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Abstract

A k‐cycle with a pendant edge attached to each vertex is

called a k‐sun. The existence problem for k‐sun de-

compositions of Kv, with k odd, has been solved only

when k=3 or 5. By adapting a method used

by Hoffmann, Lindner, and Rodger to reduce the spec-

trum problem for odd cycle systems of the complete

graph, we show that if there is a k‐sun system of Kv (k

odd) whenever v lies in the range k v k2 < < 6 and sa-

tisfies the obvious necessary conditions, then such a

system exists for every admissible v k6≥ . Furthermore,

we give a complete solution whenever k is an odd prime.
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1 | INTRODUCTION

We denote by V (Γ) and E(Γ) the set of vertices and the list of edges of a graph Γ, respectively.
Also, we denote by wΓ + the graph obtained by adding to Γ an independent set
W i w= { |1 }i∞ ≤ ≤ of w 0≥ vertices each adjacent to every vertex of Γ, namely,

w KΓ + Γ ,V W(Γ),≔ ∪

where KV W(Γ), is the complete bipartite graph with parts V (Γ) and W . Denoting by Kv the
complete graph of order v, it is clear that K + 1v is isomorphic to Kv+1.
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We denote by x x xk1 2∼ ∼ ⋯ ∼ the path with edges x x{ , }i i−1 for i k2 ≤ ≤ . By adding the
edge x x{ , }k1 when k 3≥ , we obtain a cycle of length k (briefly, a k‐cycle) denoted by x x x( , , …, )k1 2 .
A k‐cycle with further v k− 0≥ isolated vertices will be referred to as a k‐cycle of order v. By
adding to x x x( , , …, )k1 2 an independent set of edges x x i k{{ , }|1 }′i i ≤ ≤ , we obtain the k‐sun on

k2 vertices (sometimes referred to as k‐crown graph) denoted by

x x x x

x x x x
,

′ ′ ′ ′
k k

k k

1 2 −1

1 2 −1

⎛
⎝⎜

⎞
⎠⎟

⋯

⋯

whose edge‐set is therefore x x x x i k{{ , }, { , }|1 }′i i i i+1 ≤ ≤ , where x x=k+1 1.
A decomposition of a graph K is a set {Γ , Γ , …, Γ}t1 2 of subgraphs of K whose edge‐sets

between them partition the edge‐set of K ; in this case, we briefly write K = Γi
t

i=1⊕ . If each Γi is
isomorphic to Γ, we speak of a Γ‐decomposition of K . If Γ is a k‐cycle (resp., k‐sun), we also
speak of a k‐cycle system (resp., k‐sun system) of K .

In this paper we study the existence problem for k‐sun systems of Kv (v > 1). Clearly, for
such a system to exist we must have

v k v v k2 and ( − 1) 0 (mod 4 ). (*)≥ ≡

As far as we know, this problem has been completely settled only when k = 3, 5 [8,10],
k = 4, 6, 8 [12], and when k = 10, 14 or 2 4t ≥ [9]. It is important to notice that, as a con-
sequence of a general result proved in [14], condition (*) is sufficient whenever v is large
enough with respect to k. These results seem to suggest the following.

Conjecture 1. Let k 3≥ and v > 1. There exists a k‐sun system of Kv if and only if (*)
holds.

Our constructions rely on the existence of k‐cycle systems of Kv, a problem that has been
completely settled in [1,4,5,11,13]. More precisely, [4] and [11] reduce the problem to the orders
v in the range k v k< 3≤ , with v odd. These cases are then solved in [1,13]. For odd k, an
alternative proof based on 1‐rotational constructions is given in [5]. Further results on k‐cycle
systems of Kv with an automorphism group acting sharply transitively on all but at most one
vertex can be found in [2,6,7,15].

The main results of this paper focus on the case where k is odd. By adapting a method used
in [11] to reduce the spectrum problem for odd cycle systems of the complete graph, we show
that if there is a k‐sun system of Kv (k odd) whenever v lies in the range k v k2 < < 6 and
satisfies the obvious necessary conditions, then such a system exists for every admissible v k6≥ .
In other words, we show the following.

Theorem 1.1. Let k 3≥ be an odd integer and v > 1. Conjecture 1 is true if and only if
there exists a k‐sun system of Kv for all v satisfying the necessary conditions in (*)
with k v k2 < < 6 .

We would like to point out that we strongly believe the reduction methods used in
[4,11] could be further developed to reduce the spectrum problem of other types of graph
decompositions of Kv.

6 | BURATTI ET AL.
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In Section 6, we construct k‐sun systems of Kv for every odd prime k whenever k v k2 < < 6

and (*) holds. Therefore, as a consequence of Theorem 1.1, we solve the existence problem for
k‐sun systems of Kv whenever k is an odd prime.

Theorem 1.2. For every odd prime p there exists a p‐sun system of Kv with v > 1 if and
only if v p2≥ and v v p( − 1) 0 (mod 4 )≡ .

Both results rely on the difference methods described in Section 2. These methods are used
in Section 3 to construct specific k‐cycle decompositions of some subgraphs of K w+k2 , which
we then use in Section 4 to build k‐sun systems of K n+k4 . This is the last ingredient we need in
Section 5 to prove Theorem 1.1. Difference methods are finally used in Section 6 to construct
k‐sun systems of Kv for every odd prime k whenever k v k2 < < 6 and (*) holds.

2 | PRELIMINARIES

Henceforward, k 3≥ is an odd integer, and =
k − 1

2
ℓ . Also, given two integers a b≤ , we denote

by a b[ , ] the interval containing the integers a a b{ , + 1, …, }. If a b> , then a b[ , ] is empty.
In our constructions we make extensive use of the method of partial mixed differences

which we now recall but limited to the scope of this paper.
Let G be an abelian group of odd order n in additive notation, let W u w= { |1 }u∞ ≤ ≤ , and

denote by Γ a graph with vertices in V G m W= ( × [0, − 1]) ∪ . For any permutation f of V ,
we denote by f (Γ) the graph obtained by replacing each vertex of Γ, say x , with f x( ). Letting τg,
with g G∈ , be the permutation of V fixing each Wu∞ ∈ and mapping x i G m( , ) × [0, − 1]∈

to x g i( + , ), we call τg the translation by g and τ (Γ)g the related translate of Γ.
We denote by Orb τ g G(Γ) = { (Γ)| }G g ∈ the G‐orbit of Γ, that is, the set of all distinct

translates of Γ, and by Dev τ(Γ) = (Γ)G g G g⋃ ∈ the graph union of all translates of Γ. Further, by
Stab g G τ(Γ) = { | (Γ) = Γ}G g∈ we denote the G‐stabilizer of Γ, namely, the set of translations
fixing Γ. We recall that Stab (Γ)G is a subgroup ofG, hence s Stab= | (Γ)|G is a divisor of n G= | |.
Henceforward, when G = k, we will simply write Orb (Γ), Dev (Γ), and Stab (Γ).

