Check for updates

DOI: 10.1002/jcd.21751

WILEY

A reduction of the spectrum problem for odd sun systems and the prime case

Marco Buratti^{[1](http://orcid.org/0000-0003-1140-2251)} \bullet | Anita Pasotti^{[2](http://orcid.org/0000-0002-3569-2954)} \bullet | Tommaso Traetta² \bullet

1 Dipartimento di Matematica e Informatica, Università di Perugia, Perugia, Italy 2 DICATAM ‐ Sez. Matematica, Università degli Studi di Brescia, Brescia, Italy

Correspondence

Anita Pasotti, DICATAM ‐ Sez. Matematica, Università degli Studi di Brescia, Via Branze 43, I‐25123 Brescia, Italy. Email: anita.pasotti@unibs.it

Funding information

GNSAGA of Istituto Nazionale di Alta Matematica

Abstract

A k-cycle with a pendant edge attached to each vertex is called a k -sun. The existence problem for k -sun decompositions of K_v , with k odd, has been solved only when $k = 3$ or 5. By adapting a method used by Hoffmann, Lindner, and Rodger to reduce the spectrum problem for odd cycle systems of the complete graph, we show that if there is a k -sun system of K_v (k odd) whenever *v* lies in the range $2k < v < 6k$ and satisfies the obvious necessary conditions, then such a system exists for every admissible $v \geq 6k$. Furthermore, we give a complete solution whenever k is an odd prime.

KEYWORDS

crown graph, cycle systems, graph decompositions, partial mixed differences, sun systems

2010 MATHEMATICS SUBJECT CLASSIFICATION 05B30, 05C51

1 | INTRODUCTION

We denote by *V* (Γ) and *E*(Γ) the set of vertices and the list of edges of a graph Γ, respectively. Also, we denote by $\Gamma + w$ the graph obtained by adding to Γ an independent set $W = \{\infty_i | 1 \le i \le w\}$ of $w \ge 0$ vertices each adjacent to every vertex of Γ, namely,

 $\Gamma + w \coloneqq \Gamma \cup K_{V(\Gamma)W}$

where $K_{V(\Gamma),W}$ is the complete bipartite graph with parts $V(\Gamma)$ and *W*. Denoting by K_v the complete graph of order *v*, it is clear that $K_v + 1$ is isomorphic to K_{v+1} .

We denote by $x_1 \sim x_2 \sim \cdots \sim x_k$ the path with edges $\{x_{i-1}, x_i\}$ for $2 \le i \le k$. By adding the edge $\{x_1, x_k\}$ when $k \geq 3$, we obtain a cycle of length k (briefly, a k-cycle) denoted by $(x_1, x_2, ..., x_k)$. A *k*-cycle with further $v - k ≥ 0$ isolated vertices will be referred to as a *k*-cycle of order v . By adding to $(x_1, x_2, ..., x_k)$ an independent set of edges $\{ (x_i, x'_i) | 1 \le i \le k \}$, we obtain the *k*-sun on 2*k* vertices (sometimes referred to as *k*‐crown graph) denoted by

$$
\begin{pmatrix} x_1 & x_2 & \cdots & x_{k-1} & x_k \\ x'_1 & x'_2 & \cdots & x'_{k-1} & x'_k \end{pmatrix},
$$

whose edge-set is therefore $\{ \{x_i, x_{i+1}\}, \{x_i, x'_i\} | 1 \le i \le k \}$, where $x_{k+1} = x_1$.

A decomposition of a graph *K* is a set $\{\Gamma_1, \Gamma_2, ..., \Gamma_t\}$ of subgraphs of *K* whose edge-sets between them partition the edge-set of *K*; in this case, we briefly write $K = \bigoplus_{i=1}^{t} \Gamma_i$. If each Γ_i is isomorphic to Γ, we speak of a Γ-decomposition of K. If Γ is a k-cycle (resp., k-sun), we also speak of a *k*‐cycle system (resp., *k*‐sun system) of *K*.

In this paper we study the existence problem for *k*-sun systems of K_v ($v > 1$). Clearly, for such a system to exist we must have

$$
v \ge 2k \quad \text{and} \quad v(v-1) \equiv 0 \text{ (mod } 4k). \tag{*}
$$

As far as we know, this problem has been completely settled only when $k = 3, 5$ [[8,10](#page-31-0)], $k = 4, 6, 8$ [\[12\]](#page-32-0), and when $k = 10, 14$ or $2^t \ge 4$ [\[9](#page-31-1)]. It is important to notice that, as a con-sequence of a general result proved in [[14](#page-32-1)], condition $(*)$ is sufficient whenever ν is large enough with respect to *k*. These results seem to suggest the following.

Conjecture 1. Let $k \geq 3$ and $v > 1$. There exists a k-sun system of K_v if and only if (*) holds.

Our constructions rely on the existence of *k*-cycle systems of K_v , a problem that has been completely settled in [[1,4,5,11,13](#page-31-2)]. More precisely, [\[4](#page-31-3)] and [\[11](#page-31-4)] reduce the problem to the orders *v* in the range $k \le v < 3k$, with *v* odd. These cases are then solved in [\[1,13](#page-31-2)]. For odd *k*, an alternative proof based on 1‐rotational constructions is given in [[5\]](#page-31-5). Further results on *k*‐cycle systems of K_v with an automorphism group acting sharply transitively on all but at most one vertex can be found in $[2,6,7,15]$ $[2,6,7,15]$.

The main results of this paper focus on the case where *k* is odd. By adapting a method used in [[11\]](#page-31-4) to reduce the spectrum problem for odd cycle systems of the complete graph, we show that if there is a *k*-sun system of K_v (*k* odd) whenever *v* lies in the range $2k < v < 6k$ and satisfies the obvious necessary conditions, then such a system exists for every admissible $v \ge 6k$. In other words, we show the following.

Theorem [1](#page-1-0).1. Let $k \geq 3$ be an odd integer and $v > 1$. Conjecture 1 is true if and only if there exists a *k*-sun system of K_v for all v satisfying the necessary conditions in (*) with $2k < v < 6k$.

We would like to point out that we strongly believe the reduction methods used in [[4,11](#page-31-3)] could be further developed to reduce the spectrum problem of other types of graph decompositions of *Kv*.

In Section [6](#page-25-0), we construct *k*-sun systems of K_v for every odd prime *k* whenever $2k < v < 6k$ and (*) holds. Therefore, as a consequence of Theorem [1.1](#page-1-1), we solve the existence problem for *k*-sun systems of K_v whenever *k* is an odd prime.

Theorem 1.2. For every odd prime p there exists a p-sun system of K_v with $v > 1$ if and only if $v \ge 2p$ and $v(v - 1) \equiv 0 \pmod{4p}$.

Both results rely on the difference methods described in Section [2](#page-2-0). These methods are used in Section [3](#page-4-0) to construct specific *k*-cycle decompositions of some subgraphs of $K_{2k} + w$, which we then use in Section [4](#page-7-0) to build *k*-sun systems of K_{4k} + *n*. This is the last ingredient we need in Section [5](#page-22-0) to prove Theorem [1.1.](#page-1-1) Difference methods are finally used in Section 6 to construct *k*-sun systems of K_v for every odd prime *k* whenever $2k < v < 6k$ and (*) holds.

2 | PRELIMINARIES

Henceforward, $k \ge 3$ is an odd integer, and $\ell = \frac{k-1}{2}$. Also, given two integers $a \le b$, we denote by [a, b] the interval containing the integers $\{a, a + 1, ..., b\}$. If $a > b$, then [a, b] is empty.

In our constructions we make extensive use of the method of partial mixed differences which we now recall but limited to the scope of this paper.

Let *G* be an abelian group of odd order *n* in additive notation, let $W = \{\infty_u | 1 \le u \le w\}$, and denote by Γ a graph with vertices in $V = (G \times [0, m - 1]) \cup W$. For any permutation f of V, we denote by *f* (Γ) the graph obtained by replacing each vertex of Γ, say *x*, with *f* (*x*). Letting $\tau_{\rm g}$, with $g \in G$, be the permutation of *V* fixing each $\infty_u \in W$ and mapping $(x, i) \in G \times [0, m - 1]$ to $(x + g, i)$, we call $τ_g$ the *translation by g* and $τ_g(Γ)$ the related translate of Γ.

We denote by $Orb_G(\Gamma) = \{\tau_g(\Gamma) | g \in G\}$ the *G*-orbit of Γ, that is, the set of all distinct translates of Γ, and by $Dev_G(\Gamma) = \bigcup_{g \in G} \tau_g(\Gamma)$ the graph union of all translates of Γ. Further, by *Stab_G* (Γ) = { $g \in G | \tau_g(\Gamma) = \Gamma$ } we denote the *G*-stabilizer of Γ, namely, the set of translations fixing Γ. We recall that $Stab_G(\Gamma)$ is a subgroup of G, hence $s = |Stab_G(\Gamma)|$ is a divisor of $n = |G|$. Henceforward, when $G = \mathbb{Z}_k$, we will simply write $Orb(\Gamma)$, $Dev(\Gamma)$, and $Stab(\Gamma)$.

Suppose now that Γ is either a *k*-cycle or a *k*-sun with vertices in *V*. For every $i, j \in [0, m - 1]$, the list of (i, j) -differences of Γ is the multiset $\Delta_{ij} \Gamma$ defined as follows:

1. if $\Gamma = (x_1, x_2, ..., x_k)$, then

$$
\Delta_{ij}\Gamma = \{a_{h+1} - a_h | x_h = (a_h, i), x_{h+1} = (a_{h+1}, j), 1 \le h \le k/s\}
$$

$$
\cup \{a_h - a_{h+1} | x_h = (a_h, j), x_{h+1} = (a_{h+1}, i), 1 \le h \le k/s\};
$$

2. if
$$
\Gamma = \begin{pmatrix} x_1 & x_2 & \cdots & x_k \\ x'_1 & x'_2 & \cdots & x'_k \end{pmatrix}
$$
, then
\n
$$
\Delta_{ij}\Gamma = \Delta_{ij}(x_1, x_2, ..., x_k) \cup \{a'_h - a_h | x_h = (a_h, i), x'_h = (a'_h, j), 1 \le h \le k/s\}
$$
\n
$$
\cup \{a_h - a'_h | x_h = (a_h, j), x'_h = (a'_h, i), 1 \le h \le k/s\}.
$$

We notice that when $s = 1$ we find the classic concept of list of differences. Usually, one speaks of *pure or mixed differences* according to whether $i = j$ or not, and when $m = 1$ we simply write

8 | WILEY BURATTI ET AL.

 $\Delta\Gamma$. This concept naturally extends to a family *F* of graphs with vertices in *V* by setting $\Delta_{ii} \mathcal{F} = \int_{\Gamma \in \mathcal{F}} \Delta_{ii} \Gamma$. Clearly, $\Delta_{ii} \Gamma = -\Delta_{ii} \Gamma$, hence $\Delta_{ii} \mathcal{F} = -\Delta_{ii} \mathcal{F}$, for every $i, j \in [0, m - 1]$.

We also need to define the *list of neighbors* of ∞_u in F, that is, the multiset $N_F(\infty_u)$ of the vertices in *V* adjacent to ∞_u in some graph $\Gamma \in \mathcal{F}$.

Finally, we introduce a special class of subgraphs of *Kmn*. To this purpose, we take $V(K_{mn}) = G \times [0, m-1]$. Letting $D_{ii} \subseteq G\{0\}$ for every $0 \le i \le m-1$, and $D_{ii} \subseteq G$ for every $0 \le i \le j \le m - 1$, we denote by

$$
\langle D_{ij}|0\leq i\leq j\leq m-1\rangle
$$

the spanning subgraph of K_{mn} containing exactly the edges $\{(g, i), (g + d, j)\}\$ for every $g \in G$, *d* ∈ *D_{ij}*, and $0 \le i \le j \le m - 1$. The reader can easily check that this graph remains unchanged if we replace any set D_{ii} with $\pm D_{ii}$.

The following result, standard in the context of difference families, provides us with a method to construct Γ-decompositions for subgraphs of $K_{mn} + w$.

Proposition 2.1. Let *G* be an abelian group of odd order *n*, let *m* and *w* be nonnegative integers, and denote by $\mathcal F$ a family of *k*-cycles (resp., *k*-suns) with vertices in $(G \times [0, m - 1]) \cup {\{\infty_u | u \in \mathbb{Z}_w\}}$ satisfying the following conditions:

1. $\Delta_{ii} \mathcal{F}$ has no repeated elements, for every $0 \le i \le j < m$; 2. $N_{\mathcal{F}}(\infty_u) = \{ (g_{u,i}, i) | 0 \le i < m, g_{u,i} \in G \}$ for every $1 \le u \le w$.

Then $\bigcup_{\Gamma \in \mathcal{F}} Orb_{G}(\Gamma) = \{\tau_{\varrho}(\Gamma) | g \in G, \Gamma \in \mathcal{F}\}\$ is a *k*-cycle (resp., *k*-sun) system of $\langle \Delta_{ii} \mathcal{F} | 0 \leq i \leq j \leq m - 1 \rangle + w.$

Proof. Let $\mathcal{F}^* = \bigcup_{\Gamma \in \mathcal{F}} Orb_\mathcal{G}(\Gamma), K = \langle \Delta_{ij}\mathcal{F} | 0 \le i \le j \le m-1 \rangle$, and let ϵ be an edge of *K* + *w*. We are going to show that ϵ belongs to exactly one graph of \mathcal{F}^* .

If $\epsilon \in E(K)$, by recalling the definition of K we have that $\epsilon = \{(g, i), (g + d, i)\}\$ for some $g \in G$ and $d \in \Delta_{ij} \mathcal{F}$, with $0 \le i \le j < m$. Hence, there is a graph $\Gamma \in \mathcal{F}$ such that $d \in \Delta_{ii}$ T. This means that Γ contains the edge $\varepsilon' = \{(g', i), (g' + d, j)\}\$ for some $g' \in G$, therefore $\epsilon = \tau_{g-g}(\epsilon') \in \tau_{g-g}(\Gamma) \in \mathcal{F}^*$. To prove that ϵ only belongs to $\tau_{g-g}(\Gamma)$, let Γ' be any graph in $\mathcal F$ such that $\epsilon \in \tau_x(\Gamma')$, for some $x \in G$. Since translations preserve differences, we have that $d \in \Delta_{ii} \tau_x(\Gamma') = \Delta_{ii} \Gamma'$. Considering that $d \in \Delta_{ii} \Gamma \cap \Delta_{ii} \Gamma'$ and, by condition (1), $\Delta_{ii} \mathcal{F}$ has no repeated elements, we necessarily have that $\Gamma' = \Gamma$, hence $\tau_{-\chi}(\epsilon) \in \Gamma$. Again, since $\Delta_{ij} \Gamma$ has no repeated elements (condition 1), and considering that ϵ' and $\tau_{-\chi}(\epsilon)$ are edges of Γ that yield the same differences, then $\tau_{-\chi}(\epsilon) = \epsilon' = \tau_{\varrho,-\varrho}(\epsilon)$, that is, $\tau_{g,-g+x}(\epsilon) = \epsilon$. Since *G* has odd order, it has no element of order 2, hence $g' - g + x = 0$, that is, $x = g - g'$, therefore τ_{g-g} , (Γ) is the only graph of \mathcal{F}^* containing ϵ .

Similarly, we show that every edge of $(K + w)\K$ belongs to exactly one graph of \mathcal{F}^* . Let $\epsilon = {\infty_u, (g, i)}$ for some $u \in \mathbb{Z}_w$ and $(g, i) \in G \times [0, m - 1]$. By assumption, there is a graph $\Gamma \in \mathcal{F}^*$ containing the edge $\epsilon' = {\{\infty_u, (\underline{g}_{u,i}, i)\}}$ with $g_{u,i} \in G$. Hence, $\epsilon = \tau_{g-g_{\alpha i}}(\epsilon') \in \tau_{g-g_{\alpha i}}(\Gamma)$. Finally, if $\epsilon \in \tau_x(\Gamma')$ for some $x \in G$ and $\Gamma' \in \mathcal{F}$, then $\{\infty_u, (g - x, i)\} = \tau_{-x}(\epsilon) \in \Gamma'$. Since condition (2) implies that $N_{\mathcal{F}}(\infty_u)$ contains exactly one pair from *G* × {*i*}, we necessarily have that $\Gamma = \Gamma'$ and $x = g - g_u$; therefore, there is exactly one graph of \mathcal{F}^* containing ϵ . Condition (2) also implies that $N_{\mathcal{F}}(\infty_u)$ is disjoint

from $\{\infty_u | u \in \mathbb{Z}_w\}$, and this guarantees that no graph in \mathcal{F}^* contains edges joining two infinities. Therefore, \mathcal{F}^* is the desired decomposition of $K + w$.

Considering that $K_{mn} = \langle D_{ii} | 0 \le i \le j \le m - 1 \rangle$ if and only if $\pm D_{ii} = G \setminus \{0\}$ for every $i \in [0, m - 1]$, and $D_{ij} = G$ for every $0 \le i \le j \le m - 1$, the proof of the following corollary to Proposition [2.1](#page-3-0) is straightforward.

Corollary 2.2. Let *G* be an abelian group of odd order *n*, let *m* and *w* be nonnegative integers, and denote by F a family of *k*-cycles (resp., *k*-suns) with vertices in $(G \times [0, m - 1]) \cup {\{\infty_u | u \in \mathbb{Z}_w\}}$ satisfying the following conditions:

1.
$$
\Delta_{ij} \mathcal{F} = \begin{cases} G \setminus \{0\} & \text{if } 0 \le i = j \le m - 1, \\ G & \text{if } 0 \le i < j \le m - 1, \end{cases}
$$

2. $N_{\mathcal{F}}(\infty_u) = \{ (g_{u,i}, i) | 0 \le i < m, g_{u,i} \in G \} \text{ for every } 1 \le u \le w.$

Then $\bigcup_{\Gamma \in \mathcal{F}} \mathrm{Orb}_G(\Gamma)$ is a *k*-cycle (resp., *k*-sun) system of $K_{mn} + w$.

