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ABSTRACT This paper presents a study on an automated system for image classification, which is
based on the fusion of various deep learning methods. The study explores how to create an ensemble
of different Convolutional Neural Network (CNN) models and transformer topologies that are fine-tuned
on several datasets to leverage their diversity. The research question addressed in this work is whether
different optimization algorithms can help in developing robust and efficient machine learning systems to
be used in different domains for classification purposes. To do that, we introduce novel Adam variants.
We employed these new approaches, coupled with several CNN topologies, for building an ensemble of
classifiers that outperforms both other Adam-based methods and stochastic gradient descent. Additionally,
the study combines the ensemble of CNNs with an ensemble of transformers based on different topologies,
such as Deit, Vit, Swin, and Coat. To the best of our knowledge, this is the first work in which an in-depth
study of a set of transformers and convolutional neural networks in a large set of small/medium-sized images
is carried out. The experiments performed on several datasets demonstrate that the combination of such
different models results in a substantial performance improvement in all tested problems. All resources are
available at https://github.com/LorisNanni.

INDEX TERMS Convolutional neural networks, transformers, optimization, ensemble.

I. INTRODUCTION
The use of Convolutional Neural Networks (CNN) has
revolutionized the field of image recognition, achieving
impressive results in a wide range of applications [20].
Researchers have explored various ways to improve the
architecture of these networks, including the combination
of specialized layers to form new topologies. However,
as neural networks become deeper, they are susceptible to
problems such as the vanishing gradient and difficulties with
optimization. In addition to enhancing the architecture of
CNNs, finding robust and stable optimization algorithms is
equally important to maximize performance [16]. Traditional
optimization methods such as Gradient Descent (GD) and
Stochastic Gradient Descent (SGD) have been widely used,
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with Adam being the more popular method due to its
ability to improve the network’s search for a solution. This
has led to the development of many Adam-based variants.
In this study, we propose new Adam-based variants and
compare them to other optimizationmethods.We also explore
the potential of transformers for building ensembles and
compare different transformer topologies. Our experiments
show that ensembles based on the combination of different
approaches outperform state-of-the-art results in all tested
problems. Despite the complexity of the proposed system,
it requires minimal parameter tuning and works well in
various problemswithout the need for specific pre-processing
or optimization for each dataset. All the tested code and
datasets are available for reproducibility.

The main contributions of this article are as follows:

i) We propose a set of new Adam-based variants useful
during the training phase of the models.
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ii) We define ensembles of different CNN models, trained
with these new Adam-based variants, and differ-
ent transformer topologies. Compared with existing
machine learning methods, our ensembles provide
competitive results in different domains.

iii) Weprovide an empirical evaluation of ensembles trained
with standard and new Adam-based variants. Evaluat-
ing the performance on several metrics and datasets,
we demonstrate that adopting different optimization
algorithms and different network models is beneficial
for ensembles.

iv) We introduce a testbed for evaluating Transformers
ensembles, leveraging publicly accessible datasets, and
showcasing a baseline ensemble. As a result, other
researchers can readily compare their ensembles with
our reported baseline, under the condition that they
employ the same transformers with identical hyperpa-
rameters.

The remainder of the paper is structured as follows: Section
II reports related works on the topic analyzed in this work.
Section III introduces some basic notions about transformers,
CNNs, the Adam approaches proposed in this work, as well
as the datasets used for experiments. Section IV describes
the experimental environments, the testing protocols, and the
performance indicators; moreover, we suggest and discuss a
set of experiments to evaluate our ensembles. In Section V,
we discuss the value of our work providing more insights
about the usefulness of the proposed approach. Section VI
concludes this work and provides some further perspective
on this research.

II. RELATED WORK
A. TRANSFORMERS IN IMAGE CLASSIFICATION
In image classification, Convolutional Neural Networks
(CNNs) have been state-of-the-art for many years, and
models such as ResNet [20] or EfficientNet [48] are still
considered baseline approaches in many works. However,
the recent introduction of transformers by Vaswani et al. [47]
has changed this trend. Transformer models have achieved
disruptive performance in the neural language processing
field, making it the leading approach [6], [12], [28]. The
improvement is attributed to the multi-head self-attention.
After the encoding of words in tokens, the self-attention is
computed as:

Attention(Q,K ,V ) = Softmax
(
QKT
√
Dk

)
V , (1)

where Q ∈ RNxDk is the query matrix, K ∈ RMxDk is
key matrix and V ∈ RMxDv is the value matrix. Dk is the
dimension of the keys, with N and M denoting the lengths
of queries and keys. The multi-head self-attention uses H
different heads computing the attention, as in Eq. 1, and
concatenating the output.

