
Journal of Elasticity (2023) 153:299–358
https://doi.org/10.1007/s10659-023-09990-z

Electrochemo-poromechanics of Ionic Polymer Metal
Composites: Towards the Accurate Finite Element Modelling
of Actuation and Sensing

Andrea Panteghini1 · Lorenzo Bardella1

Received: 28 November 2022 / Accepted: 12 January 2023 / Published online: 22 February 2023
© The Author(s) 2023

Abstract
Ionic polymer metal composites (IPMCs) consist of an electroactive polymeric membrane,
which is plated with metal electrodes and includes a fluid phase of ions in a solvent,
whose diffusion allows for actuation and sensing applications. We build on a previous finite-
deformation theory of our group that accounts for the cross-diffusion of ions and solvent and
couples the mass balances of these species with the stress balance and the Gauss law. Here,
we abandon the assumption that the fluid phase is a dilute solution, with benefits on both
modelling and computation. A reliable finite element (FE) implementation of electrochemo-
mechanical theories for IPMCs is challenging because the IPMC behaviour is governed by
boundary layers (BLs) occurring in tiny membrane regions adjacent to the electrodes, where
steep gradients of species concentrations occur. We address this issue by adopting the gen-
eralized FE method to discretise the BLs. This allows unprecedented analyses of the IPMC
behaviour since it becomes possible to explore it under external actions consistent with
applications, beside obtaining accurate predictions with a reasonable computational cost.
Hence, we provide novel results concerning the influence of the membrane permittivity on
the species profiles at the BLs. Additionally, by leveraging on the mobility matrix, we estab-
lish that the initial peak deflection in actuation strongly depends on the constitutive equations
for the species transport and discuss the predictions of some experimental results from the
literature. Overall, we demonstrate the potential of the proposed model to be an effective
tool for the thorough analysis and design of IPMCs.
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1 Introduction

Ionic polymer metal composites (IPMCs) are transducers that exploit a sandwich structure
to enhance the actuation performance of the ionomeric membrane constituting their core
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(Asaka et al. [3], Shahinpoor and Kim [74]). The ionomer, which may be for instance made
by Nafion™ or less often by Flemion™, is soaked with a solution including ions that can
move within the ionomer macromolecules. These mobile ions are referred to as counterions
because they have opposite sign with respect to those fixed to the ionomer backbone chains,
usually consisting of anions.

In actuation, homogeneous electroactive elastomers, including ionomers, requires a too
high applied voltage to exhibit a suitably large displacement because of their low dielectric
permittivity. As nowadays well-known, this shortcoming can be overcome by appropriately
designing composite materials including soft dielectric phases [8, 14, 46, 55, 57, 72, 76]. In
IPMCs, this is accomplished by plating the membrane between thin sheets of noble metal,
acting as electrodes. This forces the occurrence, during actuation and short-circuit sensing,
of boundary layers (BLs) of very large variation of counterion concentration in thin mem-
brane regions at the interfaces with the electrodes. Hence, most of the voltage drop across the
IPMC actually occurs in the BLs, thus leading to a large electric field therein and, in turn,
to a high polarisation stress triggering complex electrochemomechanics (Kilic et al. [48],
Porfiri [67], Cha and Porfiri [28], Boldini and Porfiri [16], Boldini et al. [15]). It should be
noted that, although the IPMC performance is very good in actuation, weak electrostatic
interactions are observed for relatively large mechanical loads in IPMC sensing. This lack
of “symmetric performance” in the dual basic components of the IPMC electrochemome-
chanics has to be ascribed to the IPMC nonlinear behaviour.

This investigation focuses on the thermodynamically-consistent modelling of IPMCs,
which is an active area of research since the pivotal efforts of Nemat-Nasser and Li [62],
Nemat-Nasser and Zamani [63], Wallmersperger et al. [88], Nardinocchi et al. [61], and Cha
and Porfiri [28]. The essential features to be coupled in a multiphysical theory for IPMCs
are the electrostatics, the mechanics, and the transport of species. Although the importance
of the solvent motion has been pointed out since earlier contributions (Shahinpoor and Kim
[75], Schicker and Wallmersperger [73], Zhu et al. [90]), only recent efforts have included its
explicit and consistent modelling through additional flux law and mass balance with respect
to those describing the counterion transport (Boldini and Porfiri [17], Bardella and Leronni
[54], Olsen and Kim [64]). These theoretical studies, along with the recent experimental
campaign of Arnold at al. [1], in fact demonstrate the importance of modelling the solvent
flux, whose nonlinear interplay with the counterion flux sets the IPMC dynamic response.

Since the electrodes are substantially impermeable to mobile ions, electric double layers
of charge form in the membrane at the interfaces with the electrodes [67]. The thickness of
the electric double layers, which turns out to be comparable to that of the BLs, is on the
order of the Debye screening length [7, 10, 20]

�D = 1

F

√
εRθ

C0
, (1)

where F ≈ 96,485 C/mol is the Faraday constant, ε is the absolute permittivity of the mem-
brane, R ≈ 8.3145 J/(mol K) is the gas constant, θ is the absolute temperature, and C0

is the initial nominal molar concentration of counterions, which is assumed to be uniform
and coincident with the concentration of the anions fixed to the membrane backbones. Un-
der this circumstance, the system constituted by the ionomer saturated with the solution of
counterions is electroneutral.

At room temperature, �D may amount to a few tens of nanometres only for conventional
membranes [67], while the IPMC thickness is on the order of magnitude of tenths of mil-
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limetres. Therefore, the ratio

H

�D
= HF

√
C0

εRθ
, (2)

with H denoting the membrane semi-thickness, is extremely large.
Large gradients of electric potential and counterion concentration in thin BLs have al-

lowed leveraging on the magnitude of H/�D to develop useful analytical solutions, typically
through the method of matched asymptotic expansions [85], both in short-circuit sensing
[53, 69, 86, 87] and in actuation [65, 70, 71]. These efforts, mostly relying on the elec-
trochemomechanical theory of Cha and Porfiri [28], are however limited to relatively small
loads (e.g., low applied voltages in actuation), since these solutions are acceptable estimates
for mild nonlinearities only. Properly studying the IPMC nonlinear behaviour requires nu-
merical methods [15, 16], where the large value of the ratio in Eq. (2) poses an extremely
challenging issue, still unaddressed to the best of our knowledge.

This numerical issue ensuing from the presence of BLs has been pointed out in other
engineering applications involving the transport of charged species (Bauer et al. [9]) and
the difficulty of modelling the electric double layer at solid-state electrochemical interfaces
has been recently discussed by Swift et al. [81]. We are unaware of efficient computational
models to accurately and consistently resolve the BLs in IPMCs [15, 16, 54, 60].

In order to deal with this numerical issue, Narayan et al. [60] propose to fictitiously aug-
ment the BL size by largely increasing the permittivity (by a factor 107) in the Poisson equa-
tion, which, in fact, can be conveniently written in a form clearly displaying the role of �D in
setting the BL thickness [67]. However, this holds only in the linearised models, where the
electrochemistry, which is governed by the classical Poisson-Nernst-Planck (PNP) system
of equations, can be decoupled from the mechanics. We infer that including nonlinearities,
because of either the application of large external actions or the need to account for more
complex physics (typically in the species fluxes [54], or to account for non-ideal interactions
[19]), may make the response more difficult to foresee by relying on basic physical models.
Moreover, Narayan et al. [60] propose to maintain the “uninflated” material value of the
permittivity in the constitutive law defining the polarisation (Maxwell) stress as a function
of the electric field, in spite of its large modification in the Poisson equation, while other
authors consistently augment the permittivity value in all the equations where it enters the
adopted theory (see, e.g., [15, 54] and references therein). This has led to a debate in the
literature [20, 60] on the appropriate way to deal with the numerical issue ensuing from the
extremely small BL thickness for actual values of the IPMC permittivity. Boldini and Porfiri
[20] have argued that, in actuation, the permittivity should be consistently augmented in all
the equations governing the theory because of a compensation between the increase in the
Maxwell stress for a given electric field and the increase in the BL thickness (proportional
to

√
ε, see Eq. (1)), the latter leading to a decrease in the electric field for a fixed voltage

drop in the BLs. This conclusion of Boldini and Porfiri [20] not only relies on physical
models such as the conventional form of the Poisson equation and the constitutive law for
the Maxwell stress, but also on an implementation of the multiphysics theory proposed by
Narayan et al. [60] including some of its nonlinearities.

In addition, we note that this issue is made even more complicated by the uncertainty
on the actual value of the permittivity [20] and the lack of consensus on the definition of
Maxwell stress [23]. The arguments of [20] hold if the Maxwell stress in the current config-
uration (i.e., its contribution to the Cauchy stress) reads

σ pol = ε

[
e ⊗ e − 1

2
(e · e)I

]
, (3)
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which is the most common expression for the Maxwell stress in the IPMC literature and
is adopted in this investigation as well.1 Here and henceforth, e is the electric field in the
current configuration, ⊗ indicates the tensor product, · denotes the inner product, and I is
the second order identity tensor.

Moreover, all the foregoing models, adopted in order to draw conclusions on the role of
the permittivity on the IPMC behaviour, disregard an explicit description of the transport of
the solvent phase, which makes the whole picture much more entangled.

In this investigation we offer a contribution to this debate by proposing a robust finite
element (FE) implementation of an electrochemo-poromechanical IPMC theory obtained
by extending the proposal of [54], whose main feature, with respect to previous endeavors,
is the modelling of the transport of both counterions and solvent, including their cross-
diffusion. For the sake of brevity, henceforth, the theory of Leronni and Bardella [54] is
referred to as LB21. Here, we extend this theory (in Sect. 2) by removing the hypothesis
that counterions and solvent constitute a dilute solution. Hence, we change, with respect to
[54], the contribution to the Helmholtz free energy accounting for the mixing of species and,
more importantly, we enrich the constraint linking the membrane volume ratio to the species
motion by also including the counterion transport.

About the proposed FE implementation (reported in great detail in Sects. 3, 4, and 5),
its crucial feature is the use of generalized FEs (GFEs), whose implementation is a quite
simple extension of that required for standard isoparametric FEs [39]. Basically, it needs
the introduction of non-polynomial shape functions that enrich the capability to approxi-
mate the solution in the BLs. In this investigation we propose the use of a single enriching
function that is designed to control the gradients of the primal fields in the BLs. In order to
demonstrate the benefits of this implementation technique, we apply it both to the original
LB21 theory (whose algorithm is reported in Appendix C) and to its extension developed in
this work. To the best of our knowledge, the numerical models developed in this study are
the first ones in the literature that allow the analysis of the IPMC behaviour by linking it to
a detailed descriptions of the BLs for applied external actions consistent with applications
and experiments.

In order to demonstrate our findings, first, in Sect. 6, we validate the GFE algorithm
against the numerical results presented in [54], where the theory was implemented in COM-
SOL Multiphysics®. Notably, our implementation allows us to obtain accurate numerical re-
sults for cases that could not be solved in [54]. More specifically, both in actuation (Sect. 7.1)
and short-circuit sensing (Sect. 7.2), we can obtain results for much larger applied loads,
whose values match those of real applications. For instance, with the model parameters of
[54], in actuation the proposed GFE model converges for applied voltage drop across the
electrodes ψ0 = 2 V, against the maximum value of 0.25 V that could be applied with the
implementation in [54].

Also, we can obtain results for a wide range of model parameters, which was not possi-
ble with the implementation in [54]. This allows us to establish some shortcomings of the
LB21 theory that are fixed by the extension developed in this work, as discussed through the
numerical results of Sect. 7.3.

1Instead, on the basis of the continuum representation of the electric body force per unit volume in a polarised
medium, Dorfmann and Ogden [34] argue that the Maxwell stress should read

σ pol = ε e ⊗ e − 1

2
ε0(e · e)I ,

where ε0 ≈8.8542×10−12 C/(V m) is the vacuum permittivity.
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Then, in Sect. 8 we elaborate on the influence of the permittivity ε on the actuation
response, with focus on both the scaling of the IPMC response with ε and the capability of
the proposed GFE models to provide results for low ε. We highlight that the scaling expected
from inspection of Eqs. (1) and (3) holds only for suitably small applied voltages, thus for
instance avoiding that at the BL subject to counterion depletion the counterion concentration
vanishes, which would trigger a quite strong nonlinearity leading to different thicknesses of
the two BLs, followed by back-relaxation [70]. We also discuss the form of the mobility
matrix, which governs the constitutive laws for the solvent and counterion fluxes, showing
that the form proposed in [54], including cross-diffusion and convection, delivers better
predictions than the simplest diagonal form, the latter being however the sole one granting
us to observe, not only at steady state, the scaling with ε argued by Boldini and Porfiri [20].
This comparison also allows us to demonstrate that the constitutive laws for the fluxes have
an enormous impact on the prediction of the initial peak deflection in actuation.

Finally, in Sect. 9 we discuss the capability of the new theory implemented through
GFEs to provide reasonable predictions of the experimental results of He et al. [42] on the
actuation of Nafion™-Pt IPMCs subjected to applied voltage up to 3 V.

As detailed in the concluding remarks of Sect. 10, although several important open issues
remain to be addressed, we expect the present proposal to constitute a solid basis towards
the development of a reliable tool for the analysis and optimal design of IPMCs.

2 Extension of the LB21 Electrochemo-poromechanical Theory for
IPMCs

2.1 Kinematics and Balance Equations

The theory assumes that the IPMC membrane consists of a solid phase identifying with
a charged elastomer that is soaked with a fluid phase consisting of an uncharged solvent
in which counterions are immersed. Analogously to mixture theory, all the phases coexist
within each single material point (Ateshian [4]) and the fluid phase is assumed to always
saturate the membrane.

The mechanical deformation of each macroscopic material point is expressed in terms of
its deformation gradient

F = I + ∇u , (4)

where u = x−X is displacement vector, ∇ denotes the material gradient, such that (∇u)iJ =
∂ui/∂XJ ,2 and x and X are the current and the reference (material) position vectors. The
reference (initial) configuration is undeformed and electroneutral.

In [54] it is assumed that the solution of counterions and solvent is dilute, that is, C � Cs,
with C and Cs indicating the nominal molar concentrations of counterions and solvent,
respectively. Importantly, here we disregard this restriction. As specified in detail in the
following, this requires to modify a few key governing equations of the theory. However,
the major impact on the predictive capability of the model undoubtedly lies in the kinematic
constraint

J ≡ det F = 1 + v
(
C − C0

)+ vs
(
Cs − C0

s

)
, (5)

2Here and henceforth, index notation is referred to fixed rectangular Cartesian systems, small case and capital
case subscripts indicate the spatial and material coordinates, respectively, and Einstein’s summation conven-
tion over repeated indices is employed.
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where J is the volume ratio, v is the hydrated counterion molar volume (if the solvent is
water), vs is the solvent molar volume, and C0 and C0

s are the initial values of C and Cs,
respectively.

Equation (5) assumes that polymer chains, solvent molecules, and counterions are in-
trinsically incompressible, and, contrary to the simpler proposal in [54], establishes that the
volume ratio depends also on the counterion motion. This is crucial for the purposes of this
investigation, aiming at clarifying the role of the fluxes of counterions and solvent in the
IPMC response, which is strictly related to the capability of these species to either deplete
or accumulate at the BLs. To this purpose, Eq. (5) accounts for the volume fraction of the BL
region occupied by the counterions, thus describing a physically more appropriate picture
than that in [54], disregarding the term v(C −C0). Note that v is an extra material parameter
with respect to the LB21 theory. Moreover, since v is the molar volume of hydrated coun-
terions, Cs is the concentration of the water free to move independently of the counterions
only, which does not represent the total molar concentration of the solvent.