3 | CONSTRUCTING *k*‐CYCLE SYSTEMS \overline{OP} $\langle D_{00}, D_{01}, D_{11} \rangle + w$

In this section, we recall and generalize some results from [[11\]](#page-31-4) to provide conditions on D_{00} , D_{01} , $D_{11} \subseteq \mathbb{Z}_k$ that guarantee the existence of a *k*-cycle system for the subgraph $\langle D_{00}, D_{01}, D_{11} \rangle + w$ of $K_{2k} + w$, where $V(K_{2k}) = \mathbb{Z}_k \times \{0, 1\}.$

We recall that every connected 4-regular Cayley graph over an abelian group has a Hamilton cycle system [[3\]](#page-31-7) and show the following.

Lemma 3.1. Let $[a, b]$, $[c, d] \subseteq [1, \ell]$. The graph $\langle [a, b], \emptyset, [c, d] \rangle$ has a k-cycle system whenever both $[a, b]$ and $[c, d]$ satisfy the following condition: the interval has even size or contains an integer coprime with *k*.

Proof. The graph $\langle [a, b], \emptyset, [c, d] \rangle$ decomposes into $\langle [a, b], \emptyset, \emptyset \rangle$ and $\langle \emptyset, \emptyset, [c, d] \rangle$. The first one is the Cayley graph $\Gamma = Cay(\mathbb{Z}_k, [a, b])$ with further *k* isolated vertices, while the second one is isomorphic to $\langle [c, d], \emptyset, \emptyset \rangle$. Therefore, it is enough to show that Γ has a *k*‐cycle system.

Note that Γ decomposes into the subgraphs $Cay(\mathbb{Z}_k, D_i)$, for $0 \leq i \leq t$, whenever the sets D_i between them partition [a, b]. By assumption, [a, b] has even size or contains an integer coprime with *k*. Therefore, we can assume that for every $i > 0$ the set D_i is a pair of integers at distance 1 or 2, and D_0 is either empty or contains exactly one integer coprime with *k*. Clearly, $Cay(\mathbb{Z}_k, D_0)$ is either the empty graph or a *k*-cycle, and the remaining $Cay(\mathbb{Z}_k, D_i)$ are 4-regular Cayley graphs. Also, for every $i > 0$ we have that D_i is a generating set of \mathbb{Z}_k (since k is odd and D_i contains integers at distance 1 or 2), hence the graph $Cay(\mathbb{Z}_k, D_i)$ is connected. It follows that each $Cay(\mathbb{Z}_k, D_i)$, with $i > 0$, decomposes into two k -cycles, thus the assertion is proven. \Box

Lemma 3.2. Let $S \subseteq \{2i - 1 | 1 \le i \le \ell\}$. Then there exist *k*-cycle systems for the graphs $\langle \{\ell\}, S \cup (S + 1), \emptyset \rangle$ and $\langle \{\ell\}, (S + 1) \cup (S + 2), \emptyset \rangle$.

Proof. We note that the result is trivial when $S = \emptyset$, since $\langle \{\ell\}, \emptyset, \emptyset \rangle$ is a *k*-cycle.

The existence of a *k*-cycle system of $\Gamma = \langle \{\ell\}, S \cup (S + 1), \emptyset \rangle$ has been proven in [[11,](#page-31-4) Lemma 3] when $S \subseteq \{2i - 1| 1 \le i \le \ell\}$. Consider now the permutation f of $\mathbb{Z}_k \times \{0, 1\}$ fixing $\mathbb{Z}_k \times \{0\}$ pointwise, and mapping $(i, 1)$ to $(i + 1, 1)$ for every $i \in \mathbb{Z}_k$. It is not difficult to check that $f(\Gamma) = \langle \{\ell\}, (S + 1) \cup (S + 2), \emptyset \rangle$ which is therefore isomorphic to Γ, and hence it has a *k*‐cycle system. □

Lemma 3.3. Let *r*, *s*, and *s'* be integers such that $1 \le s \le s' \le \min\{s + 1, \ell\}$, and $0 < r$ \neq *s* + *s'* (mod 2). Also, let $D \subseteq [0, k - 1]$ be a nonempty interval of size $k - (s + s' + 2r)$. Then there is a cycle $C = (x_1, x_2, ..., x_k)$ of $\Gamma = \{[1 + \epsilon, s + \epsilon], D, [1 + \epsilon, s' + \epsilon]\} + r$, for every $\epsilon \in \{0, 1\}$, such that $Orb(C)$ is a *k*-cycle system of Γ. Furthermore, if $u = 0$ or $u = 1 - \epsilon = 1 \leq s - 1$, then

1. *Dev* ({ x_{2-u} , x_{3-u} }) is a *k*-cycle with vertices in $\mathbb{Z}_k \times \{0\}$;

2. *Dev* ({ x_{4+u} , x_{5+u} }) is a *k*-cycle with vertices in $\mathbb{Z}_k \times \{1\}$.

Proof. Set $t = k - (s + s' + 2r)$ and let $\Omega = \{ [1 + \epsilon, s + \epsilon], [0, t - 1], [1 + \epsilon, s' + \epsilon] \}$ + *r*. For $i \in [0, s + s' + 1]$ and $j \in [0, t + r - 1]$, let a_i and b_j be the elements of $\mathbb{Z}_k \times \{0, 1\}$ defined as follows:

$$
a_{i} = \begin{cases} \left(-\frac{i}{2}, 0\right) & \text{if } i \in [0, s] \text{ is even,} \\ \left(-s - \epsilon + \frac{i - 1}{2}, 0\right) & \text{if } i \in [1, s] \text{ is odd,} \\ a_{2s+1-i} + (0, 1) & \text{if } i \in [s + 1, 2s + 1], \\ (-s' - \epsilon, 1) & \text{if } i = s + s' + 1 > 2s + 1, \end{cases}
$$

$$
b_{j} = \begin{cases} \left(\frac{j}{2}, 0\right) & \text{if } j \in [0, t + r - 2] \text{ is even,} \\ \left(t - \frac{j + 1}{2}, 1\right) & \text{if } j \in [1, t - 1] \text{ is odd,} \\ \left(t + \left\lfloor\frac{j - t}{2}\right\rfloor, 1\right) & \text{if } j \in [t, t + r - 2] \text{ is odd,} \\ a_{s+s+1} & \text{if } j = t + r - 1. \end{cases}
$$

Since the elements a_i and b_j are pairwise distinct, except for $a_0 = b_0$ and $a_{s+s+1} = b_{t+r-1}$, then the union F of the following two paths is a k -cycle:

$$
P = a_0 \sim a_1 \sim \cdots \sim a_{s+s+1},
$$

$$
Q = b_0 \sim b_1 \sim \cdots \sim b_{t-1} \sim \infty_1 \sim b_t \sim \infty_2 \sim b_{t+1} \sim \cdots \sim \infty_r \sim b_{t+r-1}.
$$

Since $\Delta_{ii}F = \Delta_{ii}P \cup \Delta_{ii}Q$, for $i, j \in \{0, 1\}$, where

$$
\Delta_{00}P = \pm [1 + \epsilon, s + \epsilon], \quad \Delta_{01}P = \{0\}, \qquad \Delta_{11}P = \pm [1 + \epsilon, s' + \epsilon],
$$

$$
\Delta_{00}Q = \emptyset, \qquad \Delta_{01}Q = [1, t - 1], \quad \Delta_{11}Q = \emptyset,
$$

and considering that $N_F(\infty_h) = N_O(\infty_h) = \{b_{t+h-2}, b_{t+h-1}\}$ for every $h \in [1, r]$, Proposition [2.1](#page-3-0) guarantees that $Orb(F)$ is a *k*-cycle system of Ω . Furthermore, if $u = 0$ or $u = 1 - \epsilon = 1 \leq s - 1$, then

$$
\pm (a_{s-u} - a_{s-u-1}) = \pm (a_{s+u+2} - a_{s+u+1}) = \pm (u + \epsilon + 1, 0).
$$

Since *k* is odd, we have that $Dev({a_{s-u-1}, a_{s-u}})$ and $Dev({a_{s+u+2}, a_{s+u+1}})$ are *k*-cycles with vertices in $\mathbb{Z}_k \times \{0\}$ and $\mathbb{Z}_k \times \{1\}$, respectively.

If $D = [g, g + t - 1]$ is any interval of $[0, k - 1]$ of size *t*, and *f* is the permutation of $\mathbb{Z}_k \times \{0, 1\}$ fixing $\mathbb{Z}_k \times \{0\}$ pointwise, and mapping $(i, 1)$ to $(i + g, 1)$ for every $i \in \mathbb{Z}_k$, one can check that $C = f(F)$ is the desired *k*-cycle of $\Gamma = f(\Omega)$.

Lemma 3.4.

1. Let ℓ be odd. If Γ is a 1-factor of K_{2k} , then $\Gamma + \ell$ decomposes into k cycles of length k, each of which contains exactly one edge of Γ. Furthermore, if $\Gamma = \langle \emptyset, \{d\}, \emptyset \rangle$, then there exists a *k*-cycle $C = (c_1, c_2, ..., c_k)$ of $\Gamma + \ell$, with $c_1 \in \mathbb{Z}_k \times \{0\}$ and $c_2 \in \mathbb{Z}_k \times \{1\}$, such that

 $Dev({c_1, c_2}) = \Gamma$ *and Orb* (*C*) *is a k-cycle system of* $\Gamma + \ell$.

2. Let ℓ be even. If Γ is a *k*-cycle of order 2*k*, then $\Gamma + \ell$ decomposes into *k* cycles of length *k*, each of which contains exactly one edge of Γ. Furthermore, if $\Gamma = \langle \{d\}, \emptyset, \emptyset \rangle$ and *d* is coprime with *k*, then there exists a *k*-cycle $C = (c_1, c_2, ..., c_k)$ of $\Gamma + \ell$, with $c_1, c_2 \in \mathbb{Z}_k \times \{0\}$, such that

Dev ({ c_1 , c_2 }) is the k-cycle of Γ and Orb(C) is a k-cycle system of $\Gamma + \ell$.

Proof. Permuting the vertices of K_{2k} if necessary, we can assume that Γ is the 1-factor $\Gamma_0 = \langle \emptyset, \{0\}, \emptyset \rangle$ when ℓ is odd, and the *k*-cycle $\Gamma_1 = \langle \{\ell\}, \emptyset, \emptyset \rangle$ (of order 2*k*) when ℓ is even. For $h \in \{0, 1\}$, let $C_h = (c_{h,1}, c_{h,2}, \infty_1, c_3, \infty_2, c_4, ..., \infty_{\ell-1}, c_{\ell+1}, \infty_{\ell})$ be the *k*-cycle of $\Gamma_h + \ell$, where

$$
c_{h,1} = (0, 1 - h), \quad c_{h,2} = (h\ell, 0), \quad \text{and} \quad c_j = \begin{cases} \left(\frac{j-1}{2}, 1\right) & \text{if } j \in [3, \ell + 1] \text{ is odd,} \\ \left(\frac{j}{2}, 0\right) & \text{if } j \in [4, \ell + 1] \text{ is even.} \end{cases}
$$

Note that the sets $\Delta_{ii}C_h$ are empty, except for $\Delta_{01}C_0 = \{0\}$ and $\Delta_{00}C_1 = \{\pm \ell\}$. Also, the two neighbors of ∞_u in C_h belong to $\mathbb{Z}_k \times \{0\}$ and $\mathbb{Z}_k \times \{1\}$, respectively. Hence, Proposition [2.1](#page-3-0) guarantees that $Orb(C_h)$ is a *k*-cycle system of $\Gamma_h + \ell$, for $h \in \{0, 1\}$. We finally notice that $Dev({*c*_{h,1}, *c*_{h,2}}) = *Γ*_h$ (up to isolated vertices) and this completes the proof. □

The following result has been proven in [[11\]](#page-31-4).

Lemma 3.5. Let $D \subseteq [1, \ell]$. The subgraph $\langle D, \{0\}, D \rangle$ of K_{2k} has a 1-factorization.

Remark 3.6. Considering the permutation *f* of $\mathbb{Z}_k \times \{0, 1\}$ such that $f(i, j) = (i, 1 - j)$, and a graph $\Gamma = \langle D_0, D_1, D_2 \rangle$, we have that $f(\Gamma) = \langle D_2, -D_1, D_0 \rangle$. Therefore, Lemmas [3.1](#page-4-1)–[3.5](#page-7-1) continue to hold when we replace $Γ$ by $f(Γ)$.

4 | k -SUN SYSTEMS OF $K_{4k} + n$

In this section we provide sufficient conditions for a *k*-sun system of K_{4k} + *n* to exist, when $n \equiv 0, 1 \pmod{4}$. More precisely, we show the following.

Theorem 4.1. Let $k \ge 7$ be an odd integer and let $n \equiv 0, 1 \pmod{4}$ with $2k < n < 10k$; then there exists a *k*-sun system of K_{4k} + *n*, except possibly when

- $k = 7$ and $n = 20, 21, 32, 33, 44, 45, 56, 57, 64, 65, 68, 69,$
- $k = 11$ and $n = 100, 101, 112, 113$.

To prove Theorem [4.1](#page-7-2), we start by introducing some notions and prove some preliminary results. Let *M* be a positive integer and take $V(K_{2^iM}) = \mathbb{Z}_M \times [0, 2^i - 1]$ and $V(K_{2^iM} + w)$ $= V(K_{2^iM}) \cup \{ \infty_h | h \in \mathbb{Z}_w \}$, for $i \in \{1, 2\}$ and $w > 0$.

Now assume that $w = 2u$, and let $x \mapsto \overline{x}$ be the permutation of $V(K_{4M} + 2u)$ defined as follows:

$$
\overline{x} = \begin{cases} (a, 2 - j) & \text{if } x = (a, j) \in \mathbb{Z}_M \times \{0, 2\}, \\ (a, 4 - j) & \text{if } x = (a, j) \in \mathbb{Z}_M \times \{1, 3\}, \\ \infty_{h + u} & \text{if } x = \infty_h. \end{cases}
$$

For any subgraph Γ of K_{4M} + 2u, we denote by $\overline{\Gamma}$ the graph (isomorphic to Γ) obtained by replacing each vertex *x* of Γ with *x* .

Given a subgraph Γ of K_{2M} + u, we denote by $\Gamma[2]$ the spanning subgraph of K_{4M} + 2u whose edge‐set is

$$
E(\Gamma[2]) = \{ \{x, y\}, \{x, \overline{y}\}, \{\overline{x}, y\}, \{\overline{x}, \overline{y}\} | \{x, y\} \in E(\Gamma) \},
$$

and let $\Gamma^*[2] = \Gamma[2] \oplus I$ be the graph obtained by adding to $\Gamma[2]$ the 1-factor

$$
I = \{ \{x, \overline{x} \} | x \in \mathbb{Z}_M \times \{0, 1\} \}.
$$

Note that, up to isolated vertices, $\Gamma[2]$ is the *lexicographic product* of Γ with the empty graph on two vertices.

The proof of the following elementary lemma is left to the reader.

Lemma 4.2. Let $\Gamma = \bigoplus_{i=1}^n \Gamma_i$ and let $w = \sum_{i=1}^n w_i$ with $w_i \geq 0$. If Γ and the Γ_i s have the same vertex-set (possibly with isolated vertices), then

1. $\Gamma + w = \bigoplus_{i=1}^{n} (\Gamma_i + w_i);$

We start showing that if *C* is a *k*-cycle, then $C[2]$ decomposes into two *k*-suns.

Lemma 4.3. Let $C = (c_1, c_2, ..., c_k)$ be a cycle with vertices in $(\mathbb{Z}_M \times \{0, 1\}) \cup {\infty_h | h \in \mathbb{Z}_u}$ and let *S* be the *k*‐sun defined as follows:

$$
S = \left(\frac{s_1}{s_2} \dots \frac{s_{k-1}}{s_k} \frac{s_k}{s_1}\right),\tag{1}
$$

where $s_i \in \{c_i, \overline{c_i}\}$ for every $i \in [1, k]$. Then $C[2] = S \oplus \overline{S}$.

Proof. It is enough to notice that *S* contains the edges $\{s_i, s_{i+1}\}\$ and $\{s_i, \overline{s_{i+1}}\}$, while \overline{S} contains $\{\overline{s_i}, \overline{s_{i+1}}\}$ and $\{\overline{s_i}, s_{i+1}\}$, for every $i \in [1, k]$, where $s_{k+1} = s_1$ and $\overline{s_{k+1}} = \overline{s_1}$.

Example 4.4. In Figure [1](#page-8-0) we have the graph C_7 [2] which can be decomposed into two 7-suns *S* and \overline{S} . The nondashed edges are those of *S*, while the dashed edges are those of \overline{S} .

For every cycle $C = (c_1, c_2, ..., c_k)$ with vertices in $\mathbb{Z}_M \times \{0, 1\}$, we set

$$
\sigma(C) = \left(\frac{c_1 \dots c_{k-1} c_k}{c_2 \dots c_k \over c_1}\right).
$$

Clearly, $C[2] = \sigma(C) \oplus \overline{\sigma(C)}$ by Lemma [4.3](#page-8-1).

Lemma 4.5. If $C = \{C_1, C_2, ..., C_t\}$ is a *k*-cycle system of $\Gamma + u$, where Γ is a subgraph of K_{2M} , and S_i is a *k*-sun obtained from C_i as in Lemma [4.3,](#page-8-1) then $S = \{S_i, \overline{S_i} \mid i \in [1, t]\}$ is a *k*‐sun system of $\Gamma[2]$ + 2*u*. In particular, if $C = Orb(C_1)$, then $Orb(S_1) \cup Orb(\overline{S_1})$ is a *k*‐sun system of $\Gamma[2] + 2u$.

