adsorption mechanism is due to electrostatic interactions between Mn+2 and negatively
charged functional groups, such as hydroxyl, carboxyl, and carbonyl, on the surface of
the biochar [91]. At a neutral pH, iron is mainly in the two forms of Fe2+ or Fe(OH)3 [92].
We believe that the high adsorption values toward Fe using the three adsorbents must
be a combination of the two mechanisms. The first one is the electrostatic interaction
between Fe+2 and negatively charged functional groups, as described above. The second
mechanism is a complexation mechanism due to the high amount of OH- groups from the
RHBNaOH [93]. Under the tested experimental conditions (pH 7.6), selenium is in the form
of HSeO3

− and SeO4
−2 [94]. It has been reported in the literature that negatively charged

selenate groups can be adsorbent on the surface of biochar due to the presence of metallic
cations, such as Na+1 and Ca+2 (as reported in the SEM-EDX analysis).

We would like to highlight that the best-performing material toward the three metals
was the biochar modified with NaOH. On the other hand, RHB and RHBHCl had a relatively
poor performance toward the adsorption of Se.

3.4. Effect of the Contact Time on Fe, Mn, and Se Removal

Table 3 displays the correlation between the contact time of municipal wastewater
samples and the removal of Fe, Mn, and Se for each kind of biochar. For the same contami-
nants, the equilibrium contact period for RHBNaOH and RHB adsorbents are quite close.
Nonetheless, RHBHCl does not exhibit the same properties as the other two adsorbents.
The efficiency of the sorbents in removing Fe, Mn, and Se was measured using pseudo-first
order (Equation (3)) and pseudo-second-order (Equation (4)) models. When compared to
the other two adsorbents, RHBNaOH is more effective in removing the metals Fe, Mn, and
Se (Figure 4).

Table 3. Adsorption kinetic modeling for Fe, Mn, and Se adsorption by the biochar materials.

Types of
Adsor-
bents

Fe Mn Se

First Order Second Order First Order Second Order First Order Second Order

Qe K1 R2 Qe K2 R2 Qe K1 R2 Qe K2 R2 Qe K1 R2 Qe K2 R2

RHBNaOH 0.391 2.250 0.941 0.077 3.474 0.951 0.507 2.998 0.945 0.051 18.997 0.995 0.745 4.366 0.998 0.020 28.769 0.983
RHBHCl 1.838 4.381 0.593 0.070 4.542 0.886 0.479 3.567 0.947 0.024 20.950 0.989 0.534 4.161 0.900 0.007 39.873 0.248

RHB 0.485 2.891 0.922 0.048 13.996 0.985 0.751 6.438 0.968 0.002 144.308 0.933 0.593 4.500 0.939 0.012 35.669 0.975

In addition, the adsorption of Fe, Mn, and Se by RHBNaOH and RHB fits the pseudo-
second-order model (R2 > 0.98) well. Pseudo-first- and pseudo-second-order model plots
were used to determine Qe values for all adsorbents. The Qe values from the pseudo-
second-order model were very similar to the experimental data (calculated using Equation
(2) and displayed in Table 4). These results indicate that the adsorption of the three metals
follows a chemisorption mechanism. Previous works have reported that metal adsorption
by biomass follows a pseudo-second-order model: sunflower [95], paper mill sludge [96],
oyster shell waste [97], apple tree branches [98], chicken manure [99], and rice husk [60]
were used as adsorbents. Consequently, electrostatic attraction, ion exchange, complexation,
and precipitation among the active sites of the adsorbent all contribute to the sorption of
the three metals Fe, Mn, and Se (Figure 5).
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Table 4. Adsorption efficiency (% R) and adsorption capacity (Qe). Experimental conditions: 0.25 g
biochar and 50 mL urban wastewater under agitation at 200 rpm for 9 h.

Type of Biochar
Fe Mn Se

% R Qe (mg/g) % R Qe (mg/g) % R Qe (mg/g)

RHBNaOH 65.98 0.05 75.77 0.05 66.28 0.02
RHBHCl 58.97 0.05 29.85 0.02 25.94 0.01

RHB 47.61 0.04 2.75 0.00 39.48 0.01
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precipitation).