Suppose now that Γ is either a k‐cycle or a k‐sun with vertices in V . For every
i j m, [0, − 1]∈ , the list of i j( , )‐differences of Γ is the multiset Δ Γij defined as follows:

1. if x x xΓ = ( , , …, )k1 2 , then

a a x a i x a j h k s

a a x a j x a i h k s

Δ Γ = { − | = ( , ), = ( , ), 1 / }

{ − | = ( , ), = ( , ), 1 / };

ij h h h h h h

h h h h h h

+1 +1 +1

+1 +1 +1

≤ ≤

∪ ≤ ≤

2. if
x x x

x x x
Γ =

′ ′ ′
k

k

1 2

1 2

⎛
⎝⎜

⎞
⎠⎟

⋯

⋯
, then

x x x a a x a i x a j h k s

a a x a j x a i h k s

Δ Γ = Δ ( , , …, ) { − | = ( , ), = ( , ), 1 / }

{ − | = ( , ), = ( , ), 1 / }.

′ ′ ′

′ ′ ′

ij ij k h h h h h h

h h h h h h

1 2 ∪ ≤ ≤

∪ ≤ ≤

We notice that when s = 1 we find the classic concept of list of differences. Usually, one speaks
of pure or mixed differences according to whether i j= or not, and when m = 1 we simply write

BURATTI ET AL. | 7
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ΔΓ. This concept naturally extends to a family  of graphs with vertices in V by setting
Δ = Δ Γij ijΓ ⋃ ∈ . Clearly, Δ Γ = −Δ Γij ji , hence Δ = −Δij ji  , for every i j m, [0, − 1]∈ .

We also need to define the list of neighbors of u∞ in  , that is, the multiset N ( )u ∞ of the
vertices in V adjacent to u∞ in some graph Γ ∈ .

Finally, we introduce a special class of subgraphs of Kmn. To this purpose, we take
V K G m( ) = × [0, − 1]mn . Letting D G\ {0}ii ⊆ for every i m0 − 1≤ ≤ , and D Gij ⊆ for every

i j m0 < − 1≤ ≤ , we denote by

D i j m|0 − 1ij〈 ≤ ≤ ≤ 〉

the spanning subgraph of Kmn containing exactly the edges g i g d j{( , ), ( + , )} for every g G∈ ,
d Dij∈ , and i j m0 − 1≤ ≤ ≤ . The reader can easily check that this graph remains unchanged
if we replace any set Dii with D± ii.

The following result, standard in the context of difference families, provides us with a
method to construct Γ‐decompositions for subgraphs of K w+mn .

Proposition 2.1. Let G be an abelian group of odd order n, let m and w be nonnegative
integers, and denote by  a family of k‐cycles (resp., k‐suns) with vertices in

G m u( × [0, − 1]) { | }u w∪ ∞ ∈ satisfying the following conditions:

1. Δij has no repeated elements, for every i j m0 <≤ ≤ ;
2. N g i i m g G( ) = {( , )|0 < , }u u i u i, , ∞ ≤ ∈ for every u w1 ≤ ≤ .

Then Orb τ g G(Γ) = { (Γ)| , Γ }G gΓ ⋃ ∈ ∈∈ is a k‐cycle (resp., k‐sun) system of
i j m wΔ |0 − 1 +ij〈 ≤ ≤ ≤ 〉 .

Proof. Let Orb K i j m= (Γ), = Δ |0 − 1* G ijΓ ⋃ 〈 ≤ ≤ ≤ 〉∈ , and let ϵ be an edge of
K w+ . We are going to show that ϵ belongs to exactly one graph of * .

If ϵ E K( )∈ , by recalling the definition of K we have that ϵ g i g d j= {( , ), ( + , )} for
some g G∈ and d Δij∈ , with i j m0 <≤ ≤ . Hence, there is a graph Γ ∈ such that
d Δ Γij∈ . This means that Γ contains the edge ϵ g i g d j′ = {( ′, ), ( ′ + , )} for some g G′ ∈ ,
therefore ϵ τ ϵ τ= ( ′) (Γ)

′ ′
*g g g g− − ∈ ∈ . To prove that ϵ only belongs to τ (Γ)

′g g− , let Γ′ be
any graph in  such that ϵ τ (Γ′)x∈ , for some x G∈ . Since translations preserve
differences, we have that d τΔ (Γ′) = Δ Γ′ij x ij∈ . Considering that d Δ Γ Δ Γ′ij ij∈ ∩ and, by
condition (1), Δij has no repeated elements, we necessarily have that Γ′ = Γ, hence
τ ϵ( ) Γx− ∈ . Again, since Δ Γij has no repeated elements (condition 1), and considering that
ϵ′ and τ ϵ( )x− are edges of Γ that yield the same differences, then τ ϵ ϵ τ ϵ( ) = ′ = ( )

′x g g− − ,
that is, τ ϵ ϵ( ) =

′g g x− + . Since G has odd order, it has no element of order 2, hence
g g x′ − + = 0, that is, x g g= − ′, therefore τ (Γ)

′g g− is the only graph of * containing ϵ.
Similarly, we show that every edge of K w K( + )⧹ belongs to exactly one graph of * .

Let ϵ g i= { , ( , )}u∞ for some u w∈ and g i G m( , ) × [0, − 1]∈ . By assumption, there is
a graph Γ *∈ containing the edge ϵ g i′ = { , ( , )}u u i,∞ with g Gu i, ∈ . Hence,
ϵ τ ϵ τ= ( ′) (Γ)g g g g− −u i u i, ,

∈ . Finally, if ϵ τ (Γ′)x∈ for some x G∈ and Γ′ ∈ , then
g x i τ ϵ{ , ( − , )} = ( ) Γ′u x−∞ ∈ . Since condition (2) implies that N ( )u ∞ contains exactly

one pair from G i× { }, we necessarily have that Γ = Γ′ and x g g= − u i, ; therefore, there is
exactly one graph of * containing ϵ. Condition (2) also implies that N ( )u ∞ is disjoint

8 | BURATTI ET AL.
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from u{ | }u w∞ ∈ , and this guarantees that no graph in * contains edges joining two
infinities. Therefore, * is the desired decomposition of K w+ . □

Considering that K D i j m= |0 − 1mn ij〈 ≤ ≤ ≤ 〉 if and only if D G± = {0}ii ⧹ for every
i m[0, − 1]∈ , and D G=ij for every i j m0 < − 1≤ ≤ , the proof of the following corollary to
Proposition 2.1 is straightforward.

Corollary 2.2. Let G be an abelian group of odd order n, let m and w be nonnegative
integers, and denote by  a family of k‐cycles (resp., k‐suns) with vertices in

G m u( × [0, − 1]) { | }u w∪ ∞ ∈ satisfying the following conditions:

1.
G i j m

G i j m
Δ =

{0} if 0 = − 1,

if 0 < − 1,
ij

⎧⎨⎩
⧹ ≤ ≤

≤ ≤

2. N g i i m g G( ) = {( , )|0 < , }u u i u i, , ∞ ≤ ∈ for every u w1 ≤ ≤ .

Then Orb (Γ)GΓ ⋃ ∈ is a k‐cycle (resp., k‐sun) system of K w+mn .