Proof. By assumption $\Gamma + u = \bigoplus_{i=1}^{t} C_i$, where each C_i is a *k*-cycle. Also, by Lemma [4.2,](#page-7-3) we have that $\Gamma[2] + 2u = (\Gamma + u)[2] = \bigoplus_{i=1}^{t} C_i[2]$. Since $C_i[2] = S_i \oplus \overline{S_i}$ by Lemma [4.3,](#page-8-1) then *S* is a *k*-sun system of $\Gamma[2] + 2u$.

The second part easily follows by noticing that if $C_i = \tau_g(C_1)$ for some $g \in \mathbb{Z}_M$, then $C_i[2] = \tau_g(C_1[2]) = \tau_g(S_1) \oplus \tau_g(\overline{S_1}).$

FIGURE 1 $C_7[2] = S \oplus \overline{S}$

14 | **IA** I **II** Γ **M** Λ

The following lemma describes the general method we use to construct *k*‐sun systems of K_{4k} + *n*. We point out that throughout the rest of this section we take $V(K_{2k}) = \mathbb{Z}_k \times \{0, 1\}$ and $V(K_{4k}) = \mathbb{Z}_k \times [0, 3].$

Lemma 4.6. Let $K_{2k} = \Gamma_1 \oplus \Gamma_2$ with $V(\Gamma_1) = V(\Gamma_2) = V(K_{2k})$. If $\Gamma_1 + w_1$ has a k-cycle system and $\Gamma_2^*[2] + w_2$ has a k-sun system, then $K_{4k} + (2w_1 + w_2)$ has a k-sun system.

Proof. The result follows by Lemma [4.2.](#page-7-3) In fact, noting that $K_{4k} = K_{2k} [2] \oplus I$, where $I = \{\{z, \overline{z}\}\mid z \in \mathbb{Z}_k \times \{0, 1\}\}\,$, we have that

$$
K_{4k} + (2w_1 + w_2) = (\Gamma_1[2] \oplus (\Gamma_2[2] \oplus I)) + 2w_1 + w_2
$$

= (\Gamma_1[2] + 2w_1) \oplus (\Gamma_2^*[2] + w_2) = (\Gamma_1 + w_1)[2] \oplus (\Gamma_2^*[2] + w_2).

The result then follows by Lemma [4.5.](#page-8-2) \Box

We are now ready to prove the main result of this section, Theorem [4.1](#page-7-2). The case $k \equiv 1 \pmod{4}$ is proven in Theorem [4.7](#page-9-0), while the case $k \equiv 3 \pmod{4}$ is dealt with in Theorems [4.9](#page-14-0)–[4.12.](#page-21-0)

Theorem 4.7. If $k \equiv 1 \pmod{4} \ge 9$ and $n \equiv 0, 1 \pmod{4}$ with $2k < n < 10k$, then there exists a *k*-sun system of K_{4k} + *n*.

Proof. Let $n = 2(q\ell + r) + \nu$ with $1 \leq r \leq \ell$ and $\nu \in \{2, 3\}$. Note that $\ell \geq 4$ is even and *r* is odd, since $n \equiv 0, 1 \pmod{4} \ge 9$ and $k \equiv 1 \pmod{4}$. Considering also that $2k < n < 10k$, we have that $2 \le q \le 10 \le k + 2r - 1$. Furthermore, let $V(K_{4k} + n)$ $=(\mathbb{Z}_k\times [0, 3])\cup\{\infty_h\}\cup\{\infty'_n,\infty'_2,\infty'_\nu\}.$

We start decomposing K_{2k} into the following two graphs:

$$
\Gamma_1 = \langle [2, \ell], [k - 2r - 2, k - 1], [2, \ell - 1] \rangle \quad \text{and} \quad \Gamma_2 = \langle \{1\}, [0, k - 2r - 3], \{1, \ell\} \rangle.
$$

We notice that Γ_1 further decomposes into the following graphs:

$$
\langle [2, \ell-1], \emptyset, \emptyset \rangle, \quad \langle \emptyset, \emptyset, [2, \ell-1] \rangle, \quad \langle \{\ell\}, [k-2r-2, k-1], \emptyset \rangle,
$$

each of which decomposes into *k*‐cycles by Lemmas [3.1](#page-4-1) and [3.2](#page-4-2); hence Γ_1 has a *k*‐cycle system { $C_1, C_2, ..., C_v$ }, where $\gamma = k + 2r - 2$. Note that this system is nonempty, since $1 \leq q - 1 \leq \gamma$. Without loss of generality, we can assume that each cycle C_i has order 2*k* and

$$
C_1 \text{ is a subgraph of } \langle [2, \ell-1], \emptyset, \emptyset \rangle. \tag{2}
$$

Now set $\Omega_1 = \Gamma_1 \setminus C_1$ and $\Omega_2 = \Gamma_2 \oplus C_1$. Letting $w_1 = (q - 2)\ell = \sum_{j=2}^{y} w_{1,j}$, where $w_{1,j} = e$ when $j < q$, and $w_{1,j} = 0$ otherwise, by Lemma [4.2](#page-7-3) we have that $\Omega_1 + w_1 = \bigoplus_{i=2}^{\gamma} (C_i + w_{1,i})$. Therefore, $\Omega_1 + w_1$ has a *k*-cycle system, since each $C_i + w_{1,i}$ decomposes into *k*-cycles by Lemma [3.4.](#page-6-0) Setting $w_2 = n - 2w_1 = 2(2\ell + r) + \nu$ and

considering that $K_{2k} = \Gamma_1 \oplus \Gamma_2 = \Omega_1 \oplus \Omega_2$, by Lemma [4.6](#page-9-1) it is left to show that $\Omega_2^*[2] + w_2$ has a *k*-sun system.

Set $\Gamma_3 = C_1$, and recall that $\Omega_2^*[2] = \Omega_2[2] \oplus I = \Gamma_2[2] \oplus \Gamma_3[2] \oplus I$, where *I* denotes the 1-factor $\{ \{z, \overline{z} \} | z \in \mathbb{Z}_k \times \{0, 1\} \}$ of K_{4k} . Hence,

$$
\Omega_2^*[2] + w_2 = (\Gamma_2 + (\ell + r))[2] \oplus (\Gamma_3 + \ell)[2] \oplus (I + \nu) \tag{3}
$$

by Lemma [4.2.](#page-7-3) Clearly, $\Gamma_2 = \Gamma_{2,1} \oplus \Gamma_{2,2}$ where $\Gamma_{2,1} = \langle \{1\}, [0, k - 2r - 3], \{1\} \rangle$ and $\Gamma_{2,2} = \langle \emptyset, \emptyset, \{\ell\} \rangle$, hence $\Gamma_2 + (\ell + r) = (\Gamma_{2,1} + r) \oplus (\Gamma_{2,2} + \ell)$. By Lemmas [3.3](#page-5-0) and [3.4,](#page-6-0) there exists a *k*-cycle $A = (x_1, x_2, y_3, y_4, a_5, ..., a_k)$ of $\Gamma_{2,1} + r$ and a *k*-cycle $B = (y_1, y_2, b_3, ..., b_k)$ of $\Gamma_{2,2} + \ell$ satisfying the following properties:

Orb(A)
$$
\cup
$$
 Orb(B) is a k-cycle system of $\Gamma_2 + (\ell + r)$, (4)

$$
Dev({x1, x2}) is a k-cycle with vertices in Zk × {0},
$$
\n(5)

$$
Dev(\{y_1, y_2\}) \quad \text{and} \quad Dev(\{y_3, y_4\}) \quad \text{are } k \text{-cycles with vertices in } \mathbb{Z}_k \times \{1\}. \tag{6}
$$

Furthermore, denoted by $(c_1, c_2, ..., c_k)$ the cycle in Γ_3 , Lemma [3.4](#page-6-0) guarantees that

$$
\Gamma_3 + \ell
$$
 has a *k*-cycle system {*F*₁, *F*₂, ..., *F*_k} such that
*F*_j = (*c*_j, *c*_{j+1}, *f*_{j,3}, *f*_{j,4}, ..., *f*_{j,k}) for every *j* ∈ [1, *k*] (with *c*_{k+1} = *c*₁).

Let $S = \{S_1, S_2, S_3, S_4\}$ and $S' = \{S_{3+2i}, S_{4+2i} | j \in [1, k]\}$, where

$$
S_1 = \sigma(x_1, \overline{x_2}, y_3, y_4, a_5, ..., a_k), \quad S_3 = \sigma(y_1, \overline{y_2}, b_3, ..., b_k),
$$

\n
$$
S_{3+2j} = \sigma(c_j, \overline{c_{j+1}}, f_{j,3}, f_{j,4}, ..., f_{j,k}) \quad \text{for } j \in [1, k], \text{ and}
$$

\n
$$
S_{2i} = \overline{S_{2i-1}} \quad \text{for } i \in [1, k+2].
$$

By Lemma [4.5](#page-8-2) we have that $\bigcup_{S \in S} Orb(S)$ is a *k*-sun system of $(\Gamma_2 + (\ell + r))[2]$, and S' is a *k*‐sun system of $(\Gamma_3 + \ell)[2]$. It follows by ([3\)](#page-10-0) that $\bigcup_{S \in \mathcal{S}} Orb(S) \cup \mathcal{S}'$ decomposes $(\Omega_2^*[2] + w_2) \setminus (I + v)$.

To construct a *k*-sun system of $\Omega_2^*[2] + w_2$, we first modify the *k*-suns in $S \cup S'$ by replacing some of their vertices with ∞'_1 , ∞'_2 , and possibly ∞'_3 when $\nu = 3$. More precisely, following Table [1,](#page-11-0) we obtain T_i from S_i by replacing the ordered set V_i of vertices of S_i with V_i' . This yields a set M_i of 'missing' edges no longer covered by T_i after this substitution, but replaced by those in *Ni*, namely,

$$
E(T_i) = (E(S_i) \setminus M_i) \cup N_i.
$$

We point out that $T_{3+2j} = S_{3+2j}$, and $T_{4+2j} = S_{4+2j}$ when $\nu = 2$, for every $j \in [1, k]$. The remaining graphs T_i are explicitly given below, where the elements in bold are the replaced vertices.

From S_i to T TABLE 1 From *Si* to *Ti* TABLE 1

 $\frac{16}{1}$ \perp_{WILEY}

$$
T_1 = \begin{pmatrix} x_1 & \overline{x_2} & \omega_2' & y_4 & a_5 & \cdots & a_{k-1} & a_k \\ \omega_1' & \overline{y_3} & \overline{y_4} & \overline{a_5} & \overline{a_6} & \cdots & \overline{a_k} & \overline{x_1} \end{pmatrix},
$$
\n
$$
T_2 = \begin{cases} \begin{pmatrix} \overline{x_1} & x_2 & \overline{y_3} & \overline{y_4} & \overline{a_5} & \cdots & \overline{a_{k-1}} & \overline{a_k} \\ \omega_1' & \omega_2' & y_4 & a_5 & a_6 & \cdots & a_k & x_1 \end{pmatrix} & \text{if } \nu = 2,
$$
\n
$$
T_2 = \begin{pmatrix} \overline{x_1} & x_2 & \omega_3' & \overline{y_4} & \overline{a_5} & \cdots & \overline{a_{k-1}} & \overline{a_k} \\ \omega_1' & \omega_2' & y_4 & a_5 & a_6 & \cdots & a_k & x_1 \end{pmatrix} & \text{if } \nu = 3,
$$
\n
$$
T_3 = \begin{pmatrix} y_1 & \overline{y_2} & b_3 & \cdots & b_{k-1} & b_k \\ \omega_1' & \overline{b_3} & \overline{b_4} & \cdots & \overline{b_k} & \overline{y_1} \end{pmatrix}, \quad T_4 = \begin{pmatrix} \overline{y_1} & y_2 & \overline{b_3} & \cdots & \overline{b_{k-1}} & \overline{b_k} \\ \omega_1' & b_3 & b_4 & \cdots & b_k & y_1 \end{pmatrix},
$$
\n
$$
T_{4+2j} = \begin{pmatrix} \overline{c_j} & c_{j+1} & \overline{f_{j,3}} & \cd
$$

We notice that $\bigcup_{i=1}^{4} Dev(N_i) \cup \bigcup_{i=5}^{2k+4} N_i = \{ \{\infty'_i, x\} | j \in [1, \nu], x \in \mathbb{Z}_k \times [0, 3] \}$. We finally build the following $2\nu + 1$ graphs:

$$
G_1 = \begin{cases} Dev(x_1 \sim x_2 \sim \overline{x_2}) & \text{if } \nu = 2, \\ Dev(x_1 \sim x_2 \sim \overline{y_3}) & \text{if } \nu = 3, \end{cases} \quad G_2 = Dev(\overline{x_1} \sim \overline{x_2} \sim y_3),
$$

\n
$$
G_3 = Dev(y_4 \sim y_3 \sim x_2), \qquad G_4 = Dev(y_1 \sim y_2 \sim \overline{y_2}),
$$

\n
$$
G_5 = Dev(\overline{y_1}, \overline{y_2}) \oplus \{y_3, \overline{y_4}\}), \qquad G_6 = Dev(\overline{y_4} \sim \overline{y_3} \sim y_4),
$$

\n
$$
G_7 = \begin{pmatrix} \overline{c_1} & \overline{c_2} & \dots & \overline{c_k} \\ c_1 & c_2 & \dots & c_k \end{pmatrix}.
$$

By recalling ([2\)](#page-9-2) and ([4\)](#page-10-1)–([6\)](#page-10-2), it is not difficult to check that $G_1, G_2, ..., G_{2\nu+1}$ are *k*-suns. Furthermore,

$$
\bigcup_{i=1}^{2\nu+1} E(G_i) = \bigcup_{i=1}^{4} Dev(M_i) \cup \bigcup_{i=5}^{2k+4} M_i \cup E(I),
$$

where, we recall, *I* denotes the 1-factor $\{\{z, \overline{z}\}\,|\,z \in \mathbb{Z}_k \times \{0, 1\}\}\$ of K_{4k} . Therefore, $\bigcup_{i=1}^{4} Orb(T_i)\cup\{T_5, T_6, ..., T_{2k+4}\}\cup\{G_1, G_2, ..., G_{2\nu+1}\}\$ is a *k*-sun system of $\Omega_2^*[2] + w_2$, and this concludes the proof. \Box

Example 4.8. By following the proof of Theorem [4.7](#page-9-0), we construct a *k*‐sun system of K_{4k} + *n* when $(k, n) = (9, 21)$; hence $(\ell, q, r, \nu) = (4, 2, 1, 3)$.

The graphs $\Gamma_1 = \langle [2, 4], [5, 8], [2, 3] \rangle$ and $\Gamma_2 = \langle \{1\}, [0, 4], \{1, 4\} \rangle$ decompose the complete graph K_{18} with vertex-set $\mathbb{Z}_9 \times \{0, 1\}$. Also Γ_1 decomposes into the following 9-cycles of order 18, where $i = 0, 1$:

 $C_{1+i} = ((0, i), (2, i), (8, i), (1, i), (3, i), (5, i), (7, i), (4, i), (6, i)),$ $C_{3+i} = ((0, i), (3, i), (6, i), (8, i), (5, i), (2, i), (4, i), (1, i), (7, i)),$ $C_{5+i} = ((4i, 0), (8 + 4i, 1), (1 + 4i, 0), (4i, 1), (2 + 4i, 0), (1 + 4i, 1),$ $(3 + 4i, 0), (2 + 4i, 1), (4 + 4i, 0)),$ $C_{7+i} = ((8 + 4i, 0), (5 + 4i, 1), (4i, 0), (6 + 4i, 1), (1 + 4i, 0), (7 + 4i, 1),$ $(2 + 4i, 0), (8 + 4i, 1), (3 + 4i, 0)),$ $C_9 = ((7, 0), (2, 0), (6, 0), (1, 0), (5, 0), (0, 0), (7, 1), (8, 0), (4, 1)).$

Clearly, $K_{18} = \Omega_1 \oplus \Omega_2$, where $\Omega_1 = \Gamma_1 \backslash C_1$ and $\Omega_2 = \Gamma_2 \oplus C_1$.

Let $V(K_{36}) = \mathbb{Z}_9 \times [0, 3]$, and denote by *I* the 1-factor of K_{36} containing all edges of the form $\{(a, i), (a, i + 2)\}\$, with $a \in \mathbb{Z}_9$ and $i \in \{0, 1\}$. Then,

$$
K_{36}=K_{18}[2]\oplus I=\Omega_1[2]\oplus\Omega_2[2]\oplus I.
$$

Considering that $(\Omega_2 + 9)[2] = \Omega_2[2] + 18$, we have

$$
K_{36} + 21 = \Omega_1[2] \oplus (\Omega_2[2] + 18) \oplus (I + 3) = \Omega_1[2] \oplus (\Omega_2 + 9)[2] \oplus (I + 3).
$$

Since the set $\{\sigma(C_i), \sigma(C_i) | i \in [2, 9]\}$ is a 9-sun system of $\Omega_1[2]$, it is left to build a 9-sun system of $\Omega_{2}^{*}[2] + 21 = (\Omega_{2}[2] + 18) \oplus (I + 3)$.