In image classification, Dosovitskiy et al. [14] introduced
the Vision-Transformer (ViT) as the first pure transformer

model to achieve results equivalent or superior to CNNs. ViT
utilizes the encoder from Vaswani’s original work [47] and
stacks a multilayer perceptron to classify features extracted
by the encoder. In this approach, the input tokens are image
patches encoded in a latent space. However, training the
ViT network is challenging due to its lack of inductive
biases compared to CNNs [14], [46]. Moreover, the network
struggles to aggregate local information. To address these
challenges, ViT requires a pre-training on a dataset with
millions of images, namely JFT-300M dataset.

A solution to ViT data issues is proposed in [46]. Their
approach involves distilling knowledge acquired from a
convolutional neural network, combined with actual ground-
truth values, to enable transformers to learn the inductive bias
from the distillation. Additionally, the authors introduced a
‘‘distillation token’’ to enhance the distillation process and
lead to better performance with simpler training. The model
is named Data-efficient Transformer (DeiT).

Swin [29], one of the top transformer models inspired by
ViT, utilizes a hierarchical window structure to address scale-
variation issues. The attention is computed within the local
window, resulting in improved performance and execution
time. The partitioning is gradually shifted along the network
hierarchy to maintain interaction among different windows.
The authors also demonstrated the effectiveness of Swin
as a backbone in various vision tasks, including semantic
segmentation.

Transformers have different characteristics compared to
CNNs. According to [38], CNN models make decisions
mainly based on texture, while ViT weights the shape more.
Therefore, some authors have considered merging the two.
An example is CoAtNet [10], which merges depthwise
convolution with self-attention by stacking them vertically.
With this approach, themodel leverages CNNs inductive bias,
Transformers capacity, and attention mechanism. CoAtNet
may be considered a hybrid approach since it adopts a con-
volutional structure while inserting self-attention from [47].

B. ENSEMBLE OF IMAGE TRANSFORMERS
Vision transformers are gaining more attention for their
ability to recognize long-range dependencies and their
capacity [19], [27]. Despite the impressive results obtained
by deep learning models, their performance can be further
boosted through an ensemble of different models [26] or the
same model with different weights [31], [40]. Each model
of the ensemble can learn a representation that concentrates
on particular aspects or representations of images, improving
the final prediction, as demonstrated by the work of Savelli
et al. [40] that improved small lesion detection using an
ensemble of CNNs trained on different views of the same
lesion. Kyathanahally et al. [26] used an ensemble of six
CNNs to improve plankton classification by averaging the
predictions of the components, following the demonstration
by d’Ascoli et al. [18] that an average ensemble can reduce
overfitting.
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Despite the impact that vision transformers have had on
image classification, only a few works have exploited their
benefits in an ensemble approach [25], [35], [41]. In [21]
the authors compared a vision transformer ensemble with a
CNN ensemble for brain tumors. However, they found that
the ensemble of vision transformer models performed worse
than the convolutional ensemble. In [41] the authors proposed
a model that exploits both ViT and convolutions, named
Cvit, and created an ensemble of two models trained on the
frequency domain and time domain to classify movement
from EMG signals. The authors compared the proposed
solution only with convolutional baselines and ViT. Recent
work from Kyathanahally et al. [25] showed astonishing
results in image classification among different datasets with
an ensemble of three DeiT models. In [35], authors achieve
enhanced ensemble performance for polyp segmentation by
combining diverse transformer models (including HarDNet-
MSEG, Polyp-PVT, and HSNet) through distinct training
techniques and introducing a novel mask averaging method,
resulting in superior segmentation results across multiple
datasets. ETECADx [1] is an AI-based computer-aided
diagnosis (CAD) framework for early breast cancer detection,
which combines convolutional neural networks and the
self-attention mechanism of vision transformer encoder.
Another study [2] introduces a masked face recognition sys-
tem, combining two Convolutional Neural Network (CNN)
models and two Transformer models, which achieve better
accuracy when ensembled, outperforming other models in
recognizing masked faces.

In our work, we propose to combine different transformers
and convolutional models, demonstrating their superiority
on various datasets. Each model contributes to the final
prediction through the weighted sum rule. Thus, the vision
Transformers and CNNs are trained separately and their
outputs are merged together. Similarly to [2] and [25], we find
that Transformermodels, exploiting the attentionmechanism,
boost the ensemble results when merged with CNNs.

