Nanocatalysts from Ionic Liquid Precursors for the Direct Conversion of CO₂ to Hydrocarbons

Zara Shiels^{1,2}, John Harrison², Peter Nockemann¹, Nancy Artioli^{1*} ¹ School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK ² South West College, Cookstown, UK *corresponding author: n.artioli@gub.ac.uk

Introduction

The direct conversion of carbon dioxide (CO₂) into hydrocarbons in the gasoline range (C₅-C₁₁) is a highly desirable process as a sustainable production route and it provides a key solution to managing the current CO₂ waste emissions. The reaction proceeds *via* two main consecutive reactions: Reverse Water Gas Shift (RWGS) to produce CO followed by the further conversion of CO to hydrocarbons *via* the Fischer–Tropsch reaction². This process is achieved by a multifunctional iron-based catalyst supported on zeolites providing three types of active sites (Fe₃O₄, Fe₅C₂ and acid sites), which cooperatively catalyse a tandem reaction¹.

To date, attempts at synthesising a suitable catalyst for the direct hydrogenation reaction follow a conventional precipitation procedure, whereby Iron Oxide Nanoparticles (*IONs*) are produced and then embedded within a zeolite structure by granule mixing. This method provides no control over the size and shape of the IONs formed; a characteristic of imperative importance due to its significant effect on the hydrocarbon product distribution obtained. In our novel approach, ionic liquids are utilised for the synthesis of the *IONs* resulting in better control over size and morphology of the nanostructured material, and therefore, better conversion and selectivity towards gasoline range hydrocarbons.

Materials and Methods

Fe₃O₄ nanocatalysts have been synthetized by a new ionic liquid-assisted synthesis by heating the reaction medium consisting of the ionic liquid 1-butyl-3-methyl imidazolium bistriflimide, $[C_4mim][Tf_2N]$, oleic acid and iron pentacarbonyl under reflux (Method 1). The precursor iron pentacarbonyl decomposed in a controlled manner by heating the sample up; CO is produced and the iron reacts with residual H₂O in the ionic liquid mixture to result in Fe₃O₄. Following decomposition, the produced magnetite nanoparticles are separated from the reaction medium through application of a neodymium magnet.

Another ionic liquid-assisted synthesis method consisted of heating two iron precursors of Fe (II) and Fe (III) chloride hydrates in a reaction medium of $[C_4mim][OAc]$ ionic liquid (Method 2) w/o ammonia. This method involves calcination of the iron oxide nanoparticles at 420°C under N₂ to prepare crystalline material. The Fe₃O₄ particles were then supported on zeolites by granule mixing Fe₃O₄ particles prepared with the methods above with zeolite HZSM-5 (SiO₂/Al₂O₃ = 300) in a ball mill at a mass ratio of the two components of 1:1.

 CO_2 hydrogenation reactions were performed at 320 °C, 3 MPa H /CO 3,3 in a stainless steel fixed-bed reactor with an inner diameter of 15 mm. Typically,1 g of composite catalyst (20–40 meshes) with Fe₃O₄/Zeolite 1/4 1/1 (mass ratio) was used. Prior to reaction, the catalyst was insitu reduced at 350 °C for 8 h in a pure H₂ flow at atmospheric pressure.

All of the products from the reactor were introduced in a gaseous state and analysed with an online gas chromatograph (GC).

Results and Discussion

The ionic-liquid assisted synthesis of a nanocrystalline magnetite precursor showed that ionic liquids provide a controlled precipitation method thanks to their dual functionality as solvent and templating agent. This level of control over the morphology of the produced IONs allows for the selectivity of the hydrocarbon distribution to be directly tailored. Characterization of the

prepared catalysts by PXRD (Figure 1) shows the presence of high purity Fe₃O₄, small particle size and good dispersion with the zeolite component for both Method 1 and 2. This has also been confirmed by SEM and TEM analysis. Hydrogen temperature-programmed reduction (H₂-TPR) was used to determine the reducibility of the Fe₃O₄ particles and their hydrogen uptake. As shown in Figure 2, all the catalysts presented two peaks of H₂ consumption, which are assigned to the conversions Fe₃O₄—FeO and FeO—Fe, respectively. It is observed that Fe₃O₄/HZSM-5 (Method 1) is reduced at lower temperature compared to the catalysts prepared with Method 2. All catalysts prepared with ionic liquid-assisted synthesis showed high reducibility in the low temperature region (250-350°C), which correspond to the activation temperature typical of Fischer -Tropsch catalysts.