We start by decomposing $\Omega_2 + 9$ into 9-cycles. Since $\Omega_2 = \Gamma_{21} \oplus \Gamma_{22} \oplus \Gamma_3$ with $\Gamma_{2,1} = \langle \{1\}, [0, 4], \{1\} \rangle, \Gamma_{2,2} = \langle \emptyset, \emptyset, \{4\} \rangle$ and $\Gamma_3 = C_1$, then

$$
\Omega_2 + 9 = (\Gamma_{2,1} + 1) \oplus (\Gamma_{2,2} + 4) \oplus (\Gamma_3 + 4).
$$

Let $A = (x_1, x_2, y_3, y_4, a_5, ..., a_9)$ and $B = (y_1, y_2, b_3, ..., b_9)$ be the 9-cycles defined as follows:

$$
(x_1, x_2, y_3, y_4) = ((0, 0), (-1, 0), (-1, 1), (0, 1)),
$$

\n
$$
(a_5, ..., a_9) = (\infty_1, (2, 0), (3, 1), (1, 0), (4, 1)),
$$

\n
$$
(y_1, y_2) = ((0, 1), (4, 1)),
$$

\n
$$
(b_3, ..., b_9) = (\infty_2, (1, 0), \infty_3, (1, 1), \infty_4, (0, 0), \infty_5).
$$

One can easily check that $Orb(A)$ (resp., $Orb(B)$) decomposes $\Gamma_{2,1} + 1$ (resp., $\Gamma_{2,2} + 4$). Also, for every edge $\{c_i, c_{i+1}\}$ of C_1 , with $j \in [1, 9]$ and $c_{10} = c_1$, we construct the cycle $F_i = (c_i, c_{i+1}, f_{i,3}, f_{i,4}, ..., f_{i,9})$, where

$$
(f_{j,3}, f_{j,4}, ..., f_{j,9}) = (\infty_6, (1, 0), \infty_7, (1, 1), \infty_8, (0, 0), \infty_9).
$$

One can check that ${F_1, F_2, ..., F_9}$ is a 9-cycle system of $\Gamma_3 + 4$. Therefore, $\mathcal{U}_1 = Orb(A) \cup Orb(B) \cup \{F_1, F_2, ..., F_9\}$ provides a 9-cycle system of $\Omega_2 + 9$. Since the set ${C[2] | C \in \mathcal{U}_1}$ decomposes $(\Omega_2 + 9)[2]$, and each *C*[2] decomposes into two 9-suns, we can easily obtain a 9-sun system of $(\Omega_2 + 9)[2]$. Indeed, letting

$$
S_1 = \sigma(x_1, \overline{x_2}, y_3, y_4, a_5, ..., a_9), \quad S_3 = \sigma(y_1, \overline{y_2}, b_3, ..., b_9),
$$

\n
$$
S_{3+2j} = \sigma(c_j, \overline{c_{j+1}}, f_{j,3}, f_{j,4}, ..., f_{j,9}) \quad \text{for } j \in [1, 9], \text{ and}
$$

\n
$$
S_{2i} = \overline{S_{2i-1}} \quad \text{for } i \in [1, 11],
$$

we have that $A[2] = S_1 \oplus S_2$, $B[2] = S_3 \oplus S_4$, and $F_j[2] = S_{3+2j} \oplus S_{4+2j}$, for every $j \in [1, 9]$. Therefore $\mathcal{U}_2 = \bigcup_{i=1}^4 Orb(S_i) \cup \{S_5, S_6, ..., S_{22}\}\$ is a 9-sun system of $\Omega_2[2] + 18$.

We finally use U_2 to build a 9-sun system of $\Omega_2^*[2] + 21 = (\Omega_2[2] + 18) \oplus (I + 3)$. By replacing the vertices of each S_i , as outlined in Table [1,](#page-11-0) we obtain the 9-sun T_i . The new 22 graphs, T_1 , T_2 , ..., T_{22} , are built in such a way that

(a) $\bigcup Orb(T_i)\cup\{T_5, T_6, ..., T_{22}\}\$ decomposes a subgraph K of $\Omega_2^*[2]+21;$ (b) $(\Omega_2^*[2] + 21) \ K$ decomposes into seven 9-suns. *i i* =1 4 $\bigcup Orb(T_i)\cup\{T_5, T_6, ..., T_{22}\}\$ decomposes a subgraph K of Ω_2^*

This way we obtain a 9-sun system of $\Omega_2^*[2] + 21$, and hence the desired 9-sun system of K_{36} + 21.

Theorem 4.9. Let $k \equiv 3 \pmod{4} \ge 7$ and $n \equiv 0, 1 \pmod{4}$ with $2k < n < 10k$. If *n* ≢ 2, 3 (mod *k* − 1) and $\frac{n}{k}$ − 4 − 1 $\left\lfloor \frac{n-4}{k-1} \right\rfloor$ is even, then there exists a k-sun system of K_{4k} + n except possibly when $(k, n) \in \{(7, 64), (7, 65)\}.$

Proof. First, $k \equiv 3 \pmod{4} \geq 7$ implies that $\ell \geq 3$ is odd. Now, let $n = 2(q\ell + r) + \nu$ with $1 \le r \le \ell$ and $\nu \in \{2, 3\}$. Note that $q = \left\lfloor \frac{n}{k} \right\rfloor$ -4 − 1 $\left\lfloor \frac{n-4}{k-1} \right\rfloor$, hence *q* is even. Also, since $2k < n < 10k$, we have $2 \le q \le 10$. By q even and $n \equiv 0, 1 \pmod{4}$ it follows that r is odd, and $n \neq 2$, 3 (mod $k - 1$) implies that $r \neq \ell$. To sum up,

q is even with $2 \le q \le 10$, and *r* is odd with $1 \le r \le \ell - 2$.

As in the previous theorem, let $V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup {\infty_h | h \in \mathbb{Z}_{n-y}}$ $\{\infty'_1, \infty'_2, \infty'_\nu\}.$

We split the proof into two cases.

Case 1. $q \leq 2r + 4$. We start decomposing K_{2k} into the following two graphs:

$$
\Gamma_1 = \langle [3, \ell], [k - 2r - 2, k], [3, \ell] \rangle \text{ and } \Gamma_2 = \langle \{1, 2\}, [1, k - 2r - 3], \{1, 2\} \rangle.
$$

Since $q \leq 2r + 4$, the graph Γ_1 can be further decomposed into the following graphs:

$$
\Gamma_{1,1} = \langle \{\ell\}, [k - 2r + q - 3, k], \emptyset \rangle, \quad \Gamma_{1,2} = \langle [3, \ell - 1], \emptyset, [3, \ell] \rangle,
$$

$$
\Gamma_{1,3} = \langle \emptyset, [k - 2r - 2, k - 2r + q - 4], \emptyset \rangle.
$$

The first two graphs have a *k*-cycle system by Lemmas [3.2](#page-4-2) and [3.1](#page-4-1), while $\Gamma_{1,3}$ decomposes into $(q - 1)$ 1-factors, say $J_1, J_2, ..., J_{q-1}$. Setting $w_1 = (q - 1)\ell$, by Lemma [4.2](#page-7-3) we have that:

$$
\Gamma_1 + (q-1)\ell = \bigoplus_{i=1}^{q-1} (J_i + \ell) \bigoplus (\Gamma_{1,1} \oplus \Gamma_{1,2}).
$$

Hence $\Gamma_1 + (q - 1)\ell$ has a *k*-cycle system since each $J_i + \ell$ decomposes into *k*-cycles by Lemma [3.4](#page-6-0).

Letting $w_2 = n - 2w_1 = 2(\ell + r) + \nu$ and recalling that $K_{2k} = \Gamma_1 \oplus \Gamma_2$, by Lemma [4.6](#page-9-1) it remains to construct a *k*-sun system of $\Gamma_2^*[2] + w_2$. We start decomposing Γ_2 into the following graphs:

$$
\text{BURATTI ET AL.}\tag{BURATTI ET AL.}
$$

$$
\Gamma_{2,0} = \langle \{1, 2\}, [1, k - 2r - 4], \{1, 2\} \rangle \quad \text{and} \quad \Gamma_{2,1} = \langle \emptyset, [k - 2r - 3], \emptyset \rangle.
$$

Recalling that $\Gamma_2^*[2] = \Gamma_2[2] \oplus I$, where *I* denotes the 1-factor $\{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}\$ of K_{4k} , by Lemma [4.2](#page-7-3) we have that

$$
\Gamma_2^*[2] + w_2 = (\Gamma_{2,1} + \ell)[2] \oplus (\Gamma_{2,0} + r)[2] \oplus (I + \nu).
$$

By Lemmas [3.3](#page-5-0) and [3.4](#page-6-0) there exist a *k*-cycle $A = (x_1, x_2, x_3, y_4, y_5, y_6, a_7, ..., a_k)$ of $\Gamma_{2,0} + r$ and a *k*-cycle $B = (y, x, b_3, ..., b_k)$ of $\Gamma_{2,1} + \ell$, satisfying the following properties:

 $Dev({x_1, x_2})$ and $Dev({x_2, x_3})$ are *k*-cycles with vertices in $\mathbb{Z}_k \times \{0\};$ *Dev* ({ y_4 , y_5 }) and *Dev* ({ y_5 , y_6 }) are *k*-cycles with vertices in $\mathbb{Z}_k \times \{1\};$ $x \in \mathbb{Z}_k \times \{0\}$ and $y \in \mathbb{Z}_k \times \{1\}.$ $Orb(A) \cup Orb(B)$ is a k-cycle system of $\Gamma_2 + (\ell + r);$

Set $A' = (x_1, \overline{x_2}, x_3, y_4, \overline{y_5}, y_6, a_7, ..., a_k)$ and $B' = (y, \overline{x}, b_3, ..., b_k)$ and let $S = {\sigma(A')}, \overline{\sigma(A')}, \sigma(B'), \overline{\sigma(B')}$. By Lemma [4.5](#page-8-2), we have that $|_{S \in S} Orb(S)$ is a *k*-sun system of $(\Gamma_2 + (\ell + r))[2] = \Gamma_2[2] + 2(\ell + r) = (\Gamma_2^*[2] + w_2) \setminus (I + \nu)$.

To construct a *k*-sun system of $\Gamma_2^*[2] + w_2$ we proceed as in Theorem [4.7.](#page-9-0) We modify the graphs in S and obtain four *k*‐suns T_1 , T_2 , T_3 , T_4 whose translates between them cover all edges incident with ∞' , ∞' , and possibly ∞' when $\nu = 3$. Then we construct further $2\nu + 1$ *k*-suns G_1 , ..., $G_{2\nu+1}$ to cover the missing edges. The reader can check that $\bigcup_{i=1}^{4} Orb(T_i)\cup\{G_1, ..., G_{2\nu+1}\}\$ is a *k*-sun system of $\Gamma_2^*[2] + w_2$.

The graphs *Ti* are the following, where the elements in bold are the replaced vertices:

$$
T_1 = \begin{cases} \begin{pmatrix} x_1 & \overline{x_2} & x_3 & \omega_2' & \overline{y_5} & y_6 & a_7 & \cdots & a_{k-1} & a_k \\ \omega_1' & \overline{x_3} & \overline{y_4} & y_5 & \overline{y_4} & \overline{a_7} & \overline{a_8} & \cdots & \overline{a_k} & \overline{x_1} \\ \begin{pmatrix} x_1 & \overline{x_2} & x_3 & \omega_2' & \overline{y_5} & y_6 & a_7 & \cdots & a_{k-1} & a_k \\ \omega_1' & \omega_3' & \overline{y_4} & y_5 & \overline{y_4} & \overline{a_7} & \overline{a_8} & \cdots & \overline{a_k} & \overline{x_1} \\ \end{pmatrix} & \text{if } \nu = 3, \\ T_2 = \begin{cases} \begin{pmatrix} \overline{x_1} & x_2 & \overline{x_3} & \omega_1' & y_5 & \overline{y_6} & \overline{a_7} & \cdots & \overline{a_{k-1}} & \overline{a_k} \\ \omega_2' & x_3 & y_4 & \overline{y_5} & y_6 & a_7 & a_8 & \cdots & a_k & x_1 \\ \end{pmatrix} & \text{if } \nu = 2, \\ \begin{pmatrix} \overline{x_1} & x_2 & \overline{x_3} & \omega_1' & y_5 & \overline{y_6} & \overline{a_7} & \cdots & \overline{a_{k-1}} & \overline{a_k} \\ \omega_2' & \omega_3' & y_4 & \overline{y_5} & y_6 & a_7 & a_8 & \cdots & a_k & x_1 \end{pmatrix} & \text{if } \nu = 3, \\ T_3 = \begin{cases} \sigma(B') & \text{if } \nu
$$

The graphs G_i , for $i = [1, 2\nu + 1]$, are so defined:

 $G_1 = Dev(x_1 \sim x_2 \sim \overline{x_2}),$ $G_2 = Dev(y_5 \sim y_4 \sim x_3),$ $G_3 = Dev\left(\{\overline{x_1}, \overline{x_2}\}\oplus \{\overline{x_3}, \overline{y_4}\}\right), \ \ G_4 = Dev\left(\overline{y_5} \sim \overline{y_4} \sim y_5\right),$ $G_5 = Dev(\overline{y_5} \sim \overline{y_6} \sim y_6),$ $G_6 = Dev({x_2, x_3} \oplus {x, y}),$ $G_7 = Dev(\{\overline{x_2}, \overline{x_3}\} \oplus {\{\overline{x}, \overline{y}\}}).$

Case 2. $q \ge 2r + 6$. Note that this implies $r = 1$ and $q = 8, 10$. As before $K_{2k} = \Gamma_1 \oplus \Gamma_2$ where

$$
\Gamma_1 = \langle [3, \ell], [0] \cup [k-5, k-1], [3, \ell] \rangle \text{ and } \Gamma_2 = \langle \{1, 2\}, [1, k-6], \{1, 2\} \rangle.
$$

Since $(k, n) \neq (7, 64)$, $(7, 65)$ then $(\ell, q) \neq (3, 10)$, hence the graph Γ_1 can be decomposed into the following graphs:

$$
\Gamma_{1,1} = \langle \emptyset, [k-5, k-1], \emptyset \rangle, \quad \Gamma_{1,2} = \left\langle \left[3, \frac{q-2}{2} \right], \{0\}, \left[3, \frac{q-2}{2} \right] \right\rangle,
$$

$$
\Gamma_{1,3} = \left\langle \left[\frac{q}{2}, \ell \right], \emptyset, \left[\frac{q}{2}, \ell \right] \right\rangle.
$$

The graph $\Gamma_{1,1}$ decomposes into five 1-factors $J_1, ..., J_5$, while by Lemma [3.5](#page-7-1) $\Gamma_{1,2}$ decomposes into $(q - 5)$ 1-factors $J'_1, ..., J'_{q-5}$. Letting $w_1 = q\ell$, by Lemma [4.2](#page-7-3) we have that

$$
\Gamma_1 + w_1 = (\Gamma_{1,1} + 5\ell) \oplus (\Gamma_{1,2} + (q - 5)\ell) \oplus \Gamma_{1,3} = \bigoplus_{i=1}^5 (J_i + \ell) \oplus \left[\bigoplus_{i=1}^{q-5} (J_i' + \ell) \right] \oplus \Gamma_{1,3}.
$$

By Lemmas [3.4](#page-6-0) and [3.1](#page-4-1), each $J_i + \ell$, each $J_i' + \ell$ and $\Gamma_{1,3}$ decompose into *k*-cycles. Hence $\Gamma_1 + q\ell$ has a *k*-cycle system. Let now $w_2 = n - 2w_1 = 2 + \nu$. Note that a *k*-sun system of $\Gamma_2^*[2] + w_2$ can be obtained as in Case 1, where $\Gamma_{2,1}$ is empty.

Theorem 4.10. Let $k \equiv 3 \pmod{4} \ge 11$ and $n \equiv 0, 1 \pmod{4}$ with $2k < n < 10k$. If *n k* -4 − 1 $\left\lfloor \frac{n-4}{k-1} \right\rfloor$ is even, and $n \equiv 2, 3 \pmod{k-1}$, then there is a *k*-sun system of $K_{4k} + n$, except possibly when $(k, n) \in \{(11, 112), (11, 113)\}.$

Proof. Let $n = 2(q\ell + r) + \nu$ with $1 \le r \le \ell$ and $\nu \in \{2, 3\}$. Clearly, $q = \left\lfloor \frac{n}{k} \right\rfloor$ -4 − 1 $\left\lfloor \frac{n-4}{k-1} \right\rfloor$, hence q is even. Since $k \ge 11$, $2k < n < 10k$, and $n \equiv 2, 3 \pmod{2\ell}$, we have that

q is even with $2 \le q \le 10$ and $r = \ell \ge 5$ is odd.