3 | CONSTRUCTING k‐CYCLE SYSTEMS
OF D D D w, , +00 01 11⟨ ⟩
In this section, we recall and generalize some results from [11] to provide conditions on

D D D, , k00 01 11 ⊆ that guarantee the existence of a k‐cycle system for the subgraph
D D D w, , +00 01 11⟨ ⟩ of K w+k2 , where V K( ) = × {0, 1}k k2 .

We recall that every connected 4‐regular Cayley graph over an abelian group has a Hamilton
cycle system [3] and show the following.

Lemma 3.1. Let a b c d[ , ], [ , ] [1, ]⊆ ℓ . The graph a b c d[ , ], , [ , ]⟨ ∅ ⟩ has a k‐cycle system
whenever both a b[ , ] and c d[ , ] satisfy the following condition: the interval has even size or
contains an integer coprime with k.

Proof. The graph a b c d[ , ], , [ , ]⟨ ∅ ⟩ decomposes into a b[ , ], ,⟨ ∅ ∅⟩ and c d, , [ , ]⟨∅ ∅ ⟩.
The first one is the Cayley graph Cay a bΓ = ( , [ , ])k with further k isolated vertices,
while the second one is isomorphic to c d[ , ], ,⟨ ∅ ∅⟩. Therefore, it is enough to show that
Γ has a k‐cycle system.

Note that Γ decomposes into the subgraphs Cay D( , )k i , for i t0 ≤ ≤ , whenever the
sets Di between them partition a b[ , ]. By assumption, a b[ , ] has even size or contains an
integer coprime with k. Therefore, we can assume that for every i > 0 the set Di is a pair
of integers at distance 1 or 2, and D0 is either empty or contains exactly one integer
coprime with k. Clearly, Cay D( , )k 0 is either the empty graph or a k‐cycle, and the
remaining Cay D( , )k i are 4‐regular Cayley graphs. Also, for every i > 0 we have that Di

is a generating set of k (since k is odd and Di contains integers at distance 1 or 2), hence
the graph Cay D( , )k i is connected. It follows that each Cay D( , )k i , with i > 0,
decomposes into two k‐cycles, thus the assertion is proven. □

Lemma 3.2. Let S i i{2 − 1 1 }⊆ ∣ ≤ ≤ ℓ . Then there exist k‐cycle systems for the graphs
S S{ }, ( + 1),⟨ ℓ ∪ ∅⟩ and S S{ }, ( + 1) ( + 2),⟨ ℓ ∪ ∅⟩.

BURATTI ET AL. | 9
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Proof. We note that the result is trivial when S = ∅, since { }, ,⟨ ℓ ∅ ∅⟩ is a k‐cycle.
The existence of a k‐cycle system of S SΓ = { }, ( + 1),⟨ ℓ ∪ ∅⟩ has been proven in [11,

Lemma 3] when S i i{2 − 1|1 }⊆ ≤ ≤ ℓ . Consider now the permutation f of  × {0, 1}k

fixing  × {0}k pointwise, and mapping i( , 1) to i( + 1, 1) for every i k∈ . It is not
difficult to check that f S S(Γ) = { }, ( + 1) ( + 2),⟨ ℓ ∪ ∅⟩ which is therefore isomorphic to
Γ, and hence it has a k‐cycle system. □

Lemma 3.3. Let r s, , and s′ be integers such that s s s1 ′ min{ + 1, }≤ ≤ ≤ ℓ , and r0 <

s s+ ′ (mod 2)≢ . Also, let D k[0, − 1]⊆ be a nonempty interval of size k s s r− ( + ′ + 2 ).
Then there is a cycle C x x x= ( , , …, )k1 2 of ϵ s ϵ D ϵ s ϵ rΓ = [1 + , + ], , [1 + , ′ + ] +〈 〉 , for
every ϵ {0, 1}∈ , such that Orb C( ) is a k‐cycle system of Γ. Furthermore, if u = 0 or
u ϵ s= 1 − = 1 − 1≤ , then

1. Dev x x({ , })u u2− 3− is a k‐cycle with vertices in  × {0}k ;
2. Dev x x({ , })u u4+ 5+ is a k‐cycle with vertices in  × {1}k .

Proof. Set t k s s r= − ( + ′ + 2 ) and let Ω = ϵ s ϵ t ϵ s ϵ[1 + , + ], [0, − 1], [1 + , ′ + ] +〈 〉

r . For i ∈ s s[0, + ′ + 1] and j t r[0, + − 1]∈ , let ai and bj be the elements of  × {0, 1}k

defined as follows:

a

i
i s

s ϵ
i

i s

a i s s

s ϵ i s s s

b

j
j t r

t
j

j t

t
j t

j t t r

a j t r

=

−
2

, 0 if [0, ] is even ,

− − +
− 1

2
, 0 if [1, ] is odd,

+ (0, 1) if [ + 1, 2 + 1],

(− ′ − , 1) if = + ′ + 1 > 2 + 1,

=

2
, 0 if [0, + − 2] is even,

−
+ 1

2
, 1 if [1, − 1] is odd,

+
−

2
, 1 if [ , + − 2] is odd,

if = + − 1.
′

i

s i

j

s s

2 +1−

+ +1

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎢
⎣⎢

⎥
⎦⎥

⎞
⎠⎟

∈

∈

∈

∈

∈

∈

Since the elements ai and bj are pairwise distinct, except for a b=0 0 and a b=
′s s t r+ +1 + −1,

then the union F of the following two paths is a k‐cycle:

P a a a

Q b b b b b b

= ~ ~ ~ ,

= ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .
′s s

t t t r t r

0 1 + +1

0 1 −1 1 2 +1 + −1

⋯

⋯ ∞ ∞ ⋯ ∞

Since F P QΔ = Δ Δij ij ij∪ , for i j, {0, 1}∈ , where

P ϵ s ϵ P P ϵ s ϵ

Q Q t Q

Δ = ±[1 + , + ], Δ = {0}, Δ = ±[1 + , ′ + ],

Δ = , Δ = [1, − 1], Δ = ,
00 01 11

00 01 11∅ ∅

10 | BURATTI ET AL.
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and considering that N N b b( ) = ( ) = { , }F h Q h t h t h+ −2 + −1∞ ∞ for every h r[1, ]∈ ,
Proposition 2.1 guarantees that Orb F( ) is a k‐cycle system ofΩ. Furthermore, if u = 0

or u ϵ s= 1 − = 1 − 1≤ , then

a a a a u ϵ±( − ) = ±( − ) = ±( + + 1, 0).s u s u s u s u− − −1 + +2 + +1

Since k is odd, we have that Dev a a({ , })s u s u− −1 − and Dev a a({ , })s u s u+ +2 + +1 are k‐cycles
with vertices in  × {0}k and  × {1}k , respectively.

If D g g t= [ , + − 1] is any interval of k[0, − 1] of size t , and f is the permutation of
 × {0, 1}k fixing  × {0}k pointwise, and mapping i( , 1) to i g( + , 1) for every i k∈ , one
can check that C f F= ( ) is the desired k‐cycle of fΓ = (Ω). □

Lemma 3.4.