Figure 1. XRD patterns of ionic liquid methods.

Figure 2. TPR profile of 5%H₂ in Ar from RT to700°C, 10°C/min

Significance

We report here on a novel methodology for the controlled synthesis of a Fe₃O₄/HZSM-5 multifunctional catalyst for the direct hydrogenation of CO₂ to gasoline. The catalyst morphology can be tuned by the choice of ionic liquid in the synthetic method and this also affect the selectivity of the reaction. The catalytic testing under industrially relevant conditions resulted in improved selectivity to C5–C11 as well as low CH₄ and CO selectivity

This study provides a new pathway for the synthesis of nanocatalysts to produce liquid fuels by utilising CO_2 and H_2 , which may in the future lead to alternative approaches to overcome issues with the intermittency of storing and/or utilising energy from renewable sources (photovoltaics, wind energy).

References

¹Y. Yuan, S. Huang, H. Wang, Y. Wang, J. Wang, J. Lv, Z. Li, and X. Ma, ChemCatChem 2017, 9, 3144 – 3152

² J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Nat Comm, DOI: 10.1038/ncomms15174

Tuesday, 7 th January				
11:00	11:00 Registration desk opens at Burleigh Court Hotel			
12:30	Lunch at Holywell Park			
13.50	Welcome – Conference commence	s at Holywell Park		
		Chair - Catlow		
14.00		Duncan Wass (Turing Lecture Theatre)		
14.45		Coffee		
	Session A	Session B	Session C	
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)	
	CatalysisHub session			
Chair/IT	Garforth/Deshmukh	Lennon/Shiels	Diez-Gonzalez/Keogh	
15.15	K1	O22	O47	
15.35		O23	O48	
15.55	O1	O24	O49	
16.15	O2	O25	K9	
16.35	O3	O26		
16.55	Coffee			
Chair/IT	Taylor/Keogh	Kondrat/McDermott	Marr/Isah	
17.25	O4	K6	O50	
17.45	O5		O51	
	Chair - Hardacre			
18.10	Johannes Lercher (Turing Lecture Theatre)			
20.00	Dinner			

Wednesday, 8 th January				
	Chair - Hutchings			
9.00		Angelika Brückner (Turing Lecture Theatre)	
	Session A (Turing Lecture Theatre)	Session B (Brunel/Murdoch Lecture Theatre)	Session C (Stephenson Lecture Theatre)	
Chair/IT	McGregor/Sun	Fan/McDermott	Wood/Tanvir	
	RSC INTEREST GROUP SURFACE REACTIVITY SESSION & CATALYSIS			
9.50	K2	O27	O52	
10.10		O28	O53	
10.30	O6	O29	O54	
10.50		Coffee		
Chair/IT	Thompson/Akor	Wu/Keogh	Reina/Hao	
11.20	K3	O30	O55	
11.40		O31	O56	
12.00	07	O32	O57	
12.20	O8	K7	O58	
12.40	O9		O59	
13.00		Lunch		
		Chair - Manyar		
14.00	ALMAL	José Odriozola (Turing Lecture Theatre)	ALMAL:	
14.45		Coffee		
	Session A	Session B	Session C	
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)	
Chair/IT	Paterson/Yue	Moody/McDermott	Whiston/Deshmukh	
	C RSC INTEREST GROUP SESSION			
15.15	K4	K8	O60	
15.35			O61	
15.55	O10	O33	O62	
16.15	O11	O34	K10	
16.35	O12	O35		
16.55	Coffee			

2020			Loughborough, UK
Chair/IT	Kroner/Shiels	Berlier/Sun	Raveendran/Akor
17.25	O13	O36	O63
17.45	O14	O37	O64
18.05	O15	O38	O65
18.30	BP Poster session		
20.00		Conference Dinner	
Thursday, 9 th January			
	Session A	Session B	Session C
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)
Chair/IT	Beale/Keogh	Artioli/Deshmukh	Upadhyayula/Tanvir
9.00	O16	O39	O66
9.20	017	O40	K11
9.40	O18	O41	
10.00	K5	O42	O67
10.20		O43	O68
10.40	Coffee		
Chair/IT	Minova/Shiels	Mitchell/Deshmukh	Hintermair/McDermott
11.10	O19	O44	K12
11.30	O20	O45	
11.50	O21	O46	O69
	Chair - Davidson		
12.20	Stewart Parker (Turing Lecture Theatre)		
13.05	Closing remarks		