As before, let $V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup {\infty_h | h \in \mathbb{Z}_{n-\nu}} \cup {\infty'_1, \infty'_2, \infty'_y}.$ We start decomposing K_{2k} into the following two graphs:

$$
\Gamma_1 = \langle [3, \ell], [k-3, k], [4, \ell] \rangle, \quad \Gamma_2 = \langle \{1, 2\}, [1, k-4], \{1, 2, 3\} \rangle.
$$

If $q = 2, 4, \Gamma_1$ can be further decomposed into

$$
\Gamma_{1,1} = \langle \emptyset, [k-3, k-4+q], \emptyset \rangle, \quad \Gamma_{1,2} = \langle \emptyset, [k-3+q, k], \{\ell\} \rangle,
$$

$$
\Gamma_{1,3} = \langle [3, \ell], \emptyset, [4, \ell-1] \rangle.
$$

$$
\text{BURATTI ET AL.}\tag{BURATTI ET AL.}
$$

The graph $\Gamma_{1,1}$ decomposes into *q* 1-factors, say J_1 , ..., J_q . Letting $w_1 = q\ell$, by Lemma [4.2](#page-7-3) we have that

$$
\Gamma_1 + w_1 = (\Gamma_{1,1} + w_1) \oplus \Gamma_{1,2} \oplus \Gamma_{1,3} = \bigoplus_{i=1}^{q} (J_i + e) \oplus \Gamma_{1,2} \oplus \Gamma_{1,3}.
$$

Lemmas [3.4](#page-6-0), [3.2,](#page-4-2) and [3.1](#page-4-1) guarantee that each $J_i + \ell$, $\Gamma_{1,2}$, and $\Gamma_{1,3}$ decompose into *k*-cycles, hence $\Gamma_1 + w_1$ has a *k*-cycle system. Suppose now $q \ge 6$. By $(k, n) \notin \{(11, 112), (11, 113)\},\$ we have $(\ell, q) \neq (5, 10)$. In this case Γ_1 can be further decomposed into

$$
\Gamma_{1,1} = \langle \emptyset, [k-3, k-1], \emptyset \rangle, \quad \Gamma_{1,2} = \left\langle \left[\ell+3-\frac{q}{2}, \ell \right], [0], \left[\ell+3-\frac{q}{2}, \ell \right] \right\rangle,
$$

$$
\Gamma_{1,3} = \left\langle \left[3, \ell+2-\frac{q}{2} \right], \emptyset, \left[4, \ell+2-\frac{q}{2} \right] \right\rangle.
$$

The graph $\Gamma_{1,1}$ can be decomposed into three 1-factors say J_1, J_2, J_3 , also by Lemma [3.5](#page-7-1) the graph $\Gamma_{1,2}$ can be decomposed into $(q - 3)$ 1-factors say *J*₁′, …, *J*_{*a*-3}. Set again $w_1 = q\ell$, by Lemma [4.2](#page-7-3) we have that

$$
\Gamma_1 + w_1 = (\Gamma_{1,1} + 3\ell) \oplus (\Gamma_{1,2} + (q-3)\ell) \oplus \Gamma_{1,3} = \bigoplus_{i=1}^3 (J_i + \ell) \oplus [\bigoplus_{j=1}^{q-3} (J_j' + \ell)] \oplus \Gamma_{1,3}.
$$

By Lemmas [3.4](#page-6-0) and [3.1](#page-4-1) we have that each $J_i + \ell$, each $J'_j + \ell$, and $\Gamma_{1,3}$ decompose into *k*cycles, hence $\Gamma_1 + w_1$ has a *k*-cycle system. Therefore for any value of *q* we have proved that $\Gamma_1 + w_1$ has a *k*-cycle system.

Now, setting $w_2 = n - 2w_1 = 2\ell + \nu$ and recalling that $K_{2k} = \Gamma_1 \oplus \Gamma_2$, by Lemma [4.6](#page-9-1) it is left to show that $\Gamma_2^*[2] + w_2$ has a *k*-sun system. Let r_1 and $r_2 \geq 2$ be an odd and an even integer, respectively, such that $r_1 + r_2 = r = \ell$. Note that Γ_2 can be further decomposed into

$$
\Gamma_{2,1} = \langle \{1\}, [1, k - 2r_1 - 2], \{1\} \rangle, \quad \Gamma_{2,2} = \langle \{2\}, [k - 2r_1 - 1, k - 4], \{2, 3\} \rangle.
$$

Recalling that $\Gamma_2^*[2] = \Gamma_2[2] \oplus I$, where *I* denotes the 1-factor $\{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}\$ of K_{4k} , by Lemma [4.2](#page-7-3) we have that

$$
\Gamma_2^*[2] + w_2 = \bigoplus_{i=1}^2 (\Gamma_{2,i} + r_i)[2] \oplus (I + \nu).
$$

By Lemma [3.3](#page-5-0) there are a *k*-cycle $A = (y_1, y_2, x_3, x_4, a_5, ..., a_k)$ of $\Gamma_{2,1} + r_1$ and a *k*-cycle $B = (x_1, x_2, y_3, y_4, b_5, ..., b_k)$ of $\Gamma_{2,2} + r_2$ such that

 $Dev({x_1, x_2})$ and $Dev({x_3, x_4})$ are *k*-cycles with vertices in $\mathbb{Z}_k \times \{0\}$, *Dev* ({ y_1, y_2 }) and *Dev* ({ y_3, y_4 }) are *k*-cycles with vertices in $\mathbb{Z}_k \times \{1\}$. $Orb(A) \cup Orb(B)$ is a k-cycle system of $\Gamma_2 + \ell$, (7)

Set $A' = (y_1, \overline{y_2}, x_3, \overline{x_4}, a_5, ..., a_k)$ and $B' = (x_1, \overline{x_2}, y_3, \overline{y_4}, b_5, ..., b_k)$. Let $S =$ ${\{\sigma(A')\}, \sigma(A')\}, \sigma(B')\},\$ by Lemma [4.5](#page-8-2), we have that $\bigcup_{S\in\mathcal{S}}Orb(S)$ is a *k*-sun system of $(\Gamma_2 + \ell)[2] = \Gamma_2[2] + 2\ell = (\Gamma_2^*[2] + w_2)\setminus (I + \nu)$. To construct a *k*-sun system of $\Gamma_2^*[2] + w_2$, we build a family $\mathcal{T} = \{T_1, T_2, T_3, T_4\}$ of *k*-suns by modifying the graphs in *S* so

that $\int_{T \in \mathcal{T}}$ *Orb* (*T*) covers all the edges incident with ∞'_1 , ∞'_2 , and possibly ∞'_3 when $\nu = 3$. We then construct further $(2\nu +1)$ *k*-suns $G_1, G_2, ..., G_{2\nu+1}$ which cover the remaining edges exactly once. Hence, $\bigcup_{T \in \mathcal{T}} Orb(T) \cup \{G_1, G_2, ..., G_{2\nu+1}\}\$ is a *k*-sun system of $\Gamma_2^*[2] + w_2$.

The graphs T_1 , ..., T_4 and G_1 , ..., $G_{2\nu+1}$ are the following, where as before the elements in bold are the replaced vertices.

$$
T_1 = \begin{pmatrix} y_1 & \overline{y}_2 & x_3 & \overline{x}_4 & a_5 & \cdots & a_{k-1} & a_k \\ \infty'_2 & \overline{x}_3 & x_4 & \overline{a}_5 & \overline{a}_6 & \cdots & \overline{a}_k & \overline{y}_1 \end{pmatrix},
$$

\n
$$
T_2 = \begin{pmatrix} \begin{pmatrix} \overline{y}_1 & \omega'_1 & \overline{x}_3 & x_4 & \overline{a}_5 & \cdots & \overline{a}_{k-1} & \overline{a}_k \\ \omega'_2 & x_3 & \overline{x}_4 & a_5 & a_6 & \cdots & a_k & \overline{y}_1 \end{pmatrix} & \text{if } \nu = 2,
$$

\n
$$
T_3 = \begin{pmatrix} \overline{y}_1 & \omega'_1 & \overline{x}_3 & x_4 & \overline{a}_5 & \cdots & \overline{a}_{k-1} & \overline{a}_k \\ \omega'_2 & x_3 & \omega'_3 & a_5 & a_6 & \cdots & a_k & \overline{y}_1 \end{pmatrix} & \text{if } \nu = 3,
$$

\n
$$
T_3 = \begin{pmatrix} x_1 & \overline{x}_2 & y_3 & \overline{y}_4 & b_5 & \cdots & b_{k-1} & b_k \\ \infty'_2 & \overline{y}_3 & \omega'_1 & \overline{b}_5 & \overline{b}_6 & \cdots & \overline{b}_k & \overline{x}_1 \end{pmatrix},
$$

\n
$$
T_4 = \begin{pmatrix} \overline{x}_1 & x_2 & \overline{y}_3 & y_4 & \overline{b}_5 & \cdots & \overline{b}_{k-1} & \overline{b}_k \\ \omega'_2 & y_3 & \overline{y}_4 & b_5 & b_6 & \cdots & b_k & x_1 \end{pmatrix} & \text{if } \nu = 2,
$$

\n
$$
T_5 = \begin{pmatrix} \overline{x}_1 & x_2 & \omega'_3 & y_4 & \overline{b}_5 & \cdots & \overline{b}_{k-1} & \overline{b}_k \\ \overline{x}_1 & x_2 & \omega'_3 & y_4 & \overline{b}_5 & \cdots & \overline{b}_{k-1} & \overline{b}_k \\ \omega'_2 & y_3
$$

$$
G_1 = Dev(y_1 \sim y_2 \sim x_3), \quad G_2 = Dev(\overline{y_2} \sim \overline{y_1} \sim y_2),
$$

\n
$$
G_3 = Dev(y_3 \sim y_4 \sim \overline{y_4}), \quad G_4 = Dev(\overline{x_1}, \overline{x_2}) \oplus {\overline{x_3}}, y_2),
$$

\n
$$
G_5 = \begin{cases} Dev(x_1 \sim x_2 \sim \overline{x_2}) & \text{if } \nu = 2, \\ Dev(x_1 \sim x_2 \sim \overline{y_3}) & \text{if } \nu = 3, \end{cases} \quad G_6 = Dev(\overline{x_3} \sim \overline{x_4} \sim x_4),
$$

\n
$$
G_7 = Dev(\overline{y_4} \sim \overline{y_3} \sim y_4).
$$

By recalling [\(7](#page-17-0)), it is not difficult to check that the graphs G_h are *k*-suns. \Box

Theorem 4.11. Let $k \equiv 3 \pmod{4} \ge 7$ and $n \equiv 0, 1 \pmod{4}$ with $2k < n < 10k$. If *k* -4 − 1 $\left| \frac{n-4}{k-1} \right|$ is odd and *n* ≢ 0, 1 (mod *k* − 1), then there is a *k*-sun system of K_{4k} + *n*.

Proof. Let $n = 2(q\ell + r) + \nu$ with $1 \le r \le \ell$ and $\nu \in \{2, 3\}$. Clearly, $q = \left\lfloor \frac{n}{k} \right\rfloor$ − 4 − 1 $\left| \frac{n-4}{k-1} \right|$. Also, we have that *q* and $\ell \geq 3$ are odd, and $n \equiv 0, 1 \pmod{4}$; hence *r* is even. Furthermore, we have that $2 \le q \le 10$, since by assumption $2k < n < 10k$. Considering now the hypothesis that $n \neq 0, 1 \pmod{2\ell}$, it follows that $r \neq \ell - 1$. To sum up,

$$
q \text{ is odd with } 3 \le q \le 9, \quad \text{and} \quad r \text{ is even with } 2 \le r \le \ell - 3. \tag{8}
$$

As before, let $V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup \{ \infty_h | h \in \mathbb{Z}_{n-\nu} \} \cup \{ \infty'_1, \infty'_2, \infty'_v \}.$

We start decomposing K_{2k} into the following two graphs:

$$
\Gamma_1 = \langle [4, \ell], [k - 2r - 1, k], [3, \ell] \rangle \quad \text{and} \quad \Gamma_2 = \langle [1, 3], [1, k - 2r - 2], [1, 2] \rangle.
$$

Considering that $3 \le q \le 9 \le 2r + 5$, the graph Γ_1 can be further decomposed into the following graphs:

$$
\Gamma_{1,1} = \langle [4, \ell], \emptyset, [3, \ell - 1] \rangle, \quad \Gamma_{1,2} = \langle \emptyset, [k - 2r - 4 + q, k], \{\ell\} \rangle, \quad \text{and}
$$
\n
$$
\Gamma_{1,3} = \langle \emptyset, [k - 2r - 1, k - 2r - 5 + q], \emptyset \rangle.
$$

The first two have a *k*-cycle system by Lemmas [3.1](#page-4-1) and [3.2,](#page-4-2) while $\Gamma_{1,3}$ decomposes into $(q - 3)$ 1-factors, say $J_1, J_2, ..., J_{q-3}$. Letting $w_1 = (q - 3)\ell$, by Lemma [4.2](#page-7-3) we have that

$$
\Gamma_1 + w_1 = \bigoplus_{i=1}^{q-3} (J_i + \ell) \bigoplus (\Gamma_{1,1} \bigoplus \Gamma_{1,2}).
$$

Therefore, $\Gamma_1 + w_1$ has a *k*-cycle system, since each $J_i + \ell$ decomposes into *k*-cycles by Lemma [3.4.](#page-6-0) Setting $w_2 = n - 2w_1 = 2(3\ell + r) + \nu$ and recalling that $K_{2k} = \Gamma_1 \oplus \Gamma_2$, by Lemma [4.6](#page-9-1) it is left to show that $\Gamma_2^*[2] + w_2$ has a *k*-sun system.

We start decomposing Γ_2 into the following graphs:

$$
\Gamma_{2,0} = \langle [1, 3], [1, k - 2r - 5], [1, 2] \rangle \text{ and } \Gamma_{2,i} = \langle \emptyset, \{k - 2r - 5 + i\}, \emptyset \rangle \text{ for } 1 \le i \le 3.
$$

Recalling that $\Gamma_2^*[2] = \Gamma_2[2] \oplus I$, where *I* denotes the 1-factor $\{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}\$ of K_{4k} , by Lemma [4.2](#page-7-3) we have that

$$
\Gamma_2^*[2] + w_2 = \bigoplus_{i=1}^3 (\Gamma_{2,i} + \ell) [2] \oplus (\Gamma_{2,0} + r) [2] \oplus (I + \nu).
$$

By Lemmas [3.3](#page-5-0) and [3.4](#page-6-0) there exist a *k*-cycle $A = (x_1, x_2, x_3, y_4, y_5, y_6, a_7, ..., a_k)$ of $\Gamma_{2,0} + r$, a *k*‐cycle $B_1 = (x_{1,0}, y_{1,1}, b_{1,2}, ..., b_{1,k-1})$ of $\Gamma_{2,1} + \ell$, and a *k*‐cycle $B_i = (y_{i,0}, x_{i,1}, b_{i,2}, ..., b_{i,k-1})$ of $\Gamma_{2,i} + \ell$, for $2 \le i \le 3$, satisfying the following properties:

$$
Dev({x_1, x_2})
$$
 and $Dev({x_2, x_3})$ are *k*-cycles with vertices in $\mathbb{Z}_k \times \{0\}$,
\n $Dev({y_4, y_5})$ and $Dev({y_5, y_6})$ are *k*-cycles with vertices in $\mathbb{Z}_k \times \{1\}$, (9)

$$
x_{1,0}, x_{2,1}, x_{3,1} \in \mathbb{Z}_k \times \{0\}, \quad y_{1,1}, y_{2,0}, y_{3,0} \in \mathbb{Z}_k \times \{1\},
$$
 (10)

$$
\bigcup_{i=1}^{3} Orb(B_i) \cup Orb(A) \text{ is a } k\text{-cycle system of }\Gamma_2 + (3\ell + r). \tag{11}
$$

Set $A' = (x_1, \overline{x_2}, x_3, \overline{y_4}, y_5, \overline{y_6}, a_7, a_8, \dots, a_{k-1}, a_k)$ and let $S = {\sigma(A'), \sigma(A')}$ \cup ${\sigma(B_i), \sigma(B_i) \mid 1 \le i \le 3}$. By Lemma [4.5,](#page-8-2) we have that ${\left\lfloor \int_{S \in S} Orb(S) \right\rfloor}$ is a *k*-sun system of $(\Gamma_2 + (3\ell + r))[2] = \Gamma_2[2] + 2(3\ell + r) = (\Gamma_2^*[2] + w_2) \setminus (I + v).$

To construct a *k*-sun system of $\Gamma_2^*[2] + w_2$, we build a family $\mathcal{T} = \{T_0, T_1, ..., T_7\}$ of *k*-suns by modifying the graphs in S so that $\bigcup_{T \in \mathcal{T}} Orb(T)$ covers all the edges incident with ∞'_1 , ∞'_2 , and possibly ∞' when $\nu = 3$. We then construct further $(2\nu + 1)$ *k*-suns $G_1, G_2, ..., G_{2\nu+1}$

which cover the remaining edges exactly once. Hence, $\bigcup_{T \in \mathcal{T}} Orb(T) \cup \{G_1, G_2, ..., G_{2\nu+1}\}\$ is a k -sun system of $\Gamma_2^*[2] + w_2$.