C. ADAM OPTIMIZERS
A fundamental role in deep learning is played by optimiz-
ers. An optimizer in machine learning is a mathematical
algorithm or technique that adjusts the internal parameters
of a model to minimize or maximize a specified objective
function, improving the model’s performance on a given
task. One of the most used optimizers is Adam [23]. It is
used for gradient-based optimization of stochastic objective
functions. It is a combination of two other optimization
algorithms, namely, Adagrad [17] and RMSprop [23]. The
key idea behind Adam is to adaptively estimate the first and
second moments of the gradients in order to perform effective
optimization.

Some authors proposed variations of Adam, creating
new optimizers. An example is DiffGrad [16], proposed
in 2019. It relies on the assumption that a decrease in

the rate of gradient variations suggests the presence of a
global minimum. The objective is to generate substantial
strides when the gradient is undergoing large changes while
taking smaller steps when the gradient is changing more
gradually. Overall, DiffGrad has shown promising results
in experiments on various image classification and object
detection tasks, often outperforming Adam and other popular
optimization methods in terms of both speed and accuracy.

In [37], three more Adam variations were proposed,
namely DGrad, Cos and Exp. DGrad is a modified version of
DiffGradwhich considers the absolute difference between the
current and the moving average of the element-wise squares
of the parameter gradients. In this way, it is more robust to
fluctuations in the difference between the gradients.

Cos is a modification of DGrad that incorporates a
learning rate that varies in a cyclical manner [43], leading
to an improvement in classification accuracy and typically
requiring fewer iterations.

Exp is a modification of DGrad that includes two
simple element-wise operations: product and exponential.
The purpose of Exp formulation is to mitigate the effect of
large variations in the gradient but also to allow the function
to converge for small values.

BAS-ADAM [22] is an improved version of the Beetle
Antennae Search (BAS) algorithm, enhancing convergence
behavior and avoiding local-minima by adaptively adjusting
step-sizes using the ADAM update rule, resulting in faster
convergence and efficient optimization of non-convex func-
tions compared to Particle Swarm Optimization (PSO) and
the original BAS algorithm.

A recent Adam variation is AngularGrad [39] that exploits
the direction/angle of consecutive gradients to adjust the
learning rate. Thanks to angle direction, the optimization
becomes smoother while keeping a good trade-off between
speed and performance.

In this paper, three more Adam variations are proposed.
Their objective is to search the solution space differently
and vary the prediction made by the models. Changing
optimization creates models suitable for ensemble.

III. MATERIALS AND METHODS
In this section, we describe the different components of the
proposed ensemble and we detail the new Adam variants
proposed in this study.

A. CONVOLUTIONAL NEURAL NETWORKS
CNNs are a type of deep neural network that was specifically
designed for image classification, computer vision, and other
related applications, such as medical image analysis [9], face
identification, and object recognition, among others. CNNs
are designed to operate in a similar way to the human brain by
perceiving visual information [24]. Recently, the combination
of these models in ensembles has been proven to be beneficial
in terms of performance (see for instance, [8], [36], [40]).
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Convolution involves sliding a small filter (also known
as a kernel) over the input data, which is typically a
two-dimensional grid of pixels in the case of images.
The element-wise multiplication is performed between the
values of the given filter (learnable weights) and the
corresponding values in the input data. The resulting products
are summed up to produce a single value. This process
is repeated by sliding the filter over the entire input, with
a certain stride, to produce a new output matrix called a
feature map.

The convolution operation allows the neural network to
detect patterns or features present in the input data. These
patterns can be as simple as edges or corners in the case of
images. As the network learns through training, it adjusts
the weights of the filters to capture increasingly complex
and abstract features, such as textures, shapes, or object
parts. Convolutional layers are typically stacked in CNN
architectures, and each layer learns to recognize different
levels of features. This hierarchical feature extraction enables
CNNs to understand the content of images in a way that
is analogous to how the human visual system processes
information [7].

In our experiments, various models pre-trained on Ima-
geNet are tested and combined. The last layers of each
model are modified to fit the number of classes of the
target problem without freezing the weights of the previous
layers. The models evaluated include ResNet50 [20], which
is about 8 times deeper than VGGNet [20] and uses residual
layers and global average pooling layers instead of fully
connected layers, and EfficientNetB0 [45], which is designed
for mobile devices and uses a multi-objective network search
that optimizes accuracy.

B. VISION TRANSFORMERS
In our experiments, we utilized advanced transformer models
for image classification. Due to the significant amount of data
required for training transformers from scratch, we adopted
models that already trained on ImageNet that were then
adapted to the task at hand through fine-tuning. These
pre-trained models were obtained from the Timm library,1

including DeiT-Base with a patch dimension of 16, ViT-Base
with a patch size of 16, Swin-Base with a patch size of 4, and
CoAtNet with a continuous log-coordinate relative position
bias removed. It is worth noting that ViT implementation in
Timm was pre-trained on Imagenet-21k, whereas the others
were not.

