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Abstract

The average age of the population has grown steadily in recent decades along with the number of people suf-
fering from chronic diseases and asking for treatments. Hospital care is expensive and often unsafe, especially
for older individuals. This is particularly true during pandemics as the recent SARS-CoV-2. Hospitalization
at home has become a valuable alternative to face efficiently a huge increase in treatment requests while guar-
anteeing a high quality of service and lower risk to fragile patients. This new model of care requires the redef-
inition of health services organization and the optimization of scarce resources (e.g., available nurses). In this
paper, we study a Nurse Routing Problem that tries to find a good balance between hospital costs reduction
and the well-being of patients, also considering realistic operational restrictions like maximum working times
for the nurses and possible incompatibilities between services jointly provided to the same patient. We first
propose a Mixed Integer Linear Programming formulation for the problem and use some valid inequalities
to strengthen it. A simple branch-and-cut algorithm is proposed and validated to derive ground benchmarks.
In addition, to efficiently solve the problem, we develop an Adaptive Large Neighborhood Search hybridized
with a Kernel Search and validate its performance over a large set of different realistic working scenarios.
Computational tests show how our matheuristic approach manages to find good solutions in a reasonable
amount of time even in the most difficult settings. Finally, some interesting managerial insights are discussed
through an economic analysis of the operating context.
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1. Introduction

The constant average aging of the world population (Department of Economic and Social Af-
fairs of the United Nations Secretariat, 2017) has led private and public organizations to face new
challenges in the field of personal healthcare, and this trend is going to continue in the future. In
particular, a sizable proportion of people is more prone to chronic diseases typical of old age, such
as diabetes or dementia, or to physical impairments. These diseases very often force the relatives of
patients to hospitalize them in specialized centers despite the fact this solution is not well received
by both sides (Nolan, 1999). For this reason, more and more people are interested in applying for
home healthcare (HHC) services (see, e.g., Landers et al., 2016). Actually, HHC covers an even
wider set of needs, not necessarily associated with old age, and making hospitalization at home
a valuable alternative. Required services range from simple assistance and support (dressing and
bathing), to specific medical operations such as administering drugs, performing injections, and
measuring vital signs (e.g., temperature and blood pressure) or even assisting the patient through-
out his/her chemotherapy plan (Chahed et al., 2009). Although this has been a challenging and
profitable sector for private healthcare companies, recently also public organizations have realized
that providing these services with appropriate frequency and quality can reduce costs and increase
patient satisfaction. Hospitalization at home may even become a necessity to protect frail patients
from contamination during pandemic events.

In this work, we study a Nurse Routing Problem (NRP) where a set of nurses have to be routed
and scheduled to visit a set of patients spread over a geographical area to perform care services.
Each patient may require more than one service type. A profit (not necessarily associated with an
economical reward but possibly representing the relevance or urgency) and a service time are asso-
ciated with each service request. Moreover, each nurse has a predefined working time that cannot
be exceeded considering both the time required to serve the patients and the traveling time. The
problem aims at selecting the subset of requests to fulfill that maximizes the total profit collected
while complying with nurse time constraints. To make our operational setting more realistic, two
additional constraints are introduced: (i) services incompatibility, imposing that if any two service
requests are incompatible they cannot be performed to the same patient on the same day, and (ii)
minimum demand satisfaction, requiring that a minimum number of requests for each service type
has to be satisfied. In this paper, we analyze two variants of NRP: the first one, called NRP with
Incompatible Services (NRP-IS), takes into account only the incompatibility constraints, whereas
the second one, called NRP-IS with Demand (NRP-ISD), adds minimum demand satisfaction to
the previous one.

In the scientific literature, incompatibility constraints have been largely studied under different
names as negative disjunctive, conflicts or exclusionary side constraints. Examples of their applica-
tions arise in the context of horizontal collaboration among carriers and shippers where transporta-
tion lanes cannot include incompatible goods as food and chemicals (see Colombi et al., 2017), in
transportation problems where pairs of suppliers are incompatible when serving the same customer
(Goossens and Spieksma, 2009), knapsack problems (Bettinelli et al., 2017), and max-flow prob-
lems (Şuvak et al., 2020). The introduction of services incompatibility in the healthcare domain
has a high practical relevance. Nowadays, existing healthcare systems try to concentrate services in
order to disturb patients as little as possible. Potentially, this implies that if a nurse has enough time
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and if different services are required by the same patient, these can be executed in sequence in only
one visit. Unfortunately, although possible in practice, there are specific services that should not
or even must not, be jointly executed (incompatible services). The reasons for considering services
incompatibility can derive from a specific care giver policy, may be induced by the fact that a frail
patient cannot endure some intensive care services on the same day, or may even be imposed from
potentially harmful interactions between services. Several real case examples can be mentioned
about such incompatibilities. For instance, an elderly person would not be able to receive a trans-
fusion and a hygiene service one after the other, or a critically ill patient receiving local cleansing
of a skin ulcer cannot be treated with an anticoagulant drug in the same day. Moreover, there are
some drugs that cannot be infused simultaneously and not even in sequence, but a minimum time
interval of at least one day has to elapse between them. However, despite their practical relevance,
incompatibilities do not explicitly appear in many works in the healthcare domain (see Section 2).

Finally, the presence of profits associated with the requests and the services incompatibility make
the studied problems significantly different from the ones dealt with in the healthcare scientific area
which are commonly modeled as Vehicle Routing Problems (VRPs). Classical VRPs are operational
models that need a precise selection of the patient requests to satisfy in advance and focus on mini-
mizing the overall service cost (or time, or any proportional measure). Instead, we model the NRP
as a team orienteering problem (Vansteenwegen and Gunawan, 2019), in which the selection of the
requests to satisfy is a critical decision. Moreover, this allows us to consider the optimization of
measures directly related to the quality of service, represented as profits to maximize. Furthermore,
since we are considering different service types, our NRP can be seen as a variant of the MVTPP
(Manerba and Mansini, 2015; Gendreau et al., 2016; Manerba et al., 2017), as originally noted in
Manerba and Mansini (2016).

The paper provides some relevant contributions. First, a compact mathematical model to for-
malize the NRP-IS is defined and some simple valid inequalities to strengthen it are proposed.
This allows us to devise a simple branch-and-cut and a heuristic framework that takes advantage
of the increased computing power of Mixed Integer Linear Programming (MILP) solvers. In fact,
in order to tackle the problem efficiently also under realistic large-size instances, we develop a hy-
brid Adaptive Large Neighborhood Search (ALNS) embedding an intensification phase carried
out by Kernel Search (KS) all the times that ALNS stalls without finding improving solutions. KS
is a general-purpose framework that, in the spirit of exact neighborhoods exploration, exploits the
compact formulation of the problem to build restricted problems and solves them by means of an
MILP solver used as a black-box (see Angelelli et al., 2010, 2012). Third, experimental evidence
of the viability of the proposed hybrid approach is provided. In particular, an extensive compu-
tational campaign, based on realistic randomly-generated instances, has shown how our method
is efficient and effective, representing a valuable tool for supporting healthcare organizations in a
day-by-day planning.

The paper is organized as follows. In Section 2, we summarize the recent literature related to
routing and scheduling problems in HHC. In Section 3, we describe the NRP-IS in detail, propose
a new MILP formulation along with some valid inequalities, and discuss its variant NRP-ISD. In
Section 4, we propose the basic features of the developed ALNS approach, while in Section 5 the
Kernel Search-based intensification procedure is described. The results of different computational
tests on a large set of instances are presented in Section 6, while some managerial insights for the
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studied operational setting are derived in Section 7. Finally, Section 8 concludes the paper and
sketches some future developments.

2. Literature review

HHC problems usually deal with planning the operations of a set of workers (typically, nurses) over
a certain time horizon, that is, they assign each nurse a specific set of service requests (scheduling)
to perform at the patients’ home and establish the order in which to visit them (routing). For more
details, the reader is referred to Fikar and Hirsch (2017) and Di Mascolo et al. (2017). In this paper,
we focus on the most recently published works related to our problem and concerning deterministic
single-period nurse routing and scheduling problems. Table 1 provides a classification of the sur-
veyed articles according to the objective function used, the constraints introduced, and the solution
method proposed.