The graphs T_0 , ..., T_7 and G_1 , ..., $G_{2\nu+1}$ are the following, where as before the elements in bold are the replaced vertices.

$$
T_0 = \begin{cases} \begin{pmatrix} x_1 & \overline{x_2} & x_3 & \overline{y_4} & y_5 & \overline{y_6} & a_7 & \cdots & a_{k-1} & a_k \\ x_2 & \omega_1' & y_4 & \omega_2' & y_6 & \overline{a_7} & \overline{a_8} & \cdots & \overline{a_k} & \overline{x_1} \\ \omega_3' & \omega_1' & y_4 & \omega_2' & y_6 & \overline{a_7} & \overline{a_8} & \cdots & \overline{a_k} & \overline{x_1} \\ \omega_3' & \omega_1' & y_4 & \omega_2' & y_6 & \overline{a_7} & \overline{a_8} & \cdots & \overline{a_k} & \overline{x_1} \\ \overline{x_2} & \omega_1' & \overline{y_4} & \omega_2' & y_5 & a_7 & \omega_3 & \cdots & a_k & x_1 \\ \overline{x_2} & \omega_1' & \overline{y_4} & \omega_2' & y_5 & a_7 & a_8 & \cdots & a_k & x_1 \\ \omega_3' & \omega_1' & \overline{y_4} & \omega_2' & y_5 & a_7 & a_8 & \cdots & a_k & x_1 \\ \omega_3' & \omega_1' & \overline{y_4} & \omega_2' & y_5 & a_7 & a_8 & \cdots & a_k & x_1 \\ \omega_2' & \overline{b_{1,2}} & \overline{b_{1,3}} & \cdots & \overline{b_{1,k-2}} & \overline{b_{1,k-1}} \\ \omega_2' & \overline{b_{1,2}} & \overline{b_{1,3}} & \cdots & \overline{b_{1,k-2}} & \overline{b_{1,k-1}} \\ \omega_2' & b_{1,2} & b_{1,3} & \cdots & b_{1,k-1} & x_{1,0} \\ \omega_1' & \overline{b_{2,2}} & \overline{b_{2,3}} & \cdots & \overline{b_{2,k-1}} & \overline{b_{2,0}} \\ \end{pmatrix},
$$
\n
$$
T_3 = \begin{pmatrix} \overline{y_{2,0}} & \overline{x_{2,1}} & \overline{b_{2,2}} & \cdots & \overline{b_{2,k-1}} & \overline{y_{2,0}} \\ \omega
$$

 $G_1 = Dev(x_2 \sim x_3 \sim \overline{x_3}),$ $G_2 = Dev(\{\overline{x_2}, \overline{x_3}\} \oplus {\{\overline{x_{1,0}}, y_{1,1}\}},$ $G_3 = Dev(\{y_4, y_5\} \oplus \{y_{2,0}, \overline{x_{2,1}}\}), \quad G_4 = Dev(\{\overline{y_4}, \overline{y_5}\} \oplus \{\overline{y_{2,0}}, x_{2,1}\}),$ $G_5 = Dev(\{\overline{y_5}, \overline{y_6}\} \oplus {\overline{y_{1,1}}, x_{1,0}}), G_6 = Dev({x_1, x_2} \oplus {x_{3,1}, \overline{y_{3,0}}}),$ $G_7 = Dev(\{\overline{x_1}, \overline{x_2}\} \oplus {\{\overline{x_{3,1}}, y_{3,0}\}}).$

By recalling [\(9](#page-19-0))–([11\)](#page-19-1), it is not difficult to check that the graphs G_h are k -suns. \Box

Theorem 4.12. Let $k \equiv 3 \pmod{4} \ge 7$ and $n \equiv 0, 1 \pmod{4}$ with $2k < n < 10k$. If *n k* -4 − 1 $\left| \frac{n-4}{k-1} \right|$ is odd, and *n* ≡ 0, 1 (mod *k* − 1), then there is a *k*-sun system of K_{4k} + *n* except possibly when $(k, n) \in \{(11, 100), (11, 101)\}.$

Proof. Let $n = 2(q\ell + r) + \nu$ with $1 \le r \le \ell$ and $\nu \in \{2, 3\}$. Reasoning as in the proof of Theorem [4.11](#page-18-0) and considering that $n \equiv 0, 1 \pmod{2\ell}$ and $(k, n) \notin \{(11, 100), (11, 101)\},\$ we have that

$$
q \text{ is odd with } 3 \le q \le 9, \quad r = \ell - 1 \ge 2, \quad r \text{ is even, and } (\ell, q) \ne (5, 9). \tag{12}
$$

As before, let $V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup \{\infty_h | h \in \mathbb{Z}_{n-v}\} \cup \{\infty'_1, \infty'_2, \infty'_y\}.$

We start decomposing K_{2k} into the following two graphs

 $\Gamma_1 = \langle [3, \ell], \{0\}, [3, \ell] \rangle$ and $\Gamma_2 = \langle \{1, 2\}, [1, k - 1], \{1, 2\} \rangle$.

Considering ([12\)](#page-21-1), we can further decompose Γ_1 into the following two graphs:

$$
\Gamma_{1,1} = \left\langle \left[3, \frac{q+3}{2}\right], \{0\}, \left[3, \frac{q+3}{2}\right] \right\rangle, \quad \Gamma_{1,2} = \left\langle \left[\frac{q+5}{2}, \ell\right], \emptyset, \left[\frac{q+5}{2}, \ell\right] \right\rangle.
$$

By Lemma [3.5](#page-7-1), the graph $\Gamma_{1,1}$ decomposes into *q* 1-factors, say $J_1, J_2, ..., J_a$. Letting $w_1 = q\ell$, by Lemma [4.2](#page-7-3) we have that

$$
\Gamma_1 + w_1 = (\Gamma_{1,1} + w_1) \oplus \Gamma_{1,2} = \bigoplus_{i=1}^q (J_i + \ell) \oplus \Gamma_{1,2}.
$$

Lemmas [3.4](#page-6-0) and [3.1](#page-4-1) guarantee that each $J_i + \ell$ and $\Gamma_{1,2}$ decompose into *k*-cycles, hence $\Gamma_1 + w_1$ has a *k*-cycle system. Let r_1 and r_2 be odd positive integers such that $r = \ell - 1 = r_1 + r_2$. Then, setting $w_2 = n - 2w_1 = 2(r_1 + r_2) + \nu$ and recalling that $K_{2k} = \Gamma_1 \oplus \Gamma_2$, by Lemma [4.6](#page-9-1) it is left to show that $\Gamma_2^*[2] + w_2$ has a *k*-sun system.

We start decomposing Γ_2 into the following graphs:

$$
\Gamma_{2,1} = \langle \{1\}, [1, k - 2r_1 - 2], \{1\} \rangle \quad \text{and} \quad \Gamma_{2,2} = \langle \{2\}, [k - 2r_1 - 1, k - 1], \{2\} \rangle.
$$

Recalling that $\Gamma_2^*[2] = \Gamma_2[2] \oplus I$, where *I* denotes the 1-factor $\{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}\$ of K_{4k} , by Lemma [4.2](#page-7-3) we have that

$$
\Gamma_2^*[2] + w_2 = (\Gamma_{2,1} + r_1)[2] \oplus (\Gamma_{2,2} + r_2)[2] \oplus (I + \nu).
$$
 (13)

By Lemma [3.3](#page-5-0) there are a *k*-cycle $A = (y_1, y_2, x_3, x_4, a_5, ..., a_k)$ of $\Gamma_{2,1} + r_1$ and a *k*-cycle $B = (x_1, x_2, y_3, y_4, b_5, ..., b_k)$ of $\Gamma_{2,2} + r_2$ such that

 $Dev({x₃, x₄})$ and $Dev({x₁, x₂})$ are *k*-cycles with vertices in $\mathbb{Z}_k \times \{0\}$, *Dev* ({ y_1, y_2 }) and *Dev* ({ y_3, y_4 }) are *k*-cycles with vertices in $\mathbb{Z}_k \times \{1\}$. $Orb(A) \cup Orb(B)$ is a k-cycle system of $\Gamma_2 + r$,

Set $A' = (y_1, \overline{y_2}, x_3, \overline{x_4}, a_5, ..., a_k), B' = (x_1, \overline{x_2}, \overline{y_3}, y_4, b_5, ..., b_k)$ and let $S = \{\sigma(A'), \sigma(A'), \sigma(B'), \sigma(B')\}.$ By Lemma [4.5,](#page-8-2) we have that $\bigcup_{S \in \mathcal{S}} Orb(S)$ is a *k*-sun system of $(\Gamma_2^*[2] + w_2) \setminus (I + \nu)$.

To construct a *k*-sun system of $\Gamma_2^*[2] + w_2$, we build a family $\mathcal{T} = \{T_1, T_2, T_3, T_4\}$ of four k -suns, each of which is obtained from a graph in S by replacing some of their vertices with ∞'_1 , ∞'_2 , and possibly ∞'_3 when $\nu = 3$. Then we construct further $(2\nu + 1)$ *k*-suns $G_1, G_2, ..., G_{2\nu+1}$ so that $\bigcup_{T \in \mathcal{T}} Orb(T) \cup \{G_1, G_2, ..., G_{2\nu+1}\}\$ is a *k*-sun system of $\Gamma_2^*[2] + w_2$.

$$
T_{1} = \begin{cases} \begin{pmatrix} y_{1} & \overline{y_{2}} & x_{3} & \overline{x_{4}} & a_{5} & \cdots & a_{k-1} & a_{k} \\ \alpha_{1}^{'} & \alpha_{2}^{'} & x_{4} & \overline{a_{5}} & \overline{a_{6}} & \cdots & \overline{a_{k}} & \overline{y_{1}} \end{pmatrix} & \text{if } \nu = 2, \\ \begin{pmatrix} y_{1} & \overline{y_{2}} & \alpha_{3}^{'} & \overline{x_{4}} & a_{5} & \cdots & a_{k-1} & a_{k} \\ \alpha_{1}^{'} & \alpha_{2}^{'} & x_{4} & \overline{a_{5}} & \overline{a_{6}} & \cdots & \overline{a_{k}} & \overline{y_{1}} \end{pmatrix} & \text{if } \nu = 3, \\ T_{2} = \begin{pmatrix} \overline{y_{1}} & y_{2} & \overline{x_{3}} & x_{4} & \overline{a_{5}} & \cdots & \overline{a_{k-1}} & \overline{a_{k}} \\ \alpha_{1}^{'} & \alpha_{2}^{'} & \overline{x_{4}} & a_{5} & a_{6} & \cdots & a_{k} & y_{1} \end{pmatrix}, \\ T_{3} = \begin{pmatrix} x_{1} & \overline{x_{2}} & \overline{y_{3}} & y_{4} & b_{5} & \cdots & b_{k-1} & b_{k} \\ \alpha_{1}^{'} & \alpha_{2}^{'} & y_{3} & \overline{b_{5}} & \overline{b_{6}} & \cdots & \overline{b_{k}} & \overline{x_{1}} \end{pmatrix}, \\ T_{4} = \begin{cases} \begin{pmatrix} \overline{x_{1}} & x_{2} & y_{3} & \overline{x_{4}} & b_{5} & \cdots & b_{k-1} & b_{k} \\ \alpha_{1}^{'} & \alpha_{2}^{'} & y_{4} & b_{5} & b_{6} & \cdots & b_{k} & x_{1} \\ \alpha_{1}^{'} & \alpha_{2}^{'} & \alpha_{3}^{'} & b_{5} & b_{6} & \cdots & b_{k} & x_{1} \end{pmatrix} & \text{if } \nu = 3, \\ \begin{pmatrix} \overline{x_{1}} & x_{2} & y_{3} & \overline{x_{4}} & \overline{b_{5}} & \cdots & \overline{b_{k-1}} &
$$

By [\(13](#page-21-2)), it is not difficult to check that the graphs G_h are k -suns.

 5 | IT IS SUFFICIENT TO SOLVE $2k < v < 6k$

In this section we show that if the necessary conditions in $(*)$, for the existence of a *k*-sun system of K_v , are sufficient for all v satisfying $2k < v < 6k$, then they are sufficient for all v . In other words, we prove Theorem [1.1](#page-1-1).

We start by showing how to construct *k*-sun systems of $K_{g \times h}$ (i.e., the complete multipartite graph with *g* parts each of size *h*) when $h = 4k$.

Theorem 5.1. For any odd integer $k \geq 3$ and any integer $g \geq 3$, there exists a *k*-sun system of *Kg*×4*k*.

Proof. Set $V(K_{g\times 2k}) = \mathbb{Z}_{gk} \times [0, 1]$ and let $K_{g\times 4k} = K_{g\times 2k}[2]$. In [[11,](#page-31-4) Theorem 2] the authors proved the existence of a *k*-cycle system of $K_{g \times 2k}$. By applying Lemma [4.5](#page-8-2) (with $\Gamma = K_{g \times 2k}$ and $u = 0$) we obtain the existence of a *k*-sun system of $K_{g \times 4k}$.

The following result exploits Theorem [5.1](#page-22-1) and shows how to construct *k*‐sun systems of K_{4k+1} , for $g \neq 2$, starting from a *k*-sun system of $K_{4k} + n$ and a *k*-sun system of either K_n or K_{4k+n} .

Theorem 5.2. Let $k \geq 3$ be an odd integer and assume that both the following conditions hold:

- 1. there exists a *k*-sun system of either K_n or K_{4k+n} ;
- 2. there exists a *k*-sun system of K_{4k} + *n*.

Then there is a *k*-sun system of K_{4k+1} for all positive $g \neq 2$.

Proof. Suppose there exists a *k*-sun system S_1 of K_n , also, by (2), there exists a *k*-sun system S_2 of K_{4k} + *n*. Clearly, $S_1 \cup S_2$ is a *k*-sun system of $K_{n+4k} = K_n \oplus (K_{4k} + n)$. Hence we can suppose $g \geq 3$. Let *V*, *H*, and *G* be sets of size *n*, 4*k*, and *g*, respectively, such that $V \cap (H \times G) = \emptyset$. Let S be a k-sun system of K_n (resp., K_{n+4k}) with vertex-set V (resp., $V \cup (H \times \{x_0\})$ for some $x_0 \in G$). By assumption, for each $x \in G$, there is a *k*-sun system, say \mathcal{B}_x , of K_{4k} + *n* with vertex-set $V \cup (H \times \{x\})$, where $V(K_{4k}) = H \times \{x\}$. Also, by Theorem [5.1](#page-22-1) there is a *k*-sun system C of $K_{g \times 4k}$ whose parts are $H \times \{x\}$ with $x \in G$. Hence the *k*-suns of B_x with $x \in G$ (resp., $x \in G \setminus \{x_0\}$), S and C form a *k*-sun system of K_{n+4kg} with vertex-set *V* ∪ ($H \times G$).

We are now ready to prove Theorem [1.1](#page-1-1) whose statement is recalled below.

Theorem [1](#page-1-0).1. Let $k \geq 3$ be an odd integer and $v > 1$. Conjecture 1 is true if and only if there exists a *k*-sun system of K_v for all v satisfying the necessary conditions in (*) with $2k < v < 6k$.

Proof. The existence of 3-sun systems and 5-sun systems has been solved in [[10\]](#page-31-8) and in [[8\]](#page-31-0), respectively. Hence we can suppose $k \ge 7$ and $2k < v < 6k$.

We first deal with the case where $(k, v) \neq (7, 21)$. By assumption there exists a *k*-sun system of K_v , which implies $v(v - 1) \equiv 0 \pmod{4}$, hence Theorem [4.1](#page-7-2) guarantees the existence of a *k*-sun system of K_{4k} + *v*. Therefore, by Theorem [5.2](#page-23-0) there is a *k*-sun decomposition of K_{4kg+v} whenever $g \neq 2$. To decompose K_{8k+v} into *k*-suns, we first decompose K_{8k+v} into K_{4k+v} and $K_{4k} + (4k + v)$. By Theorem [5.2](#page-23-0) (with $g = 1$), there is a *k*‐sun system of $K_{4k+\nu}$. Furthermore, Theorem [4.1](#page-7-2) guarantees the existence of a *k*‐sun system of K_{4k} + (4k + v), except possibly when $(k, 4k + v) \in \{(7, 56), (7, 57), (7, 64), (11, 100)\}.$ Therefore, by Theorem [5.2,](#page-23-0) there is a k -sun decomposition of K_{8k+v} whenever $(k, 4k + v) \notin \{(7, 56), (7, 57), (7, 64), (11, 100)\}.$ For each of these four cases we construct *k*-sun systems of K_{8k+v} as follows.

If $k = 7$ and $4k + v = 56$, set $V(K_{84}) = \mathbb{Z}_{83} \cup \{\infty\}$. We consider the following 7-suns:

$$
T_1 = \begin{pmatrix} 0 & -1 & 3 & -4 & 6 & -7 & 16 \\ 31 & 27 & 37 & 18 & 43 & 12 & 56 \end{pmatrix},
$$

\n
$$
T_2 = \begin{pmatrix} 0 & -2 & 3 & -5 & 6 & -8 & 17 \\ 32 & 27 & 38 & 19 & 44 & 12 & 58 \end{pmatrix},
$$

\n
$$
T_3 = \begin{pmatrix} 0 & -3 & 3 & -6 & 6 & -9 & 18 \\ 33 & 27 & 39 & 20 & 45 & 12 & \infty \end{pmatrix}.
$$

One can easily check that $\bigcup_{i=1}^{3} Orb_{\mathbb{Z}_{83}}(T_i)$ is a 7-sun system of K_{84} .

If $k = 7$ and $4k + v = 57$, set $V(K_{85}) = \mathbb{Z}_{85}$. Let T_1 and T_2 be defined as above, and let T'_3 be the graph obtained from T_3 replacing ∞ with 60. It is immediate that $\bigcup_{i=1}^{2} Orb_{\mathbb{Z}_{85}}(T_i)\cup Orb_{\mathbb{Z}_{85}}(T_3')$ is a 7-sun system of K_{85} .

If $k = 7$ and $4k + v = 64$, set $V(K_{92}) = (\mathbb{Z}_7 \times \mathbb{Z}_{13}) \cup \{\infty\}$. We consider the following 7‐suns:

$$
T_1 = \begin{pmatrix} (0, 0) & (1, 1) & -(2, 1) & (3, 1) & -(4, 1) & (5, 1) & -(6, 1) \\ \infty & (-1, 1) & (2, 7) & (-3, 5) & -(3, 5) & -(5, 7) & (6, 7) \end{pmatrix},
$$
\n
$$
T_2 = \begin{pmatrix} (0, 0) & (1, 2) & -(2, 2) & (3, 2) & -(4, 2) & (5, 2) & -(6, 2) \\ (0, 10) & -(1, 8) & (2, 8) & (-3, 7) & -(3, 7) & -(5, 8) & (6, 8) \end{pmatrix},
$$
\n
$$
T_3 = \begin{pmatrix} (0, 0) & (1, 3) & -(2, 3) & (3, 3) & -(4, 3) & (5, 3) & -(6, 3) \\ (0, 12) & -(1, 9) & (2, 9) & (-3, 9) & -(3, 9) & -(5, 9) & (6, 9) \end{pmatrix},
$$
\n
$$
T_4 = Dev_{\mathbb{Z}_7 \times \{0\}}((0, 0) \sim (4, 0) \sim (6, 8)), \quad T_5 = Dev_{\mathbb{Z}_7 \times \{0\}}((0, 0) \sim (6, 8)).
$$

One can easily check that $\bigcup_{i=1}^{3} Orb_{\mathbb{Z}_{7}\times\mathbb{Z}_{13}}(T_i)\cup\bigcup_{i=4}^{5}Orb_{\{0\}\times\mathbb{Z}_{13}}(T_i)$ is a 7-sun system of K_{92} .