UKCC 2020 Organising Committee

Dr. Haresh Manyar, Queen's University Belfast, UK Dr. Nancy Artioli, Queen's University Belfast, UK Dr. Chunfei Wu, Queen's University Belfast, UK Prof. Chris Hardacre, University of Manchester, UK Prof. Graham Hutchings, Cardiff University, UK Prof. Richard Catlow, Cardiff University, UK Dr. Josie Goodall, UK Catalysis Hub Dr. James Paterson, BP Dr. Keith Whiston, Invista Dr. Chris Mitchell, Sabic UK Dr. Paul Collier, Johnson Matthey

List of Talks UKCC 2020

#	Title	Authors	
PI 01	Catalytic Conversion of Renewable	wable Duncan Wass	
	Feedstocks to Advanced Synthetic Fuels		
PI 02	New strategies for enhancing catalytic	Johannes Lercher	
	rates		
PI 03	Identifying active sites and mechanisms:	Angelika Brückner	
	Opportunities and limitations of in situ and		
	operando spectroscopy in catalysis		
PI 04	From electrons to reactors: The WGS revisited	Jose Odriozola	
PI 05	What's on your catalyst? Characterization	Stewart Parker	
	of surface species on Pd and Pt catalysts		
	·		
K 01	Elementary Steps in the Formation of	Ivalina Minova, Santhosh Matam, Alex	
	Olefins from Surface Methoxy Groups in	Greenaway, Richard Catlow, Mark	
	ZSM-5 and SAPO-34 Seen by Operando	Frogley, Gianfelice Cinque, Paul Wright	
	Infrared Microspectroscopy (OIMS)	and Russell Howe	
K 02	Simultaneous removal of NO _x and soot	Anna Cooper, Catherine Davies, Kate	
	particulate from diesel exhaust by in-situ	Thompson, Stuart Taylor, Stan Golunski,	
	catalytic generation and utilisation of N_2O	Maria Bogarra Macias, Umid Doustdar	
K 03	Cu-CHA for NO Soloctivo Catalytic		
K US	Reduction: insights into Cu speciation and		
	reaction mechanisms by in situ		
	spectroscopic techniques		
K 04	Insights into the CO ₂ formation pathways	Shashank Bahri and Sreedevi	
	over bimetallic Fischer-Tropsch catalyst for	Upadhyayula	
	selective production of synthetic diesel: A		
	theoretical & experimental study		
K 05	Catalytic scissoring of lignin C-C and C-O	Wang, Luo, Liu and Li	
	bonds		
K 06	Complex Transition Metal Oxides in Zeolitic	Wataru Ueda	
	Crystalline Forms As Selective Oxidation		
K 07	Catalyst		
	Molecular Catalysts to Aqueous Substratos		
K 08	(Trans)Forming C-N and C-O Bonds with	Silvia Díez-González	
	Copper Catalysis		
К 09	Renewable Furan building Block for	Chandrashekhar Rode	
	Biorefinery Applications		