It can be noticed that most of the problems aim at minimizing the overall traveling distances
(TD), the traveling costs (TC), or times (TT), being considered as a natural extension of VRPs.
Other more peculiar goals are the minimization of overtime (OT) and waiting times (WT). Only
a few papers aim at minimizing the number of employed nurses (#N), probably because optimiz-
ing staff employment is a long-term goal, while in single-period planning staff is fixed. In addition
to those related to costs, other factors are important in HHC operations such as service cover-
age, quality, and fairness. In many real working scenarios, the provider is required to visit each
patient, but when this is not the case, maximizing the number of served requests (#R) could be a
relevant objective. The overall patients satisfaction (PS), calculated as the percentage of fulfilled re-
quests with respect to all those required by a patient, is frequently an important aspect to maximize
(Gobbi et al., 2019). When dealing with multiple goals to optimize, some works employ weighted
objective functions, including patient or nurse preferences (PR), various constraint violation (CV)
penalties (e.g., related to time windows and skill assignments), or fairness oriented issues (FA) such
as balanced workloads. Finally, there are some works that focus on very specific goals. Koeleman
et al. (2012) minimize a combination of rejection and holding costs for patients, whereas Nasir and
Dang (2018) define an objective function with eight components, including hiring costs of nurses
and penalties if a patient has not been visited during the working day.

Concerning the modeling constraints, we can observe that time windows (TW), skill require-
ments (SK), and working time regulations (TR) are the most frequent. However, the specific
implementations of such constraints vary substantially among the works. Regarding TW, we have
to distinguish the use of hard and soft time windows. In the former case, services have to be provided
without exceptions within the time window (the patients promptly require a life-saving medicine or
injection, e.g., diabetic patients). In the latter, a violation of the time window is allowed by paying a
penalty (the time preferences imposed by patient needs should be met). Not surprisingly, soft time
windows are by far the most studied type of constraint. With regard to skill preferences, typically, a
skill level is attributed to each nurse who will then be enabled or not to perform a particular service.
Although in Trautsamwieser et al. (2011), Trautsamwieser and Hirsch (2011), and Hiermann et al.
(2015) a nurse can perform all the services requiring lower skill levels, in Fikar and Hirsch (2015)
a limit on such services is defined to prevent too many highly specialized services from remaining
uncovered. TR usually concerns a limit on the working hours of a nurse or on the total distance
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Table 1
Classification of NRPs

Paper Objective function Constraints Solution approach(es)

Hindle et al. (2000) TT / TD TR Approximation / Local
search

Eveborn et al. (2006) TC TW / SK / BK / SY Local search
Bertels and Fahle (2006) TC / PR / CV TW / SK / TR / BK Matheuristic
Akjiratikarl et al. (2007) TD TW / TR Metaheuristic
Bredstrom and Ronnqvist

(2008)
TT / PR / FA TW / SK / TR / HP / SY Exact / Metaheuristic

Bräysy et al. (2009) TD TW / TR Black-box commercial
VRP solver

Dohn et al. (2009) #R TW / SK / SY Exact
Hindle et al. (2009) TC TR Approximation
Trautsamwieser and

Hirsch (2011)
TT / WT / OT / PR / CV TW / SK / TR Exact / Metaheuristic

Trautsamwieser et al.
(2011)

TT / WT / OT / PR / CV TW / SK / TR Exact / Metaheuristic

Bachouch et al. (2011) TD TW / SK Exact
Rasmussen et al. (2012) TC / PR / FA TW/ SK / HP / SY Exact
Rest et al. (2012) TT / WT / OT TW / SK / TR Metaheuristic
Allaoua et al. (2013) #N TW / SK Matheuristic
Mutingi and Mbohwa

(2014)
TD / CV / FA TW / SK / SY Metaheurstic

Mankowska et al. (2014) TC / FA / #R TW / SK / HP / SY Exact / Metaheuristic
Fikar and Hirsch (2015) TT / WT TW / SK / TR / BK / SY Matheuristic
Hiermann et al. (2015) TT / OT / PR / CV TW / SK Metaheuristic
Manerba and Mansini

(2016)
PR TR / IS Exact

Redjem and Marcon
(2016)

TT / WT TW / HP Local search

Yalçindağ et al. (2016) TC / #N / CV TR Exact / Metaheuristic
Braekers et al. (2016) TC / OT / PR / CV TW / SK / TR Exact / Metaheuristic
Nasir and Dang (2018) TT TW / SK / TR Metaheuristic
Fathollahi-Fard et al.

(2018)
TT TW Local search

Martinez et al. (2018) TT / WT TW / SK / TR Local search
Di Mascolo et al. (2018) CV TW / SK / TR / SY Exact
Gobbi et al. (2019) PS TW / TR Matheuristic
Lasfargeas et al. (2019) TT / WT TW / SK / SY Metaheuristic

traveled. In most of the works, these limitations are treated as daily time windows (e.g., eight
hours), whereas Rest et al. (2012) study a scenario in which each nurse has more specific shifts to be
respected on the same working day. Constraints that impose mandatory breaks during the day are
less common. Bertels and Fahle (2006), Eveborn et al. (2006), and Bachouch et al. (2011) impose
a mandatory visit to a dummy request representing a break, whereas other works (Trautsamwieser
and Hirsch, 2011; Trautsamwieser et al., 2011; Fikar and Hirsch, 2015) simply impose a maximum
time limit that a nurse can work without pauses. Finally, several works address settings where
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there exist services requiring the synchronized presence (SY) of multiple nurses or where there
are explicit hard priorities to satisfy (HP). The presence of these constraints highly increase the
complexity of the problem and, therefore, the papers studying these variants address instances
where the number of services provided and nurses available are much lower than in other works.

The third interesting dimension analyzed in Table 1 concerns the different solution approaches
proposed, namely local search methods, approximation algorithms, metaheuristics, matheuristics,
and exact methods. Given the computational complexity of several NRP variants, only a few works
propose exact methods (Dohn et al., 2009; Trautsamwieser and Hirsch, 2011; Trautsamwieser et al.,
2011; Rasmussen et al., 2012; Manerba and Mansini, 2016). Most of the authors develop meta-
heuristics, possibly hybridized with mathematical programming techniques (matheuristics). Inter-
esting enough, the most frequent approaches are based on the Variable Neighborhood Search
framework (see, e.g., Nasir and Dang (2018), dealing with the possibility of selecting new pa-
tients and hiring new nurses, and Lasfargeas et al. (2019), studying an NRP with temporal prece-
dences and synchronized services). An Adaptive Variable Neighborhood Search is proposed in
Mankowska et al. (2014) where neighborhoods are explored according to a predefined order. Also
Cinar et al. (2021) adopt an ALNS based on heuristic neighborhoods to solve a multi-period NRP
problem with time windows. Many other metaheuristic paradigms have been used as well, such as
Tabu Search (Rest et al., 2012), Multi-Directional Local Search (Braekers et al., 2016), Simulated
Annealing (Fathollahi-Fard et al., 2018), or population-based methods like Genetic Algorithms
(Yalçindağ et al., 2016), Particle Swarm Optimization (Akjiratikarl et al., 2007), and Fuzzy Sim-
ulated Evolution Algorithm (Mutingi and Mbohwa, 2014). Concerning matheuristic approaches,
Allaoua et al. (2013) decompose its problem into two MILP formulations, a set partitioning (repre-
senting the scheduling part) and a Multi-Depot Traveling Salesman Problem (representing the rout-
ing part). Also Fikar and Hirsch (2015) propose a matheuristic method consisting of two stages, the
first one to identify feasible routes and the second one to optimize the transportation part. Finally,
some Linear Programming techniques are also applied in Bertels and Fahle (2006) and Bredstrom
and Ronnqvist (2008).