If $k = 11$ and $4k + v = 100$, set $V(K_{144}) = (\mathbb{Z}_{11} \times \mathbb{Z}_{13}) \cup \{\infty\}$. We consider the following 11‐suns:

$$
T_1 = \begin{pmatrix} (0,0) & (1,1) & -(2,1) & (3,1) & -(4,1) & (5,1) & -(6,1) & (7,1) & -(8,1) & (9,1) & -(10,1) \\ \infty & (-1,1) & (2,7) & -(3,7) & (4,7) & (-5,1) & -(5,5) & -(7,7) & (8,7) & -(9,7) & (10,7) \end{pmatrix},
$$
\n
$$
T_2 = \begin{pmatrix} (0,0) & (1,2) & -(2,2) & (3,2) & -(4,2) & (5,2) & -(6,2) & (7,2) & -(8,2) & (9,2) & -(10,2) \\ (0,10) & -(1,8) & (2,8) & -(3,8) & (4,8) & (-5,6) & -(5,7) & -(7,8) & (8,8) & -(9,8) & (10,8) \end{pmatrix},
$$
\n
$$
T_3 = \begin{pmatrix} (0,0) & (1,3) & -(2,3) & (3,3) & -(4,3) & (5,3) & -(6,3) & (7,3) & -(8,3) & (9,3) & -(10,3) \\ (0,12) & -(1,9) & (2,9) & -(3,9) & (4,9) & (-5,9) & -(5,9) & -(7,9) & (8,9) & -(9,9) & (10,9) \end{pmatrix},
$$
\n
$$
T_4 = Dev_{\mathbb{Z}_{11}\times\{0\}}((0,0) \sim (4,0) \sim (6,8)), \quad T_5 = Dev_{\mathbb{Z}_{11}\times\{0\}}((0,0) \sim (6,0) \sim (5,8)),
$$
\n
$$
T_6 = Dev_{\mathbb{Z}_{11}\times\{0\}}((0,0) \sim (8,0) \sim (8,8)).
$$

One can check that $\bigcup_{i=1}^{3} Orb_{\mathbb{Z}_{11}\times\mathbb{Z}_{13}}(T_i)\cup\bigcup_{i=4}^{6}Orb_{\{0\}\times\mathbb{Z}_{13}}(T_i)$ is an 11-sun system of K_{144} .

It is left to prove the existence of a *k*-sun system of K_{4kg+v} when $(k, v) = (7, 21)$ and for every $g \ge 1$. If $g = 1$, a 7-sun system of K_{49} can be obtained as a particular case of the following construction. Let *p* be a prime, $q = p^n \equiv 1 \pmod{4}$ and *r* be a primitive root of $\mathbb{F}_{q_{\dot{q}-s}}$ Setting $S = Dev_{(r)}$ $(0 \sim r \sim r + 1)$ where $\langle r \rangle = \{j r \mid 1 \le j \le p\}$, we have that $\bigcup_{i=0}^{q_{q-5}} Orb_{\mathbb{F}_q}(r^{2i}S)$ is a *p*-sun system of K_q .

If *g* ≥ 2, we notice that $K_{28g+21} = K_{28(g-1)+49}$. Considering the 7-sun system of K_{49} just built, and recalling that by Theorem [4.1](#page-7-2) there is a 7-sun system of $K_{28} + 49$, then Theorem [5.2](#page-23-0) guarantees the existence of a 7-sun system of $K_{28(g-1)+49}$ whenever $g \neq 3$. When $g = 3$, a 7-sun system of K_{105} is constructed as follows. Set $V(K_{105}) = \mathbb{Z}_7 \times \mathbb{Z}_{15}$. Let *S_{ij}*, and *T* be the 7-suns defined below, where $(i, j) \in X = (\lceil 1, 3 \rceil \times \lceil 1, 7 \rceil) \setminus \{(1, 3), (1, 6)\}$:

$$
S_{i,j} = \begin{pmatrix} (0,0) & (i,j/2) & (2i,j) & (3i,0) & (4i,j) & (5i,0) & (6i,j) \\ (i,-j/2) & (2i,0) & (3i,2j) & (4i,-j) & (5i,2j) & (6i,-j) & (0,2j) \end{pmatrix},
$$
\n
$$
T = \begin{pmatrix} (0,0) & (0,7) & (0,2) & (0,5) & (0,-1) & (0,3) & (0,1) \\ (2,0) & (3,7) & (1,2) & (1,8) & (1,5) & (1,0) & (1,10) \end{pmatrix}.
$$

One can check that $\bigcup_{(i,j)\in X} Orb_{0\infty}\times_{\mathbb{Z}_1} (S_{i,j})\cup Orb_{\mathbb{Z}_2\times\mathbb{Z}_1} (T)$ is a 7-sun system of K_{105} . \square

6 | CONSTRUCTION OF *p*‐SUN SYSTEMS, *p* PRIME

In this section we prove Theorem [1.2.](#page-2-1) Clearly in view of Theorem [1.1](#page-1-1) it is sufficient to construct a *p*-sun system of K_v for any admissible *v* with $2p < v < 6p$. Hence, we are going to prove the following result.

Theorem 6.1. Let *p* be an odd prime and let $v(v - 1) \equiv 0 \pmod{4p}$ with $2p < v < 6p$. Then there exists a *p*-sun system of K_v .

Since the existence of *p*-sun systems with $p = 3$, 5 has been proved in [[10\]](#page-31-8) and in [\[8](#page-31-0)], respectively, here we can assume $p \geq 7$.

It is immediate to see that by the necessary conditions for the existence of a *p*-sun system of K_v , it follows that *v* lies in one of the following congruence classes modulo 4*p*:

1. $v \equiv 0, 1 \pmod{4p}$; 2. $v \equiv p$, $3p + 1 \pmod{4p}$ if $p \equiv 1 \pmod{4}$; 3. $v \equiv p + 1$, 3p (mod 4p) if $p \equiv 3 \pmod{4}$.

If $v \equiv 0$, 1 (mod 4*p*) we present a direct construction which holds more in general for $p = k$, where *k* is an odd integer and not necessarily a prime.

Theorem 6.2. For any $k = 2t + 1 \ge 7$ there exists a *k*-sun system of K_{4k+1} and a *k*-sun system of K_{4k} .

Proof. Let *C* be the *k*-cycle with vertices in \mathbb{Z} so defined:

$$
C = (0, -1, 1, -2, 2, -3, 3, ..., 1 - t, t - 1, -t, 2t).
$$

Note that the list *D*₁ of the positive differences in \mathbb{Z} of *C* is $D_1 = [1, 2t] \cup \{3t\}$. Consider now the ordered *k*-set $D_2 = \{d_1, d_2, ..., d_k\}$ so defined:

$$
D_2 = [2t + 1, 3t - 1] \cup [3t + 1, 4t + 2].
$$

Obviously $D_1 \cup D_2 = [1, 2k]$. Let $\{c_1, c_2, ..., c_k\}$ be the increasing order of the vertices of

the cycle *C* and set $\ell_r = c_r + d_r$ for every $r \in [1, k]$, with $r \neq \frac{t+1}{2}$, and $\ell_{\frac{t+1}{2}} = c_{\frac{t+1}{2}} - d_{\frac{t+1}{2}}$ when *t* is odd. It is not hard to see that $V = \{c_1, c_2, ..., c_k, \ell_1, \ell_2, ..., \ell_k\}$ is a set. Note also that $V \subseteq \{-3t - 1\}$ ∪ $[-t, 5t]$ ∪ $\{6t + 2\}$.

Let *S* be the sun obtainable from *C* by adding the pendant edges $\{c_i, \ell_i\}$ for $i \in [1, k]$. Clearly, $\Delta S = \pm (D_1 \cup D_2) = \pm [1, 2k]$. So we can conclude that if we consider the vertices of *S* as elements of \mathbb{Z}_{4k+1} , the vertices are still pairwise distinct and $\Delta S = \mathbb{Z}_{4k+1} \setminus \{0\}$. Then, by applying Corollary [2.2](#page-4-3) (with $G = \mathbb{Z}_{4k+1}$, $m = 1$, $w = 0$), it follows that $Orb_{\mathbb{Z}_{4k+1}}S$ is a *k*-sun system of K_{4k+1} .

Now we construct a k -sun system of K_{4k} . Let *S* be defined as above and note that $d_k = 2k$. Let *S*^{*} be the sun obtained by *S* setting $\ell_k = \infty$. It is immediate that if we consider the vertices of S^* as elements of $\mathbb{Z}_{4k-1} \cup \{\infty\}$, then Corollary [2.2](#page-4-3) (with $G = \mathbb{Z}_{4k-1}$, $m = 1$, $w = 1$) guarantees that $Orb_{\mathbb{Z}_{4k-1}}S^*$ is a *k*-sun system of K_{4k} .

Example 6.3. Let $k = 2t + 1 = 9$, hence $t = 4$. By following the proof of Theorem [6.2,](#page-25-1) we construct a 9-sun system of K_{37} . Taking $C = (0, -1, 1, -2, 2, -3, 3, -4, 8)$, we have that

$$
\{d_1, d_2, ..., d_9\} = [9, 11] \cup [13, 18],
$$

$$
\{c_1, c_2, ..., c_9\} = \{-4, -3, -2, -1, 0, 1, 2, 3, 8\}.
$$

Hence $\{\ell_1, \ell_2, ..., \ell_9\} = \{5, 7, 9, 12, 14, 16, 18, 20, 26\}$ and we obtain the following 9-sun *S* with vertices in \mathbb{Z}_{37} :

 $S = \begin{pmatrix} 0 & -1 & 1 & -2 & 2 & -3 & 3 & -4 & 8 \\ 14 & 12 & 16 & 9 & 18 & 7 & 20 & 5 & 26 \end{pmatrix}$

such that $\Delta S = \mathbb{Z}_{37} \setminus \{0\}$. Therefore, $Orb_{\mathbb{Z}_{37}}S$ is a 9-sun system of K_{37} .

From now on, we assume that *p* is an odd prime number and denote by Σ the following *p*-sun:

$$
\Sigma = \begin{pmatrix} c_0 & c_1 & \cdots & c_{p-2} & c_{p-1} \\ \ell_0 & \ell_1 & \cdots & \ell_{p-2} & \ell_{p-1} \end{pmatrix}.
$$

Lemma 6.4. Let *p* be an odd prime. For any $x, y \in \mathbb{Z}_p$ with $x \neq 0$ and any $i, j \in \mathbb{Z}_m$ with $i \neq j$ there exists a *p*-sun *S* such that $\Delta_{ii}S = \pm x$, $\Delta_{ii}S = y$, $\Delta_{ii}S = -y$, and $\Delta_{hk}S = \emptyset$ for any $(h, k) \in (\mathbb{Z}_m \times \mathbb{Z}_m) \setminus \{(i, i), (i, j), (j, i)\}.$

Proof. It is easy to see that $S = Dev_{Z_n \times \{0\}}((0, i) \sim (x, i) \sim (y + x, j))$ is the required p ‐sun. □

We will call such a *p*-sun a sun of type (i, j) . For the following it is important to note that if *S* is a *p*-sun of type (i, j) , then $|\Delta_{ii}S| = 2$, $|\Delta_{jj}S| = 0$, and $|\Delta_{ii}S| = |\Delta_{ii}S| = 1$.

The following two propositions provide us *p*-sun systems of K_{mp+1} whenever $m \in \{3, 5\}$ and $p \equiv m - 2 \pmod{4}$.

Proposition 6.5. Let $p \equiv 1 \pmod{4} \ge 13$ be a prime. Then there exists a *p*-sun system of K_{3p+1} .

Proof. We have to distinguish two cases according to the congruence of *p* modulo 12. Case 1. Let $p \equiv 1 \pmod{12}$.

If $p = 13$, we construct a 13-sun system of K_{40} as follows. Let *S* be the following 13-sun whose vertices are labeled with elements of $(\mathbb{Z}_{13} \times \mathbb{Z}_3) \cup \{\infty\}$:

$$
S = \begin{pmatrix} \infty & (2,1) & (4,2) & (8,0) & (3,1) & (6,2) & (12,0) & (11,1) & (9,2) & (5,0) & (10,1) & (7,2) & (1,0) \\ (0,2) & (4,1) & (8,1) & (3,2) & (6,0) & (12,1) & (11,2) & (9,0) & (5,1) & (10,2) & (7,0) & (1,1) & (2,2) \end{pmatrix}.
$$

We have

$$
\Delta_{12}S = \Delta_{21}S = \pm \{2, 3, 4, 6\}, \quad \Delta_{02}S = \Delta_{20}S = \pm \{1, 4, 5, 6\}, \n\Delta_{01}S = -\Delta_{10}S = \{-1, 2, \pm 3, \pm 5\}, \quad \Delta_{00}S = \Delta_{22}S = \emptyset, \quad \Delta_{11}S = \pm \{2\}.
$$

Now it remains to construct a set $\mathcal T$ of edge-disjoint 13-suns such that

$$
\Delta_{12}\mathcal{T} = \Delta_{21}\mathcal{T} = \{0, \pm 1, \pm 5\}, \quad \Delta_{02}\mathcal{T} = \Delta_{20}\mathcal{T} = \{0, \pm 2, \pm 3\},
$$
\n
$$
\Delta_{01}\mathcal{T} = -\Delta_{10}\mathcal{T} = \{0, 1, -2, \pm 4, \pm 6\}, \quad \Delta_{00}\mathcal{T} = \Delta_{22}\mathcal{T} = \mathbb{Z}_{13}^*, \quad \Delta_{11}\mathcal{T} = \mathbb{Z}_{13}^*\backslash \{\pm 2\}.
$$

To do this it is sufficient to take, $\mathcal{T} = \{T_{01}^i | i \in [1, 4]\} \cup \{T_{02}^i | i \in [1, 2]\}$ $\cup \{ T_{10}^i | i \in [1, 3] \} \cup \{ T_{12}^i | i \in [1, 2] \} \cup \{ T_{20}^i | i \in [1, 3] \} \cup \{ T_{21}^i | i \in [1, 3] \}$, where

$$
T_{01}^{i} = Dev_{\mathbb{Z}_{13}\times\{0\}}((0, 0) \sim (x_{i}, 0) \sim (y_{i} + x_{i}, 1)), \text{ where } x_{i} \in [1, 4], y_{i} \in \pm \{4, 6\},
$$

\n
$$
T_{02}^{i} = Dev_{\mathbb{Z}_{13}\times\{0\}}((0, 0) \sim (x_{i}, 0) \sim (y_{i} + x_{i}, 2)), \text{ where } x_{i} \in [5, 6], y_{i} \in \pm \{2\},
$$

\n
$$
T_{10}^{i} = Dev_{\mathbb{Z}_{13}\times\{0\}}((0, 1) \sim (x_{i}, 1) \sim (y_{i} + x_{i}, 0)), \text{ where } x_{i} \in \{1, 3, 4\}, y_{i} \in \{0, -1, 2\},
$$

\n
$$
T_{12}^{i} = Dev_{\mathbb{Z}_{13}\times\{0\}}((0, 1) \sim (x_{i}, 1) \sim (y_{i} + x_{i}, 2)), \text{ where } x_{i} \in [5, 6], y_{i} \in \pm \{1\},
$$

\n
$$
T_{20}^{i} = Dev_{\mathbb{Z}_{13}\times\{0\}}((0, 2) \sim (x_{i}, 2) \sim (y_{i} + x_{i}, 0)), \text{ where } x_{i} \in [1, 3], y_{i} \in \{0, \pm 3\},
$$

\n
$$
T_{21}^{i} = Dev_{\mathbb{Z}_{13}\times\{0\}}((0, 2) \sim (x_{i}, 2) \sim (y_{i} + x_{i}, 1)), \text{ where } x_{i} \in [4, 6], y_{i} \in \{0, \pm 5\}.
$$

We have that $T \cup Orb_{\mathbb{Z}_{13}\times\{0\}}S$ is a 13-sun system of K_{40} .

Suppose now that $p \geq 37$. We proceed in a very similar way to the previous case. Let *r* be a primitive root of \mathbb{Z}_p . Consider the $((\mathbb{Z}_p \times \mathbb{Z}_3) \cup \{\infty\})$ -labeling *B* of Σ so defined:

$$
B(c_0) = \infty, \quad B(c_i) = (r^i, i) \quad \text{for } 1 \le i \le p - 1,
$$

$$
B(\ell_0) = (0, 2), \quad B(\ell_i) = (r^{i+1}, i+2)
$$

except for $\frac{p-9}{4}$ values of $i \equiv 1 \pmod{3}$ for which we set $B(\ell_i) = (r^{i+1}, i)$. Letting $S = B(\Sigma)$, it is immediate that the labels of the vertices of *S* are pairwise distinct. Note that

$$
|\Delta_{00}S| = |\Delta_{22}S| = 0, \quad |\Delta_{11}S| = \frac{p-9}{2}, \quad |\Delta_{01}S| = |\Delta_{10}S| = \frac{5p+7}{12},
$$

$$
|\Delta_{ij}S| = \frac{2p-2}{3} \quad \text{for } (i,j) \in \{(0, 2), (1, 2), (2, 0), (2, 1)\}.
$$

Hence, reasoning as in the previous case, we have to construct a set $\mathcal T$ of *p*-suns such that if $i \neq j$, then $\Delta_{ij} \mathcal{T} = \mathbb{Z}_p \setminus \Delta_{ij} S$ is a set and also $\Delta_{ii} \mathcal{T} = \mathbb{Z}_p^* \setminus \Delta_{ii} S$ is a set. In particular, this implies

that for any *T*, $T' \in \mathcal{T}$ we have $\Delta_{ij} T \cap \Delta_{ij} T' = \emptyset$ and that $|\Delta_{00} T| = |\Delta_{22} T| = p - 1$, $|\Delta_{11}T| = \frac{p+7}{2}$, $|\Delta_{ij}T| = \frac{p+2}{3}$ for $(i, j) \in \{(0, 2), (1, 2), (2, 0), (2, 1)\},$ and $|\Delta_{01}T| =$ $|\Delta_{10}T| = \frac{7p-7}{12}$. To do this it is sufficient to take T as a set consisting of $\frac{p-1}{2}$ suns of type (0, 1), *p*^{−1}</sup> suns of type (1, 0), $\frac{p+11}{6}$ suns of type (1, 2), $\frac{p+2}{3}$ suns of type (2, 0), and $\frac{p-7}{6}$ suns of type (2, 1), which exist in view of Lemma [6.4](#page-26-0). We have that $Orb_{\mathbb{Z}_p\times{0}}S \cup T$ is a *p*-sun system of K_{3p+1} .