The rate form of Eq. (5) is

JF−T · Ḟ︸ ︷︷ ︸
J̇

−vĊ − vsĊs = 0 , (6)

where ˙( ) indicates partial time derivative, that is, ˙( )(X, t) ≡ ∂( )(X, t)/∂t .
As in [54], the membrane behaviour is governed by four balance equations written with

respect to the reference configuration. They are the overall linear momentum balance in the
absence of body forces

Div P = 0 , (7)

the solvent mass balance

Ċs + Div Js = 0 , (8)

the counterion mass balance

Ċ + Div J = 0 , (9)

and the Gauss law

Div D = F (C − C0) . (10)

Here and henceforth, P is the nominal stress tensor and Div is the material divergence, such
that (Div P)i = ∂PiJ /∂XJ ; Js and J are the nominal molar fluxes of free solvent and hydrated
counterions, respectively; D is the nominal electric displacement. Among the assumptions
behind these balance equations, we mention the rapidity in attaining the mechanical equi-
librium with respect to the time scale of the fluid phase transport (Hong et al. [45], Cha and
Porfiri [28]) and the unit valency assigned to both fixed and mobile ions, which is usually
the case for IPMCs.

2.2 Assumptions on the Electrode Behaviour

The balance of the electrodes relies on Eq. (7) only, because they are assumed to be perfect
conductors whose interface with the membrane is impermeable to solvent and counteri-
ons. Moreover, they are assumed to undergo purely elastic deformations governed by the
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Fig. 1 Cantilever IPMC subjected to an applied voltage ψ0 across the electrodes (non-zero in actuation)
and to an imposed nominal surface load T0 (non-zero in sensing): geometrical parameters, reference system,
and physical constituents. Taken from [54], where there is no distinction between free solvent molecules and
solvent molecules fixed to the counterions

isotropic Saint-Venant–Kirchhoff strain energy density

W e
mec(F) = λe

2
(tr E )2 + Ge tr

(
E 2
)

, (11)

where E = (C − I)/2 is the Green-Lagrange strain tensor, C = FTF is the right Cauchy-
Green deformation tensor, and λe = Eeνe/[(1 + νe)(1 − 2νe)] and Ge = Ee/[2(1 + νe)] are
the Lamé constants, here expressed in terms of the Young modulus Ee and the Poisson ratio
νe. Although IPMCs may undergo large displacement fields, the strains in the electrodes
are expected to be relatively small, such that any isotropic elastic law involving both Lamé
constants should provide about the same response. From the FE implementation perspective,
we find it convenient to adopt Eq. (11).

2.3 Geometry and Initial and Boundary Conditions

With reference to Fig. 1, the membrane thickness is 2H , each electrode thickness is h, and
the IPMC length is L. Usually, the IPMC is a slender sandwich structure with thin skins, i.e.
L � H � h.

The IPMC is clamped at the left end, such that u = 0 at X = 0, and is stress-free at
the edges X = L and Y = H + h. The remaining side is either stress-free in the actuation
problem or subjected to

PyY = −T0(t) at Y = −H − h (12)

in the sensing problem, where T0(t) is the time-varying amplitude of the distributed nominal
load.

The electrode impermeability requires vanishing fluxes at the interfaces, that is

JsY = 0 and JY = 0 at Y = ±H . (13)

Because of the IPMC slenderness, the edge effects at the IPMC ends are unimportant, thus
allowing us to impose zero-flux at X = 0 and X = L as well.
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The electrostatic boundary conditions are

ψ = ψ0(t)/2 at Y = H and ψ = −ψ0(t)/2 at Y = −H , (14)

with ψ denoting the electric potential and ψ0(t) the time-varying applied voltage drop across
the electrodes, which is zero in the short-circuit sensing problem. At the sides X = 0 and
X = L it is convenient to prevent charge accumulation by enforcing DX = 0.

Finally, the initial conditions read

Cs = C0
s and C = C0 at t = 0 , (15)

the latter ensuring electroneutrality at rest.

2.4 Internal Energy and Dissipation

Here we follow the Coleman-Noll procedure as in [54], with some differences due to adopt-
ing the constraint (5), instead of (80) as assumed in [54].

By introducing the nominal electric field

E = −∇ψ , (16)

the solvent chemical potential μs, the counterion chemical potential μ, and the counterion
electrochemical potential

μ̃ = μ + Fψ , (17)

the rate of the nominal internal energy in the membrane reads

U̇ = P · Ḟ + E · Ḋ + μsĊs + μĊ − Js · ∇μs − J · ∇μ̃ . (18)

Next, we impose non-negative dissipation by postulating the existence of a nominal
Helmholtz free-energy density W :

(
P + πJF−T

) · Ḟ+E · Ḋ+ (μs − vsπ) Ċs + (μ − vπ) Ċ −Js ·∇μs −J ·∇μ̃−Ẇ ≥ 0 , (19)

where π , physically describing the osmotic pressure field, is a Lagrange multiplier [29,
44, 89] needed to account for the constraint (5). In [54], because of the dilute solution
approximation, the analogous Lagrange multiplier (therein denoted as ps) is the solvent
pressure.

As in [54], W is a function of F, D, Cs, and C. Hence, Eq. (19) becomes

(
P + πJF−T − ∂W

∂F

)
· Ḟ +

(
E − ∂W

∂D

)
· Ḋ +

(
μs − vsπ − ∂W

∂Cs

)
Ċs

+
(

μ − vπ − ∂W

∂C

)
Ċ − Js · ∇μs − J · ∇μ̃ ≥ 0 ,

from which we can establish the general constitutive relations

P = ∂W

∂F
− πJF−T , E = ∂W

∂D
, μs = ∂W

∂Cs
+ vsπ , μ = ∂W

∂C
+ vπ , (20)
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where, differently from [54], the counterion chemical potential depends also on the Lagrange
multiplier.

Then, from Eqs. (19) and (20), the second law of thermodynamics results into the con-
straint

−Js · ∇μs − J · ∇μ̃ > 0 ∀ (Js,J) �= (0,0) . (21)

The standard way to fulfill this dissipation inequality consists of writing each flux as a linear
combination of ∇μs and ∇μ̃:

Js = −Mss∇μs − Mcs∇μ̃ , (22a)

J = −Mcs∇μs − Mcc∇μ̃ , (22b)

where the constitutive operators, to be specified such that Eq. (21) is satisfied, can be con-
veniently recast into a symmetric mobility matrix (Onsager [66]) M as

M =
[

Mss Mcs

Mcs Mcc

]
, such that

[
Js

J

]
= −M

[∇μs

∇μ̃

]
. (23)

We remark that assuming Mcs �= 0 allows modelling the cross-diffusion (Vanag and Epstein
[84]), which has been accounted for in [54, 90] to model IPMCs.

A suitable general expression of the mobility matrix accounting for the present finite de-
formation framework ensues from the Maxwell-Stefan approach to mass transport in mul-
ticomponent systems [51, 58, 80], also successfully followed in recent contributions where
the kinetics of polyelectrolyte gels has to be accounted for [25, 89]. It leads to

Mss = 1

Rθ
C−1mss , Mcs = 1

Rθ
C−1mcs , Mcc = 1

Rθ
C−1mcc , (24)

where the scalar components mss, mcs, and mcc in general involve appropriate material pa-
rameters governing the diffusivity and also depend on C and Cs. In order to satisfy the dissi-
pation inequality (21), for non-vanishing concentrations, these components are constrained
such that

mssmcc − m2
cs > 0 . (25)

By introducing the compact notation

W,ss ≡ ∂2W

∂C2
s

, W,cs ≡ ∂2W

∂C∂Cs
, W,cc ≡ ∂2W

∂C2
,

and assuming that ∂2W/(∂C∂Cs) = ∂2W/(∂Cs∂C), combination of Eqs. (17), (20c), (20d),
and (22a), (22b)–(24) provides the general expressions for the fluxes

Js = C−1

Rθ

[
(mssW,cs + mcsW,cc)∇C + (mssW,ss + mcsW,cs)∇Cs

+ (mssvs + mcsv)∇π + Fmcs∇ψ
]
, (26)
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J = C−1

Rθ

[
(mcsW,cs + mccW,cc)∇C + (mcsW,ss + mcsW,cc)∇Cs

+ (mcsvs + mccv)∇π + Fmcc∇ψ
]
. (27)

2.5 Specific Form of the Membrane Free-Energy Density

While it is postulated that the last two contributions to U̇ in (18) have dissipative nature, P,
E, μs, and μ are obtained by deriving with respect to F, D, Cs, and C the Helmholtz free
energy

W(F,C,Cs,D) = Wmec(F) + Wmix(C,Cs) + Wpol(F,D) , (28)

which is assumed to consist of the three contributions Wmec, Wmix, and Wpol separately ac-
counting for the membrane deformation, the mixing of free solvent molecules and hydrated
counterions, and the membrane polarisation, respectively. A more sophisticated free energy,
considering non-idealities, has been recently put forward by Boldini and Porfiri [19].

As in [54], the membrane elasticity is governed by the isotropic compressible Neo-
Hookean model proposed by Simo and Pister [79]

Wmec(F) = G

2
(I1 − 3) − G lnJ + 1

2
λ ln2 J , (29)

where I1 = tr C and λ and G are the Lamé parameters of the membrane, having Young
modulus E and Poisson ratio ν. The coupling of the deviatoric and volumetric behaviours
in Eq. (29) is a feature usually needed in order to capture the elastomeric large deformation
response (Holzapfel [44], Boyce and Arruda [22]). As shown in [54], the use of a model in-
volving both Lamé parameters allows a better control of the interaction between the solvent
flux and the volumetric deformation, which is important in the adopted poromechanical
context, where it plays a significant role in the counter-diffusion phenomena occurring in
actuation and sensing. In the present theory, the availability of two elastic constants is even
more important because constraint (5) also relates the volume ratio to the hydrated counte-
rion motion. 3

We remark that the membrane elastic deformation could be constrained to be isochoric
by adopting a richer kinematics in which F would involve inelastic contributions, such as the
viscoplastic contribution proposed by Silberstein and Boyce [77] to describe the Nafion™
behaviour, or the swelling contribution adopted by Narayan et al. [60] to model IPMC actu-
ation. In the terminology of Giantesio et al. [40], this swelling contribution to F is an “active
strain” that accounts for osmosis, while in the present theory we follow Hong et al. [45] and
Cha and Porfiri [28], thus adopting an “active stress” framework for both polarisation and
osmosis.

By assuming that the fluid phase is an ideal solution of solvent and counterions (Fermi
[37], Ateshian [4], Kondepudi and Prigogine [50]) that displays purely entropic behaviour,
the free energy of mixing may be specified as

Wmix(C,Cs) = RT

(
C ln

C

C + Cs
+ Cs ln

Cs

C + Cs

)
, (30)

3Earlier studies relying on the Cha and Porfiri [28] electrochemomechanical theory, although resorting to
the uncoupled Saint-Venant–Kirchhoff strain energy density for the membrane, had already unveiled the
importance of describing the membrane elasticity with both Lamé parameters in order to capture the complex
deformation field at the BLs [15, 16].
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which is consistent with the assumed incompressibility of all the membrane phases (Boldini
and Porfiri [18]) and is different from the form employed in [54], where Wmix(C,Cs) is
simplified under the hypothesis that C � Cs.

The membrane is assumed to behave as an ideal dielectric, whose polarisation free energy
reads

Wpol(F,D) = C · (D ⊗ D)

2εJ
. (31)

Next, we write the constitutive laws for the recoverable quantities, which are obtained from
the foregoing equations.

The total nominal stress in the membrane reads

P = Pmec + Posm + Ppol , (32)

with

Pmec = dWmec(F)

dF
= G(F − F−T) + λ lnJF−T

denoting the mechanical contribution,

Posm = −πJF−T

denoting the osmotic contribution proportional to the Lagrange multiplier π , and

Ppol = ∂Wpol(F,D)

∂F
= 1

2εJ

[
2F(D ⊗ D) − C · (D ⊗ D)F−T

]

denoting the polarisation contribution, that is usually referred to as the Maxwell stress.
It is convenient to write the total pressure p (positive if compressive) in terms of the

Cauchy stress σ = PFT/J :

p ≡ −1

3
tr σ = − 1

J

[
G

(
1

3
I1 − 1

)
+ λ lnJ

]
︸ ︷︷ ︸

pmec

+π + 1

6ε
d · d︸ ︷︷ ︸

ppol

,

where d = J−1FD = ε e is the current electric displacement (Dorfmann and Ogden [33]).
By inverting (20b) and using (16), the nominal electric displacement reads

D = −εJC−1∇ψ . (33)

The solvent chemical potential is obtained by combining Eqs. (20c) and (30) into

μs = Rθ ln
Cs

C + Cs
+ vsπ , (34)

whereas the counterion chemical potential μ ensues from combination of Eqs. (20d) and
(30), then leading to the counterion electrochemical potential (17) in the form

μ̃ = Rθ ln
C

C + Cs
+ vπ

︸ ︷︷ ︸
μ

+Fψ . (35)
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2.6 Non-dimensional Electrochemical Primal Variables

In view of the FE implementation, it is convenient to introduce non-dimensional primal vari-
ables, as customary when analytically solving linearised electrochemomechanical problems
for IPMCs (see, e.g., [15, 65, 86] and references therein). Selecting the optimal set of them
is a non-trivial task that we have accomplished by evaluating several numerical aspects, here
unreported for the sake of brevity.

First, the non-dimensional chemical potential μ̄
 is defined as

μ̄
 = 1

Rθ
[μ − μs − (v − vs)π] = ln

C

Cs
. (36)

By adopting the symbol r for the ratio between counterion and solvent concentrations,

r = C

Cs
, (37)

we can re-write Eq. (36) in the simple and compact form

r = exp (μ̄
) . (38)

Also, for later reference, it is convenient to combine Eqs. (37) and (5) to determine Cs as a
function of J and r :

Cs = J + vC0 + vsC
0
s − 1

vr + vs
. (39)

Second, the non-dimensional osmotic pressure π̄ is defined as

π̄ = v0 π

Rθ
, (40)

where4

v0 = v + vs

2
.

Third, the non-dimensional electric potential ψ̄ is defined through the thermal voltage
Rθ/F as

ψ̄ = F

Rθ
ψ . (41)

Equations (40) and (41) allow the solvent and counterion chemical potentials to be written
as

μs = Rθ

[
vs

v0
π̄ − ln (1 + r)

]
, (42)

4Another option to obtain a non-dimensional pressure is to define it as π/(RθC0), without any significant
change for the numerics with respect to (40), given that the volume fraction vC0 is on the order of a few tenth
of unity. We note, however, that the use of suitable preconditioners in solving the algebraic systems involved
in the FE algorithm might make the non-dimensionalisation an inessential step.
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μ = Rθ

[
v

v0
π̄ + ln

(
r

1 + r

)]
= Rθ

[
v

v0
π̄ + μ̄
 − ln (1 + r)

]
. (43)

Therefore, the counterion electrochemical potential (17) results

μ̃ = Rθ

[
v

v0
π̄ + μ̄
 − ln (1 + r) + ψ̄

]
. (44)

On the basis of definitions (42) and (44), the gradients of the potentials that determine the
fluxes (23) are

∇μs = Rθ

(
vs

v0
∇π̄ − r

1 + r
∇μ̄


)
, ∇μ̃ = Rθ

(
v

v0
∇π̄ + 1

1 + r
∇μ̄
 + ∇ψ̄

)
. (45)

Finally, we introduce the non-dimensional time

t̄ = D

H�D
t , (46)

where D is the counterion diffusivity entering the coefficients (24) of the mobility matrix
M , as explained next.