K 10	Insight into the mechanism of hybrid non- thermal plasma catalysis system	Xiaolei Fan, Huanhao Chen, Yibing Mu and Chris Hardacre
К 11	MAX Phases and MXenes as Efficient	Shiju Bayeendran
N II	Heterogeneous Catalysts	
K 12	The Effect of a bimetallic Pd/Pt species on	Jillian Thompson, Tang Son Nguyen and
	Catalyst Activity for Methane Oxidation	Andrew Beale
0 01	Investigating Mass Transport in Hollow	Luke Forster, Carmine D'Agostino,
	Mesoporous Zeolites Used for Fluid	Xiaolei Fan and Yilai Jiao
	Catalytic Cracking (FCC)	
O 02	Unravelling mass transport in hierarchically	Carmine D'Agostino, Neil Robinson,
	porous catalysts	Mark Isaacs, Chris Parlett, Karen Wilson
		and Adam Lee
O 03	Effect of Flue Gas Impurities on the Capture	Rebecca Taylor. Adam Greer. Helen
	and Utilisation of CO_2 in Superbase Ionic	Dalv. Chris Hardacre. Matthew Quesne.
	Liquids	Richard Catlow and Johan Jacquemin
O 04	Elucidating the Significance of Nitrate	Leila Negahdar. Naomi Omori. Mark
	Speciation in Small-pore Cu-containing	Frogley, Fernando Cacho-Nerin, Wilm
	Zeolitic Materials for the NH ₃ -SCR reaction	Jones, Stephen Price and Andrew Beale
O 05	Understanding fluorescence emission	Naomi Omori, Alex Greenaway, Paul
	dynamics from zeolite crystals to yield	Collier and Andrew Beale
	insight into framework-adsorbate	
	interactions	
O 06	Using high throughput experimentation	Chris Mitchell and Xander Nijhuis
	technology to understand effects in large	,
	scale reactors	
O 07	Understanding the Mechanochemical	Blackmore Rachel, Maria Elena Rivas-
	Synthesis of Perovskite LaMnO ₃ and its	Velazco and Peter Wells
	Catalytic Behavior	
O 08	Perovskites decorated with exsolved Ni	Leonidas Bekris, Kalliopi Kousi, Dragos
	nanoparticles; operando monitoring of	Neagu, Evangelos I. Papaioannou and
	phase and structural changes that dictate	lan S. Metcalfe
	redox methane conversion to syngas	
O 09	Introduction to the High-Resolution	Anna Gerdova
	Benchtop NMR	
O 10	Hydrogen partitioning as a function of	Alisha Davidson, Paul Webb, Stewart
	time-on-stream for an un-promoted iron-	Parker and David Lennon
	based Fischer-Tropsch synthesis catalyst	
	applied to CO hydrogenation	
0 11	Simultaneous In Situ Study of Fischer-	Jay Pritchard, Andrew Beale and James
	Tropsch Catalyst Series by XRD-CT	Paterson
0 12	Observing the Effects of Mn-promotion in	Matt Lindley, Sarah Haigh and James
	Co-based Fischer-Tropsch Catalysts using	Paterson
	In-situ Gas Cell Scanning Transmission	
	Electron Microscopy	
0 13	Tuneable transesterification of glycerol	Gunjan Deshmukh and Ganapati Yadav
	with dimethyl carbonate for synthesis of	

	glycerol carbonate and glycidol on MnO ₂ nanorods and efficacy of different	
	polymorphs	
0 14	Modified Red Mud as an Efficient Catalyst	Bikashbindu Das and Kaustubha
	for the Synthesis of Glycerol Carbonate by	Mohanty
	the Transesterification of Glycerol	
0 15	Solar water remediation: efficient removal	Natalia S. Sabatin, Jonas H. Costa, Caio
	of ciprofloxacin from aqueous solution	R. Silva, Taicia F. Pacheco, Jose R
	using WO ₃ /TiO ₂ photoanodes	Guimarães and Claudia Longo
O 16	Alkyl lactate formation from the	Luis Antonio Roman Ramirez, Paul
	depolymerization of polylactic acid by	McKeown, Fabio Lamberti, Matthew D.
	metal complex catalysts	Jones and Joseph Wood
0 17	Hydrocracking of Post-Consumer	Abdulrahman Bin Jumah and Arthur
	Polyolefins	Garforth
0 18	Catalytic Cracking of Polymers over Zeolites	Isaac Campbell, Aleksander Tedstone
	in a Twin Screw Compounder	and Arthur Garforth
0 19	Tetralin and Naphthalene as Exemplar of	Abarasi Hart, Mohamed Adam, John
	Poly-aromatic in Heavy Oil Upgrading using	Robinson, Sean Rigby and Joseph Wood
	NiMo/Al ₂ O ₃ Catalyst Heated with Steel	
0.00	Balls via Induction	
0 20	Catalytic upgradation of bio-oil derived	Gul Afreen and Sreedevi Upadhyayula
0.21	phenolic compounds to fuel precursors	Finders Democra Checkenk Debri and
021	Une-pot transformation of glucose to HMF	Firdaus Parveen, Shashank Banri and
0.22	Using a uual actuic catalyst	Aleksander Tedstone
0 22	Plastic Hydrocracking	
0.23	Treatment of high ionic strength	Xiaoxia Ou Chris Hardacre Simon
025	wastewater	Beaumont Arthur Garforth Xiaolei Fan
		and Helen Daly
0 24	Advances in sustainable catalysis: A	Matthew Quesne, Fabrizio Silveri, Nora
	computational perspective	de Leeuw and Richard Catlow
0 25	Improvement of biocatalyst performance	Sebastian C. Cosgrove, Itziar Peñafiel,
	using continuous flow	Ashley P. Mattey, Nigel S. Scrutton,
		Nicholas J. Turner
O 26	Management of data objects derived from	Abraham Nieva de la Hidalga, Nitya
	computational chemistry research for	Ramanan, Brian Matthews
	catalysis	
0 27	CeFeO _x catalysts for the total oxidation of	Kieran Aggett and Stuart Taylor
	propane and naphthalene VOCs: Influence	
	of cerium precursor and molar ratios	
O 28	Synthesis and catalytic application of	Rekha Yadav, Shashank Bahri, Kanthi
	Titanium Silicoaluminophosphate	Pusapati and Sreedevi Upadhyayula
	Molecular Sieves	
O 29	Extracting structural information of Au	George Tierney, Paul Collier, Nikolaos
	colloids at ultra-dilute concentrations:	Dimitratos and Peter Wells
	identification of growth during	
	nanoparticle immobilization	