For each model, we adjusted the last layer to align the
output with the number of categories in each tested dataset.
To prevent overfitting, we retained a validation split with
a 0.25 split ratio from each training set and resized the
image dimension to 224 × 224 to match the required input
dimension.

1https://timm.fast.ai/ - Last access, June 28 2023

TABLE 1. Description of the datasets used in this study.

C. TRAINING AND TEST PHASES
During the training phase, each CNN is trained by adopting
an optimization algorithm that is chosen at random among
the ones available. The training process includes 20 epochs
with a mini-batch size of 30 patterns and a learning rate of
0.001. Data augmentation is applied by flipping and rescaling
the images, but only if the size of the training set is less than
5000 images. Otherwise, no data augmentation is performed.

Transformers are trained following the pipeline adopted
for the DeiT model in [25], replicating the procedure for all
four models. Specifically, we trained the models using the
AdamW optimizer with cosine annealing [30], and set a low
learning rate of 10−4 coupled with a weight decay of 0.03 to
preserve the learned network. We set the batch size to 32.

During the test phase, the outputs of all the models are
combined to compute the overall prediction. Thus, each
model of the ensemble contributes to the final prediction.
The output of the models is not automatically mapped
into a probability distribution. Thus, we applied a softmax
function to the score of the last layer before creating the
ensemble prediction. As a loss function, we used the standard
cross-entropy, as opposed to [25] that used the weighted
cross-entropy. If the minimum validation F1 score did not
decrease after five consecutive epochs, we decreased the
learning rate to 10−5 and 10−6 to improve convergence.
The best-performing model with the highest F1-score in
validation during the trainingwas saved. During training, data
were randomly flipped or rotated. To create the ensemble,
we repeated the training procedure ten times for each model
and each dataset.

In Figure 1, we show how the training and test phase
are organized. This can be considered as a testbed for
ensembles that we use for our experiments combining
different topologies of CNN and transformer facing seven
publicly available datasets. However, this structure is
general and can be used to combine any number of
topologies.

D. DATASETS
We assess the proposed ensembles by adopting several image
classification benchmarks. Table 1 reports some information
for each dataset: a short name, the number of classes and
samples, the testing protocol, and the original reference. For
the testing protocols, we adopt the following abbreviations:
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FIGURE 1. Example of an ensemble. Each CNN model is trained using an optimization algorithm that is randomly chosen a priori. During the test
phase, the predictions are combined to compute the outcome of the ensemble.

• xCV indicates that an x-fold cross-validation has been
adopted (e.g., 10CV means that a 10-fold cross-
validation has been used);

• X:Z indicates the fractions of the dataset used for
training and testing respectively.

The adopted datasets contain information from very
different domains, in particular:

• WHOI consists of images, taken from Woods Hole
Harbor water using Imaging FlowCytobot;

• ZooScan is composed of grayscale images that were
acquired from the Bay of Villefranche-sur-mer using
the Zooscan technology. The images were automatically
cropped before classification to remove any artifacts
caused by manual segmentation.

• Kaggle dataset is a subset of a larger dataset obtained
using the ISIIS technology in the Straits of Florida
and was used for the National Data Science Bowl
2015 competition.

• Zoolake is a dataset ofmicroscopic plankton taxa images
collected from the dual-magnification Scripps Plankton
Camera in Lake Greifensee. The dataset was built using
images acquired from wild plankton from 2018 to 2020.

• BG (Breast Grading Carcinoma) dataset contains
images of size 1280 × 960 pixels and is divided into
three classes representing grades 1-3 of invasive ductal
carcinoma of the breast.

• LAR (Laryngeal dataset) contains patch images of size
100×100 pixels, divided equally into four classes: IPCL
(tissue with intrapapillary capillary loops), Le (tissue
with leukoplakia), Hbv (tissue with hypertrophic ves-
sels), and He (healthy tissue).

• Deng contains images of pests commonly found on
plants between Europe and Central Asia. It was created
by collecting images from several online sources such
as Insert Images, IPM images, Dave’s Garden, and
Mendeley Data.

• VIR comprises a total of 1500 Transmission Electron
Microscopy images, each with a size of 41 × 41 pixels,
of various virus types classified into fifteen distinct
categories.

• TEM (Transmission Electron Microscopy) contains
annotated transmission electron microscopy images
(size of 1376× 1032 or 2048× 2048 pixels, depending
on with which electron microscope they were captured)
of 14 virus classes along with extracted image patches
centered on virus particles.