In conclusion, to the best of our knowledge, no previous work apart from Manerba and Mansini
(2016) has addressed the specific NRP variant studied in this paper, which simultaneously consid-
ers the working time regulations, the incompatibilities between requests, and a minimum demand
for the service types. Moreover, different from the majority of the existing approaches that are
based on VRP models, this NRP is formulated as a Team Orienteering Problem (TOP) variant
in which the patients to visit and the requests to fulfill must be selected in order to maximize the
total profit collected. Finally, despite the fact that we study the demand-constrained NRP variant
already proposed in Manerba and Mansini (2016), our compact mathematical formulation and our
matheuristic approach (i.e., an ALNS hybridized with a Kernel Search) are new. To date, for the
problem at hand, there only exist exact methods that can deal with instances of very small size.

3. Problem definition and formulation

In this section, we present in detail the operational setting in which the NRP-IS is defined, propose
an MILP compact formulation for this problem and some valid inequalities to strengthen it.
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3.1. Problem statement and notation

Let F be a set of nurses (located at the hospital), let M = {1, . . . , m} be the set of patients (spread
over a geographical area) and let K = {1, . . . , kmax} be the set of service types that patients can ask
for. We define as N = {1, . . . , n} the set of all service requests coming from all the patients. N is
partitioned into m nonempty disjoint subsets Nh, h ∈ M, that is, N = ∪m

h=1Nh and Nh ∩ Nh′ = ∅ for
h �= h′, where each Nh represents the subset of service requests coming from patient h ∈ M. For
each request i ∈ N, σ (i) : N 	→ K is a function that associates a service type in K with each request
i, sti represents the time needed to perform the service, while pi is the profit (priority) assigned
to such a request. We assume that each nurse has the skills to perform any service type and thus
can serve any patient. Moreover, she can move with her own vehicle. Due to the service provider’s
internal policies and possible negative interactions among services, incompatibilities among some
service types are established. We define B as the (possibly void) set of pairs of service types that are
incompatible and, in turn, as B̄ = {[i, j] : i �= j ∈ Nh, h ∈ M, [σ (i), σ ( j)] ∈ B} as the set of pairs of
requests that cannot be both performed to a patient.

Let us define a directed graph G = (V, A) with node set V = N ∪ {0, n + 1}, where nodes 0 and
n + 1 are the starting and ending hospitals (possibly the same), and arc set A = {(i, j) : i, j ∈ V, i �=
j, [i, j] �∈ B̄}. A nonnegative traveling time ti j is assigned to each arch (i, j) ∈ A, where ti j = 0 if
nodes i and j belong to the same Nh, h ∈ M (i.e., i and j are requests coming from the same patient
h). Traveling times are assumed to satisfy the triangle inequality. Every morning, all the nurses
leave the hospital (node 0) at time 0. Each of them has a maximum working time equal to tmax,
considering both service and traveling times. We assume st0 = stn+1 = 0 and p0 = pn+1 = 0. The
NRP-IS aims at determining, for each nurse, the sequence of requests to perform in a single visiting
tour (i.e., to determine which patients to visit and which services to fulfill for each patient) so to
maximize the overall profit (priority) given by the caring operations while complying with the daily
working time tmax for each nurse, and all the incompatibilities among service requests. Note that
satisfying all the requests of a patient is not a requirement. More precisely, since in general the
requests are too many to be accomplished by the available nurses in a day, the problem does not
force to fulfill all the requests, neither to visit all the patients nor to perform all the services required
by a patient if visited. This means that, if convenient, more than one nurse can visit the same patient,
each one performing a different service.

Finally, we also model the generalization NRP-ISD where a minimum number dk of service
requests needs to be guaranteed for each k ∈ K. The rationale is to guarantee a fairer global service
by avoiding that only high profitable services are performed.

3.2. A new compact two-index formulation

Different mathematical formulations, based on a graph where each node is associated with a patient
instead of with a service request, have been proposed for the problem in Manerba and Mansini
(2016). In the following, we propose a new compact one.

Let us introduce a binary variable wi, ∀i ∈ N, taking value 1 if request i is satisfied, and 0 other-
wise, a binary variable xi j , ∀(i, j) ∈ A, taking value 1 if arc (i, j) is traversed, and 0 otherwise, and
a continuous variable qi j that, ∀(i, j) ∈ A, measures the time of arrival at node j coming from node
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i. Moreover, we denote as δ+(V̄ )(δ−(V̄ )), for a given set V̄ ⊂ V , the set of arcs (i, j) ∈ A with i ∈ V̄
and j ∈ V \ V̄ (i ∈ V \ V̄ and j ∈ V̄ ). Then, the proposed mathematical formulation is as follows:

max
∑

i∈N

piwi, (1)

s.t.
∑

i∈N:σ (i)=k

wi ≥ dk k ∈ K, (2)

∑

( j,i)∈δ−({i})

xji =
∑

(i, j)∈δ+({i})

xi j = wi i ∈ N, (3)

∑

(0, j)∈δ+({0})

x0 j =
∑

(i,n+1)∈δ−({n+1})

xi,n+1 ≤ |F |, (4)

∑

(i, j)∈δ+({i})

qi j −
∑

( j,i)∈δ−({i})

q ji =
∑

(i, j)∈δ+({i})

(ti j + sti)xi j i ∈ N, (5)

q0i = t0ix0i i ∈ N, (6)

(t0i + ti j + sti)xi j ≤ qi j ≤ (tmax − st j − t j,n+1)xi j (i, j) ∈ A, i �= 0, (7)

wi + wj ≤ 1 [i, j] ∈ B̄, (8)

wi ∈ {0, 1} i ∈ N, (9)

xi j ∈ {0, 1} (i, j) ∈ A, (10)

qi j ≥ 0 (i, j) ∈ A \ {(0, n + 1)}. (11)

The objective function (1) aims at maximizing the sum of profits obtained by satisfying the pa-
tient requests. Constraints (2) ensure that at least dk requests are performed for each type of service
k ∈ K. Constraints (3) are classical pairing constraints, whereas constraints (4) control the cre-
ation of at most |F | tours. Constraints (5) guarantee that if node j is visited after node i (i.e.,
request j is executed after request i), then the time elapsed between the arrival times in the two
nodes (i.e., the starting times for the execution of the services) has to be equal to the service
time sti plus the traveling time spent to move from i to j. Constraint (6) set the value of vari-
ables q0i equal to the traveling time to reach node i from node 0, if it is visited. Constraints (7)
define upper and lower bounds for each variable qi j if arc (i, j) ∈ A is traversed. Note that, even
if the lower bound is not necessary being indirectly implied by constraints (5) and (6), we intro-
duce it as it helps strengthening the LP relaxation. Moreover, note that constraints (5)–(7) ensure,
in a compact way, the elimination of subtours (see Maffioli and Schiomachen, 1997). Constraint
(8) impose that at most one service request in the pair [i, j] can be satisfied if such requests are
incompatible. Finally, the remaining constraints (9)–(11) are binary and nonnegative conditions
on variables.
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Note that constraints (2) have been introduced to model the problem with demand (NRP-ISD).
When dk = 0, ∀k ∈ K, constraints (2) become useless and the model boils down to the NRP-IS.

3.3. Valid inequalities

The model can be strengthened by the introduction of some valid inequalities.
First, similarly to Bianchessi et al. (2018), we impose an upper bound to the global traveling time

spent by all the nurses by using
∑

(i, j)∈A

(ti j + st j )xi j ≤ |F | tmax. (12)

Second, even though constraints (5)–(7) already ensure the subtours elimination, we also include
the so-called General Connectivity Constraints (GCCs) expressed by

∑

(i, j)∈δ+(S)

xi j ≥ wl , S ⊂ N, |S| ≥ 2, l ∈ S. (13)

Third, since each patient cannot be visited by the same nurse more than once, if several requests
are accomplished for the same patient by a nurse, then she has to achieve them all in a row, that is

∑

i∈Nh:( j,i)∈A

xji ≤ 1 − xl j, h ∈ M, l ∈ Nh, j ∈ N \ Nh : (l, j) ∈ A. (14)

The inequality considers a certain request l from a patient h and, if such a request is accomplished
and a request j from another patient is served immediately after, then all the arc variables that
would allow the nurse to come back from j to patient h are set to 0.