1. Let ℓ be odd. If Γ is a 1‐factor of K k2 , then Γ + ℓ decomposes into k cycles of length k,
each of which contains exactly one edge of Γ. Furthermore, if dΓ = , { },⟨∅ ∅⟩, then there
exists a k‐cycle C c c c= ( , , …, )k1 2 of Γ + ℓ, with c × {0}k1 ∈ and c × {1}k2 ∈ ,
such that

Dev c c and Orb C is a k cycle system of({ , }) = Γ ( ) ‐ Γ + .1 2 ℓ

2. Let ℓ be even. If Γ is a k‐cycle of order k2 , then Γ + ℓ decomposes into k cycles of length k,
each of which contains exactly one edge of Γ. Furthermore, if dΓ = { }, ,⟨ ∅ ∅⟩ and d is
coprime with k, then there exists a k‐cycle C c c c= ( , , …, )k1 2 of Γ + ℓ, with

c c, × {0}k1 2 ∈ , such that

Dev c c is the k cycle of and Orb C is a k cycle system of({ , }) ‐ Γ ( ) ‐ Γ + .1 2 ℓ

Proof. Permuting the vertices of K k2 if necessary, we can assume that Γ is the 1‐factor
Γ = , {0},0 ⟨∅ ∅⟩ when ℓ is odd, and the k‐cycle Γ = { }, ,1 ⟨ ℓ ∅ ∅⟩ (of order k2 ) when ℓ is
even. For h {0, 1}∈ , let C c c c c c= ( , , , , , , …, , , )h h h,1 ,2 1 3 2 4 −1 +1∞ ∞ ∞ ∞ℓ ℓ ℓ be the k‐cycle of
Γ +h ℓ, where

c h c h c

j
j

j
j

= (0, 1 − ), = ( , 0), and =

− 1

2
, 1 if [3, + 1] is odd ,

2
, 0 if [4, + 1] is even .

h h j,1 ,2

⎜ ⎟

⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ℓ

∈ ℓ

∈ ℓ

Note that the sets CΔij h are empty, except for CΔ = {0}01 0 and CΔ = {± }00 1 ℓ . Also, the two
neighbors of u∞ in Ch belong to  × {0}k and  × {1}k , respectively. Hence, Proposition 2.1
guarantees that Orb C( )h is a k‐cycle system of Γ +h ℓ, for h {0, 1}∈ . We finally notice that
Dev c c({ , }) = Γh h h,1 ,2 (up to isolated vertices) and this completes the proof. □

The following result has been proven in [11].

BURATTI ET AL. | 11
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Lemma 3.5. Let D [1, ]⊆ ℓ . The subgraph D D, {0},⟨ ⟩ of K k2 has a 1‐factorization.

Remark 3.6. Considering the permutation f of  × {0, 1}k such that f i j i j( , ) = ( , 1 − ),
and a graph D D DΓ = , ,0 1 2⟨ ⟩, we have that f D D D(Γ) = , − ,2 1 0⟨ ⟩. Therefore,
Lemmas 3.1–3.5 continue to hold when we replace Γ by f (Γ).

4 | k‐SUN SYSTEMS OF K n+k4

In this section we provide sufficient conditions for a k‐sun system of K n+k4 to exist, when
n 0, 1 (mod 4)≡ . More precisely, we show the following.

Theorem 4.1. Let k 7≥ be an odd integer and let n 0, 1 (mod 4)≡ with k n k2 < < 10 ;
then there exists a k‐sun system of K n+k4 , except possibly when

• k = 7 and n = 20, 21, 32, 33, 44, 45, 56, 57, 64, 65, 68, 69,
• k = 11 and n = 100, 101, 112, 113.

To prove Theorem 4.1, we start by introducing some notions and prove some preliminary
results. Let M be a positive integer and take V K( ) = × [0, 2 − 1]M M

i
2i and V K w( + )M2i

V K h= ( ) { | }M h w2i ∪ ∞ ∈ , for i {1, 2}∈ and w > 0.
Now assume that w u= 2 , and let x x↦ be the permutation of V K u( + 2 )M4 defined as

follows:


x

a j x a j

a j x a j

x

=

( , 2 − ) if = ( , ) × {0, 2},

( , 4 − ) if = ( , ) × {1, 3},

if = .

M

M

h u h+

⎧
⎨⎪
⎩⎪

∈

∈

∞ ∞

For any subgraph Γ of K u+ 2M4 , we denote by Γ the graph (isomorphic to Γ) obtained by
replacing each vertex x of Γ with x .

Given a subgraph Γ of K u+M2 , we denote by Γ[2] the spanning subgraph of K u+ 2M4

whose edge‐set is

E x y x y x y x y x y E(Γ[2]) = {{ , }, { , }, { , }, { , }|{ , } (Γ)},∈

and let IΓ [2] = Γ[2]* ⊕ be the graph obtained by adding to Γ[2] the 1‐factor

I x x x= {{ , }| × {0, 1}}.M∈

Note that, up to isolated vertices, Γ[2] is the lexicographic product of Γ with the empty graph on
two vertices.

The proof of the following elementary lemma is left to the reader.

Lemma 4.2. Let Γ = Γi
n

i=1⊕ and let w w=
i

n
i=1

∑ with w 0i ≥ . If Γ and the Γis have the
same vertex‐set (possibly with isolated vertices), then

1. w wΓ + = (Γ + )i
n

i i=1⊕ ;

12 | BURATTI ET AL.
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2. Γ[2] = Γ [2]i
n

i=1⊕ ;
3. w w(Γ + )[2] = Γ[2] + 2 .

We start showing that if C is a k‐cycle, then C [2] decomposes into two k‐suns.

Lemma 4.3. Let C c c c= ( , , …, )k1 2 be a cycle with vertices in  h( × {0, 1}) { | }M h u∪ ∞ ∈

and let S be the k‐sun defined as follows:

S
s s s
s s s

=
…
…

,
k k

k

1 −1

2 1
⎜ ⎟
⎛
⎝

⎞
⎠ (1)

where s c c{ , }i i i∈ for every i k[1, ]∈ . Then C S S[2] = ⊕ .

Proof. It is enough to notice that S contains the edges s s{ , }i i+1 and s s{ , }i i+1 , while S

contains s s{ , }i i+1 and s s{ , }i i+1 , for every i k[1, ]∈ , where s s=k+1 1 and s s=k+1 1 . □

Example 4.4. In Figure 1 we have the graph C [2]7 which can be decomposed into two
7‐suns S and S . The nondashed edges are those of S, while the dashed edges are those
of S .
For every cycle C c c c= ( , , …, )k1 2 with vertices in  × {0, 1}M , we set

σ C
c c c
c c c

( ) =
…
…

.
k k

k

1 −1

2 1
⎜ ⎟
⎛
⎝

⎞
⎠

Clearly, C σ C σ C[2] = ( ) ( )⊕ by Lemma 4.3.