Case 2. Let $p \equiv 5 \pmod{12}$. Let *r* be a primitive root of \mathbb{Z}_p . Consider the $((\mathbb{Z}_p \times \mathbb{Z}_3) \cup {\infty})$ -labeling *B* of Σ so defined:

$$
B(c_0) = \infty, \quad B(c_i) = (r^i, i) \quad \text{for } 1 \le i \le p - 2, \quad B(c_{p-1}) = (1, 0),
$$
\n
$$
B(\ell_0) = (0, 2), \quad B(\ell_1) = (r, 2), \quad B(\ell_i) = \begin{cases} (r^{i-1}, i+1) & \text{for } i \in \left[2, \frac{p-1}{2}\right], \\ (r^{i+1}, i+2) & \text{for } i \in \left[\frac{p+1}{2}, p-3\right], \end{cases}
$$
\n
$$
B(\ell_{p-2}) = (1, 1), \quad B(\ell_{p-1}) = (1, 2)
$$

except for $\frac{p-17}{6}$ values of $i \equiv 0 \pmod{3}$ with $i \in \left[3, \frac{p-1}{2}\right]$ $\in \left[3, \frac{p-1}{2}\right]$ for which we set $B(\ell_i) = (r^{i-1}, i)$ and $\frac{p-5}{12}$ values of $i \equiv 0 \pmod{3}$ with $i \in \left[\frac{p+1}{2}, p-5\right]$ $\in \left[\frac{p+1}{2}, p-5\right]$ for which we set $B(\ell_i) = (r^{i+1}, i)$. Letting $S = B(\Sigma)$, it is easy to see that the labels of the vertices of *S* are pairwise distinct. Note that

$$
|\Delta_{00}S| = \frac{p-9}{2}, \quad |\Delta_{11}S| = |\Delta_{22}S| = 0, \quad |\Delta_{01}S| = |\Delta_{10}S| = \frac{p+1}{2},
$$

$$
|\Delta_{02}S| = |\Delta_{20}S| = \frac{7p+1}{12}, \quad |\Delta_{12}S| = |\Delta_{21}S| = \frac{2p-4}{3}.
$$

Hence, we have to construct a set T of *p*-suns such that

$$
|\Delta_{11}T| = |\Delta_{22}T| = p - 1
$$
, $|\Delta_{00}T| = \frac{p+7}{2}$, $|\Delta_{01}T| = |\Delta_{10}T| = \frac{p-1}{2}$,
 $|\Delta_{02}T| = |\Delta_{20}T| = \frac{5p-1}{12}$, and $|\Delta_{12}T| = |\Delta_{21}T| = \frac{p+4}{3}$.

To do this it is sufficient to take T as a set consisting of $\frac{p+7}{4}$ suns of type (0, 1), $\frac{p-9}{4}$ suns of type $(1, 0)$, $\frac{p+7}{4}$ suns of type $(1, 2)$, $\frac{5p-1}{12}$ suns of type $(2, 0)$, and $\frac{p-5}{12}$ suns of type $(2, 1)$ which exist in view of Lemma [6.4](#page-26-0). We have that $Orb_{\mathbb{Z}_p}S \cup \overline{T}$ is a *p*-sun system of K_{3p+1} .

Proposition 6.6. For any prime $p \equiv 3 \pmod{4}$ there exists a *p*-sun system of K_{5p+1} .

Proof. Set $p = 4n + 3$, and let $Y = [1, n]$ and $X = [n + 1, 2n + 1]$. Consider the following $(\mathbb{Z}_p \times \mathbb{Z}_5) \cup {\infty}$ -labeling *B* of Σ defined as follows:

$$
\text{BURATTI ET AL.}\tag{II.F.Y}
$$

$$
B(c_0) = (0, 0), \quad B(c_i) = (-1)^{i+1}(i, 1) \quad \text{for every } i \in [1, p-1];
$$
\n
$$
B(\ell_0) = \infty, \quad B(\ell_y) = (-1)^y (y, -1) \quad \text{for every } y \in Y;
$$
\n
$$
B(\ell_{2n+1}) = (-2n - 1, 3), \quad B(\ell_{2n+2}) = (-2n - 1, -3);
$$
\n
$$
B(\ell_i) = (-1)^i (i, 3) \quad \text{for every } i \in [1, p-1] \setminus (Y \cup \{2n + 1, 2n + 2\}).
$$

One can directly check that the vertices of $S = B(\Sigma)$ are pairwise distinct. Also, it is not hard to verify that Δ*S* does not have repetitions and that its complement in $(\mathbb{Z}_p \times \mathbb{Z}_5) \setminus \{(0, 0)\}\$ is the set

$$
D = \{ \pm (2x, 0) | x \in X \} \cup \{ \pm (2y, 4) | y \in Y \} \cup \{ \pm (0, 1) \}.
$$

Clearly, *D* can be partitioned into $n + 1$ quadruples of the form $D_x = {\pm (2x, 0), \pm (r_x, s_x)}$ with $x \in X$ and $s_x \neq 0$. Letting

$$
S_x = Dev_{\mathbb{Z}_p \times \{0\}}((0,0) \sim (2x,0) \sim (r_x + 2x, s_x))
$$

for $x \in X$, it is clear that $\Delta S_x = D_x$, hence $\Delta \{S_x | x \in X\} = D$. Therefore, Corollary [2.2](#page-4-3) guarantees that $\bigcup_{x \in X} Orb_{\{0\}\times\mathbb{Z}_5}(S_x) \cup Orb_{\mathbb{Z}_p\times\mathbb{Z}_5}(S)$ is a *p*-sun system of K_{5p+1} .

Example 6.7. Here, we construct a 7-sun system of K_{36} following the proof of Proposition [6.6](#page-28-0). In this case, $Y = \{1\}$ and $X = \{2, 3\}$. Now consider the 7-sun *S* defined below, whose vertices lie in $(\mathbb{Z}_7 \times \mathbb{Z}_5) \cup \{\infty\}$:

$$
S = \begin{pmatrix} (0,0) & (1,1) & -(2,1) & (3,1) & -(4,1) & (5,1) & -(6,1) \\ \infty & -(1,-1) & (2,3) & (-3,3) & -(3,3) & -(5,3) & (6,3) \end{pmatrix}.
$$

We have

$$
\Delta S = \pm \{(1,1),(3,2),(5,2),(0,2),(2,2),(4,2),(6,1),(2,0),(4,4),(6,-2),(1,-2),(3,4),(5,4)\}.
$$

Hence ΔS does not have repetitions and its complement in $(\mathbb{Z}_7 \times \mathbb{Z}_5) \setminus \{0, 0\}$ is the set

$$
D = \pm \{ (4, 0), (6, 0), (2, 4), (0, 1) \}.
$$

Now it is sufficient to take

$$
S_2 = Dev_{\mathbb{Z}_7 \times \{0\}}((0,0) \sim (4,0) \sim (6,4)), \quad S_3 = Dev_{\mathbb{Z}_7 \times \{0\}}((0,0) \sim (6,0) \sim (6,1)).
$$

One can check that $\bigcup_{x\in X} Orb_{0\}\times \mathbb{Z}_s}(S_x)\cup Orb_{\mathbb{Z}_7\times \mathbb{Z}_s}S$ is a 7-sun system of K_{36} .

We finally construct *p*-sun systems of K_{mp} whenever $p \equiv m \pmod{4}$.

Proposition 6.8. Let *m* and *p* be odd prime numbers with $m \leq p$ and $m \equiv p \pmod{4}$. Then there exists a *p*-sun system of K_{mp} .

Proof. For each pair $(r, s) \in \mathbb{Z}_p^* \times \mathbb{Z}_m$, let $B_{r,s}: V(\Sigma) \to \mathbb{Z}_p \times \mathbb{Z}_m$ be the labeling of the vertices of Σ defined as follows:

$$
B_{r,s}(c_0) = (0, 0),
$$

\n
$$
B_{r,s}(c_i) = B_{r,s}(c_{i-1}) + \begin{cases} (r, s) & \text{if } i \in [1, m+1] \cup \{m+3, m+5, ..., p-1\}, \\ (r, -s) & \text{if } i \in \{m+2, m+4, ..., p-2\}, \end{cases}
$$

\n
$$
B_{r,s}(\ell_i) = B_{r,s}(c_i) + \begin{cases} (r, -s) & \text{if } i \in [0, m] \cup \{m+2, m+4, ..., p-2\}, \\ (r, s) & \text{if } i \in \{m+1, m+3, ..., p-1\}. \end{cases}
$$

Since $B_{r,s}$ is injective, for every $h \in \mathbb{Z}_m$ the graph $S_{r,s}^h = \tau_{(0,h)}(B_{r,s}(\Sigma))$ is a p-sun. For $i, j \in \mathbb{Z}_m$, we also notice that $\Delta_{ij} \{ S_{r,s}^h | h \in \mathbb{Z}_m \} = \{ \pm r \}$ whenever $i - j = \pm s$, otherwise it is empty.

Letting S be the union of the following two sets of p -suns:

$$
\begin{aligned} \{S_{r,1}^h | h \in \mathbb{Z}_m, r \in [1, (p+m-2)/4] \}, \\ \{S_{r,s}^h | h \in \mathbb{Z}_m, r \in [1, (p-1)/2], s \in [2, (m-1)/2] \}, \end{aligned}
$$

it is not difficult to see that for every $i, j \in \mathbb{Z}_m$

$$
\Delta_{ij}S = \begin{cases} \varnothing & \text{if } i = j, \\ \pm \left[1, \frac{p+m-2}{4} \right] & \text{if } i - j = \pm 1, \\ \mathbb{Z}_p^* & \text{otherwise.} \end{cases}
$$

It is left to construct a set T of p-suns such that $\Delta_{ij}T = \mathbb{Z}_p \setminus \Delta_{ij}S$ whenever $i \neq j$, and $\Delta_{ii} \mathcal{T} = \mathbb{Z}_p^* \backslash \Delta_{ii} \mathcal{S} = \mathbb{Z}_p^*$. Therefore,

$$
|\Delta_{ij}T| = \begin{cases} p-1 & \text{if } i = j, \\ \frac{p-m}{2} + 1 & \text{if } i - j = \pm 1, \\ 1 & \text{otherwise.} \end{cases}
$$

It is enough to take T as a set consisting of one sun of type $(h, h + x)$ and $\frac{p - m}{2}$ suns of type $(h, h + 1)$, for every $h \in \mathbb{Z}_m$ and $x \in \left[1, \frac{m-1}{2}\right]$ $\in \left[1, \frac{m-1}{2}\right]$. These *p*-suns exist by Lemma [6.4,](#page-26-0) therefore $S \cup T$ is the desired *p*-sun system of K_{mp} .

Example 6.9. Let $(m, p) = (3, 11)$. Following the proof of Proposition [6.8,](#page-29-0) we construct an 11-sun system of K_{33} . For every $h \in \mathbb{Z}_3$ and $r \in [1, 3]$, let $S_{r,1}^h$ be the 11-sun defined below:

 $S_{r,1}^h$ $=\begin{pmatrix}(0,h)&(r,h+1)&(2r,h+2)&(3r,h)&(4r,h+1)&(5r,h)&(6r,h+1)&(7r,h)&(8r,h+1)&(9r,h)&(10r,h+1)\\(r,h+2)&(2r,h)&(3r,h+1)&(4r,h+2)&(5r,h+2)&(6r,h+2)&(7r,h+2)&(8r,h+2)&(9r,h+2)&(10r,h+2)&(0,h+2)\\ \end{pmatrix}.$ $\begin{pmatrix} (0,h) & (r,h+1) & (2r,h+2) & (3r,h) & (4r,h+1) & (5r,h) & (6r,h+1) & (7r,h) & (8r,h+1) & (9r,h) & (10r,h+1) \ (r,h+2) & (2r,h) & (3r,h+1) & (4r,h+2) & (5r,h+2) & (6r,h+2) & (7r,h+2) & (8r,h+2) & (9r,h+2) & (10r,h+2) & (0,h+2) \end{pmatrix}$

One can check that $\Delta_{ij} \{ S_{r,1}^0, S_{r,1}^1, S_{r,1}^2 \} = \{ \pm r \}$ if $i \neq j$, otherwise it is empty. Therefore, letting $S = \{S_{r,1}^h | h \in \mathbb{Z}_3, r \in [1, 3]\}$, we have that $\Delta_{ij} S$ is nonempty only when $i \neq j$, in which case we have $\Delta_{ii} S = \pm [1, 3]$.

Now let $T = \{T_{hg} | h \in \mathbb{Z}_3, g \in [1, 5]\}$ where T_{hg} is the 11-sun defined as follows:

$$
T_{h1} = Dev_{\mathbb{Z}_{11} \times \{0\}}((0, h) \sim (1, h) \sim (1, h + 1)),
$$

\n
$$
T_{hg} = Dev_{\mathbb{Z}_{11} \times \{0\}}((0, h) \sim (g, h) \sim (9, h + 1)) \quad \text{for every } g \in [2, 5].
$$

Note that each T_{he} is an 11-sun of type $(h, h + 1)$. Therefore we have that

$$
\Delta_{ij} \mathcal{T} = \begin{cases} \pm [1, 5] & \text{if } 0 \le i = j \le 2, \\ \{0\} \cup [4, 7] & \text{otherwise.} \end{cases}
$$

By Corollary [2.2](#page-4-3), it follows that $S \cup T$ is an 11-sun system of K_{33} .

We are now ready to show that the necessary conditions for the existence of a *p*-sun system of K_v are also sufficient whenever p is an odd prime. In other words, we end this section by proving Theorem [6.1](#page-25-2).

Proof of Theorem 6.1. If $p = 3$, 5 the result can be found in [[10\]](#page-31-8) and in [\[8](#page-31-0)], respectively. For $p \ge 7$, the result follows from Propositions [6.5,](#page-26-1) [6.6,](#page-28-0) and [6.8](#page-29-0).

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from GNSAGA of Istituto Nazionale di Alta Matematica.

ORCID

Marco Buratti \bullet <http://orcid.org/0000-0003-1140-2251> Anita Pasotti **b** <http://orcid.org/0000-0002-3569-2954> Tommaso Traetta \bullet <http://orcid.org/0000-0001-8141-0535>

REFERENCES

- 1. B. Alspach and H. Gavlas, Cycle decomposition of K_n and $K_n - I$, J. Combin. Theory Ser. B **81** (2001), 77–99.
- 2. A. Benini and A. Pasotti, On the existence of elementary abelian cycle systems, Graphs Combin. 25 (2009), 1–14.
- 3. J.-C. Bermond, O. Favaron, and M. Mahéo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Combin. Theory Ser. B 46 (1989), 142–153.
- 4. J. C. Bermond, C. Huang, and G. Sotteau, Balanced cycles and circuit designs: Even case, Ars Combin. 5 (1978), 293–318.
- 5. M. Buratti, Rotational *k*-cycle systems of order $v < 3k$; another proof of the existence of odd cycle systems, J. Combin. Des. 11 (2003), 433–441.
- 6. M. Buratti, Existence of 1‐rotational *k*‐cycle systems of the complete graph, Graphs Combin. 20 (2004), 41–46.
- 7. M. Buratti and A. Del Fra, Existence of cyclic *k*‐cycle systems of the complete graph, Discrete Math. 261 (2003), 113–125.
- 8. C.-M. Fu, M.-H. Huang, and Y.-L. Lin, On the existence of 5-sun systems, Discrete Math. 313 (2013), 2942–2950.
- 9. C.‐M. Fu, N.‐H. Jhuang, Y.‐L. Lin et al., On the existence of *k*‐sun systems, Discrete Math. 312 (2012), 1931–1939.
- 10. C.-M. Fu, N.-H. Jhuang, Y.-L. Lin et al., From Steiner triple systems to 3-sun systems, Taiwanese J. Math. 16 (2012), 531–543.
- 11. D. G. Hoffman, C. C. Lindner, and C. A. Rodger, On the construction of odd cycle systems, J. Graph Theory 13 (1989), 417–426.

- 12. Z. Liang and J. Guo, Decomposition of complete multigraphs into crown graphs, J. Appl. Math. Comput. 32 (2010), 507–517.
- 13. M. Sajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), 27–78.
- 14. R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Congr. Numer. 15 (1976), 647–659.
- 15. S.‐L. Wu and M. Buratti, A complete solution to the existence problem for 1‐rotational *k*‐cycle systems of *Kv*, J. Combin. Des. 17 (2009), 283–293.

How to cite this article: Buratti M, Pasotti A, Traetta T. A reduction of the spectrum problem for odd sun systems and the prime case. J Combin Des. 2021;29:5–37. <https://doi.org/10.1002/jcd.21751>