Finally, note that when an arc between two nodes i and j has been selected (either xi j = 1 or
xji = 1), then wi = wj . This can be imposed by the following Arc-Vertex Inference Cuts inequalities
introduced by Assunção and Mateus (2021):

wi − wj ≤ 1 − (xi j + xji) (i, j) ∈ A, i �= 0, j �= n + 1,

wj − wi ≤ 1 − (xi j + xji) (i, j) ∈ A, i �= 0, j �= n + 1.
(15)

4. The hybrid ALNS solution framework

ALNS is a metaheuristic framework (Ropke and Pisinger, 2006, Pisinger and Ropke, 2007) based
on the Ruin and Recreate paradigm (Schrimpf et al., 2000) and extending the Large Neighbor-
hood Search (LNS) presented by Shaw (1998). At each iteration, ALNS selects one operator to
destroy the current solution and another one to repair it. The choice is made among predefined
heuristic operators in an adaptive way, that is, the higher the quality of the solutions found using
an operator, the higher the probability the same operator is selected again in the subsequent itera-
tions. After a certain number of iterations (an epoch), such probabilities are reset. In our problem,
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Algorithm 1. ALNS-KS

Require: a solution sI with value ob jsI ; the sets �− and �+ of destroy and repair operators; a maximum execution
time τ .
1: sC ← sI � current solution
2: sB ← sI � best incumbent solution
3: q ← 1
4: repeat
5: choose ω− ∈ �− and ω+ ∈ �+

6: [sC, N−] ← ω−(sC, q)
7: sE ← ω+(sC, N−)
8: if sE is accepted then
9: sC ← sE

10: if ob jsE > ob jsB then
11: sB ← sE

12: end if
13: q ← 1
14: else if no solution accepted for thrImp then
15: q ← q + qStep
16: end if
17: update probabilities of ω− and ω+

18: if maxIterPerEp is reached then
19: reset probabilities of all operators in �− and �+

20: sC ← sB

21: if sB not improved for thrE pImp then
22: sC, sB ← KS()
23: end if
24: end if
25: until time limit τ is reached

a generic solution s (with a value indicated by ob js) is composed by a set of |F | routes, one for each
nurse, represented as sequences of service requests. All the destroy operators remove, according to
a specific criterion, a subset of service requests. The resulting partial solution is repaired by using
different operators that try to insert nodes into routes following a specific order. Actually, we pro-
pose a hybrid ALNS algorithm exploiting the exact resolution of MILP models (see, e.g., Grangier
et al., 2017 or Mansini and Zanotti, 2020). In particular, a Kernel Search approach has been de-
vised as an intensification procedure and comes into play when the solution quality improvement
is stalling during the ALNS execution. Given the hybrid nature of the developed approach, we call
the resulting matheuristic ALNS-KS.

The general structure of ALNS-KS is reported in Algorithm 1. The algorithm requires an initial
feasible solution sI (found by using the greedy procedure described in Section 4.1), sets �− and �+

containing the destroy and repair operators, and the maximum execution time τ . In Steps 1 and
2, the current solution sC and the best incumbent integer solution sB are initialized to the initial
solution sI . Moreover, in Step 3, the parameter q representing the degree of destruction (i.e., the
number of requests removed from the solution) is initialized to 1. The main loop (Steps 4–25) starts
and is repeated until the elapsed time does not exceed the threshold time τ . In Step 5, a destroy op-
erator ω− and a repair operator ω+ are chosen. Then, in Step 6, operator ω− partially destroys the
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current solution sC according to the degree of destruction q, thus generating a partial solution sC,
together with the set N− ⊂ N containing all the requests removed from sC (see Section 4.2). Then,
in Step 7, ω+ repairs the partial solution sC without using the just removed requests in N−, thus
generating a potentially improved solution sE (see Section 4.3). If sE is accepted, which occurs with
a probability calculated according to the classical Simulated Annealing-like rule used in Pisinger
and Ropke (2007), the current solution and possibly (in case of improvement) the best solution
are updated (Steps 9–12), and the parameter q is reset to the initial value 1 (Step 13). Moreover, if
the number of iterations since the last accepted solution has reached a certain threshold thrImp,
then q is incremented by a value qStep (Steps 14 and 15). In Step 17, the probabilities of the two
chosen operators are updated. We precise that, at the first iteration, each operator has the same
probability to be chosen. During the subsequent iterations, as originally proposed in Ropke and
Pisinger (2006), we update the probability for each operator according to its performance, that
is, we increase its probability if it has produced an accepted solution and decrease it otherwise.
Finally, Steps 18–24 provide intensification routines. In particular, when an epoch has passed, that
is, every maxIterPerE p iterations, the selection probabilities of all destroy and repair operator
are reset to the initial value and the search restarts from the best solution obtained so far sB.
Moreover, if a predefined number thrE pImp of epochs passed without an improvement of the best
solution, we call a Kernel Search that attempts to improve the current best solution by solving
a sequence of restricted integer problems built on the initial formulation NRP-IS by considering
only the arcs belonging to the solutions visited since the last improvement or the last KS run (see
Section 5).

4.1. Heuristic algorithms for finding the initial solution

The initial solution is constructed in a different way according to the variant of the problem.
For the NRP-IS, the method starts from an empty solution containing nodes 0 and n + 1 in all

routes, processes all requests in random order, and tries to insert each one according to a cheapest
insertion policy. If a request cannot be inserted in any route due to incompatibilities or workload
time restriction, it is discarded. Classical 2-opt and inter-route node-swap procedures are performed
after each insertion. This procedure is reiterated multiple times until a stopping condition is met
(either ninit solutions have been produced or a time limit τinit has been reached). The initial solution
sI given to ALNS-KS is the one with the highest profit among the ones identified.

For the NRP-ISD, instead, we use a two-phase approach that focuses on satisfying as soon as
possible the minimum demand for the service types. In the first phase, we proceed as in the previous
case, but we consider only those requests associated with a service type that has a nonnull mini-
mum demand. Once the demand for a certain service type has been totally satisfied, we discard the
requests not included in the solution and associated with such a service type. If the above proce-
dure does not produce a feasible solution, it restarts from scratch. In the second phase, we proceed
exactly as in the case without demand, considering in random order all the requests that have not
been already included so far in the solution.

Please note that, while the procedure described above for NRP-IS guarantees to find a feasible
solution, this is not always true regarding the NRP-ISD variant. In the unlucky cases yielding in-
feasibility, we can use an MILP solver to find a feasible assignment of the nurses to the requests
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by solving a simplified version of model (1)–(11) that considers only those requests with a positive
minimum demand. However, in our computational tests, we never experienced such pathologi-
cal situations.

4.2. Destroy operators

Each destroy procedure concerns the removal of different requests from a current solution. We
call N− the set of requests to remove. This set is created by sorting in a specific order the requests
belonging to sC and by selecting, one by one with the 80% of probability, a number of requests
equal to q. We implemented six different sorting procedures, thus yielding six corresponding destroy
operators:

• ω−
1 : the requests are sorted randomly;

• ω−
2 : the requests are sorted in nondecreasing order of profit over the sum of the travel times of

the corresponding incoming and outgoing arcs;
• ω−

3 : the requests are sorted in nondecreasing order of profit over service time;
• ω−

4 : the requests are sorted in nondecreasing order of profit over the sum of the travel times of
the corresponding incoming and outgoing arcs plus the service time;

• ω−
5 : the requests are sorted in nondecreasing order of profit over the maximum profit of all the

requests incompatible with the considered one (if the request does not have any incompatibilities,
only the profit is used);

• ω−
6 : the requests are sorted in nonincreasing order of the percentage of solutions in which such a

request appears since the last best solution improvement (or the last KS run).

Additionally, we implement one last destroy operator ω−
7 based on the well-known Shaw’s re-

moval concept. In this operator, one request is initially selected randomly from sC and added to N−.
Then, until |N−| < q, the algorithm first selects randomly a request from N− and then adds to N−

the most similar one from sC and not yet included in N−. The similarity between two requests i and
j is determined through a relatedness measureR(i, j) = 1/(ti j + 0.1|sti − st j| + Ii j ), where Ii j = 1 if
the two requests are served by the same nurse, and 0 otherwise.