Lemma 4.5. If C C C= { , , …, }t1 2 is a k‐cycle system of uΓ + , where Γ is a subgraph of
K M2 , and Si is a k‐sun obtained from Ci as in Lemma 4.3, then S S i t= { , | [1, ]}i i ∈ is a
k‐sun system of uΓ[2] + 2 . In particular, if Orb C= ( )1 , thenOrb S Orb S( ) ( )1 1∪ is a k‐sun
system of uΓ[2] + 2 .

Proof. By assumption u CΓ + = i
t

i=1⊕ , where each Ci is a k‐cycle. Also, by Lemma 4.2,
we have that u u CΓ[2] + 2 = (Γ + )[2] = [2]i

t
i=1⊕ . Since C S S[2] =i i i⊕ by Lemma 4.3,

then  is a k‐sun system of uΓ[2] + 2 .
The second part easily follows by noticing that if C τ C= ( )i g 1 for some g M∈ , then

C τ C τ S τ S[2] = ( [2]) = ( ) ( )i g g g1 1 1⊕ . □

FIGURE 1 C S S[2] =7 ⊕

BURATTI ET AL. | 13
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The following lemma describes the general method we use to construct k‐sun systems of
K n+k4 . We point out that throughout the rest of this section we take V K( ) = × {0, 1}k k2

and V K( ) = × [0, 3]k k4 .

Lemma 4.6. Let K = Γ Γk2 1 2⊕ with V V V K(Γ ) = (Γ ) = ( )k1 2 2 . If wΓ +1 1 has a k‐cycle
system and wΓ [2] +*2 2 has a k‐sun system, then K w w+ (2 + )k4 1 2 has a k‐sun system.

Proof. The result follows by Lemma 4.2. In fact, noting that K K I= [2]k k4 2 ⊕ , where
I z z z= {{ , } × {0, 1}}k∣ ∈ , we have that

K w w I w w

w w w w

+ (2 + ) = (Γ [2] (Γ [2] )) + 2 +

= (Γ [2] + 2 ) (Γ [2] + ) = (Γ + )[2] (Γ [2] + ).* *
k4 1 2 1 2 1 2

1 1 2 2 1 1 2 2

⊕ ⊕

⊕ ⊕

The result then follows by Lemma 4.5. □

We are now ready to prove the main result of this section, Theorem 4.1. The case
k 1 (mod 4)≡ is proven in Theorem 4.7, while the case k 3 (mod 4)≡ is dealt with in
Theorems 4.9–4.12.

Theorem 4.7. If k 1 (mod 4) 9≡ ≥ and n 0, 1 (mod 4)≡ with k n k2 < < 10 , then there
exists a k‐sun system of K n+k4 .

Proof. Let n q r ν= 2( + ) +ℓ with r1 ≤ ≤ ℓ and ν {2, 3}∈ . Note that 4ℓ ≥ is even
and r is odd, since n 0, 1 (mod 4) 9≡ ≥ and k 1 (mod 4)≡ . Considering also that

k n2 < k< 10 , we have that q k r2 10 + 2 − 1≤ ≤ ≤ . Furthermore, let V K n( + )k4

 h= ( × [0, 3]) { | } { , , }′ ′ ′k h n ν ν− 1 2∪ ∞ ∈ ∪ ∞ ∞ ∞ .
We start decomposing K k2 into the following two graphs:

k r k k rΓ = [2, ], [ − 2 − 2, − 1], [2, − 1] and Γ = {1}, [0, − 2 − 3], {1, } .1 2⟨ ℓ ℓ ⟩ ⟨ ℓ ⟩

We notice that Γ1 further decomposes into the following graphs:

k r k[2, − 1], , , , , [2, − 1] , { }, [ − 2 − 2, − 1], ,⟨ ℓ ∅ ∅⟩ ⟨∅ ∅ ℓ ⟩ ⟨ ℓ ∅⟩

each of which decomposes into k‐cycles by Lemmas 3.1 and 3.2; hence Γ1 has a k‐cycle
system C C C{ , , …, }γ1 2 , where γ k r= + 2 − 2. Note that this system is nonempty, since

q γ1 − 1≤ ≤ . Without loss of generality, we can assume that each cycle Ci has order
k2 and

C is a subgraph of [2, − 1], , .1 ⟨ ℓ ∅ ∅⟩ (2)

Now set CΩ = Γ1 1 1⧹ and CΩ = Γ2 2 1⊕ . Letting w q w= ( − 2) =
j

γ
j1 =2 1,ℓ ∑ , where

w =j1, ℓ when j q< , and w = 0j1, otherwise, by Lemma 4.2 we have that

w C wΩ + = ( + )i
γ

i i1 1 =2 1,⊕ . Therefore, wΩ +1 1 has a k‐cycle system, since each C w+i i1,

decomposes into k‐cycles by Lemma 3.4. Setting w n w r ν= − 2 = 2(2 + ) +2 1 ℓ and

14 | BURATTI ET AL.
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considering that K = Γ Γ = Ω Ωk2 1 2 1 2⊕ ⊕ , by Lemma 4.6 it is left to show that
wΩ [2] +*2 2 has a k‐sun system.

Set CΓ =3 1, and recall that I IΩ [2] = Ω [2] = Γ [2] Γ [2]*2 2 2 3⊕ ⊕ ⊕ , where I denotes
the 1‐factor z z z{{ , }| × {0, 1}}k∈ of K k4 . Hence,

w r I νΩ [2] + = (Γ + ( + ))[2] (Γ + )[2] ( + )*2 2 2 3ℓ ⊕ ℓ ⊕ (3)

by Lemma 4.2. Clearly, Γ = Γ Γ2 2,1 2,2⊕ where k rΓ = {1}, [0, − 2 − 3], {1}2,1 ⟨ ⟩ and
Γ = , , { }2,2 ⟨∅ ∅ ℓ ⟩, hence r rΓ + ( + ) = (Γ + ) (Γ + )2 2,1 2,2ℓ ⊕ ℓ . By Lemmas 3.3 and 3.4,

there exists a k‐cycle A x x y y a a= ( , , , , , …, )k1 2 3 4 5 of rΓ +2,1 and a k‐cycle
B y y b b= ( , , , …, )k1 2 3 of Γ +2,2 ℓ satisfying the following properties:

Orb A Orb B k r( ) ( ) is a ‐cycle system of Γ + ( + ),2∪ ℓ (4)

Dev x x k({ , }) is a ‐cycle with vertices in × {0},k1 2
(5)

Dev y y Dev y y k({ , }) and ({ , }) are ‐cycles with vertices in × {1}.k1 2 3 4
(6)

Furthermore, denoted by c c c( , , …, )k1 2 the cycle in Γ3, Lemma 3.4 guarantees that

k F F F

F c c f f f j k c c

Γ + has a ‐cycle system { , , …, } such that

= ( , , , , …, ) for every [1, ] (with = ).

k

j j j j j j k k

3 1 2

+1 ,3 ,4 , +1 1

ℓ

∈

Let S S S S= { , , , }1 2 3 4 and S S j k′ = { , | [1, ]}j j3+2 4+2 ∈ , where

S σ x x y y a a S σ y y b b

S σ c c f f f j k

S S i k

= ( , , , , , …, ), = ( , , , …, ),

= ( , , , , …, ) for [1, ], and

= for [1, + 2].

k k

j j j j j j k

i i

1 1 2 3 4 5 3 1 2 3

3+2 +1 ,3 ,4 ,

2 2 −1

∈

∈

By Lemma 4.5 we have that Orb S( )S ⋃ ∈ is a k‐sun system of r(Γ + ( + ))[2]2 ℓ , and ′ is
a k‐sun system of (Γ + )[2]3 ℓ . It follows by (3) that Orb S( ) ′S ⋃ ∪∈ decom-

poses w I ν(Ω [2] + ) ( + )*2 2 ⧹ .