E. NEW OPTIMIZATION METHODS
In this section, we introduce three new optimization methods.
To better understand the proposed optimizers, it is worth
recalling the Adam optimization algorithm and DGrad [37].
The update rule for Adam can be written as follows:

mt = β1 × mt−1 + (1 − β1) × gt (2)

vt = β2 × vt−1 + (1 − β2) × g2t (3)

mt̂ = mt/(1 − β t1) (4)

vt̂ = vt/(1 − β t2) (5)

θt = θt−1 −
α × mt̂

(
√
vt̂ + ϵ)

β1 = 0.9; β2 = 0.999; α = 0.001 (6)

where mt is the first moment (mean) of the gradients up to
time step t; vt is the second moment (uncentered variance)
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of the gradients up to time step t; gt is the gradient at
time step t; β1 and β2 are the decay rates for the first and
second moments, respectively; α is the learning rate; ϵ is a
small constant added for numerical stability; mt̂ and vt̂ are
bias-corrected estimates of the first and second moments,
respectively; θt is the current set of parameters at time step
t .
DGrad [37] is a variation of Adam inspired by Diff-

Grad [16]. It considers the absolute difference between the
current and the moving average of the element-wise squares
of the gradients (avt ), see Eq. (7)-(9). In this way, it is more
robust to fluctuations in the difference between the gradients.
For updating the parameters, Eq. (10) is applied using the
definition, for the weighting factor, reported in Eq. (9):

1agt = |gt − avt | (7)

1âgt =

(
1agt

max (1agt)

)
(8)

ξt = Sig(4 · 1âgt) (9)

θt = θt−1 − ξt
α × mt̂

(
√
vt̂ + ϵ)

(10)

In the following paragraphs, the novel optimizers proposed
in this paper are described in details.

1) HYPERBOLIC OPTIMIZER (HYP)
The first proposed optimizer is Hyperbolic (Hyp). It has
a similar behavior of Exp [37], but does not mitigate the
effects of large variations in gradient. Indeed, while the
function described in Exp gets low values for great gradient
differences, this approach simply calculates parameters as
follows:

lrt =
−1

(a1agt + b)
+ c (11)

With a = 10, b = 2/3, and c = 3/2 we obtain the plot
reported in Figure 2. The calculation of the final weighting
factor of the learning rate is:

ξt =
lrt

max(lrt )
(12)

then, the weighting factor of Eq.(12) is used in Eq.(10).

2) MIND OPTIMIZER
The second novel optimizer is called MinD and exploits
two of the best optimizers in different ways. It calculates at
every iteration ξt1 using DGrad and ξt2 using Exp. Then, the
effective ξt is chosen by applying:

ξt = min(ξt1, ξt2) (13)

then, Eq.(13) is applied in Eq.(10).

3) ANGULAR INJECTION OPTIMIZER (AI)
Angular Injection (AI) optimizer is based on AngularGrad
[39] and injection [15]. It generates a score to control the step
size based on the gradient angular information of previous

FIGURE 2. Plot of lrt for a = 10, b = 2/3, and c = 3/2. On y-axis, the lrt
value. On the x-axis, the 1agt value.

iterations. AI takes into account the information from the
angle/direction of the gradient vector instead of just the
magnitude of it. To exploit the change of gradients during the
optimization steps, an angular coefficient was introduced (Eq.
(14)):

At = tan−1 (gt − gt−1)
(1 + gtgt−1)

(14)

Amin = min(At ,At−1) (15)

lrt =
−1

(aAmin + b)
+ c (16)

where a = 10, b = 2/3, and c = 3/2.
The weighting factor is:

ξt =
lrt

max(lrt )
(17)

then, Eq.(17) is applied in Eq.(23).
In order to utilize the curvature information during

optimization, the curvature information guided (weighted)
second-order momentum is injected into first-order
momentum:

gs = g2t (18)

k = 2 (19)

avgt = β1 × avgt−1 +
(1 − β1)(gt − delta× gs)

k
(20)

delta = θt−2 − θt−1 (21)

avgsqt = β2 × avgsqt−1 + (1 − β2) × gs (22)

step = ξt × (
avgt

√
avgsqt + ϵ

) (23)

θt = θt−1 − step ·

α ×

√
(1 − β t2)

(1 − β t1)
(24)

The value delta in Eq.(21) represents the difference in
the short-term of the parameters; the weighting factor ξt in
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Eq. (23) is the one defined in Eq. (17); β1 and β2 are
initialized as in Adam.