4.3. Repair operators

The repairing procedure aims at reconstructing the current partial solution by trying to add to its
requests those belonging to a set N+ = N \ N−. The procedure sorts in a specific order the requests
in N+ and tries to insert them one by one with the 80% of probability if the feasibility is maintained.
Note that, for the NRP-ISD variant, the sorting gives priority to requests associated with a nonnull
demand service type, until the demand is not satisfied.

We implemented four different sorting rules, mirroring those proposed in the first four destroy
operators:

• sr1: the requests are sorted randomly;
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• sr2: the requests are sorted in nonincreasing order of profit over the sum of the travel times from
the two requests in solution closest to the considered one;

• sr3: the requests are sorted in nonincreasing order of profit over service time;
• sr4: the requests are sorted in nonincreasing order of profit over the sum of the travel times from

the two requests in solution closest to the considered one plus the service time.

For the last three sorting rules, we also implemented two regret-based versions. Here, we compute
for the first 2|N−| requests a regret score and we re-sort them accordingly in nonincreasing order.
For each request, the regret-2 score is calculated as the difference between the cost of inserting it
in the second-best route by using a cheapest insertion algorithm and that of doing the same for
the very best route. Instead, the regret-3 score is calculated as the regret-2 score plus the difference
between the cost of inserting the request in the third-best route and that of doing the same for the
very best one. Eventually, 10 repair operators arise:

• ω+
1 : the no-regret repair operator based on the sorting rule sr1;

• ω+
2 , ω+

3 , ω+
4 : the no-regret repair operator based on sorting rule sr2, sr3, sr4, respectively;

• ω+
5 , ω+

6 , ω+
7 : the regret-2 repair operator based on sorting rule sr2, sr3, sr4, respectively;

• ω+
8 , ω+

9 , ω+
10: the regret-3 repair operator based on sorting rule sr2, sr3, sr4, respectively.

Note that, only in the NRP-ISD case, the definition of N+ does not ensure to obtain a repaired
feasible solution because the requests necessary to achieve the minimum demand for a service could
have been excluded by the destroy operator used. In this case, the algorithm simply stops the re-
pairing procedure.

5. Kernel Search-based intensification procedure

In this section, we present our intensification method based on the Kernel Search. We first give
a brief overview of the method, then we describe how it is implemented and embedded into
our framework.

5.1. Kernel search

Kernel Search is a well-known heuristic framework initially proposed for the solution of general
MILP problems and successfully applied to many specific problems such as knapsack problems
(Angelelli et al., 2010; Lamanna et al., 2022), portfolio selection (Angelelli et al., 2012), and routing
problems (Hanafi et al., 2020).

The method is based on the construction of a sequence of restricted problems solved by means
of an MILP solver (Gurobi, Cplex). Each restricted problem includes only a subset of variables of
the original problem, whereas the remaining ones are set to zero. To built restricted problems, the
algorithm identifies the most promising variables. More precisely, all variables are sorted according
to a predefined rule so that more promising ones come first. A variable is highly promising if it is
highly probable it will be selected in an integer optimal solution. Even if several methods exist in
the literature, a classical way to derive this probability is to use the value of variables belonging to
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the basis in the optimal solution of the continuous relaxation and the absolute value of the reduced
cost for the out-of-the-basis ones. The first variables in the ordered list enter the so-called kernel set,
the remaining ones are partitioned into groups called buckets. The first restricted problem contains
the variables of the initial kernel set, each one of the others is constructed by jointly considering the
variables in the kernel set plus those belonging to one bucket. The construction of the kernel set is
not a one-shot procedure but is based on a learn-and-adjust method where new variables are added
and some others are excluded at each iteration when solving a new restricted problem. The idea is
that the final kernel set should contain most of (hopefully all) the variables that will be selected in
an optimal solution. Note that the number of restricted problems to solve depends on the number
of constructed buckets and is a parameter of the method. Either a few or all possible buckets can
be considered. It is even possible to scroll buckets more than once. Finally, since optimally solving
the restricted problems could be computationally too cumbersome, a solution time limit can be
imposed. If this is the case, for each restricted problem, the solver will possibly provide the best
feasible solution found so far instead of the proven optimal one.

5.2. Implementation details

In our intensification procedure, we implemented a slightly different KS. An innovative aspect is
that, differently from the existing works on KS, promising variables are identified not by means
of the LP relaxation but exploiting the information coming from a pool of solutions generated by
another algorithm execution (the ALNS in our case). More precisely, in the NRP-IS formulation,
we have three types of variables: those associated with patient requests and used to model conflicts
(variables w representing nodes of the graph) and two groups of variables associated with connec-
tions among requests (variables x representing the arcs selection and variables q associated with
arrival times). Instead of sorting all variables, one can note that it is possible to identify a key set
of variables controlling all the remaining ones and only sorting this set to create both the initial
kernel set and the buckets. Hence, the key set of variables is represented by arc variables x. In fact,
a q-variable is active (i.e., not set to 0) if the corresponding x-variable is active, while a w-variable
associated with a node is active if at least two arc variables (one entering and one leaving) insisting
on such a node are both active.

The ALNS and the KS methods cooperate as follows. Let us define as SALNS the set of solutions
produced by ALNS-KS since the last global improvement (or the last KS run) sorted in nonascending
order of value (if a tie occurs, the solution with the lower amount of nurses working time comes
first). For each arc, we compute a score depending on the quality of the solutions in SALNS in
which it is selected. More precisely, each time an arc appears in the rth solution of the sorted list,
its score gains a value equal to |SALNS| − r. The kernel set is constructed by adding (i) all the x
variables corresponding to the arcs selected in the best incumbent integer solution identified so far
by ALNS-KS; (ii) two times the number of variables in (i) selected among those with the highest
scores. The remaining variables, sorted by score, are divided into four buckets of fixed size equal
to 500. We decided to consider only this limited number of buckets since the KS is assumed to be
called with a very tight time budget.

The time granted to KS is 15 seconds and it is equally divided among the five restricted problems
to solve. Note that, if some time remains after the solution of the last restricted problem and at least
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an improved solution has been found, then the KS continues to iterate on solving the restricted
problems including the updated kernel set.

We also precise that the mathematical formulation used by KS is the one exposed in (2)–(11) with
the following slightly modified objective function:

max
∑

i∈N

piwi − α
∑

i∈N

qi,n+1. (16)

Equation (16) adds to the total profit a penalty that depends on the total working time of the nurses,
scaled by a parameter α = 0.001. This change allows the KS to possibly improve a solution both
because it achieves a higher profit and because it reduces the total time needed to serve the requests.

As mentioned, KS is used as an intensification procedure around the best solution when no im-
provements have occurred for several ALNS iterations. Since KS is based on the solutions collected
during the ALNS execution, its effectiveness strongly depends on the number of solutions that are
close in value to the best one but different in terms of arcs and nodes selected. That said, in or-
der to obtain a set SALNS with a consistent number of high-quality solutions, KS is invoked only
if the best solution has not been improved for a predefined threshold thrE pImp of consecutive
epochs (see Steps 21–23 of Algorithm 1). This way, in our experiments SALNS has usually resulted
in containing several thousands of solutions.

Finally, to allow KS to obtain some improvements, even in the case of a high quality incumbent
solution (as it usually happens in the second-half of the ALNS execution), we have increased the
KS time limit by 10% if the previous KS has not produced any improvement and no improvement
has occurred since the last KS run. Note that, the time limit is reset any time a global improvement
is achieved.

6. Computational experiments

This section is devoted to describe the computational results obtained by testing the proposed
mathematical formulation and the implemented ALNS-KS and its components. We discuss the gen-
eration of the instances in Section 6.1, provide some implementation details of our algorithms in
Section 6.2, and comment on the results obtained in Section 6.3. All the computational tests have
been run on an AMD Ryzen 9 3950x machine using four of its cores and 32GB of RAM, and
running a 64-bit Windows 10 operating system. The MILP solver used is Gurobi v9.1.2 and all the
algorithms have been implemented in Java.