2.7 Specific Constitutive Laws for the Counterion and Solvent Fluxes

The expression for the fluxes are obtained through an appropriate definition of the mobility
matrix M in Eqs. (23)-(24) (Ateshian [4], Gurtin et al. [41], Zhang et al. [89]).

In this investigation, we consider

mss = DsCs , mcs = γDsC , mcc =
(

γDs
C

Cs
+ D

)
C , (47)

where Ds is the solvent diffusivity and the non-dimensional parameter γ can switch on and
off the cross-diffusion and the counterion transport by convection. Setting γ = 1 recovers
the form adopted in [54], while γ = 0 leads to the simplest possible diagonal form of M ,
suppressing both cross-diffusion and counterion transport by convection.

From Eq. (25), in order to ensure non-negative dissipation, γ must be limited as γ (γ −
1) < DCs/(DsC), which is straightforwardly satisfied in the cases here of interest γ = 1
and γ = 0.

The form of (47) of M is convenient as we will resort to the case γ = 1 both to vali-
date our numerical results against those in [54] and to demonstrate that our implementation
allows overcoming the limits of the FE model in [54], while we will assume the simple diag-
onal form of (47) (that is, γ = 0) in Sect. 8, to discuss the outcomes of other IPMC models
from the literature, with focus on the expected scaling of the BL size with the permittivity
value, as suggested by Eq. (2).

Let us clarify that within the LB21 theory (γ = 1), consistently with the dilute solution
approximation, Ds is the solvent diffusivity in the polymer network and D is the counterion
diffusivity in the solvent. Instead, in the present theory, where the solution is not necessarily
dilute, both Ds and D assume the role of diffusivity of a species in the medium constituted
by the polymer network and the other species.

We observe that in the context of non-dilute solutions there is room for more sophis-
ticated constitutive laws than those in Eq. (47) for the coefficients of the mobility matrix
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(Vanag and Epstein [84], Kondepudi and Prigogine [50]). However, the prescriptions in
Eq. (47) are appropriate for the purposes of this investigation.

By combining Eqs. (23), (45), and (47), we obtain the fluxes:

Js = −DsCsC−1

[
(γ − 1)r

1 + r
∇μ̄
 + vs + γ rv

v0
∇π̄ + γ r∇ψ̄

]
, (48)

J = −rDCsC−1

{
1

1 + r
∇μ̄
 + 1

v0

[
Ds

D
γ (vs + rv) + v

]
∇π̄ +

(
Ds

D
γ r + 1

)
∇ψ̄

}
. (49)

As in [54], setting γ = 1 implies that the solvent flux is independent of ∇μ̄
 (i.e., indepen-
dent of both ∇C and ∇Cs), while it includes the electro-osmosis through its dependence
on ∇ψ̄ , which some investigators indicate as an important contribution to solvent trans-
port in IPMC actuation (Asaka and Oguro [2], Shahinpoor and Kim [75], Zhu et al. [90]).
The opposite is obtained by choosing γ = 0, whereby Js depends on ∇μ̄
 and there is
no electro-osmotic contribution. Moreover, rearranging the contributions in Eq. (49) allows
one to single out the convective contribution to the counterion flux with the solvent [54],
which reads CJs/Cs and plays a role in sensing, where a mechanical load moves the solvent
along its pressure gradient, transporting some counterions. The solvent motion sets a vol-
ume ratio gradient that leads to an additional counterion Fickian diffusion governed by the
terms dependent on ∇Cs in Eq. (49), which can be unveiled by substituting definition (36)
in Eq. (49).

Instead, the value of γ has much less impact on the functional form of the counterion
flux, always displaying dependence on ∇μ̄
, ∇π̄ , and ∇ψ̄ . Specifically, in the limit case
of fixed solvent (Ds = 0) and for γ = 1, in Eq. (49) it is possible to recognise the classical
Nernst-Planck law, written with respect to the reference configuration, establishing that both
∇C (Fick effect) and ∇ψ (electrophoretic effect) concur to the counterion migration (Porfiri
[67]).

3 Finite Element Implementation

3.1 Weak Form of the Balance Equations

For the nodal degrees of freedom (DOFs), we select the displacement vector u along with
the non-dimensional electric potential ψ̄ , chemical potential μ̄
, and osmotic pressure π̄ ,
as defined in Eqs. (41), (36), and (40), respectively. It should be noted that adopting a non-
dimensional displacement such as u/H does not change much at all the numerics. When
discussing the results, we will comment on other possible choices as a function of the BLs
size.

The weak form of the balance equations is obtained by integrating over the whole refer-
ence domain � of the membrane the variation of its internal energy rate provided in Eq. (18).
By further making use of the equations presented in Sect. 2, we obtain

∫
�

δU̇dV =
∫

�

[
P · δ∇u̇ − Rθ

( 1

F
Ḋ + J

)
· δ∇ψ̄ + Rθ

v0
J̇ δπ̄ + Rθr

1 + r

(
Cs ˙̄μ


+ Js + J
1 + r

· ∇μ̄


)
δμ̄
 + Rθ

1 + r
(rJs − J) · δ∇μ̄
 − Rθ

v0
(vsJs + vJ) · δ∇π̄

]
dV , (50)
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where δ denotes an admissible variation of the field it is applied to and J̇ and Cs are ob-
tained from Eqs. (6) and (39) in terms of the time and spatial derivatives of u (involving the
deformation gradient).

The FE formulation adopted in the electrodes is standard, and it is reported in Appendix A
for the sake of completeness.

3.2 Isoparametric FE Formulation and Array Notation for the IPMC
Two-Dimensional Problem

The conventional FE discretisation relies on the shape functions Ni(ξ, η), with i = 1, . . . ,N ,
where N denotes the number of nodes of each FE and ξ ∈ [−1,1] and η ∈ [−1,1] are the
intrinsic coordinates of the parent element. We use the same shape functions to interpolate
all the nodal DOFs, by adopting isoparametric FEs such that

X(ξ,η) =
N∑

i=1

X̂iNi(ξ, η) , Y (ξ, η) =
N∑

i=1

ŶiNi(ξ, η) , (51)

where X̂i and Ŷi indicate the nodal values of the coordinates in the reference configuration
and, as usual, the polynomial shape functions build a partition of unit, i.e.

N∑
i=1

Ni(ξ, η) = 1 . (52)

The shape function vector is defined as

N = [
N1 N2 . . . NN

]
T ,

with ( )T denoting the transpose operation. Hence, the non-dimensional discretised potential
μ̄
 and osmotic pressure π̄ read, respectively,

μ̄
 = μ̄
0 + NT μ̂
 and π̄ = NT π̂ππ ,

where μ̄
0 = ln(C0/C0
s ) and the vectors μ̂
 and π̂ππ, both having dimension N , contain the

nodal DOFs. Note that, to avoid a too complex notation, for these two scalar quantities we
adopt the same symbols for the exact and the discretised fields.

The displacement is described by the vectorial field

u = [
ux uy

]
T ,

whose values at the nodes are collected in the vector

û = [
ux1 uy1 ux2 uy2 . . . uxN uyN

]
T .

In the FE implementation, the second order tensors are stored in a single column array,
whereas fourth order tensor components are stored in two-dimensional arrays.

By considering the deformation gradient F under plane-strain conditions, the relevant
components of the matrix [F] are converted into a single-column array of dimension 4 ac-
cording to the rule

[F] =
[
FxX FxY

FYx FyY

]
→ F = [

FxX FyY FxY FyX

]
T . (53)
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Here and henceforth, the symbol → denotes the conversion from tensorial notation to array
notation, the latter being exactly that followed in the implementation, as in de Souza Neto
et al. [31].

The deformation gradient can then be computed as a function of the displacements at
nodes as

F = A û + I ,

where

A = A(ξ, η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂X
0

∂N2

∂X
0 . . .

∂NN

∂X
0

0
∂N1

∂Y
0

∂N2

∂Y
. . . 0

∂NN

∂Y
∂N1

∂Y
0

∂N2

∂Y
0 . . .

∂NN

∂Y
0

0
∂N1

∂X
0

∂N2

∂X
. . . 0

∂NN

∂X︸ ︷︷ ︸
2N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

I = [
1 1 0 0

]
T .

The volume ratio is written as

J = det[F] = FxXFyY − FyXFxY (54)

and the relevant components of the right Cauchy-Green deformation tensor are collected
into

[C] = [F]T [F] → C = [
CXX CYY CXY CYX

]
T

= [
F2

xX + F2
yX F2

xY + F2
yY FxXFyX + FxY FyY FxXFyX + FxY FyY

]
T . (55)

The two non-vanishing components of the gradient of scalar quantities are computed through
the intrinsic coordinates ξ , η by using the matrix operator

G = G(ξ, η) =

⎡
⎢⎢⎣

∂N1

∂X

∂N2

∂X
. . .

∂NN

∂X

∂N1

∂Y

∂N2

∂Y
. . .

∂NN

∂Y︸ ︷︷ ︸
N

⎤
⎥⎥⎦ ,

such that, for example, the gradient of the non-dimensional electric potential reads

∇ψ̄ ≡
[

∂ψ̄

∂X

∂ψ̄

∂Y

]T

= G ψ̂ , (56)

where the components of the vector ψ̂ are the nodal values of ψ̄ .
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The nominal stress, electric displacement, solvent flux, and counterion flux are, respec-
tively, represented by the vectors

P = [
PxX PyY PxY PyX

]
T , D = [

DX DY

]
T ,

J = [
JX JY

]
T , Js = [

JsX JsY

]
T .

By referring to the non-dimensional time defined in Eq. (46), the incremental initial value
problem aims at evaluating all the unknowns at the end of a suitably small time step[
t̄n, t̄n+1

]
, where all quantities are known at time t̄n. All quantities at time t̄n are indicated

with a subscript n, while, to keep the notation as simple as possible, we drop the analogous
subscript n + 1 for the quantities evaluated at t̄n+1.

We adopt a fully implicit time-integration scheme where the increment of a generic vari-
able q is defined as


q = q(t̄n+1) − q(t̄n) = q − qn .

Upon integration over the time step


t̄ = t̄n+1 − t̄n ,

the discretised increment of internal energy (50) reads

δU =
∫

�

{
PT (A δû) − Rθ

( 1

F

D + J
t

)T

(G δψ̂)

+ Rθr

1 + r

[
Cs 
μ̄
 + 
t

1 + r
(Js + J)T ∇μ̄

]
(NT δμ̂
) + Rθ
t

1 + r
(rJs − J)T (G δμ̂
)

+ Rθ

v0

[

JNT δπ̂ππ− 
t (vsJs + vJ)T (Gδπ̂ππ)

]}
dV , (57)

where, by inverting Eq. (46),


t = H�D

D

t̄ .

In the present notation, the inverse of the tensor C can be computed as:

[C]−1 → 1

det [C]
RC = 1

J 2
CR ,

where

R =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦

and

CR = [CYY CXX −CXY −CXY

]T
. (58)
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It is convenient to further introduce the matrix-vector product � between the generic plane
tensor τ and 2D vector v in array notation:

[τ ] v =
[
τ11 v1 + τ12 v2

τ21 v1 + τ22 v2

]
→ τ � v =

[
τ1 v1 + τ3 v2

τ4 v1 + τ2 v2

]
.

By using Eqs. (33) and (56), the nominal electric displacement can then be computed as

D = −εRθ

F

1

J
CR � ∇ψ̄ . (59)

By computing

[F]−T → 1

J
FRT ,

where

FRT = RTF = [FyY FxX −FyX −FxY

]T
(60)

and

RT =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎤
⎥⎥⎦ ,

the mechanical contribution to the total nominal stress P (32) is

Pmec = G(F − 1

J
FRT) + λ lnJ

J
FRT , (61)

while the osmotic stress reads

Posm = −Rθ

v0
π̄ FRT , (62)

and the Maxwell stress can be written as

Ppol = 1

2εJ

[
2F ◦ ω −

(
1

J
CT ω

)
FRT

]
, (63)

where the second order tensor ω is defined in terms of the electric displacement D as

[ω] = [D ⊗ D] → ω =

⎡
⎢⎢⎣

D2
X

D2
Y

DXDY

DXDY

⎤
⎥⎥⎦ (64)
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and ◦ denotes the matrix product between the two second order tensors F and ω, with the
latter a dyadics as in (64), such that

[F] [ω] =
[
FxXD2

X + FxY DXDY FxXDXDY + FxY D2
Y

FyY DXDY + FyXD2
X FyY D2

Y + FyXDXDY

]
→

F ◦ ω =

⎡
⎢⎢⎣

FxXD2
X + FxY DXDY

FyY D2
Y + FyXDXDY

FxXDXDY + FxY D2
Y

FyY DXDY + FyXD2
X

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

F1ω1 + F3ω4

F2ω2 + F4ω3

F1ω3 + F3ω2

F2ω4 + F4ω1

⎤
⎥⎥⎦

The solvent concentration Cs is computed as in (39) and the fluxes can be written in array
notation as

Js = −DsCs

J 2
CR �

[
(γ − 1)r

1 + r
∇μ̄
 + vs + γ rv

v0
∇π̄ + γ r∇ψ̄

]
, (65)

J = − rDCs

J 2
CR �

{
1

1 + r
∇μ̄
 + 1

v0

[
Ds

D
γ (vs + rv) + v

]
∇π̄ +

(
Ds

D
γ r + 1

)
∇ψ̄

}
. (66)

The internal pseudo-forces read

Fu =
∫

�

AT PdV , Fψ̄ =
∫

�

−RθGT
( 1

F

D + J
t

)
dV , (67)

Fμ̄

=
∫

�

{ Rθr

1 + r

[
N
(
Cs 
μ̄
 + 
t

1 + r
(Js + J)T ∇μ̄


)]
+ Rθ
t

1 + r
GT (rJs − J)

}
dV , (68)

Fπ̄ =
∫

�

Rθ

v0

[
N
J − GT (vsJs + vJ)
t

]
dV . (69)

The consistent “stiffness matrix” K, of dimension 5N × 5N , required to complete the FE
algorithm and ensure second order convergence of the global Newton-Raphson scheme is
defined as the differentiation of the right-hand sides of Eqs. (67)–(69) with respect to the
incremental nodal variables and reads

K =

⎡
⎢⎢⎣

Kuu Kuψ̄ 0 Kuπ̄

Kψ̄u Kψ̄ψ̄ Kψ̄μ̄

Kψ̄π̄

Kμ̄
u Kμ̄
ψ̄ Kμ̄
μ̄

Kμ̄
π̄

Kπ̄u Kπ̄ ψ̄ Kπ̄ μ̄

Kπ̄ π̄

⎤
⎥⎥⎦ , (70)

whose submatrices are provided in Appendix B.

4 Generalized Finite Element Extension

In order to obtain a numerical model able to accurately represent the IPMC response, we
adopt the generalized FE (GFE) method (GFEM, see, e.g., Fries and Belytschko [39] and
references therein) to enrich the model in thin membrane regions adjacent to the electrodes,
where high gradients of most physical quantities occur. In fact, resolving these BLs, whose
size is on the order of magnitude of the Debye screening length �D (1), through classical FE
requires too tiny elements in the BL regions. This causes fatal floating point errors due to the
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extremely large ratio between the IPMC thickness 2H and �D (see Eq. (2)). Alternatively,
the use of an appropriately regular mesh would require a number of standard FEs resulting
in an unbearably large numerical cost.