In this approach:

• in the first iteration, we use standard Adam;
• in the second we fix ξt=1 in Eq. (23), we use avgt and
avgsqt calculated using gradients obtained by standard
Adam in the first iteration (i.e. using eq. (2) and (3));

• from the third iteration as in themethod explained above.

F. WILCOXON SIGNED-RANK TEST
The Wilcoxon signed-rank test, introduced by Mann and
Whitney in 1947 [32], is a statistical test designed for
comparing paired data samples obtained from individual
evaluations. Unlike parametric tests, this non-parametric
test does not rely on assumptions about the underlying
distribution of the data, such as a normal distribution. Instead,
the Wilcoxon signed-rank test takes into account both the
magnitudes and signs of the differences between paired
observations.

This test serves as a non-parametric counterpart to the
paired Student’s t-test and is particularly useful when the
population data does not follow a normal distribution. Its
primary purpose is to assess whether two related paired
samples are drawn from the same distribution. By analyzing
the ranks assigned to the differences between the paired
observations, the Wilcoxon signed-rank test provides a
reliable means of evaluating the null hypothesis.

IV. EXPERIMENTAL ANALYSIS
In this section, we report the results of the experimental
evaluation, considering different performance indicators for
comparing the approaches. Moreover, validation of the
superiority (using p-value) of one method over the others
is provided by the Wilcoxon signed rank test. All the
experiments were taken on a Windows Server 2019, with an
Intel Core i9-10920X CPU, 3.5 GHz, and 256 GB RAM,
we employed an Nvidia Titan RTX 24 GB, 1350 MHz. They
are developed in Matlab 2022a/PyTorch.

Since CNNs require input images at a fixed size, we apply
two different strategies for resizing plankton images. The
first is sqr, in which the process of square resizing involves
first padding the image to achieve a square dimension and
subsequently resizing it to match the CNN input size. The
second one is padding only (pad), in which the image is
directly adjusted to match the CNN input size, without the
intermediate square resizing step. It is important to note that
the square resizing step becomes necessary only in specific
scenarios where the original image dimensions exceed the
dimensions of the CNN input size, prompting the image
to undergo resizing. Padding is performed by adding white
pixels to plankton images. Since we propose ensembles,
half of the nets (in each ensemble) use sqr and the other
half pad.

Our experiments involved a large number of training
sessions applied to multiple topologies. As it is widely

known, the behavior of the training loss should be carefully
analyzed to check that the training phasewas properly run and
to measure the model convergence towards the desired task.
In our context, a key element that should be highlighted is the
influence of the optimizer on the behavior of the loss function
during training. Figure 3 reports the loss while training a
ResNet50 network on the Deng dataset for 20 epochs: in
(a) the Adam optimizer was used, while in (b) and (c) the
proposed Hyp and AI methods were employed, respectively.
As it can be seen, the novel optimizers lead to a more
homogeneous and faster convergence with respect to the
Adam optimizer.

In all the experiments, each CNN and transformer network
was trained several times using the standard Cross-Entropy
loss. Each training leads to a network instance. Ensembles are
created composing several instances and/or topologies. In the
following, we denote with A+B the composition of networks
A and B by sum rule. In the case of CNNs, each network is
trained seven times – so, A+B means that both networks A
and B were trained seven times on the same dataset, and the
resulting 14 instances are combined by sum rule.

In the following, results labeled with SGD refer to the
output of the fusion of 14 stand-alone CNNs trained using
stocastic gradient descent and combined by the average rule.
This ensembles is shaped in this way to ensure that it is
comparable against the ensembles obtained by Hyp+MinD
(ensembles that have size fourteen).

A. ENSEMBLES OF CONVOLUTIONAL NEURAL NETWORKS
We first run a set of experiments to get the performance
of the ensemble of CNNs when using different Adam
variants during the training phase. This was also useful for
a comparison with the original methods that are reported as
baselines. The results are reported in Table 2. In particular,
we compare several Adam variants with the original Adam
and SGD; for stand-alone Adam variant approaches, there are
two values in each cell of the table:

• Average accuracy of seven stand-alone CNNs trained
with the given optimization method;

• Fusion by average rule of seven stand-alone CNNs
trained with the given optimization method.

From the results in Table 2 it can be noticed that the
performance of the ensembles with the fusion by average
rule is always better than the average accuracy of the stand-
alone networks, providing another piece of evidence that the
adoption of the ensemble is beneficial for the performance
of the system. In Table 3, we report the performance on
the plankton datasets of the most interesting Adam variants.
The Adam variants, reported also in Table 3, outperform
those not reported by a p-value of 0.001. However, all the
Adam variants shown in Table 3 have similar performance.
Moreover, in Tables 2 and 3 it can be noticed that Hyp+MinD
outperforms both ensembles based on Adam and SGD with a
p-value of 0.0001. Hyp+MinD+AI outperformsHyp+MinD
with a p-value of 0.005.
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FIGURE 3. Loss function adopting different methods on the Deng dataset for 20 epochs using ResNet50. (a) Adam, (b) Hyp, and (c) AI.