6.1. Instances generation

To create realistic scenarios for our computational tests, we generated instances in which each nurse
works for tmax = 360 minutes (six hours) per day, the patients and the hospital are geographically
dispersed over a 30×30 km2 square area (which is the typical covering area of an Italian health-
care provider), and the average traveling speed of nurses is 60 km/h. Traveling times are simply
computed as Euclidean distances between locations divided by such an average speed.
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Table 2
Possible parameter combinations for instance generation

|F | |M| |K| |N| λ%

4 50 5 100, 125 25, 50
5 50 10 150, 175 25, 50
6 50 5 200, 250 25, 50
7 50 10 300, 350 25, 50

Each instance involves up to 60% of short-duration services (5–15 minutes), 40% of medium-
duration services (15–45 minutes), and 20% of long-duration services (45–95 minutes). The first
category includes, for example, the administration of various drugs, the measurement of vital signs,
and blood or other organic material tests. The second category includes ordinary or post-operative
bandages, dressings, and injections. The more complex tests and therapies, such as electrocardio-
gram, dialysis, chemotherapy, and physiotherapy sessions, fall into the last category. We consider
scenarios in which the hospital provides no more than 10 types of services and at most λ% of these
services are involved in an incompatibility. Typical incompatibilities arise, for example, between the
conjunct administration of medicines that could create negative side effects, or between drugs that
could induce excessive bleeding and post-operative medications. We assume that each patient re-
quests at least 10% and at most 70% of the available services, and for each request i, a profit pi is
randomly generated in [1, 200]. Eventually, we generate 80 NRP-IS instances, that is, five random
repetitions for each one of the 16 combinations of number of nurses |F |, patients |M|, service types
|K|, total requests |N|, and value of λ% presented in Table 2.

Finally, in order to address also the NRP-ISD variant, for each one of the previous 80 instances,
a minimum demand dk for each service type k ∈ K is generated randomly in [0, |{i ∈ N : σ (i) =
k}|/2]. This yields 160 instances in total. All the generated instances, along with detailed results of
the tests described in Section 6.3, are available at the webpage https://or-dii.unibs.it/index.php?
page=nrpis.

6.2. Implementation details and parameters tuning

Hereafter, we call EXACT our branch-and-cut method embedding the resolution of the mathematical
model (1)–(11) through the Gurobi MILP solver, with a time limit of 3600 seconds, and the addition
of valid inequalities described in Section 3.3. In particular, valid inequality (12) is added from
scratch. Instead, the other proposed valid inequalities are dynamically separated in the branch-and-
bound’s tree by using Gurobi’s callbacks. The separation of GCCs in (13) can be done in polynomial
time by using consolidated max-flow based techniques (see, e.g., Beraldi et al., 2017). We solve the
involved max-flow problems by using the algorithm proposed in Boykov and Kolmogorov (2004).
Instead, the searching for violated inequalities (14) and (15), which are polynomial in number, is
simply done by enumeration. Finally, in Table 3, we summarize all the parameters used for the
ALNS-KS execution and provide their value. The tuning has been done over a representative subset
of instances.
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Table 3
Tuning of the ALNS-KS parameters

Parameter Meaning Value

qStep Incremental quantity of the degree of destruction q 1
thrImp Number of iterations without improvement before increasing q 100
maxIterPerE p Number of iterations per epoch 3000
thrE pImp Number of epochs without improvement after which KS is run 5
ninit Number of solutions produced by the initial solution heuristics 200
τinit Time limit for the initial solution heuristics 20 s

Table 4
EXACT versus MM16

EXACT MM16

Variant Stat. ttb #bbn gap(%) #f ttb #bbn gap(%) #f 	ob j (%)

NRP-IS Avg 2436 6250 5.61 16 1324 40,130 62.72 16 −60.30
Min 418 3 2.41 0 6580 6.83 −100.00
Max 3534 30,608 16.29 3527 86,891 100.00 −0.29

NRP-ISD Avg 3056 5856 7.87 9 2556 101,514 8.73 1 −3.16
Min 2008 1 1.93 2556 343,517 8.73 −3.16
Max 3601 34,373 21.45 2556 23,041 8.73 −3.16

6.3. Results and discussion

In this section, we report the computational experiments performed on both the problem vari-
ants (NRP-IS and NRP-ISD) and discuss the results obtained by our algorithms. In Section 6.3.1,
we evaluate the effectiveness of our new model and of the valid inequalities introduced. In Sec-
tion 6.3.2, we analyze the performance of our ALNS-KS in terms of efficiency and quality of the
solutions, while in Section 6.3.3 we assess the contribution of the KS intensification.

6.3.1. Mathematical formulations evaluation
In the following preliminary experiments, we first assess our branch-and-cut (EXACT) with respect
to the one already available in the literature (proposed in Manerba and Mansini, 2016 and named
MM16 hereafter) and based on a different model. Table 4 shows this comparison by reporting, for
NRP-IS and NRP-ISD, some statistics on a subset of 32 instances (one for each variant and for
each parameter combination presented in Table 2). No runs have reached the optimality within one
hour. For each method, the columns report:

• ttb: the time-to-best in seconds, that is, the time at which the best solution has been found;
• #bbn: the number of branch-and-bound nodes explored during the procedure;
• gap: the percentage gap between the best feasible solution lb and the best upper bound ub found

by the relative method. It is calculated as 100 ub−lb
ub ;

• #f: the number of instances for which at least a feasible solution has been found.
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Table 5
Valid inequalities contribution

EXACT EXACT-noCuts

Variant Stat. ttb # bbn #(13) #(14) #(15) gap(%) # f ttb #bbn gap(%) # f 	ob j (%) 	I (%) 	F (%)

NRP-IS Avg 2400 5744 10,818 720 1011 8.83 32 1996 6066 9.48 32 −0.65 −0.45 −0.42
Min 992 21 1456 70 294 2.29 234 4 2.36 −4.25 −0.15 −0.67
Max 3280 33,476 39,772 3987 4063 13.63 3489 34,098 14.03 1.68 −0.65 −0.01

NRP-ISD Avg 2746 6357 17,107 652 1565 7.32 15 2768 98,37 7.12 14 0.43 −0.88 −0.55
Min 1875 52 5224 73 376 1.94 1741 1 2.66 −3.59 −2.20 −1.29
Max 3582 35,903 56,006 4234 7239 21.45 3458 54,650 19.95 4.01 −0.33 −0.06

Finally, 	ob j indicates the percentage gap between lbEXACT (the best solution found by EXACT, if any)
and the corresponding value lbMM16 for MM16, calculated as 100 lbMM16−lbEXACT

lbEXACT
. Clearly, a negative value

means that EXACT has found a better solution than MM16.
From Table 4, it clearly appears that our new branch-and-cut totally outperforms the existing

method. In the NRP-IS instances, for which MM16 is still able to always find at least a feasible
solution, EXACT achieves solutions with an average improvement in objective function of 60% and
with an average gap that is about 10 times lower. Moreover, note that the number of branch-and-
bound nodes explored is about 8 times lower. This is a clear consequence of the addition of the
valid inequalities. When considering NRP-ISD instances, instead, even our branch-and-cut starts
getting less effective. Here, a direct comparison between the two methods is biased by the fact that
MM16 is able to find a feasible solution only in one case. However, EXACT finds a feasible solution in
9 out of 16 cases and strongly reduces the average number of branch-and-bound nodes explored.

To complete the analysis, we assess the effectiveness of the valid inequalities presented in Sec-
tion 3.2 by comparing EXACT with its version without cuts separation (EXACT-noCuts hereafter).
Table 5 shows this comparison by reporting, for NRP-IS and NRP-ISD, some statistics on a subset
of 64 instances (two repetitions for each variant and for each parameter combination presented in
Table 2). Again, no runs have reached the optimality within one hour. In addition to the column
headers already explained,

• #(13), #(14), and #(15) are, for each method, the number of violated valid inequalities (13)–(15)
added, respectively;

• 	ob j now indicates the percentage gap between lbEXACT and lbEXACT-noCuts, that is, the best solution
found (if any) by EXACT and EXACT-noCuts, respectively. It is calculated as 100 lbEXACT-noCuts−lbEXACT

lbEXACT
;

• 	I is the percentage gap between the initial upper bound (just after the root node) for
EXACT and EXACT-noCuts, that is, ubi

EXACT and ubi
EXACT-noCuts, respectively. It is calculated as

100 ubi
EXACT−ubi

EXACT-noCuts

ubi ;

• 	F is the percentage gap between the final upper bound for EXACT and EXACT-noCuts, i.e. ubf
EXACT

and ubf
EXACT-noCuts, respectively. It is calculated as 100 ubf

EXACT−ubf
EXACT-noCuts

ubf .