3.5. Isotherm Analysis of RHBNaOH, RHBHCl, and RHB

To describe the adsorption behavior, the experimental data were fitted using the
Langmuir and Freundlich models. Both models are widely used for metal adsorption
processes. Table 3 displays the results of adsorption isotherm modelling for the three
materials for Fe, Mn, and Se. The Langmuir monolayer isotherm provides the best fit,
which is in line with previous research employing biochar for metal removal using biomass
and biochar samples [60,100,101]. The Langmuir model indicates a monolayer adsorption
mechanism, with a finite number of adsorption sites on a homogeneous surface. The
adsorption efficiency is quantified using the RL value, which is a dimensionless constant
separation factor. To determine this, it compares the entire adsorbent capacity to the total
adsorbent capacity that was not used. If the RL value falls between 0 and 1, it indicates
a favorable adsorption [60,102]. Table 5 shows the RL for all samples. Fe adsorption by
RHBNaOH has the highest RL value of 0.486. The calculated Qmax values of 0.198 mg/g
for Fe sorption by RHBNaOH, 0.088 mg/g for Fe sorption by RHB, and 0.077 mg/g for
Mn sorption were measured for all samples using the urban wastewater. The Qmax values
for Mn sorption by RHB were as low as 0.002 mg/g. These adsorbents had Qmax values
consistent with those reported in previous reports in the literature using chitosan biochar
to treat industrial wastewater [103].
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Table 5. Adsorption isotherm modeling for Fe, Mn, and Se adsorption by the biochar materials.

Types of
Adsor-
bents

Fe Mn Se

Langmuir Freundlich Langmuir Freundlich Langmuir Freundlich

Qmax
(mg/g) RL R2 KF

(mg/g) n R2 Qmax
(mg/g) RL R2 KF

(mg/g) n R2 Qmax
(mg/g) RL R2 KF

(mg/g) n R2

RHBNaOH 0.198 0.486 0.904 0.247 1.296 0.999 0.077 0.140 0.859 0.119 2.743 0.646 0.022 0.135 0.677 0.030 4.857 0.100
RHBHCl 0.071 0.198 0.464 0.120 1.877 0.304 0.032 0.350 0.668 0.035 2.386 0.464 0.011 0.411 0.960 0.031 1.509 0.995

RHB 0.088 0.415 0.527 0.109 1.484 0.769 0.002 0.075 0.140 0.002 8.850 0.005 0.009 0.016 0.851 0.089 1.169 0.993

Considering Langmuir adsorption isotherm modelling, the RHBNaOH sorbent has a
significant capacity of 0.297 mg/g for metal ion adsorption for varying concentrations of
mixed metal ions wastewater samples. Similarly, the RHBHCl sorbent has a substantial
adsorption capability of 0.213 mg/g, but the RHB sorbent has a relatively lower capacity
of 0.099 mg/g. These findings also highlight the significance of evaluating the sorbent
performance, rather than making direct comparisons of the metal ion removal efficiency.

4. Conclusions

In this work, we produced a biochar by pyrolysis from rice husks and we treated it
with NaOH or HCl to increase its surface area. The three materials were tested for the
adsorption of Fe, Mn, and Se present in an urban wastewater sample collected from the inlet
of a wastewater facility in Pavia, Italy. The results indicate that the best adsorbent toward
the three metals (Fe, Mn, and Se) is RHBNaOH due to the high surface area (360 m2/g)
and the presence of functional groups. The adsorption kinetics had a good fit using
the pseudo-second-order model, while the Langmuir monolayer isotherm described the
adsorption behavior of the three metals. The maximum adsorption capacities for Fe, Mn,
and Se were found at 0.05, 0.05, and 0.02 mg/g RHBNaOH, respectively. The adsorption
mechanisms for the three metals were surface complexation and electrostatic interactions.
This work provides an insight into the use of modified biochar for the removal of metals
from real wastewater. Further studies will optimize the materials and explore their practical
applicability to wastewater treatment plants.
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