To construct a k‐sun system of wΩ [2] +*2 2, we first modify the k‐suns in ′ ∪ by
replacing some of their vertices with ,′ ′1 2∞ ∞ , and possibly ′3∞ when ν = 3. More precisely,
following Table 1, we obtainTi from Si by replacing the ordered setVi of vertices of Si with
V ′i . This yields a set Mi of ‘missing’ edges no longer covered by Ti after this substitution,
but replaced by those in Ni, namely,

E T E S M N( ) = ( ( ) ) .i i i i⧹ ∪

We point out that T S=j j3+2 3+2 , and T S=j j4+2 4+2 when ν = 2, for every j k[1, ]∈ . The
remaining graphs Ti are explicitly given below, where the elements in bold are the re-
placed vertices.

BURATTI ET AL. | 15
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T
A
B
L
E

1
F
ro
m

S
i
to

T i

i


V
V

i
i′

M
i

N
i

ν

1
x

y
(

,
)

(
,

)
′

′
2

3
1

2
→

∞
∞

x
x

x
y

{
,

},
{

,
}

1
2

2
3
,

y
y

y
y

{
,

},
{

,
}

3
4

3
4

x
x

y
y

{
,

},
{

,
},

{
,

},
{

,
}

′
′

′
′

1
1

2
2

2
4

2
4

∞
∞

∞
∞

2,
3

2
x

y
(

,
)

(
,

)
′

′
2

3
1

2
→

∞
∞

x
x

x
y

{
,

},
{

,
}

1
2

2
3

x
x

{
,

},
{

,
}

′
′

1
1

2
2

∞
∞

2

2
x

y
y

x
(

,
,

)
(

,
,

)
′

′
′

2
3

3
1

2
3

→
∞

∞
∞

x
x

x
y

x
y

y
y

y
y

{
,

},
{

,
},

{
,

},
{

,
},

{
,

}
1

2
2

3
2

3
3

4
3

4
x

x
x

y
y

{
,

},
{

,
},

{
,

},
{

,
},

{
,

}
′

′
′

′
′

1
1

2
2

3
2

3
4

3
4

∞
∞

∞
∞

∞
3

3
y

′
2

1
→
∞

y
y

{
,

}
1

2
y

{
,

}
′ 1

1
∞

2,
3

4
y

′
2

1
→
∞

y
y

{
,

}
1

2
y

{
,

}
′ 1

1
∞

2,
3

j
3

+
2

∅
∅

∅
2,

3

j
4

+
2

∅
∅

∅
2

j
4

+
2

c
′

j+
1

3
→
∞

c
c

{
,

}
j

j+
1

c
{

,
}

′
j

3
∞

3
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T
x x y a a a

y y a a a x

T

x x y y a a a

y a a a x
ν

x x y a a a

y a a a x
ν

T
y y b b b

b b b y
T

y y b b b

b b b y

T
c c f f f

f f f c
j k

= ,

=

if = 2,

if = 3,

= , = ,

= for every [1, ].

′

k k

k

k k

k

k k

k

k k

k

k k

k

j

j j j j k j k

j j j k j

′

′

′ ′

′

′ ′

′

′

1
1 2 2 4 5 −1

1 3 4 5 6 1

2

1 2 3 4 5 −1

1 2 4 5 6 1

1 2 3 4 5 −1

1 2 4 5 6 1

3
1 2 3 −1

1 3 4 1

4
1 2 3 −1

1 3 4 1

4+2

+1 ,3 , −1 ,

3 ,3 ,4 ,

∞

∞

∞

∞ ∞

∞

∞ ∞

∞

∞

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯
∈

We notice that Dev N N x j ν x( ) = {{ , }| [1, ], × [0, 3]}′i i i
k

i j k=1
4

=5
2 +4⋃ ∪ ⋃ ∞ ∈ ∈ . We finally

build the following ν2 + 1 graphs:

G
Dev x x x ν

Dev x x y ν
G Dev x x y

G Dev y y x G Dev y y y

G Dev y y y y G Dev y y y

G
c c c
c c c

=
( ) if = 2,

( ) if = 3,
= ( ),

= ( ), = ( ),

= ({ , } { , }), = ( ),

=
…
…

.k

k

1
1 2 2

1 2 3
2 1 2 3

3 4 3 2 4 1 2 2

5 1 2 3 4 6 4 3 4

7
1 2

1 2
⎜ ⎟

⎧⎨⎩

⎛
⎝

⎞
⎠

∼ ∼

∼ ∼
∼ ∼

∼ ∼ ∼ ∼

⊕ ∼ ∼

By recalling (2) and (4)–(6), it is not difficult to check that G G G, , …, ν1 2 2 +1 are k‐suns.
Furthermore,

E G Dev M M E I( ) = ( ) ( ),
i

ν

i
i

i
i

k

i
=1

2 +1

=1

4

=5

2 +4

⋃ ⋃ ∪ ⋃ ∪

where, we recall, I denotes the 1‐factor z z z{{ , }| × {0, 1}}k∈ of K k4 . Therefore,
Orb T T T T G G G( ) { , , …, } { , , …, }i i k ν=1

4
5 6 2 +4 1 2 2 +1⋃ ∪ ∪ is a k‐sun system of wΩ [2] +*2 2, and

this concludes the proof. □

Example 4.8. By following the proof of Theorem 4.7, we construct a k‐sun system of
K n+k4 when k n( , ) = (9, 21); hence q r ν( , , , ) = (4, 2, 1, 3)ℓ .