Concerning the NRP-IS variant, more than 12,000 valid inequalities are added on average: cuts
(13) are the 85%, while inequalities (14) and (15) are much less, about 6% and 9% of the total,
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respectively. The gap columns show that for EXACT the gap drops by about 0.7%, compared to
EXACT-noCuts, while on average the objective function value improves by 0.65% (with some peaks
beyond 4%). From the 	I and 	F columns, it is clear that the introduction of valid inequalities al-
lows to improve both the initial and final upper bounds, by 0.45% and 0.42%, respectively. Instead,
concerning the NRP-ISD variant, on average about 20,000 valid inequalities are added in each res-
olution: 89% of (13), 8% of (15), the remaining 3% of (14). This great number of added cuts does not
allow to clearly assess if EXACT outperforms EXACT-noCuts in terms of objective function (slightly
worse average, and oscillating min and max values). However, the efficiency of the valid inequali-
ties is evident also for the NRP-ISD from the columns 	I e 	F , where the initial and final upper
bounds are on average improved by 0.88% and 0.55%. Finally, note that EXACT and EXACT-noCuts
do not manage to find a feasible solution within the time limit for 17 and 18 instances, respectively.

In conclusion, we definitely decided to use EXACT any time an MILP restricted problem solution
is called inside ALNS-KS.

6.3.2. Evaluation of the ALNS-KS performance
In the following, we assess the performance of the heuristic framework ALNS-KS with respect to
EXACT. Table 6 reports this comparison by showing in the columns, for both problem variants and
for τ = 1, 5, and 10 minutes:

• 	a
ob j, 	

b
ob j, 	

w
ob j : average, best, and worst values over five runs of 	ob j , now representing the per-

centage gap between the best solution found (if any) by EXACT (lbEXACT) and the solution found
by ALNS-KS (lbALNS-KS), calculated as = 100 lbEXACT−lbALNS-KS

lbEXACT
;

• ttb: time-to-best in seconds, that is, the time at which the best solution has been found by ALNS-KS;
• #it: thousands of ALNS iterations;
• #KS: number of Kernel Search calls.

Each row shows average results per number of requests. A dash indicates that lbEXACT is not available.
At this disaggregated level, we just highlight that our ALNS-KS shows a very stable behaviour

over the five runs. For a more compact analysis, Figs. 1 and 2 show, for NRP-IS and NRP-ISD,
respectively, the boxplot statistics of 	

avg
ob j . The data are reported for the three different τ values and

aggregated for number of requests. In general, we can see that a longer time does not significantly
improve the 	

avg
ob j in a given subset of instances. However, regardless of the time limit imposed, the

gap improves more and more as the number of requests increases. This means that ALNS-KS is able
to solve even the most difficult scenarios, where EXACT does not perform well. Concerning NRP-
IS, the gap varies between +1.00% and −1.59% for |N| = {100, 125} instances, between −0.01%
and −6.62% for |N| = {150, 175}, between −0.18% and −9.68% for |N| = {200, 250}, and between
−3.20% and −16.91% for |N| = {300, 350}. The improving trend is very similar for the NRP-ISD
but with a bigger proportion, which allows us to obtain even more than 40% of gap in the larger
instances. It is worth noticing that, even within 1 minute, ALNS-KS is able to always obtain a bet-
ter result for instances with more than 150 requests. For the sake of completeness, Fig. 3 shows
the percentage of the total number of runs in which ALNS-KS obtains better results than the exact
approach. The data are reported separately for each variant and for three different τ values, and
aggregated for number of requests. The number of times that ALNS-KS manages to find a better
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Fig. 1. 	
avg
ob j for the NRP-IS.

Fig. 2. 	
avg
ob j for the NRP-ISD.

solution is at least 70% of the total, both for NRP-IS and NRP-ISD. Within 1 minute, the percent-
age is about 70–75% for instances with 100,125 requests. The average over the two variants rises
with the increase in the number of requests, taking values of about 73%, 93%, 98%, and eventually
100%. For 5 and 10 minutes, results are never below 90%. Generally, ALNS-KS is always able to
outperform EXACT in instances with more than 200 requests.

Again from Table 6, we can observe how in both variants, the ttb is in general above half of the
available time. This is a sign that ALNS-KS is able to be more efficient as τ increases. It is also evident
that, regardless of τ , more time is needed to find the best solution for the NRP-ISD. This could be
due to the fact that the minimum demand constraints lead the ALNS-KS to have a higher number
of iterations in which the solution repaired is discarded since not feasible. Interesting enough, KS
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Fig. 3. Percentage of ALNS-KS runs that outperform EXACT.

Fig. 4. Average number of sB improvements by the destroy operators.

is called in proportion much more for τ = 10. This is due to the fact that ALNS is able to find
improving solutions at the beginning of the execution while it more likely stalls afterwards.

Finally, in Figs. 4 and 5, we show the contribution given by the destroy and repair operators to
ALNS-KS in 10 minutes. In particular, we show the average number of times in which, in a run, the
specific operator led to an improvement of the best incumbent solution sB. For NRP-IS, the most
successful destroy operator is ω−

3 , with an average number of improvements of sB per run of 23.4.
Next, we find ω−

4 , with 14.6 average improvements. The other destroy operators stand at values
below 3, so they probably do not contribute significantly to the achievement of the final solution.
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Fig. 5. Average number of sB improvements by the repair operators.

Nevertheless, as some of these operators are designed as a way to achieve diversification (ω−
6 and

ω−
7 in particular), we believe they still play a crucial role in our implementation. For NRP-ISD, the

most efficient destroy operators are ω−
2 and ω−

4 , with an average number of improvements of about
11. Next, we find ω−

5 with 5.7. Unlike the NRP-IS, ω−
3 (which sorts the requests by profit over

service time) does not appear to be particularly effective for the variant with minimum demand.
In general, no destroy operator stands out among the others probably because the implemented
sorting procedures do not consider the minimum demand constraints, thus generating non-feasible
solutions. Concerning repair operators, six operators (ω+

3 , ω+
4 , ω+

6 , ω+
7 , ω+

9 , ω+
10) obtain for NRP-

IS a very similar performance of about seven average improvements of sB, while the remaining do
not have a significant impact. For the NRP-ISD variant, instead, ω+

3 and ω+
4 stand out with about

10 improvements of sB for each run, relegating all the other repair operators to a marginal role.
Interesting enough, ω−

1 and ω+
1 , that is, the random operators, do not particularly affect either of

the two variants, thus justifying the effort for deepening the specific problem features.

6.3.3. Evaluation of the KS performance
In order to evaluate the effectiveness of KS within our framework, we perform two different anal-
yses. First, we evaluate the impact of KS during the execution in terms of best solution improve-
ments, and then we compare the results of ALNS-KS with the results obtained by a pure ALNS.

In Fig. 6, we report the average number of improvements of the current best solution produced
by KS for the NRP-IS and NRP-ISD variants. We consider both improvements in terms of total
duration of working time for the nurses, without any change in objective function value (# route
improv.) and improvements of total profit collected (# obj improv.). The Figure reports values for
τ =1, 5, and 10 minutes, aggregated by number of requests. A clear upward trend emerges from
the two charts, which confirms the fact that KS is more effective for hard-to-solve instances. In
the NRP-IS variant, the average number of objective function improvements within 10 minutes
goes from 2.3 for 100–125 requests to 3.5 for 300–350 ones. There is no clear trend for the number
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Fig. 6. Average number of sB improvements in terms of routing cost and total profit produced by KS for NRP-IS (left)
and NRP-ISD (right).

Fig. 7. ALNS-KS versus ALNS-noKS for NRP-IS. Average, best, and worst objective function gap.

of route improvements, which stays between 2 and 3. The impact of KS is even more clear when
considering NRP-ISD. In this case, the average number of best objective improvement goes from
3.5 (100–150 requests) to 8.2 (300–350). This is because a matheuristic can contribute more to the
overall effectiveness of an hybrid method when it is more difficult to identify feasible solutions. Note
that, the slight downward trend shown for one minute is because ALNS-KS can easily find improving
solutions early in the algorithm execution and a larger number of requests implies a lower number
of iterations, thus reducing the number of KS calls.