O 30	Metagenomic enzyme discovery to commercial bioprocessing	Thomas Moody, Megan Smyth and Scott Wharry
0 31	Application of Ru-tethered catalyst to generate optically active value added chiral alcohols	Vijyesh Vyas, Richard Knighton, Bhalchandra Bhanage and Martin Wills
O 32	A heterogeneous platform for biocatalytic asymmetric deuteration	Jack Rowbotham, Miguel Ramirez Hernandez, Oliver Lenz, Holly Reeve and Kylie Vincent
O 33	Catalytic and biophysical investigation of rhodium hydroformylase	Hasan Tanvir Imam, Amanda G. Jarvis, Veronica Celorrio, Irshad Baig, Christopher C. R. Allen, Andrew C Marr and Paul C. J. Kamer
O 34	Highly selective reduction of α , β - unsaturated aldehydes, ketones and carboxylic acids under ambient conditions using tetraalkylphosphonium ionic liquids	Stephen Mc Dermott, Kathryn Ralphs, Eadaoin McCourt, Christopher Ormandy, Thiago A. Carneiro de souza, Peter Nockemann, Johan Jacquemin and Haresh Manyar
O 35	Catalytic Hydrogenolysis of 5- hydroxymethylfurfural via Polyphenylene Supported Ruthenium Catalyst	Xuze Guan, Ryan Wang and Qiming Wang
O 36	Electrochemicaloxidationofdibenzothiopheneand4,6-dimethyldibenzothiopheneonasilver/polyanilinemodified electrode	Adeniyi Ogunlaja
0 37	Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis	Simon Freakley
0 38	Pt-Pd Single Atom Alloys supported on carbon for the Oxygen Reduction Reaction in combination with XAFS	Sushila Marlow, Ruoyu Xu and Feng Ryan Wang
O 39	A DFT Study of SO_x (x = 0 – 3) and H_2O Reactivity on Pt (111) surface	Nora H. de Leeuw, Cornelia G.C.E. van Sittert, Marietjie J. Ungerer and David Santos-Carballal
O 40	Application of Transient Absorption (TA) techniques for Elucidating Charge Carrier Dynamics in Photocatalysis	Tina Miao, Qiushi Ruan, Paul Donaldson, Richard Catlow and Junwang Tang
O 41	Computational studies on poisoning of Ni catalyst in Methane Steam Reforming	Sai Sharath Yadavalli, Glenn Jones and Michail Stamatakis
0 42	Comparison of DFT Methods for the Description of the Bulk Properties of ZrO ₂	Maicon Delarmelina, Matthew Quesne and Richard Catlow
O 43	Product Scale-Up Consideration of the Liquid Phase Hydrogenation of Mandelonitrile	Mairi McAllister, Cedric Boulho, Colin Brennan and David Lennon
O 44	Combined Neutron Scattering and NMR Spectroscopy Studies with EPSR - Examining Benzene Hydrogenation in Porous Media	Terri-Louise Hughes, Chris Hardacre, Marta Falkowska, Daniel Bowron, Tristan Youngs, Markus Leutzsch, Mick Mantle and Andrew Sederman