Following Fries and Belytschko [39], we adopt the GFE approximation

g(ξ, η) =
N∑

i=1

âiNi(ξ, η) +
N∑

i=1

b̂iNi(ξ, η)f (Y ) (71)

of a generic function g(ξ, η), where âi are conventional nodal DOFs, Ni(ξ, η) are standard
polynomial functions as in Eq. (51), b̂i are additional nodal DOFs, and f (Y ) is referred to
as the enrichment function, whose role is to bring into the FE discretisation some knowledge
of the solution. In the case of IPMCs, f (Y ) accounts for the high gradients in the BLs and
it is convenient to refer it to the real reference coordinate Y .

Since we consider the standard FE geometric discretisation (51), for which Eq. (52) holds
in the whole domain �, it can be demonstrated that Eq. (71) can exactly reproduce any
enrichment function f (Y ) in any subset of � discretised by GFEs (Babuška and Melenk
[6, 59]).

One of the main complications arising with the GFEM is that, obviously, the field value g

at i-th node does not coincide with âi nor with b̂i . For this reason, special care must be taken
to ensure the continuity at the interfaces between standard and enriched elements, where b̂i

must be constrained to vanish to ensure a smooth variation of the field g. Such interfaces are
located at Y = ±H (see Fig. 1) and Y = ±(H − �ε), where �ε ≥ �D is the thickness of the
rectangular domains (of length L) that are discretised by GFEs.

Moreover, it is desirable that the Dirichlet boundary conditions (13) and (14) could be
imposed by directly setting the value ḡ at Y = ±H .

The foregoing issues are addressed by resorting to the so-called “δij property”, which
consists in properly shifting f (Y ) such that, at each i-th node, the nodal DOF b̂i multiplies
a vanishing enrichment function. This requires the modification of Eq. (71) into

g(ξ, η) =
N∑

i=1

âiNi(ξ, η) +
N∑

i=1

b̂iNi(ξ, η)
[
f (Y ) − f (Ŷi)

]
. (72)

It should be noted that this modification, strongly advised by Fries and Belytschko [39], does
not compromise the capability of reproducing f (Y ) in the GFE domain (Belytschko et al.
[11]). Although more enrichment functions fi(Y ) (with i = 1, . . . ,N ) could be introduced
in the discretisation, here we adopt a single enrichment function.

The derivatives of g(ξ, η) can then be computed with respect to the intrinsic coordinates
as

∂g

∂ξ
=

N∑
i=1

âi

∂Ni

∂ξ
(ξ, η) +

N∑
i=1

b̂i

[
∂Ni

∂ξ
(ξ, η)

(
f (Y ) − f (Ŷi)

)
+ Ni(ξ, η)

df

dY
(Y )

∂Y

∂ξ
(ξ, η)

]
,

∂g

∂η
=

N∑
i=1

âi

∂Ni

∂η
(ξ, η) +

N∑
i=1

b̂i

[
∂Ni

∂η
(ξ, η)

(
f (Y ) − f (Ŷi)

)
+ Ni(ξ, η)

df

dY
(Y )

∂Y

∂η
(ξ, η)

]
,

where

∂Y

∂ξ
=

N∑
i=1

Ŷi

∂Ni

∂ξ
(ξ, η) and

∂Y

∂η
=

N∑
i=1

Ŷi

∂Ni

∂η
(ξ, η) .
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Fig. 2 Plot of f (Y ) near the interface at Y = −H for α = 0.1, H = 0.1 mm, �ε = 0.001 mm

Finally, the computation of the derivatives of g(ξ, η) with respect to X, Y is totally stan-
dard, requiring the inverse of the FE Jacobian matrix determined in terms of ∂Ni(ξ, η)/∂ξ ,
∂Ni(ξ, η)/∂η, and the nodal coordinates X̂i , Ŷi .

The enrichment function f (Y ) plays a fundamental role in the predictive capability of
the GFE model. Here, f (Y ) is obtained by modifying the enrichment function proposed by
Benvenuti et al. [12, 13]. Specifically, we assume

f (Y ) = H

α

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − exp
(
α

|Y | − H

H

)

1 − exp
(
−α

�ε

H

) if H − |Y | ≤ �ε ,

1 if H − |Y | > �ε ,

(73)

where α is a non-dimensional parameter to be tuned in order to represent the gradients of
the relevant fields occurring in the BLs, over which f (Y ) behaves as shown in Fig. 2 for a
specific choice of α, �ε , and H . An important feature of this f (Y ) is that it tends to become
spatially uniform for |Y | → H − �ε , i.e., far enough from the high-gradient region for a
suitable choice of �ε > �D. This strategy moves the problematic “linear dependencies” that
may affect the GFEM away from the region whose behaviour is difficult to capture and
governs the IPMC response. Such “linear dependencies” refer to redundancy in the spatial
discretisation [39] and may lead to ill-conditioned global tangent “stiffness” matrix. This
is an important issue in commercial codes, such as ABAQUS/Simulia [30] adopted in this
investigation, where the user may not control the solver preconditioner nor the accuracy in
solving linear systems.
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Moreover, the derivative of f (Y ) is non-vanishing in |Y | ≥ H − �ε , where it reads

df

dY
=

− Y

|Y | exp
(
α

|Y | − H

H

)

1 − exp
(
−α

�ε

H

) .

It should be noted that the proposed f (Y ) in Eq. (73) has the unit of length. Although this
leads to an annoying dimensional non-homogeneity of the âi and b̂i DOFs, it grants a good
control of the gradients in the BLs, because df/ dY is non-dimensional. Our numerical
experiments have suggested Eq. (73) as the best option among several attempts we tried
for f (Y ). Specifically, definition (73) for f (Y ) allows us to avoid as much as possible ill-
conditioned matrices, which may occur for non-dimensional definitions of f (Y ), lacking a
reliable control of the gradients.

4.1 Spatial Integration

Due to the high nonlinearity of the enrichment function (73), a large number of Gauss points
must be adopted in the GFEs for the numerical integration of both the pseudo-forces and the
stiffness matrices. However, the nature of the expected solution allows us to save some
computational cost by adopting a non-isotropic distribution of the Gauss point positions.
Specifically, each GFE has 3 Gauss points along the X direction and 20 Gauss points along
the Y directions.5

Although this simple approach does not introduce any particular issue at the implemen-
tation level, it leads to a convoluted post-processing of the results. This is because contour-
plots need the field variables computed in the Gauss points to be mapped at nodes, and their
accurate evaluation requires the use of the extended shape functions, usually unavailable in
standard post-processing codes.

4.2 Enriched DOFs and GFE Operators

In the proposed FE model, the enriched discretisation (72) is adopted for the four scalar
fields uy , ψ̄ , μ̄
, and π̄ . By denoting with

Ne
i (ξ, η) = Ni(ξ, η)[f (Y ) − f (Ŷi)]

the enriched shape functions referred to the i-th node and by defining the array of size 2N

Ñ = [N1 Ne
1 N2 Ne

2 . . . NN Ne
N

]T
,

the chemical potential and the osmotic pressure are discretised as

μ̄
 = μ̄
0 + ÑT μ̃
 , π̄ = ÑT π̃ππ , (74)

where the 2N nodal unknowns are stored in the two arrays

μ̃
 = [ μ̄
1 μ̄e

1 μ̄
2 μ̄e


2 . . . μ̄
N μ̄e

N

]T
,

π̃ππ = [ π̄1 π̄ e
1 π̄2 π̄ e

2 . . . π̄N π̄ e
N

]T
.

5The comparison with the results obtained by using GFEs with 15 Gauss points in the Y direction has shown
negligible differences.
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The 2D vector gradients can be computed by introducing the operator

G̃ =

⎡
⎢⎢⎣

∂N1

∂X

∂Ne
1

∂X

∂N2

∂X

∂Ne
2

∂X
. . .

∂NN

∂X

∂Ne
N

∂X

∂N1

∂Y

∂Ne
1

∂Y

∂N2

∂Y

∂Ne
2

∂Y
. . .

∂NN

∂Y

∂Ne
N

∂Y︸ ︷︷ ︸
2N

⎤
⎥⎥⎦ ,

so that

∇μ̄
 = G̃μ̃
 , ∇π̄ = G̃π̃ππ , ∇ψ̄ = G̃ψ̃ , (75)

where

ψ̃ = [ ψ̄1 ψ̄e
1 ψ̄2 ψ̄e

2 . . . ψ̄N ψ̄e
N

]T
.

Finally, by storing the displacement unknowns in the array

ũ = [ux1 uy1 ue
y1 ux2 uy2 ue

y2 . . . uxN uyN ue
y1

]T
having size 3N, the deformation gradient can be computed as

F = Ãũ + I , (76)

where

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂X
0 0

∂N2

∂X
0 0 . . .

∂NN

∂X
0 0

0
∂N1

∂Y
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∂Y
0

∂N2

∂Y

∂Ne
2

∂Y
. . . 0

∂NN

∂Y

∂Ne
N

∂Y
∂N1

∂Y
0 0

∂N2
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0 0 . . .

∂NN

∂Y
0 0

0
∂N1

∂X

∂Ne
1

∂X
0

∂N2

∂X

∂Ne
2

∂X
. . . 0

∂NN

∂X

∂Ne
N

∂X︸ ︷︷ ︸
3N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Each node of the enriched FE has then 9 DOFs.
The internal pseudo-forces and the consistent “stiffness matrix” (now of dimension

9N × 9N ) for the GFEs have the same forms as those in Eqs. (67)-(69), (70), and Ap-
pendix B, except that the operators N, G, and A must be simply substituted with Ñ, G̃, and
Ã, respectively.

The FE algorithms employed in this investigation have been implemented in user element
subroutines (uel) for the commercial FE code ABAQUS/Simulia [30].

5 Finite Element Model

5.1 Spatial Discretisation

The simple geometry of IPMCs allows their FE mesh to be “structured”, i.e., constituted
by rectangular elements. For the standard FEs, we always adopt quadratic shape functions
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that, in conjunction with the structured mesh, minimise the integration errors of both the
internal forces and the residuals, even when we have to resort to FEs with “bad” aspect ratio
to reach the required fine discretisation along the membrane thickness without unnecessarily
enriching the discretisation along the IPMC axis.

In order to have control on the numerical results, we have analysed the IPMC behaviour
by using several meshes. Here, we mainly report the results concerned with two of them,
which are referred to as “coarse” and “fine” meshes in the following.

Figure 3 shows some details the “coarse” mesh. Each electrode is discretised along its
thickness with four 8-noded quadratic isoparametric FEs with reduced integration (4 Gauss
points per FE). Eight rows of GFEs (displayed in dark grey in the right image of Fig. 3)
discretise the membrane regions, of size equal to �ε along the Y direction, next to the elec-
trodes. The remaining part of the membrane is discretised along Y , overall by fifty rows of
elements, by using the following double bias strategy. In most analyses, we have set a ratio
≈ 1800 between the largest and smallest sizes of the FEs, where the maximum thickness
occurs at the IPMC mid axis while the minimum thickness is attained next to the GFE re-
gions; in other analyses, which Fig. 3 refers to, the minimum and maximum sizes of the FEs
are H/100 (at |Y | = H − �ε) and H/10 (at Y = 0), respectively. We have thus established
that these kind of details on the discretisation of the bulk membrane have little impact on
the quality of the numerical results.

Along the X direction, we divide the IPMC in two regions characterised by two different
element widths. The region from the clamped cross-section (X = 0, see Fig. 1) to X = 2H

(that is, the length of the membrane thickness) is divided into 16 equally spaced FE columns.
In the remaining part of the domain the element width in the X direction is equal to the
membrane semi-thickness H . This discretisation along the IPMC axis is common to the all
the meshes and, overall, in the case L/H = 200 (that is the case of all our simulations except
those of Sect. 9) it leads to meshes constituted by 214 columns of elements.

In summary, the “coarse” mesh has 48,085 nodes and consists of: 1,712 standard
isoparametric FEs (with 2 DOFs for each node) with quadratic shape functions and reduced
integration for the electrodes; 10,700 quadratic, fully integrated isoparametric FEs (5 DOFs
for each node) to discretise the bulk membrane region; 3,424 quadratic GFEs (with 9 DOFs
for each node) to discretise the BL regions. The total number of DOFs is 269,617.

The features of the “fine” mesh are displayed in Fig. 4. This mesh differs from the
“coarse” one of Fig. 3 in two aspects. First, the BL regions are discretised with twelve rows
of GFEs, instead of eight. Second, the bulk membrane is discretised by using seventysix
rows of elements (instead of fifty), with minimum and maximum sizes of the FEs H/500
(at |Y | = H − �ε) and H/10 (at Y = 0), respectively. Overall, this “fine” mesh has 69,981
nodes and consists of: 1,712 quadratic isoparametric FEs with reduced integration for the
electrodes; 16,264 quadratic, fully integrated isoparametric FEs plus 5,136 quadratic GFEs
to discretise the membrane. The total number of DOFs is 399,705.

In order to thoroughly discuss the results, we also consider a mesh with standard FEs
only. In this model, the mesh geometry is identical to the “coarse” mesh, where the GFEs
are substituted with the same quadratic isoparametric FEs (5 DOFs for each node) used in
the membrane outside the BLs. The total number of DOFs is in this case equal to 224,969.

5.2 Computational Cost

The aim of this subsection is to give information on the efficiency of the proposed GFE
algorithm. The numerical analyses have been performed by using a workstation equipped
with 256 GB of RAM and an AMD Ryzen Threadripper 3970X having 32 cores, 64 threads,
and a CPU clock speed of 3900 MHz.
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Fig. 3 Details of the adopted “coarse” mesh: the left image shows the discretisation over the whole IPMC
thickness, whereas the right image shows a detail about the bottom electrode (whose domain is displayed by
the bottom four rows in light grey) with the adjacent membrane region including the GFE discretisation, the
latter being displayed in dark grey

Fig. 4 Details of the adopted “fine” mesh: the left image shows the discretisation over the whole IPMC
thickness, whereas the right image shows a detail about the bottom electrode (whose domain is displayed by
the bottom four rows in light grey) with the adjacent membrane region including the GFE discretisation, the
latter being displayed in dark grey

The most critical analysis reported in this paper is that in Sect. 8 for the IPMC actuation at
applied voltage ψ0 = 3 V with permittivity ε = 10−13 C/(mV mm). In this case, the required
computational time to run the analysis until t̄ = 5 amounts to 16 min and 36 sec to complete
154 loading steps and 339 iterations.

The results of the most expensive analysis, still reported in Sect. 8, are concerned with
the IPMC actuation at ψ0 = 1 mV with ε = 10−12 C/(mV mm) and counterion molar volume
v = 500 mm3/mol, run up to t̄ = 100. In this case, the required computational time amounts
to 1 h, 7 min and 39 sec to complete 1011 loading steps and 1226 iterations.
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Table 1 Material and GFE
parameters Electrodes λe = 30,000. MPa, Ge = 5,000. MPa

Ionomer λ = 300. MPa, G = 50. MPa, ε = 10.−10 C
mV mm ,

Ds = 10.−3 mm2

s , D = 10.−4 mm2

s , C0
s = 2. · 10−5 mol

mm3 ,

vs = 18,000. mm3

mol , C0 = 1.2 · 10−6 mol
mm3

GFE �ε = 0.001 mm, α = 1,000.