In Figs. 7–9, we present the comparison between ALNS-KS and its variant not including the KS
intensification (ALNS-noKS hereafter). In Fig. 7, we show the boxplots over all the NRP-IS instances
of the gap between the objective function value obtained by the two algorithms in the average, best,
and worst case over five runs. Note that, in order to perform a fair comparison, we kept the same
settings for ALNS-KS both in the NRP-IS and NRP-ISD cases, while a precise tuning of thrE pImp in
particular would have probably helped achieving better results for the NRP-IS variant. The results
show no clear trends and, even if the average gap calculated considering all instances is slightly in
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Fig. 8. ALNS-KS versus ALNS-noKS for NRP-ISD. Average, best, and worst objective function gap.

Fig. 9. Percentage of instances where ALNS-KS is better than ALNS-noKS.

favor of ALNS-KS (-0.02%), for certain values of |N|, ALNS-noKS performs better sometimes (e.g.,
the gap is 0.02% for 300–350 requests). Although the best value obtained is almost always better
for ALNS-KS, ALNS-noKS is often able to obtain a better performance in the worst case. This implies
that, in instances in which finding feasible solutions is quite easy (like the ones without demand),
ALNS-noKS can be good enough. In Fig. 8, we report the comparison of the same methods for
the NRP-ISD. In this case, we can clearly see that KS is much more effective (−0.3% on average),
and a downward trend emerges, indicating how, especially in the 300–350 requests instances, the
hybridization has its advantages. For these instances, ALNS-KS obtains, on average, solutions that
are 0.7% better than the ALNS-noKS ones, which corresponds to an improvement of about 100
units of profit. In most cases, ALNS-noKS struggles to quickly find high-quality feasible solutions,
thus, unlike in the NRP-IS case, substituting thousands of ALNS iterations for a few KS runs
consistently produces improvements. Finally, in Fig. 9, we report the percentage of instances in
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which the average objective function value over five runs obtained by ALNS-KS is better than the
ALNS-noKS one. These results confirm that KS is more effective for the NRP-ISD variant. If we
consider 300–350 requests, ALNS-KS is better than ALNS-noKS in 90% of the cases. However, even
for NRP-IS, for 200–250 requests, the percentage of ALNS-KS improved instances is 70%.

7. Managerial insights

In this Section, we conduct a sensitivity analysis by exploiting the ability of our solution approach
to solve realistic-size HHC working scenarios. In particular, we investigate, through several indica-
tors, which is the impact produced by increasing the number of incompatibilities and of available
nurses while keeping the same set of requests.

To this aim, we consider 10 instances (five for each variant of the problem) involving 4 nurses,
50 patients, 5 service types, 100 requests, and a single pair of incompatible service types. Then, for
each basic instance, we

1. increase the number |F | of nurses from 4, to 5, and to 6;
2. increase the number |B| of pairs of incompatible service types from 1, to 2, and to 3.

Each instance is solved to optimality by first running our ALNS-KS for 10 minutes and then by
running our branch-and-cut EXACT initialized with the best solution found by the heuristic (to
be precise, we stop the computation when the potential error between the value of the objective
function and the real optimum of the problem is certified to be less than 1%). The assessment is
done by calculating, for each instance and for each change, the following KPIs:

• 	ob j: the percentage of improvement in terms of objective function value with respect to the
basic instance;

• t f ree: the percentage of working time for the employed nurses that remains unused with respect
to the total working time available;

• rsat: the percentage of fulfilled requests with respect to the total number of requests;
• rsat/p: the average percentage of fulfilled requests with respect to the total ones coming from a

single patient;
• psat: the percentage of patients whose requests have been totally satisfied.

Figures 10 and 11 show the values of the above KPIs (averaged on all the tested instances) with
respect to the increment of |F | and of |B|, respectively. Given the magnitude of the values, the
left charts report on 	ob j and t f ree, whereas the remaining KPIs are shown in the right charts.
Moreover, for each KPI, the dotted line represents the value concerning NRP-IS instances, whereas
the straight line represents the value concerning the NRP-ISD.

Considering Fig. 10, it is clear that all the KPIs increase steadily and almost linearly as the
number of available nurses increases. Moreover, there is no sensible difference in the increasing
between the NRP-IS case and the NRP-ISD one. From the left chart, it appears that any new
available nurse allows to gain about 8–10% in terms of total profit collected, while the percentage
of total free time slightly increases by about 1%. This is reasonable, since the objective function of
the problem only aims at maximizing the profit without caring about saving time. However, even
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Fig. 10. KPIs trends for increasing values of |F |.

Fig. 11. KPIs trends for increasing values of |B|.

if in small extent, a little more time is much appreciated as it allows for more flexibility and to
better deal with unexpected events. The right chart, instead, shows that the introduction of a new
nurse increases the percentage of fulfilled requests (both overall and per patient) by 7–8% and the
percentage of totally satisfied patients by about 10%. Clearly, this analysis is useful to evaluate, at a
tactical level, the dimension of the fleet of nurses depending on the additional cost of the personnel,
the magnitude of the profit, and the quality-of-service desired.

Figure 11 shows that, in general and as expected, the increase of service type incompatibilities
negatively affects the KPIs considered. This is clear from the left chart, where we see that intro-
ducing an additional incompatibility drops down the total collected profit of about 5% (the drop
is a bit more consistent in the NRP-ISD case), while the introduction of a further incompatibility
just reduces the profit of 1%. However, this negative trend has some exceptions. First, the t f ree
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KPI remains almost stable with little up-and-down oscillations of at most 0.5% (remember that
the time minimization is not directly pursued by the problem). More interesting, and in particular
for the case without minimum demand, the rsat/p and the psat KPIs increase of about 2–3%
when increasing the number of incompatibilities from 2 to 3. Although counterintuitive, this
can be explained by the fact that the additional incompatibility may affect some patients that
are not anymore convenient to visit in terms of profit, thus allowing to better concentrate on
other patients. The just carried out analysis, and in particular the signal on the possible profit
losses, may help the management of the nurse companies in deciding which services to consider in
their basket.

8. Conclusions

In this paper, we study a Nurse Routing Problem in which a set of nurses needs to be scheduled and
routed to perform services to patients with the aim of maximizing the collected profit. This setting
is able to capture more realistic features than the classical VRP extensions studied in the specialized
literature. Moreover, our problem is further characterized by different service types, working time
limitations for the nurses, service incompatibilities, and minimum demand. We first provide a new
compact MILP formulation, eventually strengthened by the introduction of different valid inequal-
ities. Then, a hybrid ALNS is developed to address the most complex working scenarios. Apart
from the specific destroy and repair operators, our ALNS approach has been enriched by a Kernel
Search-based intensification procedure exploiting the exact solution of MILP restricted problems.
An extensive campaign of computational experiments has been conducted to validate and assess
both the new model and the proposed ALNS-KS approach. In particular, we test two variants of the
problem, with and without a minimum demand to be guaranteed for each type of service. In both
cases, our new formulation outperforms the existing one, thus providing new benchmarks. However,
both exact models are not suitable against medium and large instances, whereas our ALNS-KS has
proved to be able to provide high-quality solutions in very short time even for the hardest scenarios
and to consistently outperform the exact formulations.

Some future research directions can be foreseen. In particular, given the efficiency achieved by
the proposed matheuristic, it could be interesting to extend the problem to a multi-period setting,
thus planning day-by-day operations over a longer horizon (e.g., a week) and embedding medium-
term economies of scale. In such a setting, it is reasonable that the requests of a patient not satisfied
during a day are likely to receive a higher priority (profit) in the next days. Moreover, to obtain
robust home healthcare services, also uncertainties and possible disruptions should be explicitly
taken into account. In this case, apart from the classical issues linked to traffic in road networks, also
delays on the service times (e.g., due to unexpected reactions or difficulties during the treatment)
become important.
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