0 45	Low-cost Optical Sensors for Automation	Nikolay Cherkasov
	for Process Optimization in Selective	
0.46	Hydrogenation of Alkynes	Chafer Mix
0 46	Biocatalytic Process Design - Challenges	Steran Mix
0.47	Cascade Conversion of Bio-derived	Samuel Raynes and Russell Taylor
047	Platform Chemicals with Multifunctional	Samuel Raynes and Russell Taylor
	Zeolitic Materials	
0.48	Nitrogen Based Acidic Ionic Liquids for the	lohn Keogh Manish Tiwari Haresh
0 40	Esterification of Glycerol with Acetic Acid	Manvar
0 49	The production of volatile fatty acids	Jeanine Williams, James Hammerton,
	during hydrothermal conversion of	Aaron Brown. Gillian Finnerty. Kiran
	biomass: Influence of feedstock	Parmar and Andrew Ross
	composition and process variables	
O 50	Glycerol Steam Reforming for Renewable	Ammaru Ismaila, and Xiaolei Fan
	H ₂ Production over Nickel-alumina	
	Supported Catalyst	
0 51	Production of Hydrogen by HI	Sony Chadha, Divya Jyoti and Ashok
	Decomposition over NiO supported on	Bhaskarwar
	ZrO ₂ xerogel and NiO-ZrO ₂ composite	
	xerogel catalyst in IS cycle	
O 52	The effect of co-feeding methyl acetate on	Andrea Zachariou, Alex Hawkins, Russell
	the H-ZSM-5 catalysed Methanol-to-	Howe, Paul Collier, lain Hitchcock,
0.70	Hydrocarbons reaction	Stewart F. Parker and David Lennon
0 53	From starting molecules to steady-state:	Toyin Omojola
	insights into the evolution of the	
	nydrocarbon pool from methanol over	
0.54	ZSIVI-5 Catalysis	Nanay Artiali Datar Nackamann and
0.54	for the Direct Conversion of CO2 to	Tara Shiols
	Hydrocarbons	
0.55	Structured Ni/NaA zeolite coated SiC foam	Rongxin Zhang, Yibing Mu, Huanhao
	catalyst for catalytic CO ₂ methanation	Chen. Xiaolei Fan and Christopher
	,,	Hardacre
O 56	Formate coupling revisited – a key step	Eric Schuler, Shiju Raveendran, Gert-Jan
	from CO ₂ to polymers	Gruter, Bernd Ensing and Alberto Pérez
		de Alba Ortíz
0 57	CO2 valorisation via Reverse Water-Gas	Liuqingqing Yang, Pastor Perez Laura
	Shift reaction using Fe/CeO ₂ -Al2O ₃	and Ramirez Reina Tomas
	catalyst: Influence of Cu, Ni and Mo as	
	second metal promoters	
O 58	Understanding the promoter effect of Cu	Qi Zhang, Laura Pastor-Pérez and Wei
	and Cs over highly effective β -Mo ₂ C	Jin
	catalysts for the reverse water-gas shift	
	reaction	

O 59	Ce Mn mixed oxides for low temperature emission control catalysts	Nancy Artioli, Ruairi O'Donnell, Maxime Grolleau, Kevin Nawanalfred, Kathryn Ralphs and Haresh Manyar
O 60	Non-thermal Plasma (NTP) Catalysis for CO ₂ Utilization	Shaojun Xu, Philip Martin and J. Christopher Whitehead
0 61	Kinetic Studies of Catalytic CO ₂ Hydrogenation over Ni Catalyst Activated by Non-thermal Plasma (NTP)	Yibing Mu, Huanhao Chen, Christopher Hardacre and Xiaolei Fan
0 62	Non-Thermal Plasma Assisted CO ₂ Hydrogenation over Ru Supported on MgAl Layered Double Hydroxide	Shanshan Xu, Sarayute Chansai, Huanhao Chen, Xiaolei Fan and Christopher Hardacre
O 63	Targeted catalyst design using a process systems engineering approach	Mohammad Reza Abbasi, Federico Galvanin, John Blacker and Asterios Gavriilidis
O 64	Opportunities for Catalysis in Methane Valorization - Catalyst Performance Evaluation Using Parallel Fixed Bed Reactor Systems and Data Driven Catalyst Development	Nicolas Popoff, Roel Moonen, Erik-Jan Ras, Math Lambalk and Carlos Ortega
O 65	Highly selective CH ₄ production using MgO- based dual functional materials by the integrated carbon capture and utilization process	Hongman Sun and Chunfei Wu
O 66	Amorphous Surface PdO _x and its Activity Towards Methane Combustion	Rhys Bunting, Jillian Thompson and Peijun Hu
O 67	Ethanol Upgrading Catalysis for Advanced Biofuels – A Combined Computational and Experimental Study	Andres Richards Gonzales
O 68	Methane dehydro-aromatisation using a dual-phase high temperature hydrogen transport membrane	Matthew West and Danai Poulidi
O69	Effect of steam de-alumination on the interactions of propene with H ZSM-5 zeolites	Alex Hawkins, Andrea Zachariou, Stewart F. Parker, Paul Collier, Iain Hitchcock, Ian P. Silverwood, Russell Howe and David Lennon