6 Validation of the Model: Comparison with the Results of [54]

In this section we validate the proposed numerical model by comparison with the results
obtained in [54], where the theory was implemented in the commercial code COMSOL
Multiphysics® and the analyses, both in actuation and short-circuit sensing, were run for
relatively small applied loads and limited ranges of material parameters. For the details of
the FE model adopted in [54] the reader is referred to that paper; here, we only report its total
number of DOFs equal to 329,133, which is comparable to that of the models developed in
the present study.

Our new FE algorithm employed to implement the LB21 theory, concerned with the
results presented here and in Sect. 7, is slightly different from that presented in previous
Sects. 3 and 4, as it implements a theory with a different constraint governing the volumetric
deformation, as reported in Eq. (80), and a different expression for the free energy of mixing
(specifically, Eq. (81), which is the dilute solution approximation of Eq. (30)). For the sake
of completeness, in Appendix C we also provide our GFE algorithm of the LB21 theory.

6.1 Geometrical and Material Parameters

The geometrical and material parameters are the same as those selected in [54]. With refer-
ence to Fig. 1, the IPMC thickness is 2H = 0.2 mm, the IPMC length L is equal to 20 mm,
and the electrode thickness h is equal to 0.001 mm. The material parameters are reported in
Table 1, which includes also the GFE parameters required by the proposed numerical model.
In all the analyses the temperature is set to θ = 300. K.

With the parameters of Table 1, application of Eq. (1) provides a Debye screening length
�D ≈ 1.5 · 10−4 mm = �ε/6.6̄. In Sect. 8, we will discuss the impact of changing ε and we
will present results for lower permittivities, up to three orders of magnitude lower than that
of Table 1. 6

6.2 Actuation

In actuation, [54] presents results for an applied step voltage drop across the electrodes
ψ0 = 0.25 V, which is about the maximum that could be applied with the FE implementation

6For Nafion™-based IPMCs, Wallmersperger et al. [88] have identified a relative permittivity ε/ε0 = 120,
which results in ε ≈ 10.−15 C/(mV mm) and, from Eq. (1) and with the parameters of Table 1, �D ≈
4.7 ·10−7 mm. However, in IPMCs, ε should be increased to account for its non-homogeneity. Specifically, in
membrane regions adjacent to the membrane-electrode, referred to as “intermediate layers” [82] or “compos-
ite layers” [26, 27] in the literature, metal particles from the electrode manufacturing partly fill the interstices
between the ionomer macromolecules, thus resulting in a much larger ε and a much lower diffusivity than in
the bulk membrane [71, 86]. Additionally, given the large through-the-thickness direct strain component in
the BLs, the deformation-dependent permittivity observed in some electroactive polymers could play a role
[52, 56].
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Fig. 5 Actuation: non-dimensional deflection as a function of time

Fig. 6 Actuation: electric potential along the IPMC cross-section at X = 2H = 0.20 mm

in [54]. In all the analyses this voltage drop is instantaneously applied. Figures 5, 6, 7, 8, and
9 compare the results obtained from our numerical model with that of [54] in terms of the
time-evolution of the deflection and, for the three different instants t = 0.01 s, 0.1 s, and 10 s,
the through-the-thickness variation of the electric potential (including the detail of the BL
at the anode), the BLs of counterion concentration, the BLs of solvent concentration, and
the BLs of solvent pressure, respectively. Let us remind that, because of the dilute solution
approximation, the solvent pressure, which is denoted as ps, is, in the LB21 theory, the
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Fig. 7 Actuation: counterion concentration in the BLs at X = 2H = 0.20 mm

Fig. 8 Actuation: solvent concentration in the BLs at X = 2H = 0.20 mm

Lagrange multiplier analogous to the osmotic pressure π in the extended theory developed
in this investigation.

In this actuation problem, t = 0.1 s is close to the instant in which the maximum deflec-
tion is attained. Then, back-relaxation occurs and steady state is reached at about t = 50 s.
This can be seen in Fig. 5, which, specifically, compares the LB21 numerical results (solid
line) with those obtained in this investigation by using the models described in Sect. 5,
i.e., the FE model constituted only by standard isoparametric FEs (represented with filled
squares in the graphs) and the two models enriched with GFEs, with either eight or twelve
rows of such elements to discretise the BLs (represented with either filled triangles or void
circles in the graphs, respectively). Figure 5 shows that our richest model gives the results
closest to those of [54], thus validating the results of [54] as well. Here and henceforth,
when representing the IPMC deflection, the symbol uy is adopted for the time-dependent
maximum transversal displacement of the IPMC mid-axis, uy(X = L,Y = 0, t).

In Figs. 6, 7, 8, and 9 and throughout the paper, the through-the-thickness variation of
the relevant fields is always computed in the IPMC cross-section at X = 2H ≡ L/100, as in
[54].7

7This choice allows one to avoid two effects that would make the analysis of the results more difficult. First,
this cross-section is close enough to the encastre to strongly limit the influence of rotations. Second, in the
sensing problem, X = 2H is, on the one hand, far enough from the fully clamped cross-section to avoid
diffusion stresses that may be difficult to interpret, while, on the other hand, is still subject to a large bending
moment triggering to a significant electrochemical response.
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Fig. 9 Actuation: solvent pressure in the BLs at X = 2H = 0.20 mm

Overall, this comparison demonstrates that the FE model of [54] is accurate enough when
it converges (at least, for the low applied voltage of 0.25 V) and that, for what concerns
the present numerical models, the GFE extension is needed in order to predict the correct
results. This is quite clear from the BLs of counterion concentration, solvent concentration,
and solvent pressure at the cathode (see the left graphs in Figs. 7, 8, 9, respectively), mostly
by looking at the peak values at Y/H = −1, which are largely underestimated in the absence
of GFEs.

The difficulty in accurately describing the BLs where counterions pile up should be due
to the fact that the LB21 theory disregards steric effects that would hamper a too large
concentration of counterions at the cathode [19, 28, 71]. In Sect. 7, we will show that the
extended theory proposed in this investigation addresses this issue by accounting for the
counterion molar volume v, which, most of all, allows a more appropriate description of the
IPMC response, thus overcoming some physical problems of the LB21 theory that we have
faced in actuation at large applied voltages.

As reported in the left graphs of Figs. 8 and 9, the larger discrepancy between our GFE-
enriched numerical models and that of [54] concerns the solvent concentration at t = 10 s
and the pressure at t = 50 s, the former being underestimated and the latter being overesti-
mated by the FE model in [54]. Note that we assume as reference our most refined numerical
model, given that it can provide results for large applied voltage, where the LB21 implemen-
tation in COMSOL Multiphysics® fails, and it has been tested to be close to convergence
through suitable mesh refinements.

6.3 Short-Circuit Sensing

In short-circuit sensing, in [54] a uniformly distributed nominal load of magnitude T0 = 0.05
kPa could be imposed, linearly increasing with time up to t = 0.1 s and then maintained until
steady state. Here, to be consistent with the COMSOL simulations in [54], we maintain the
same load application modality, although our algorithm would also allow an instantaneous
application of the load.

Figures 10 and 11 compare the results obtained from our numerical models with those
in [54] in terms of the time-evolutions of the deflection uy , the charge accumulated at the
electrodes, defined as

Q =
∣∣∣
∫ L

0
DY (Y = ±H) dX

∣∣∣ , (77)
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Fig. 10 Sensing: deflection as a function of time. The deflection is non-dimensionalised by using the predic-
tion uEB

y of the linear elastic Euler-Bernoulli model

Fig. 11 Sensing: current (left) and accumulated charge (right) as functions of time

and the electric current, defined as

I = Q̇ . (78)

For these integrated quantities all the numerical models provide similar results, although
the LB21 model is softer (Fig. 10) and our plain FE model underestimates the accumulated
charge (right graph in Fig. 11).

Let us also observe, from Fig. 11, that, before going to zero at steady state, the current I

becomes negative because of the counter-diffusion of mobile ions, in qualitative agreement
with experimental observations [35].

Figures 12, 13, 14, and 15 instead focus, at the instants t = 0.1 s, 0.5 s, 5. s, 50. s, on the
through-the-thickness variation of the electric potential, on the BLs of counterion concen-
tration, on the BLs of solvent concentration, and on the through-the-thickness variation of
the solvent pressure.
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Fig. 12 Sensing: electric potential at X = 2H = 0.20 mm at different instants

Fig. 13 Sensing: counterion concentration at X = 2H = 0.20 mm at different instants

While the agreement on the time-evolutions of deflection, electric current, and accumu-
lated charge is remarkable, we observe a discrepancy between our results and those of [54]
in the through-the-thickness fields at steady state. This is clearly shown in Fig. 12 for the
electric potential, which displays a special feature, which we have carefully checked by fur-
ther post-processing of our results and those of [54]: the prediction of its slope (i.e., the
electric field) outside the BLs is identical in our models and that of [54], although in the
bulk membrane our profiles of ψ are significantly shifted from that of [54]. This is due to
different predictions of the BLs of counterion concentration at steady state (see Fig. 13). In-
terestingly, this discrepancy is substantially absent in the comparison of Fig. 14 on the BLs
of solvent concentration. Moreover, Fig. 15, on the through-the-thickness variation of the
solvent pressure, shows a discrepancy in the BLs in the initial part of the sensing response,
at t = 0.1 s; such a discrepancy emerges only with respect to the more accurate GFE mod-
els, such that we infer that the poorer discretisation adopting only standard FEs leads to an
inaccuracy.



330 A. Panteghini, L. Bardella

Fig. 14 Sensing: solvent concentration at X = 2H = 0.20 mm at different instants

Let us now provide more details on the observed discrepancy. Our predictions of ψ in
the bulk membrane start to drift away from that of [54] much after the peak in the electrical
response. In our analyses, at steady state, ψ changes sign in the bulk closer to the IPMC axis
(Y ≈ 0), while the computational model of [54] predicts that ψ changes sign at Y ≈ −H/2.
In investigating on this discrepancy, we have discovered that these results are very sensitive
to the integration time step. Also, the fact that ψ at steady state is not anti-symmetric (i.e.,
ψ does not change sign in Y = 0) is due to the complex interplay between various non-
linearities. A way to obtain an anti-symmetric ψ at steady state is to specialise the theory
to the framework of small strains and rotations. As a minor indication, the lack of anti-
symmetry of ψ is largely smoothed out by setting the membrane Poisson ratio ν = 0, such
as λ = 0, which eliminates the nonlinear contribution in the membrane elasticity differently
weighing increase and decrease of volume (see Eq. (29)). This plays a role in determining
the IPMC response because the BLs experience opposite volumetric deformations that may
be relatively large, due to the localisation of the through-the-thickness direct strain compo-
nent [15]. In fact, the nonlinear volumetric deformation in the BLs certainly influences the
profile of the solvent pressure, in turn affecting the counterion transport through both the
cross-diffusion and the convective flux of counterions with the solvent, which are features
of the LB21 theory.

7 Actuation and Short-Circuit Sensing: Results for Large External
Actions and Limits of the LB21 Model

In this section we start by demonstrating that the GFE-enriched implementation proposed
in this work allows one to obtain results for much larger applied voltages in actuation
(Sect. 7.1) and much larger applied loads in short-circuit sensing (Sect. 7.2) within the LB21
theory. In these two sections the adopted algorithm is still that reported in Appendix C and
the numerical model is the “fine” one described in Sect. 5.

Then, in Sect. 7.3, by focusing on actuation, we demonstrate that the novel extended
theory presented in Sect. 2 overcomes some limits of the LB21 theory.

7.1 Actuation: Behaviour Predicted by the LB21 Theory at Large Applied Voltage

While the COMSOL implementation in [54] allowed a maximum applied voltage drop
across the electrodes of about 0.25 V only, in this section we show that the proposed GFE
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Fig. 15 Sensing: solvent pressure along the IPMC cross-section at X = 2H = 0.20 mm

Table 2 Instants adopted in the
post-processing analysis Voltage ψ0 Peak time tp Steady state time tss

[V] [ms] [s]

0.25 100.0 30.

1.0 16.85625 30.

2.0 7.39375 30.

model can accurately predict the IPMC actuation response up to ψ0 =2 V, which is in line
with experiments and applications.

In particular, Fig. 16 reports the maximum displacement uy as a function of time. We
observe two drawbacks of the response predicted by the LB21 theory: for large ψ0 the back-
relaxation becomes anomalously large, such as the steady state displacement has magnitude
much larger than that of the initial peak (having opposite sign), and, as shown by the inset
in Fig. 16, the initial displacement peak is almost independent of ψ0.

As shown in Table 2, the instant tp in which the initial peak response is attained strongly
depends on ψ0. This has to be accounted for in interpreting the results presented in the
following of this subsection when in the same graph different curves related to different ψ0

are all referred to tp. Instead, the instant t ss in which steady state occurs is conventionally
assumed to be equal to 30 s independent of ψ0.

The drawbacks emerging from inspection of Fig. 16 can be explained on the basis of the
BLs of counterion concentration that are reported in Fig. 17. Even if increasing ψ0, the BL
at the cathode, where counterions pile up, maintains almost the same BL thickness because
in the LB21 theory there is no limit on the counterion peak value at the interface between
membrane and cathode (see left graph in Fig. 17). On the contrary, counterion depletion
at the anode is limited by C = 0, such that this BL must enlarge to compensate for large
quantities of counterions migrating towards the cathode. This asymmetry in the distribution
of the counterions at the two BLs leads to asymmetric electric fields at the BLs, which,
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Fig. 16 Actuation: deflection as a function of time for different applied voltages

Fig. 17 Actuation: ion concentration at X = 0.20 mm for different applied voltages

however, reach the same maximum value at the Y = H and Y = −H because the quantity
of counterions leaving the anode is about the same as that accumulating at the cathode (note
that in the bulk membrane C ≈ C0 and the sole significant derivative in the Gauss law (10) is
that with respect to Y ). The Maxwell stress profile mirrors this behaviour of the electric field,
such that the much larger thickness of the BL at the anode is responsible for a polarization
moment (to be balanced by the mechanical moment) that contributes to back-relaxation [70].
In the actuation predicted by the LB21 theory at large ψ0 this back-relaxation effect becomes
significant quite soon, hampering large values of the initial displacement peak, and becomes
questionably dominant at steady state.

At large ψ0, this difference in size of the BLs is so large that it leads to the anomalous
electric potential profile of Fig. 18, which shows that for ψ0 =2 V the voltage drop at the
cathode BL is almost negligible in comparison with that the anode BL (experiencing coun-
terion depletion), where, in fact, the same electric field is integrated over a much larger size
to establish the voltage drop. We remark two aspects of this result: first, it makes the nu-
merical convergence to an accurate steady state response a very challenging task; second,
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Fig. 18 Actuation: electric potential at X = 0.20 mm for different applied voltages

Fig. 19 Actuation: solvent concentration at X = 0.20 mm for different applied voltages

most likely it is an unreliable response with respect to the actual IPMC behaviour, where the
counterion accumulation at the cathode must be somehow bounded.

Figure 19 reports the BLs of solvent concentration, which follow those of the counterions
although the peak at the cathode may not increase too much because of the constraint (80)
between the solvent volume fraction vsCs and the volume ratio.

Finally, Fig. 20 illustrates the BLs of solvent pressure, showing that the maximum neg-
ative value of ps, reached at the interface between the membrane and the anode (Y = H ),
decreases with time and is independent of ψ0 at stead state. This is due to the combined
effects of C ≈ 0 therein and of the solvent counter-diffusion.