The graphs Γ = [2, 4], [5, 8], [2, 3]1 ⟨ ⟩ and Γ = {1}, [0, 4], {1, 4}2 ⟨ ⟩ decompose the
complete graph K18 with vertex‐set  × {0, 1}9 . Also Γ1 decomposes into the following
9‐cycles of order 18, where i = 0, 1:

BURATTI ET AL. | 17
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C i i i i i i i i i

C i i i i i i i i i

C i i i i i i

i i i

C i i i i i i

i i i

C

= ((0, ), (2, ), (8, ), (1, ), (3, ), (5, ), (7, ), (4, ), (6, )),

= ((0, ), (3, ), (6, ), (8, ), (5, ), (2, ), (4, ), (1, ), (7, )),

= ((4 , 0), (8 + 4 , 1), (1 + 4 , 0), (4 , 1), (2 + 4 , 0), (1 + 4 , 1),

(3 + 4 , 0), (2 + 4 , 1), (4 + 4 , 0)),

= ((8 + 4 , 0), (5 + 4 , 1), (4 , 0), (6 + 4 , 1), (1 + 4 , 0), (7 + 4 , 1),

(2 + 4 , 0), (8 + 4 , 1), (3 + 4 , 0)),

= ((7, 0), (2, 0), (6, 0), (1, 0), (5, 0), (0, 0), (7, 1), (8, 0), (4, 1)).

i

i

i

i

1+

3+

5+

7+

9

Clearly, K = Ω Ω18 1 2⊕ , where CΩ = Γ1 1 1⧹ and CΩ = Γ2 2 1⊕ .
Let V K( ) = × [0, 3]36 9 , and denote by I the 1‐factor of K36 containing all edges of the

form a i a i{( , ), ( , + 2)}, with a 9∈ and i {0, 1}∈ . Then,

K K I I= [2] = Ω [2] Ω [2] .36 18 1 2⊕ ⊕ ⊕

Considering that (Ω + 9)[2] = Ω [2] + 182 2 , we have

K I I+ 21 = Ω [2] (Ω [2] + 18) ( + 3) = Ω [2] (Ω + 9)[2] ( + 3).36 1 2 1 2⊕ ⊕ ⊕ ⊕

Since the set σ C σ C i{ ( ), ( )| [2, 9]}i i ∈ is a 9‐sun system of Ω [2]1 , it is left to build a 9‐sun
system of IΩ [2] + 21 = (Ω [2] + 18) ( + 3)*2 2 ⊕ .

We start by decomposing Ω + 92 into 9‐cycles. Since Ω = Γ Γ Γ2 2,1 2,2 3⊕ ⊕ with
Γ = {1}, [0, 4], {1} , Γ = , , {4}2,1 2,2⟨ ⟩ ⟨∅ ∅ ⟩ and CΓ =3 1, then

Ω + 9 = (Γ + 1) (Γ + 4) (Γ + 4).2 2,1 2,2 3⊕ ⊕

Let A x x y y a a= ( , , , , , …, )1 2 3 4 5 9 and B y y b b= ( , , , …, )1 2 3 9 be the 9‐cycles defined as follows:

x x y y

a a

y y

b b

( , , , ) = ((0, 0), (−1, 0), (−1, 1), (0, 1)),

( , …, ) = ( , (2, 0), (3, 1), (1, 0), (4, 1)),

( , ) = ((0, 1), (4, 1)),

( , …, ) = ( , (1, 0), , (1, 1), , (0, 0), ).

1 2 3 4

5 9 1

1 2

3 9 2 3 4 5

∞

∞ ∞ ∞ ∞

One can easily check that Orb A( ) (resp., Orb B( )) decomposes Γ + 12,1 (resp., Γ + 42,2 ).
Also, for every edge c c{ , }j j+1 of C1, with j [1, 9]∈ and c c=10 1, we construct the cycle
F c c f f f= ( , , , , …, )j j j j j j+1 ,3 ,4 ,9 , where

f f f( , , …, ) = ( , (1, 0), , (1, 1), , (0, 0), ).j j j,3 ,4 ,9 6 7 8 9∞ ∞ ∞ ∞

One can check that F F F{ , , …, }1 2 9 is a 9‐cycle system of Γ + 43 . Therefore,
Orb A Orb B F F F= ( ) ( ) { , , …, }1 1 2 9 ∪ ∪ provides a 9‐cycle system of Ω + 92 . Since the set

C C{ [2] }1∣ ∈ decomposes (Ω + 9)[2]2 , and each C [2] decomposes into two 9‐suns, we
can easily obtain a 9‐sun system of (Ω + 9)[2]2 . Indeed, letting

S σ x x y y a a S σ y y b b

S σ c c f f f j

S S i

= ( , , , , , …, ), = ( , , , …, ),

= ( , , , , …, ) for [1, 9], and

= for [1, 11],

j j j j j j

i i

1 1 2 3 4 5 9 3 1 2 3 9

3+2 +1 ,3 ,4 ,9

2 2 −1

∈

∈

18 | BURATTI ET AL.
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we have that A S S[2] = 1 2⊕ , B S S[2] = 3 4⊕ , and F S S[2] =j j j3+2 4+2⊕ , for every
j [1, 9]∈ . Therefore Orb S S S S= ( ) { , , …, }i i2 =1

4
5 6 22 ⋃ ∪ is a 9‐sun system of Ω [2] + 182 .

We finally use 2 to build a 9‐sun system of IΩ [2] + 21 = (Ω [2] + 18) ( + 3)*2 2 ⊕ . By
replacing the vertices of each Si, as outlined in Table 1, we obtain the 9‐sunTi. The new 22
graphs, T T T, , …,1 2 22, are built in such a way that

Orb T T T T K

K

(a) ( ) { , , …, } decomposes a subgraph of Ω [2] + 21;

(b) (Ω [2] + 21)\ decomposes into seven 9‐suns .

*

*
i

i
=1

4

5 6 22 2

2

⋃ ∪

This way we obtain a 9‐sun system of Ω [2] + 21*2 , and hence the desired 9‐sun system
of K + 2136 .

Theorem 4.9. Let k 3 (mod 4) 7≡ ≥ and n 0, 1 (mod 4)≡ with k n k2 < < 10 . If

n k2, 3 (mod − 1)≢ and n

k

− 4

− 1
⎢⎣ ⎥⎦ is even, then there exists a k‐sun system of K n+k4

except possibly when k n( , ) {(7, 64), (7, 65)}∈ .

Proof. First, k 3 (mod 4) 7≡ ≥ implies that 3ℓ ≥ is odd. Now, let n q r ν= 2( + ) +ℓ

with r1 ≤ ≤ ℓ and ν {2, 3}∈ . Note that q =
n

k

− 4

− 1
⎢⎣ ⎥⎦, hence q is even. Also, since

k n k2 < < 10 , we have q2 10≤ ≤ . By q even and n 0, 1 (mod 4)≡ it follows that r is

odd, and n k2, 3 (mod − 1)≢ implies that r ≠ ℓ. To sum up,

q q r ris even with 2 10, and is odd with 1 − 2.≤ ≤ ≤ ≤ ℓ

As in the previous theorem, let  V K n h( + ) = ( × [0, 3]) { | }k k h n ν4 −∪ ∞ ∈ ∪

{ , , }′ ′ ′ν1 2∞ ∞ ∞ .
We split the proof into two cases.
Case 1. q r2 + 4≤ . We start decomposing K k2 into the following two graphs:

k r k k rΓ = [3, ], [ − 2 − 2, ], [3, ] and Γ = {1, 2}, [1, − 2 − 3], {1, 2} .1 2⟨ ℓ ℓ ⟩ ⟨ ⟩

Since q r2 + 4≤ , the graph Γ1 can be further decomposed into the following graphs:

k r q k

k r k r q

Γ = { }, [ − 2 + − 3, ], , Γ = [3, − 1], , [3, ] ,

Γ = , [ − 2 − 2, − 2 + − 4], .