B. ENSEMBLES OF TRANSFORMERS
The second set of experiments focuses on transformers – this
was useful to get the performance of the ensembles and to
compare themwith the stand-alone original methods.We also
tested transformer models trained with Adam variants, but we
noticed no particular gains, therefore, for the sake of space,
we have not reported them.

In Tables 4 and 5 we report the results obtained by the
transformers. The followingmethods are reported in the table,
where x represents the number of combined models:

• D(x), sum rule among x Deit – that is, x instances of
the Deit transformer trained on the same dataset and
combined by sum rule;

• S(x), sum rule among x Swin;
• V(x), sum rule among x Vit;
• C(x), sum rule among x Coat;
• CNNs is the ensemble of Hyp+MinD+AI coupled with
both ResNet50 and EffNetB0;

• (D+V+S+C)(x), sum rule among x Deit, x Swin, x Vit
and x Coat;

• CNNs+(D+V+S+C)(x), sum rule among CNNs, x
Deit, x Swin, x Vit, and x Coat, before the fusion, the
scores of each topology are normalized by the number of
networks in the given ensemble, so the weight of CNNs
is equal to that of C, S, V, and T.

Interestingly, there is no winner among stand-alone
transformers and among the ensemble of transformers.
However, it is interesting to notice once again that each set
of 10 transformers outperforms its stand-alone transformer
with a p-value of 0.002 (e.g., D(10) outperforms D(1) with
a p-value of 0.002). On the other side, combining different
transformer topologies does not seem useful as in the CNN
case, for instance: (D+V+S+C)(2) behaves similarly to
V(10) (sets of similar size); (D+V+S+C)(10) outperforms
(D+V+S+C)(2) with a p-value of 0.002, however, this
comparison is not fair given the different sizes of the two
ensembles. Moreover, (D+V+S+C)(10) outperforms CNNs
with a p-value of 0.002.

C. ENSEMBLES OF CNNS AND TRANSFORMERS
In the last rows of Tables 4 and 5, we report the results
obtained by ensembles of CNNs and transformers. The small
gain from ensembles of different topologies is probably due
to the saturation of the models’ performance on the datasets
considered. In Table 6, we compare the best-performing
approaches, considering the error under the ROC curve as
a performance indicator. The fusion between CNNs and
transformers outperforms both CNNs and transformers with
a p-value of 0.01.
We tried to increase the size of the ensemble named

‘‘CNNs’’ by also using DenseNet201 and MobileNetV2
topologies. The results are reported in Tables 7 and 8. For
the sake of computational time, we have run this test only
on ZooLake and Deng datasets. It is interesting to notice
that while the use of these CNN topologies improves the
performance of the CNNs ensemble, the performance of
the fusion of CNNs with the transformer ensemble remains
similar. This suggests a possible plateau of performance
reached with these approaches.

D. COMPARISON WITH SOTA AND ELAPSED TIME
We compared our approach against state-of-the-art (SOTA)
approaches reported in the literature. Our proposed ensemble
overcame the SOTA in many tested datasets. As the datasets
we considered in our tests were used in hundreds of articles,
we reported only a few articles in which SOTAs were
obtained in those datasets to avoid creating huge tables.
In addition, we only reported articles adopting the same test
protocol we used, while we found other articles reporting
better results but using different protocols, leading to an
unfair comparison. Table 9 reports these results. For [42] we
report the results obtained after 100 epochs to be coherent
with our test protocol.
It is clear that our approach is not suitable for problems

with strong computational constraints. We trained a large set
of networks and achieved very good performance, however,
we did not set any hyperparameters to optimize performance
on specific datasets, in order to avoid overfitting and preserve
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TABLE 2. Accuracy (in %) of ResNet50 and EffNetB0.

TABLE 3. Accuracy (in %) obtained by ResNet50 and EfficientNetB0 on plankton datasets.

the generality of the proposed approach. Nevertheless, with
current GPUs, even ensembles of more than 10 networks can
classify dozens of images per second. In Table 10 we report
the inference time, which is obviously higher when vision
transformers are used; however, considering that these are
able to analyze hundreds of images in a second, this is a
reasonable time for many applications.