7.2 Short-Circuit Sensing: Behaviour Predicted by the LB21 Theory at Large Applied
Loads

While in [54] the maximum applied load for which the FE model converges is of about T0 =
0.05 kPa, here we can apply far larger loads. In Fig. 21, we report the time-evolution of the
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Fig. 20 Actuation: solvent pressure at X = 0.20 mm for different applied voltages

Fig. 21 Sensing: deflection as a function of time for different applied loads T0

maximum displacement uy for T0 up to 1 kPa. All three curves of Fig. 21 are made non-
dimensional by scaling the displacement through that predicted for the smallest load (T0 =
0.05 kPa) by the linear elastic Euler-Bernoulli theory, which is denoted as uEB

y .
From Fig. 21 it is clear that increasing the load leads to a less-than-linear relationship

between uy and T0. This behaviour is ascribed to the chosen hyperelastic strain energy for
the membrane (29), which provides a stiffening response for strains far beyond the linear
regime, such large strains occurring at the BLs [15, 54].

Figure 22 reports the electric current I (left) and the accumulated charge Q (right),
defined as in Eqs. (78) and (77), respectively. In order to understand these two graphs in
Fig. 22, it is important to observe that their abscissas span different time scales. Of course,
both I and Q increase with the applied load T0. When counterion counter-diffusion begins,
at t ≈ 0.5 s independent of T0, I becomes negative and Q starts diminishing. The ampli-
tude of this negative value of I , again, increases with T0. Also the steady state value of Q

increases with T0.
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Fig. 22 Sensing: current and accumulated charge as a function of time for different applied loads T0

Fig. 23 Sensing: electric potential at X = 0.20 mm at different instants for different applied loads T0

Figures 23 and 24 report the time-evolution of the electric potential and the counterion
concentration at the BLs, respectively. These figures show that the electrochemistry remains
linear even for large applied loads in sensing. This means that, as well known in the IPMC
literature, the IPMC sensing performance is quite poor, in contrast with actuation, where
IPMCs can undergo large deformations under relatively small applied voltages.

Figures 25 and 26, finally, illustrate the time-evolution of the solvent concentration at the
BLs and the solvent pressure, respectively. The BLs of Cs increase with time, contrary to
the gradient of Cs, corresponding to a decrease of the magnitude of ps towards zero. Also,
the amplitude of the BLs of Cs increases with the applied load T0.

To briefly summarise, Sects. 7.1 and 7.2 illustrate the superior capabilities of the GFE
numerical model proposed in this investigation, along with some issues of the LB21 theory
that are addressed, as shown next, by the extended electrochemo-poromechanical theory
presented in Sect. 2.
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Fig. 24 Sensing: ion concentration at X = 0.20 mm at different instants for different applied loads T0

Fig. 25 Sensing: solvent concentration at X = 0.20 mm at different instants for different applied loads T0

7.3 Comparison Between the LB21 Electrochemo-poromechanical Theory and Its
New Extension

From now on, we focus on actuation only. The constraint (5) drastically changes the be-
haviour of migrating species at the boundary layers with respect to that predicted by the
LB21 theory, because the latter neglects the contribution of the counterion motion to the
volume ratio. With the extended theory, on the one hand, the solvent must leave room for
the counterions at the cathode. On the other hand, the constraint (5) hampers the possibility
of counterions to pile up in a very large peak at the cathode, thus leading therein to a bound-
ary layer occupying a larger membrane region, which is characterised by a smaller gradient
of counterion concentration. As a comment on the IPMC models in the literature, the con-
straint (5) includes the counterion “steric effect”, which has been differently introduced by
Cha and Porfiri [28] through a sophisticated free energy of mixing directly delivering the
nominal osmotic stress by differentiation with respect to the unconstrained deformation
gradient.

In this section we illustrate the significant improvement in the predictions of the IPMC
response due to the extension of the LB21 theory presented in Sect. 2. Henceforth, all the re-
sults are obtained by using the new GFE implementation, specifically adopting the “coarse”
model described in Sect. 5. For the LB21 theory the GFE algorithm is that reported in
Appendix C, while the numerical algorithm for the extended theory developed in this inves-
tigation is that provided in detail is Sects. 3 and 4.

In this section the IPMC geometrical parameters are still the same as those reported in
Sect. 6.1.
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Fig. 26 Sensing: solvent pressure at X = 0.20 mm at different instants for different applied loads T0

Table 3 Material parameters for
the ionomeric membrane λ = 300. MPa, G = 50. MPa, ε = 10.−10 C

mV mm ,

Ds = 10.−3 mm2

s , D = 10.−6 mm2

s , C0
s = 2. · 10−5 mol

mm3 ,

v = 500,000. mm3

mol , vs = 20,000. mm3

mol , C0 = 2. · 10−7 mol
mm3

7.3.1 Material and GFE Parameters

Here and henceforth, we adopt the material parameters as identified in next Sect. 9 to model
the experimental data of He et al. [42] through the extended theory of Sect. 2. These param-
eters are reported in Table 3 for the membrane only, given that the Lamé constants of the
electrodes are as in Table 1. We note that the parameters that change with respect to those
in [54] are D, vs, and C0. Clearly, the extended theory additionally includes the hydrated
counterion molar volume v. The values of these parameters will be discussed in Sect. 9.

With the parameters of Table 3, the Debye screening length (1) results �D ≈3.66×10−4

mm. Therefore, given that �ε = 0.001 mm > �D, the GFE parameters of Table 1 would seem
to be still appropriate for the present analyses. However, in the following, we will show
the benefit to increase �ε and decrease α at the anode BL in order to capture its nonlinear
behaviour under large applied voltage ψ0.

Figure 27 displays the time-evolution of the maximum displacement uy for varying ψ0.
The extended theory suffers much less back-relaxation and provides significantly larger in-
fluence of ψ0 on the initial peaks of uy , although this relation is still less than linear. Let
us remark that the recent experimental results of Arnold et al. [1] show that back-relaxation
may lead to a final steady state deflection of opposite sign with respect to initial peak deflec-
tion, such phenomenon being still predicted by the new theory at large ψ0. All the benefits
of the extended theory come from the larger size of the counterion BL it predicts at the cath-
ode, due to accounting, through the constraint (5), for the relation between the size of the
hydrated counterions and the volume ratio.
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Fig. 27 Actuation: comparison between the LB21 formulation and its proposed extension. Time-evolution of
the maximum displacement for different applied step voltages

Fig. 28 Actuation at ψ0 = 3V : comparison between the LB21 formulation and its proposed extension. Coun-
terion concentration profiles at the BLs. Symmetric GFE mesh

Consistently with this picture and the discussion of the results of Sect. 7.1, note that if in
the LB21 model C0 is increased, as for instance in Table 1, the initial peaks of displacement
turn out to be even closer to each other.

The huge difference, between the two theories, in the counterion BLs is shown in Fig. 28,
where the dashed curves represent the results of the extended theory. Note that these curves,
at the anode and at steady state, are not as smooth as one would expect. This is a numerical
issue that can be fixed by enlarging the size discretised with GFEs at the anode, as done to
obtain the results of Fig. 29.

The results of Fig. 29 have been obtained by setting the thickness �ε of the anode region
discretised with GFEs to 0.004 mm, instead of 0.001 mm, the latter still being used for
the cathode. Moreover, in these asymmetric meshes, at the anode, the GFE parameter α is
diminished, with respect to that of Table 1, to α = 250.
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Fig. 29 Actuation at ψ0 = 3V : comparison between the LB21 formulation and its proposed extension. Coun-
terion concentration profiles at the BLs. Asymmetric GFE mesh

Fig. 30 Actuation at ψ0 = 3V : comparison between the LB21 formulation and its proposed extension. Sol-
vent concentration profiles at the BLs. Symmetric GFE mesh

Figures 30 and 31 represent, by using the symmetric and asymmetric meshes, respec-
tively, the BLs of solvent concentration. Also these profiles highlight substantial differences
in the predictions between the two theories considered. A common feature of the two the-
ories is that Cs at steady state diminishes at the cathode and increases at the anode, with
respect to the levels reached when the initial displacement peak is attained. This is due to
the solvent counter-diffusion. However, in the extended theory Cs is very much limited at
the cathode, with respect to the LB21 theory, because of the volume occupied by the counte-
rions piling up therein. This results in Cs even attaining a minimum at Y = −H , being much
lower than its initial value C0

s in that region. Under the constraint of conservation of the total
solvent mass imposed by the first relation in (13) and its analogous condition at the IPMC
ends X = 0 and X = L, this behaviour at the cathode implies that Cs must be larger than C0

s
somewhere else. Given that in the bulk membrane Cs ≈ C0

s , as illustrated in Fig. 32, it turns
out that Cs > C0

s at the anode. This indicates that, with the chosen material parameters, in
the extended theory the solvent flux is more influenced by the need of hydrated counterions
to occupy volume in accumulating at the cathode (thus pushing away the free solvent) than
by transport through electro-osmosis, which is provided by the dependence of the solvent
flux on the electric field (see Eq. (48)).

Figure 33 finally shows the remarkable difference between the two theories in the pre-
dicted profiles of the electric potential ψ . The most important quantitative discrepancy is in
the voltage drop at the anode at steady state, which is much larger in the LB21 theory. The
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Fig. 31 Actuation at ψ0 = 3V : comparison between the LB21 formulation and its proposed extension. Sol-
vent concentration profiles at the BLs. Asymmetric GFE mesh

Fig. 32 Actuation at ψ0 = 3V : comparison between the LB21 formulation and its proposed extension. Sol-
vent concentration profile along the membrane. Asymmetric GFE mesh

reason for this lies, once again, in the difference between the thicknesses of the two BLs,
which is much lower in the extended theory. The underlying physical picture is that already
depicted in discussing Figs. 17 and 18.

The results in Fig. 33 also suggests that, in order to facilitate the IPMC characterisation,
it would be very useful if in actuation experiments the voltage in the membrane mid-plane
were measured, up to steady state.

8 Influence of the Permittivity on the Actuation Response

With this section, by applying the theory proposed in this work, we aim at contributing to
the recent discussion about the role of the permittivity ε on the actuation response of IPMCs
[20, 60].
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Fig. 33 Actuation at ψ0 = 3V : comparison between the LB21 formulation and its proposed extension. Elec-
tric potential profile along the membrane. Asymmetric GFE mesh

Boldini and Porfiri [20] argue that a compensation between the thickness of the BLs,
which is governed by Eq. (1), and the constitutive law for the Maxwell stress (3) makes the
magnitude of the Maxwell stress independent of ε. Moreover, given that increasing ε leads
to larger BLs with the same Maxwell stress, for a given applied voltage ψ0, the bending
displacement scales with

√
ε, i.e. it is proportional to the Debye screening length �D.

However, in order to precisely observe this scaling, one should focus on the steady state
behaviour in the absence of nonlinearities, such as one should, first of all, apply an appro-
priately low voltage ψ0. The same discussed scaling would hold for the whole history if,
additionally, the species fluxes were governed by linear equations. In order to meet this re-
quirement as close as possible, in our extended theory, we need to set both γ = 0 in Eq. (47),
in such a way as to resort to the simplest diagonal mobility matrix M , and very low molar
volumes v and vs.

In this section, we initially apply ψ0 = 1 mV, we test for M both the diagonal form and
the form proposed in [54] (γ = 1 in Eq. (47)), and we consider three values of permittivity,
namely ε = 10−10, 10−12, and 10−13 C/(mV mm), along with three values of the hydrated
counterion molar volume v, namely v = 500,000, 20,000, and 500 mm3/mol. The GFE
parameter α and the Lamé constants for the electrodes are as those listed in Table 1, while
the other material parameters for the membrane are as those in Table 3. Consistently with
Eq. (1) and the scaling law we want to investigate, the regions discretised by GFEs have size
�ε dependent on ε. Specifically, for ε = 10−10 C/(mV mm) that size is 10−3 mm (as in the
foregoing analyses), whereas for ε = 10−12 C/(mV mm) and ε = 10−13 C/(mV mm) �ε is set
to 10−4 mm and 3.16228×10−5 mm, respectively. The IPMC geometry is that provided in
Sect. 6.1.

The results are illustrated in Figs. 34 and 35, reporting the time-evolution of the max-
imum transversal displacement, that is normalised by �D, which, in turn, depends on

√
ε.

Therefore, when the curves coincide, the scaling discussed in [20] holds. Note that also the
non-dimensional time in the abscissas, defined as in Eq. (46), scales with

√
ε; specifically,

t̄ ∝ 1/
√

ε.
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Fig. 34 Actuation under ψ0 = 1 mV: modelling capability of the extended formulation with the simple
diagonal mobility matrix (γ = 0) for variable permittivity and counterion volume v. Left: large value of v;
right: smaller values of v

Fig. 35 Actuation under ψ0 = 1 mV: modelling capability of the extended formulation with mobility matrix
proposed in [54] (γ = 1) for variable permittivity and counterion volume

First, we note that independent of the mobility matrix and of the value of v, all the steady
state responses scale with

√
ε, as established by Boldini and Porfiri [20]. This is because

the fluxes nonlinearities do not affect the steady state, which is governed only by the Pois-
son equation (that is, the Gauss law (10) combined with relation (33) between the electric
displacement and the electric potential) and the Navier-like equation (that is, the mechan-
ical equilibrium (7) written in terms of the displacement field through the constitutive and
kinematic laws), the latter being substantially linear for small ψ0. This steady state response
can certainly be computed analytically by first solving the electrochemistry uncoupled from
mechanics (Porfiri [67]) and, then, using the electrochemical “active stresses” (or eigen-
stresses) as known external actions to solve the mechanical problem and obtain the IPMC
deformation (see, e.g., Boldini et al. [15] and references therein).

Second, as expected, the sole case in which the displacement is close to be proportional to√
ε all along the time history is that in which γ = 0 with small v (right graph in Fig. 34). We
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Fig. 36 Actuation under large applied voltage ψ0: modelling capability of the extended formulation with mo-
bility matrix proposed in [54] (γ = 1) for variable permittivity and counterion volume v = 500,000 mm3/mol

observe that this scaling is more accurate for v = 20,000 mm3/mol (blue curves in Fig. 34)
than for 500 mm3/mol (green curves in Fig. 34), thus suggesting that the effect of some
nonlinearity is still present (most likely, related to the constraint (5) on the volume ratio).

Third, as shown in Fig. 35, when M as in [54] is adopted, the influence of v only slightly
changes the initial peak values of the displacement, whereas they strongly depend on the
permittivity. With the adopted values of ε, increasing it of two orders of magnitude leads to
an initial displacement peak only about five times larger.

Also, the comparison between Figs. 34 and 35 clearly shows that changing M has an
enormous impact on the initial displacement peaks. To the best of our knowledge, this im-
portant result has never been pointed out in the IPMC literature, in which, so far, little
attention has been paid on the interaction between the counterion and solvent transports. In
the specific case here of concern, M as in [54] allows peaks more than ten times larger than
those obtained with the simple diagonal form of M (γ = 0). This different behaviour should
be ascribed to the electro-osmosis, which is accounted for in [54], where the solvent trans-
port depends also on the electric field. In order to eliminate this contribution, one should set
a very small value of the solvent molar volume vs.

The present analyses show that the proposed GFE implementation of the IPMC multi-
physical response allows one to obtain results also for small values of ε. In the benchmark
problem of this section, further decreasing ε below 10−13 C/(mV mm) hampers the conver-
gence of our code because of floating point errors due to the fact that the nodal coordinates
of the GFEs turn out to be too much close to each other. It should be possible to address this
issue by adopting also for the displacement nodal DOFs an appropriate non-dimensional
variable.

As a final remark on the numerical efficiency of the proposed GFE algorithms, Fig. 36
displays results demonstrating that our code does converge in the case of large applied volt-
age and relatively small ε.
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9 On the Capability of the Extended Theory to Predict Experimental
Results

Although experimental results on the IPMCs response are still affected by very large scatter
[1], in this section we focus on part of the data provided by He et al. [42] to give a hint
on the predictive capability of the electrochemo-poromechanical model developed in this
investigation.

He et al. [42] consider Nafion™-Pt IPMCs of length L = 20 mm, width equal to 5 mm,
and variable thickness 2H = 0.22, 0.32, 0.42, 0.64, 0.8 mm. Under actuation, the IPMCs are
subjected to a sinusoidal voltage signal of frequency equal to 1 Hz and peak voltage drops
of 2., 2.5, 3., 3.5 V.

Note that He et al. [42] characterise the mechanical properties of the employed Nafion™
membranes by resorting to Berkovich nano-indentation, which results in measuring an elas-
tic modulus that turns out to increase with the membrane thickness, from ≈ 0.2 GPa for
2H = 0.22 mm to ≈ 0.8 GPa for 2H = 0.8 mm. He et al. [42] ascribe this behaviour to
the larger annealing time required in the manufacturing of thicker Nafion™ membranes,
possibly leading to larger degree of polymer cross-linking and crystallinity.

For the purposes of this investigation, we have followed a very simple calibration of the
material parameters, resulting in the constants reported in Table 3 for the membrane (and
in Table 1 for the electrode and GFE constants). First, we have neglected the dependence
of the membrane moduli on the membrane thickness. Second, we have measured the maxi-
mum displacement under the application of a single voltage cycle. Third, we have calibrated
the material parameters on a single datum, that is the maximum displacement obtained for
2H = 0.42 mm at peak applied voltage equal to 2 V; in doing so, we have taken the liberty
to decrease C0 as needed, while increasing v such that C0v is suitably smaller than 1. It
turns out that C0v is about five times smaller than that expected for the Nafion™ and, cor-
respondingly, v is about five times larger than the molar volume of hydrated counterions.
This is surely a shortcoming, not only of the present calibration procedure, but also of the
adopted theory, which should be further improved as explained in the concluding remarks
of Sect. 10.1. We feel however that a rigorous identification procedure would be worth in
the presence of a much more precise experimental characterisation of IPMCs.

However, on the basis of the results obtained in this investigation and the foregoing dis-
cussion, we infer that there is room for improvement in the comparison discussed next,
which is reported in Fig. 37.

The match is quite satisfactory for ψ0 = 2 and 2.5 V. The discrepancy increases for ψ0 =
3 V, where, by the way, we expect that the influence of phenomena unaccounted for by the
present theory becomes more important. Among them, we mention the water electrolysis,
the roughness of the membrane-electrode interfaces, the spatial heterogeneity of the actual
membrane permittivity and diffusivities, and the mechanical behaviour beyond hyperelas-
ticity of the membrane, which is expected to involve some relaxation. Our numerical model
fails to converge for ψ0 = 3.5 V, for which we should further refine the GFE discretisation.

Finally, we note that, in order to identify the material parameters, it would be useful
that the frequency of the applied sinusoidal voltage scaled with the membrane thickness, as
suggested by Eq. (46), which is not the case in the experimental protocol followed in [42].

10 Concluding Remarks

This work has focused on two advances in modelling actuation and sensing of ionic poly-
mer metal composites (IPMCs). First of all, we have presented in detail generalized finite
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Fig. 37 Actuation: capability of the extended formulation to model the experimental results of He et al. [42]

element (GFE) algorithms that can accurately compute the IPMC response up to load levels
consistent with experiments, which has been so far considered an extremely challenging task
because of the highly nonlinear IPMC behaviour. This difficulty is due to very thin bound-
ary layers (BLs) of concentration of mobile ions (counterions) occurring at the membrane-
electrode interfaces in both actuation and short-circuit sensing. The availability of the GFE
codes has allowed us to discover some shortcomings of the electrochemo-poromechanical
theory developed by Leronni and Bardella [54]. Therefore, as a second contribution, we
have proposed a theory that slightly extends that in [54], providing evidence and the physi-
cal reasons for this need.

The novel theory extends that in [54] since it removes the hypothesis of dilute solution
of counterions and solvent, which has an impact on two governing equations. One is the
definition of the contribution to the Helmholtz free energy due to the mixing of counterions
and solvent. The other, much more important, is the constraint relating the volume ratio of
the membrane with the species motion. In particular, here we account also for the counterion
motion in that constraint, thus hampering a too large peak of counterion concentration at
the electrode-membrane interface where counterions pile up in actuation and short-circuit
sensing. This, for a given voltage-driven amount of counterions leaving the anode region to
accumulate at the cathode region of the membrane in actuation, avoids that the thicknesses
of the two BLs grow too much asymmetrically, which would lead to a questionably large
back-relaxation [54, 70].

The novel computational models adopt GFEs to enrich the discretisation of the mem-
brane regions adjacent to the electrodes where BLs occur. This allows us to capture, therein,
the very large gradients of counterion concentration, solvent concentration, and electric po-
tential, along with localisation of the through-the-thickness direct strain component [15].
This technique constitutes an effective way to address the most important computational
issue on the IPMC modelling, which has required, so far, to artificially play with model
parameters such as the membrane permittivity [20, 60], or to limit the analysis to too small
applied voltages/loads.
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The proposed implementation strategy along with the comparison between different the-
oretical models have allowed us to demonstrate, for the first time to the best of our knowl-
edge, the key role of the specific constitutive prescriptions affecting the equations governing
the fluxes of counterions and solvent. They in fact have an enormous impact on the model
prediction of the initial peak deflection in actuation. This has further consolidated the knowl-
edge on the crucial importance of being able to precisely model the capability of counterions
and solvent to either leave or accumulate at the boundary layers.

Overall, the proposed model gives the basis for an effective and reliable tool for the
analysis and design of IPMCs. However, it surely requires further efforts, as detailed next.

10.1 Open Issues

As very recently demonstrated by the thorough experimental campaign of Arnold et al. [1]
on Nafion™-Pt IPMC actuators under controlled environmental conditions, there still is at
least an important aspect to include in the IPMC modelling, that is the actual humidity of
the membrane. The membrane is in fact assumed to be completely saturated in the present
investigation and in most theories for IPMCs. However, even if desirable, this may be not the
case and the results in [1], obtained by carefully maintaining different levels of membrane
humidity during the tests, show that the actual solvent content significantly impacts the
IPMC behaviour. This, of course, agrees with the important role of the solvent as highlighted
by our present modelling.

Also, Arnold et al. [1] have shown that the scattering in the experimental results on
IPMCs, as nowadays produced, can be extremely large, thus challenging the reliability of the
material parameters identification of any theory. Novel additive manufacturing techniques
might help in improving the consistency of the IPMC performance, towards large-scale in-
dustrial applications [24, 43]. Other experimentalists (see, e.g. [83]) are instead investigat-
ing on the possibility of stabilising the IPMC performance at different relative humidities by
tuning the concentration of ionic liquids.

A drawback of the present model is that it seems to require to set a too low initial value
of the counterion concentration C0 and a too large value of the hydrated counterion molar
volume v in order to predict, in actuation, the dependence on the applied voltage of the
initial peak deflection uY (tp). In the light of the present results on the key role of the fluxes in
establishing uY (tp), we infer that there is room for improvement of this modelling capability.
One option is to leverage on the mobility matrix governing the solvent and counterion fluxes
(Vanag and Epstein [84], Kondepudi and Prigogine [50]), whose modification with respect
to that proposed in [54] might be consistent with the removal of the hypothesis of dilute
solution of solvent and counterions.

Additionally, another possibility would be the enrichment of the free energy of mixing
(30), where one could also account for the enthalpic contribution governed by the non-
dimensional Flory-Huggins interaction parameter χ [32, 38, 47], thus extending Eq. (30)
to

Wmix(C,Cs) = RT
(
C ln

C

C + Cs
+ Cs ln

Cs

C + Cs
+ χ

CCs

C + Cs

)
.

About the numerics, we underline that we have employed a single enrichment function f (Y )

for all the fields experiencing large gradients at the BLs. It would be worth to explore dif-
ferent possibilities in order to further improve the computational efficiency. Another option
might consist in the use of suitable solver preconditioners [39], whose investigation is ham-
pered by the use of a commercial FE code such as ABAQUS.
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The IPMC modelling should also account for the interface roughness (Porfiri [68]) and
for the modified electrochemo-poromechanical properties of the membrane regions next to
the electrodes, due to a couple of factors. The first one is process-dependent and is related to
the counterion steric effect where counterions pile up (Borukhov et al. [21], Kilic et al. [49]).
The second one is concerned with “composite layers” of much larger permittivity and much
lower diffusivity in the membrane where metal particles can fill ionomer interstices (Tiwari
and Kim [82], Aureli and Porfiri [5], Cha and Porfiri [27]). Changing material properties
in membrane layers would be straightforward with the present FE model if data on this
were available. To this purpose, a thorough and vast experimental campaign, along with an
appropriate identification procedure, would be needed.

The overall behaviour of the BLs could be significantly modified also by a constitutive
law for the membrane accounting for the behaviour beyond the elastic regime, especially
regarding relaxation ensuing from viscoelastoplasticity (e.g., Silberstein and Boyce [77],
Silberstein et al. [78]). Also the membrane small-scale behaviour should be investigated,
being possibly important in the BLs (Feng et al. [36]).

The non-ideal behaviours in the species interactions in the membrane, namely long-range
electrostatic interactions, short-range physical interactions, and steric effects due to finite
pore size, as discussed and modelled by Boldini and Porfiri [19], would deserve to be further
studied at experimental boundary conditions, through numerical models as that proposed
here.

Finally, an important test which would require little effort to be simulated with the present
2D GFE model is that of a propped-cantilever IPMC subjected to a voltage drop across the
electrodes, where experimentalists measure the “blocking force”, that is the reaction force
developed by the support constraining the otherwise free IPMC end.

Appendix A: FE Isoparametric Implementation for the Electrodes

The electrodes are modelled using standard isoparametric elements, under the assumptions
or arbitrary large displacements and deformations. The internal virtual energy rate for the
balance equations in the electrodes is

δU̇ =
∫

�E

P · δ∇u̇ dV ,

where �E is the domain occupied by the electrodes in the reference configuration. Upon
time integration over the time step 
t , the discretised internal energy increment reads

δ
U =
∫

�E

P · (Aδû
)

dV .

The deformation gradient and the right Cauchy-Green deformation tensor are as in Eqs. (53)
and (55), whereas the vectorial form of the Green-Lagrange strain tensor is

E = 1

2

[
F2

xX + F2
yX − 1 F2

xY + F2
yY − 1 FxXFyX + FxY FyY FxXFyX + FxY FyY

]T
.

The second Piola-Kirchhoff stress S can be computed by differentiating Eq. (11) with respect
to E . It results

S = ∂W e
mec

∂E
= 2GeE + λe (I · E ) I .
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The nominal stress tensor P can be computed as

[P] = [F][S] → P = F ◦ S =

⎡
⎢⎢⎣

FxXSXX + FxY SYX

FyY SYY + FyXSXY

FxXSXY + FxY SYY

FyY SYX + FyXSXX

⎤
⎥⎥⎦ .

The internal forces, stored in an array of size 2N , read

F =
∫

�E

AT P dV

and the tangent stiffness matrix, of size 2N × 2N , results

K =
∫

�E

AT
(

MS + MF
∂S
∂E

∂E

∂F

)
A dV ,

where

MS = ∂

∂F
(F ◦ S) =

⎡
⎢⎢⎣

SXX 0 SYX 0
0 SYY 0 SXY

SXY 0 SYY 0
0 SYX 0 SXX

⎤
⎥⎥⎦ ,

MF = ∂

∂S
(F ◦ S) =

⎡
⎢⎢⎣

FxX 0 0 FxY

0 FyY FyX 0
0 FxY FxX 0

FyX 0 0 FyY

⎤
⎥⎥⎦ ,

∂S
∂E

= 2GeI + λe I IT ,

∂E

∂F
=

⎡
⎢⎢⎣

FxX 0 0 FyX

0 FyY FxY 0
FxY /2 FyX/2 FxX/2 FyY /2
FxY /2 FyX/2 FxX/2 FyY /2

⎤
⎥⎥⎦ ,

and I is the fourth order identity tensor, coincident with a 4x4 identity matrix in array
notation.

Appendix B: Consistent “Stiffness Matrix” for the Membrane

The submatrices constituting the FE “stiffness matrix” K in (70) have dimension N × N ,
except when otherwise indicated below. They are obtained in such as way as to be consistent
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with the chosen Backward-Euler time integration scheme and read

Kuu =
∫

�

AT ∂P
∂F

A dV (dimension 2N × 2N) ,

Kuψ̄ =
∫

�

AT ∂P

∂∇ψ̄
G dV (dimension 2N × N) ,

Kuπ̄ =
∫

�

AT ∂P
∂π̄

NT dV (dimension 2N × N) ,

Kψ̄ψ̄ =
∫

�

−RθGT
( 1

F

∂
D

∂∇ψ̄
+ 
t

∂J

∂∇ψ̄

)
G dV ,

Kψ̄u =
∫

�

−RθGT
( 1

F

∂
D
∂F

+ 
t
∂J
∂F

)
A dV (dimension N × 2N) ,

Kψ̄μ̄

=
∫

�

−Rθ
t GT
( ∂J

∂∇μ̄


G + ∂J
∂μ̄


NT
)

dV , Kψ̄π̄ =
∫

�

−Rθ
t GT ∂J
∂∇π̄

G dV ,

Kμ̄
u =
∫

�

Rθ
{ 
t

1 + r
GT
(
r
∂Js

∂F
− ∂J

∂F

)
A

+ rN
1 + r

[∂Cs

∂F

μ̄
 + 
t

1 + r

(∂Js

∂F
+ ∂J

∂F

)T ∇μ̄


]T
A
}

dV ,

Kμ̄
ψ̄ =
∫

�

Rθ
[ 
t

1 + r
GT
(
r

∂Js

∂∇ψ̄
− ∂J

∂∇ψ̄

)
G + r
t

(1 + r)2
N∇μ̄


T
( ∂Js

∂∇ψ̄
+ ∂J

∂∇ψ̄

)
G
]
dV ,

Kμ̄
μ̄

=
∫

�

Rθ
{ 
t

1 + r
GT N

[( r(Js + J)

1 + r
+ r

∂Js

∂μ̄


− ∂J
∂μ̄


)
NT +

(
r

∂Js

∂∇μ̄


− ∂J
∂∇μ̄


)
G
]

+ rNNT

1 + r

[( Cs

1 + r
+ ∂Cs

∂μ̄


)

μ̄
 + Cs + 
t

1 + r
∇μ̄


T
( (1 − r)(Js + J)

1 + r
+ ∂Js

∂μ̄


+ ∂J
∂μ̄


)]

+ r
t

(1 + r)2
N
[
Js + J +

( ∂Js

∂∇μ̄


+ ∂J
∂∇μ̄


)T ∇μ̄


]T
G
}

dV ,

Kμ̄
π̄ =
∫

�

Rθ
[ 
t

1 + r
GT
(
r

∂Js

∂∇π̄
− ∂J

∂∇π̄

)
G + r
t

(1 + r)2
N∇μ̄


T
( ∂Js

∂∇π̄
+ ∂J

∂∇π̄

)
G
]
dV ,

Kπ̄u =
∫

�

Rθ

v0

[
N
(∂
J

∂F

)T − 
tGT
(
vs

∂Js

∂F
+ v

∂J
∂F

)]
A dV (dimension N × 2N) ,

Kπ̄ ψ̄ =
∫

�

−Rθ
t

v0
GT
(
vs

∂Js

∂∇ψ̄
+ v

∂J

∂∇ψ̄

)
G dV ,

Kπ̄ π̄ =
∫

�

−Rθ
t

v0
GT
(
vs

∂Js

∂∇π̄
+ v

∂J
∂∇π̄

)
GdV ,

Kπ̄ μ̄

=
∫

�

−Rθ
t

v0
GT
[(

vs
∂Js

∂∇μ̄


+ v
∂J

∂∇μ̄


)
G +

(
vs

∂Js

∂μ̄


+ v
∂J

∂μ̄


)
NT
]

dV .