V. DISCUSSION ON ADAM VARIANTS
In this work, we have developed several optimization
methods that address the problem of finding a goodminimum
in different ways, so it is useful to combine them in an
ensemble. The proposed approaches work considering the
absolute difference between the current and the moving
average of the squares of the parameter gradients. In this way,
it is more robust to fluctuations of the difference between
the gradients of different iterations with respect to Adam and
DiffGrad.

As detailed in the literature (e.g. [15]), an ideal parameter
optimization method should follow the rules depicted in
Figure 4, where 2 is the parameters tensor, delta is the
difference of the parameters between two training iterations
(see Eq. 21), g are the gradients. In the flat region (S1),
an ideal optimizer should perform a large step in order to

FIGURE 4. A common situation in optimization that illustrates the
significance of adaptive parameter updates in the optimization
process [49].

escape from the flat area. In the so-called ‘‘large gradient –
small curvature’’ area (S2), for faster convergence, it is
important to perform large step size. In the ‘‘steep and narrow
valley’’ (S3), a minimum is found. In this area both gradients
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TABLE 4. Accuracy (in %) and F1 obtained using transformers.

TABLE 5. Accuracy (in %) and F1 obtained using transformers.

TABLE 6. Error under the ROC curve (in %).

TABLE 7. Accuracy (in %) using more CNN topologies.

TABLE 8. Error under the ROC curve (in %), using more CNN topologies.

and delta are large, a small step size is required for finding
the minimum and reducing the oscillations.

Taking this into consideration, the three proposed optimiz-
ers have the following properties:

• the Hyp optimizer is based on DGrad/DiffGrad, so the
idea is that gradient is changing more gradually near the
minimum, see S3 area when approaching the minimum.
DGrad/DiffGrad are based on a sigmoid function that
squashes every value between 0.5 and 1. Instead, Hyp is
based on a function that squashes every value between
0 and 1 (see Eq. (12)), it takes larger steps in the S2 area
and lower steps near the minimum. The main drawback
of this approach is that when gradient variations are
close to zero the parameters are updated only for a small
value, so this approach could converge more slowly than
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TABLE 9. Comparison vs. state-of-the-art methods (Accuracy in %).

TABLE 10. Inference time (seconds) for a batch of 100 images using a
NVidia Titan RTX.

DGrad/DiffGrad in the S1 area. However, unlike DGrad,
we do not consider the difference between the gradients
of two iterations but rather between the current iteration
and the moving average of the element-wise squares
of the gradients. In this way we have values less close
to zero even when the gradient changes very slowly.
Moreover, the step size is sufficiently large due to the
small value of Eq. (5) in the denominator of Eq. (10).

• MinD is a minimum rule, it reduces and smoothes
the steps, minimizing the risk of skipping a minimum.
Again, the drawback of this approach could be a slower
convergence in the S1 area.

• AI optimizer controls the step size based on the
information from the angle/direction of the gradient
vector instead of just its magnitude. As shown in
Eq. (15), we take the minimum between two angular
coefficients, in this way the AI optimizer is more robust
to shape curvature changes. Moreover, we add a further
step: the curvature information is used as a weight to
inject the second-order momentum in the update rule,
see Eq. (20) and Eq. (23). In the S1 area, the step
size is sufficiently large due to the small value of the
gradients and therefore of the denominator of Eq. (23).
It should be noted that delta is applied only in Eq. (20),
i.e. the numerator of Eq. (23), and not in its denominator;
delta < 0 when gt > 0 and delta > 0 when gt < 0.
In the S2 area, |gt | is large and the value of Eq. (20)
is also sufficiently large even if delta is small, delta
increases the value of Eq. (20), thereforewe have a larger
step with respect to Adam orHyp. In the S3 area, |gt | and
delta are both large, so (given their relationship highlited
above) the injection takes a larger step with respect to
Hyp. In conclusion, AI performs better than Hyp/DGrad
in the S1 and S2 areas and worse in the S3 area. Due to

this different behavior, we believe that these methods are
suitable to be combined into an ensemble.

VI. CONCLUSION
In this paper, we combined CNNs based on different
topologies and variousAdamoptimizationmethods for image
classification. NewAdam-based algorithms for deep network
optimization are proposed for training a set of CNNs. In addi-
tion, we compare sets of CNNs with sets of transformers.
The ensembles were compared and evaluated using different
evaluation metrics. The best-performing ensemble, consist-
ing of the CNN ensemble and the transformer ensemble,
was shown to have the best performance, compared to the
literature, on several benchmarks. In the future, we plan
to evaluate ad-hoc Adam’s variants on transformers. Future
directions include refining distillation techniques, optimizing
ensemble design, exploring data augmentation strategies, and
diversifying data sources to mitigate ensemble limitations.
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