All the derivatives entering the foregoing expressions are provided below.
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B.1 Common Derivatives to Compute the Stiffness Matrix

∂J

∂F
≡ ∂
J

∂F
= FRT ,

∂C
∂F

=

⎡
⎢⎢⎣

2FxX 0 0 2FyX

0 2FyY 2FxY 0
FxY FyX FxX FyY

FxY FyX FxX FyY

⎤
⎥⎥⎦ ,

∂D
∂F

≡ ∂
D
∂F

= − 1

J
D
(∂J

∂F

)T − εRθ

F

1

J
M∇ψ̄R

∂C
∂F

,
∂D

∂∇ψ̄
≡ ∂
D

∂∇ψ̄
= −εRθ

F

1

J
[CR] ,

where

M∇ψ̄ = ∂

∂CR

(
CR � ∇ψ̄

)=
⎡
⎢⎣

∂ψ̄

∂X
0

∂ψ̄

∂Y
0

0
∂ψ̄

∂Y
0

∂ψ̄

∂X

⎤
⎥⎦

=
[(∇ψ̄

)
1

0
(∇ψ̄

)
2

0
0

(∇ψ̄
)

2
0

(∇ψ̄
)

1

]
,

∂

∂∇ψ̄

(
CR � ∇ψ̄

)≡ [CR] =
[

CYY −CXY

−CXY CXX

]
.

∂P
∂F

= GI +
(λ lnJ − G

J
− Rθπ̄

v0

)
RT +

[G + λ (1 − lnJ )

J 2

]
FRT

(∂J

∂F

)T

+ 1

2εJ

{
2
[
Mω + MF

∂ω

∂D
∂D
∂F

]
− RT

J

[
(C · ω)

[
I − 1

J
F
(∂J

∂F

)T ]

+ F
(
ωT ∂C

∂F
+ CT ∂ω

∂D
∂D
∂F

)]}
− 1

J
Ppol

(
∂J

∂F

)T

,

where I is the 4x4 identity matrix and

MF = ∂

∂ω
(F ◦ ω) =

⎡
⎢⎢⎣

FxX 0 0 FxY

0 FyY FyX 0
0 FxY FxX 0

FyX 0 0 FyY

⎤
⎥⎥⎦ ,

Mω = ∂

∂F
(F ◦ ω) =

⎡
⎢⎢⎣

D2
X 0 DXDY 0

0 D2
Y 0 DXDY

DXDY 0 D2
Y 0

0 DXDY 0 D2
X

⎤
⎥⎥⎦ ,

∂ω

∂D
=

⎡
⎢⎢⎣

2DX 0
0 2DY

DY DX

DY DX

⎤
⎥⎥⎦ .

∂P
∂π̄

= −Rθ

v0
FRT ,

∂P

∂∇ψ̄
= 1

2εJ

[
2MF

∂ω

∂D
− FRT

J

(
CT ∂ω

∂D

) ∂D

∂∇ψ̄

]
,

∂Cs

∂F
=
( 1

vr + vs

)∂J

∂F
,

∂Cs

∂μ̄


= − vrCs

vr + vs
,

∂Js

∂F
=
[ 1

Cs(vr + vs)
− 2

J

]
Js

(∂J

∂F

)T − DsCs

J 2
MJsR

∂C
∂F

,
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where

MJs = ∂

∂CR
[CR � VJs] =

[
(VJs)1 0 (VJs)2 0

0 (VJs)2 0 (VJs)1

]
,

VJs =
[

(γ − 1)r

1 + r
∇μ̄
 + vs + γ rv

v0
∇π̄ + γ r∇ψ̄

]
.

∂Js

∂μ̄


= − vr

vr + vs
Js − DsCs

J 2
CR �

[ (γ − 1) r

(1 + r)2 ∇μ̄
 +
( v

v0
∇π̄ + ∇ψ̄

)
γ r
]
,

∂Js

∂∇π̄
= −DsCs (vs + γ rv)

v0J
2 [CR] ,

∂Js

∂∇ψ̄
= −DsCsγ r

J 2
[CR] ,

∂Js

∂∇μ̄
= −DsCs(γ − 1)r

(1 + r)J 2
[CR] ,

∂J
∂F

=
[ 1

Cs(vr + vs)
− 2

J

]
J
(∂J

∂F

)T − rDCs

J 2
MJR

∂C
∂F

,

where

MJ = ∂

∂CR
[CR � VJ] =

[
(VJ)1 0 (VJ)2 0

0 (VJ)2 0 (VJ)1

]
,

VJ =
{ 1

1 + r
∇μ̄
 + 1

v0

[Ds

D
γ (vs + rv) + v

]
∇π̄ +

(Ds

D
γ r + 1

)
∇ψ̄
}

.

∂J
∂μ̄


= vs

vr + vs
J + rDCs

J 2
CR �

[ r

(1 + r)2 ∇μ̄
 − Dsγ r

D

( v

v0
∇π̄ + ∇ψ̄

)]
,

∂J
∂∇π̄

= − rCs [γDsvs + (D + γ rDs) v]

v0J
2 [CR] ,

∂J

∂∇ψ̄
= − rCs (D + γ rDs)

J 2
[CR] ,

∂J
∂∇μ̄


= − rDCs

(1 + r) J 2
[CR] .

Appendix C: FE Algorithm for the LB21 Theory

The weak form reads

∫
�

δU̇dV =
∫

�

[
P · δ∇u̇ − Rθ

( 1

F
Ḋ + J

)
· δ∇ψ̄ + Rθr(Cs ˙̄μ + Js · ∇μ̄)δμ̄

+ Rθ (rJs − J) · δ∇μ̄ + Rθ

vs
J̇ δp̄s − RθJs · δ∇p̄s

]
dV , (79)

where μ̄ = μ/(Rθ) is the non-dimensional counterion chemical potential and p̄s =
vsps/(Rθ) is the non-dimensional solvent pressure, that is the Lagrange multiplier needed
to impose the constraint on the volumetric deformation in the LB21 theory, that is

J = 1 + vs
(
Cs − C0

s

)
, (80)
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which, in contrast with (5), neglects the counterion motion. Moreover, for the free energy of
mixing, [54] adopts the approximation of (30)

Wmix(C,Cs) = RTC
(

ln
C

Cs
− 1
)

, (81)

obtained by assuming C/Cs � 1.
Therefore, in this formulation, one has Cs = (J + vsC

0
s − 1)/vs and, from the definition

of μ̄, it results r = C/Cs = exp(μ̄). Moreover, the nodal DOFs are u, ψ̄ , μ̄, and p̄s.
The non-dimensional discretised potential μ̄ and solvent pressure p̄s read, respectively,

μ̄ = μ̄0 + NT μ̂ and p̄s = NT p̂s ,

where μ̄0 = ln(C0/C0
s ).

The discretised increment of internal energy (79), corresponding to (57), reads

δU =
∫

�

[
PT (A δû) − Rθ

( 1

F

D + J
t

)T

(G δψ̂) + Rθr
(
Cs 
μ̄ + 
tJT

s ∇μ̄
)
(NT δμ̂)

+ Rθ
t (rJs − J)T (G δμ̂) + Rθ

vs

JNT δp̂s − Rθ
tJT

s (Gδp̂s)
]

dV . (82)

The fluxes read

Js = −DsCs

J 2
CR � (∇p̄s + r ∇ψ̄) , J = r

[
Js − DCs

J 2
CR � (∇μ̄ + ∇ψ̄)

]
, (83)

where, analogously to Eq. (56),

∇p̄s = G p̂s , ∇μ̄ = G μ̂ .

Equation (32) still holds for the total nominal stress in the membrane P, but the osmotic
contribution Posm now reads

Posm = −psJF−T = −Rθ

vs
p̄sJF−T . (84)

The internal pseudo-forces read

Fu =
∫

�

AT PdV , Fμ̄ =
∫

�

Rθ
{
N
[
r
(
Cs 
μ̄ + 
tJT

s ∇μ̄
)]+ GT (rJs − J)
t

}
dV ,

(85)

Fψ̄ =
∫

�

−RθGT
( 1

F

D + J
t

)
dV , Fp̄s =

∫
�

Rθ
(

N

J

vs
− GT Js
t

)
dV , (86)

where 
D = D − Dn, 
μ̄ = μ̄ − μ̄n, and 
J = J − Jn. The consistent “stiffness matrix”
K, of dimension 5N × 5N , required to complete the FE algorithm and ensure second order
convergence of the global Newton-Raphson scheme is defined as the differentiation of the
right-hand sides of Eqs. (85)–(86) with respect to the incremental nodal variables and reads

K =

⎡
⎢⎢⎣

Kuu Kuψ̄ 0 Kup̄s

Kψ̄u Kψ̄ψ̄ Kψ̄μ̄ Kψ̄p̄s

Kμ̄u Kμ̄ψ̄ Kμ̄μ̄ Kμ̄p̄s

Kp̄su Kp̄sψ̄
Kp̄sμ̄ Kp̄sp̄s

⎤
⎥⎥⎦ , (87)
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where

Kuu =
∫

�

AT ∂P
∂F

A dV (dimension 2N × 2N) ,

Kuψ̄ =
∫

�

AT ∂P

∂∇ψ̄
G dV (dimension 2N × N) ,

Kup̄s =
∫

�

AT ∂P
∂p̄s

NT dV (dimension 2N × N) ,

Kψ̄ψ̄ =
∫

�

−RθGT
( 1

F

∂
D

∂∇ψ̄
+ 
t

∂J

∂∇ψ̄

)
G dV ,

Kψ̄u =
∫

�

−RθGT
( 1

F

∂
D
∂F

+ 
t
∂J
∂F

)
A dV (dimension N × 2N) ,

Kψ̄μ̄ =
∫

�

−Rθ
t GT
( ∂J

∂∇μ̄
G + ∂J

∂μ̄
NT
)

dV , Kψ̄p̄s
=
∫

�

−Rθ
t GT ∂J
∂p̄s

G dV ,

Kμ̄u =
∫

�

Rθ
{

t GT

[
r
∂Js

∂F
− ∂J

∂F

]
+ rN

[
μ̄

vs

dJ

dF

+ 
t
(∂Js

∂F

)T ∇μ̄
]T }

A dV (dimension N × 2N) ,

Kμ̄ψ̄ =
∫

�

Rθ
{

t GT

[
r

∂Js

∂∇ψ̄
− ∂J

∂∇ψ̄

]
+ r
t

[
N
(
∇μ̄T ∂Js

∂∇ψ̄

)]}
G dV ,

Kμ̄μ̄ =
∫

�

Rθ
{

t GT

[(
r
(

Js + ∂Js

∂μ̄

)
− ∂J

∂μ̄

)
NT − ∂J

∂∇μ̄
G
]

+ rNNT
[
Cs
μ̄ + Cs + 
t

(
Js + ∂Js

∂μ̄

)T ∇μ̄
]
+ r
tN (Js)

T G
}

dV ,

Kμ̄p̄s =
∫

�

Rθ
[

t GT

(
r

∂Js

∂∇p̄s
− ∂J

∂∇p̄s

)
+ r
tN

(
∇μ̄T ∂Js

∂∇p̄s

)]
G dV ,

Kp̄su =
∫

�

Rθ
( 1

vs
N

∂
J

∂F
− 
tGT ∂Js

∂F

)
A dV (dimension N × 2N) ,

Kp̄sψ̄
=
∫

�

−Rθ
tGT ∂Js

∂∇ψ̄
G dV ,

Kp̄sμ̄ =
∫

�

−Rθ
tGT ∂Js

∂μ̄
NT dV , Kp̄sp̄s =

∫
�

−Rθ
tGT ∂Js

∂∇p̄s
G dV .

The GFE formulation simply requires to substitute the operators N, A and G with those
computed using the extended shape functions and their derivatives, i.e. Ñ, G̃ and Ã as de-
fined in Sect. 4. Finally, we below report the derivatives of the nominal stress and of the
fluxes, consistent with Eqs. (84) and (83):

∂P
∂F

= GI +
(λ lnJ − G

J
− Rθp̄s

vs

)
RT + G + λ (1 − lnJ )

J 2
FRT

(∂J

∂F

)T
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+ 1

2εJ

{
2
[
Mω + MF

∂ω

∂D
∂D
∂F

]
− RT

J

[(
C · ω

)[
I − 1

J
F
(∂J

∂F

)T ]

+ F
(
ωT ∂C

∂F
+ CT ∂ω

∂D
∂D
∂F

)]}
− 1

J
Ppol

(∂J

∂F

)T

,

∂P
∂p̄s

= −Rθ

vs

FRT ,
∂Js

∂F
=
(

1

Csvs
− 2

J

)
Js

(
∂J

∂F

)T

− DsCs

J 2
MJsR

∂C
∂F

,

where

MJs = ∂

∂CR

[
CR � (∇p̄s + r ∇ψ̄)

]

=
[
(∇p̄s + r ∇ψ̄)1 0 (∇p̄s + r ∇ψ̄)2 0

0 (∇p̄s + r ∇ψ̄)2 0 (∇p̄s + r ∇ψ̄)1

]
.

∂Js

∂μ̄
= − rDsCs

J 2
CR � ∇ψ̄ ,

∂Js

∂∇p̄s
= −DsCs

J 2
[CR] ,

where

∂

∂∇μ̄

[
CR � (∇p̄s + r ∇ψ̄)

]≡ [CR] =
[

CYY −CXY

−CXY CXX

]
.

∂Js

∂∇ψ̄
= − rDsCs

J 2
[CR] ,

∂J
∂F

= r
[∂Js

∂F
+ D

J 2

(2Cs

J
− 1

vs

)
[CR � (∇μ̄ + ∇ψ̄)]

(∂J

∂F

)T − DCs

J 2
MJR

∂C
∂F

]
,

where

MJ = ∂

∂CR

[
CR � (∇μ̄ + ∇ψ̄)

]

=
[
(∇μ̄ + ∇ψ̄)1 0 (∇μ̄ + ∇ψ̄)2 0

0 (∇μ̄ + ∇ψ̄)2 0 (∇μ̄ + ∇ψ̄)1

]
.

∂J
∂μ̄

= J + r
∂Js

∂μ̄
,

∂J
∂∇μ̄

= − rDCs

J 2
[CR] ,

∂J
∂∇p̄s

= r
∂Js

∂∇p̄s
,

∂J

∂∇ψ̄
= r
( ∂Js

∂∇ψ̄
− DCs

J 2
[CR]

)
.
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