1,1 1,2

1,3

⟨ ℓ ∅⟩ ⟨ ℓ ∅ ℓ ⟩

⟨∅ ∅⟩

The first two graphs have a k‐cycle system by Lemmas 3.2 and 3.1, while Γ1,3 decomposes into
q( − 1) 1‐factors, say J J J, , …, q1 2 −1. Setting w q= ( − 1)1 ℓ, by Lemma 4.2 we have that:

q JΓ + ( − 1) = ( + ) (Γ Γ ).i
q

i1 =1
−1

1,1 1,2ℓ ⊕ ℓ ⊕ ⊕

Hence qΓ + ( − 1)1 ℓ has a k‐cycle system since each J +i ℓ decomposes into k‐cycles by
Lemma 3.4.

Letting w n w r ν= − 2 = 2( + ) +2 1 ℓ and recalling that K = Γ Γk2 1 2⊕ , by Lemma 4.6
it remains to construct a k‐sun system of wΓ [2] +*2 2. We start decomposing Γ2 into the
following graphs:

BURATTI ET AL. | 19
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k r k rΓ = {1, 2}, [1, − 2 − 4], {1, 2} and Γ = , { − 2 − 3}, .2,0 2,1⟨ ⟩ ⟨∅ ∅⟩

Recalling that IΓ [2] = Γ [2]*2 2 ⊕ , where I denotes the 1‐factor z z z{{ , }| × {0, 1}}k∈ of
K k4 , by Lemma 4.2 we have that

w r I νΓ [2] + = (Γ + )[2] (Γ + )[2] ( + ).*2 2 2,1 2,0ℓ ⊕ ⊕

By Lemmas 3.3 and 3.4 there exist a k‐cycle A x x x y y y a a= ( , , , , , , , …, )k1 2 3 4 5 6 7 of rΓ +2,0

and a k‐cycle B y x b b= ( , , , …, )k3 of Γ +2,1 ℓ, satisfying the following properties:




 

Orb A Orb B k r

Dev x x Dev x x k

Dev y y Dev y y k

x y

( ) ( ) is a ‐cycle system of Γ + ( + );

({ , }) and ({ , }) are ‐cycles with vertices in × {0};

({ , }) and ({ , }) are ‐cycles with vertices in × {1};

× {0} and × {1}.

k

k

k k

2

1 2 2 3

4 5 5 6

∪ ℓ

∈ ∈

Set A x x x y y y a a′ = ( , , , , , , , …, )k1 2 3 4 5 6 7 and B y x b b′ = ( , , , …, )k3 and let
σ A σ A σ B σ B= { ( ′), ( ′), ( ′), ( ′)} . By Lemma 4.5, we have that Orb S( )S ⋃ ∈ is a k‐sun

system of r r w I ν(Γ + ( + ))[2] = Γ [2] + 2( + ) = (Γ [2] + )\( + )*2 2 2 2ℓ ℓ .
To construct a k‐sun system of wΓ [2] +*2 2 we proceed as in Theorem 4.7. We modify

the graphs in  and obtain four k‐suns T T T T, , ,1 2 3 4 whose translates between them cover
all edges incident with ,′ ′1 2∞ ∞ , and possibly ′3∞ when ν = 3. Then we construct further
ν2 + 1 k‐suns G G, …, ν1 2 +1 to cover the missing edges. The reader can check that

Orb T G G( ) { , …, }i i ν=1
4

1 2 +1⋃ ∪ is a k‐sun system of wΓ [2] +*2 2.
The graphs Ti are the following, where the elements in bold are the replaced vertices:

y

y

T

x x x y y a a a

x y y a a a x
ν

x x x y y a a a

y y a a a x
ν

T

x x x y y a a a

x y y y a a a x
ν

x x x y y a a a

y y y a a a x
ν

T

σ B ν

y x b b b b

b b b b y
ν

T

σ B ν

y x b b b b

b b b b y
ν

=

if = 2,

if = 3,

=

if = 2,

if = 3,

=

( ′) if = 2,

if = 3,

=

( ′) if = 2,

if = 3.

′

′

′

′

′

′

′

′

′

k k

k

k k

k

k k

k

k k

k

k k

k

k k

k

2

4

2

′ ′
4

1

1

′
3

3

3

1

1 2 3 5 6 7 −1

1 3 4 5 7 8 1

1 2 3 5 6 7 −1

1 3 4 5 7 8 1

2

1 2 3 5 6 7 −1

2 3 4 5 6 7 8 1

1 2 3 5 6 7 −1

2 4 5 6 7 8 1

3 3 4 −1

3 4 5

4 3 4 −1

3 4 5

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞ ∞

∞

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎧
⎨⎪

⎩⎪
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

The graphs Gi, for i ν= [1, 2 + 1], are so defined:

20 | BURATTI ET AL.
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G Dev x x x G Dev y y x

G Dev x x x y G Dev y y y

G Dev y y y G Dev x x x y

G Dev x x x y

= ( ), = ( ),

= ({ , } { , }), = ( ),

= ( ), = ({ , } { , }),

= ({ , } { , }).

1 1 2 2 2 5 4 3

3 1 2 3 4 4 5 4 5

5 5 6 6 6 2 3

7 2 3

∼ ∼ ∼ ∼

⊕ ∼ ∼

∼ ∼ ⊕

⊕

Case 2. q r2 + 6≥ . Note that this implies r = 1 and q = 8, 10. As before K = Γ Γk2 1 2⊕

where

k k kΓ = [3, ], {0} [ − 5, − 1], [3, ] and Γ = {1, 2}, [1, − 6], {1, 2} .1 2⟨ ℓ ∪ ℓ ⟩ ⟨ ⟩

Since k n( , ) (7, 64), (7, 65)≠ then q( , ) (3, 10)ℓ ≠ , hence the graph Γ1 can be decomposed
into the following graphs:

k k
q q

q q

Γ = , [ − 5, − 1], , Γ = 3,
− 2

2
, {0}, 3,

− 2

2
,

Γ =
2

, , ,
2

, .

1,1 1,2

1,3

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

〈∅ ∅〉

ℓ ∅ ℓ

The graph Γ1,1 decomposes into five 1‐factors J J, …,1 5, while by Lemma 3.5 Γ1,2 decom-
poses into q( − 5) 1‐factors J J, …,′ ′q1 −5. Letting w q=1 ℓ, by Lemma 4.2 we have that

w q J JΓ + = (Γ + 5 ) (Γ + ( − 5) ) Γ = ( + ) ( + ) Γ .′i i i
q

i1 1 1,1 1,2 1,3 =1
5

=1
−5

1,3
⎡⎣ ⎤⎦ℓ ⊕ ℓ ⊕ ⊕ ℓ ⊕ ⊕ ℓ ⊕

By Lemmas 3.4 and 3.1, each J +i ℓ, each J +′i ℓ and Γ1,3 decompose into k‐cycles. Hence
qΓ +1 ℓ has a k‐cycle system. Let now w n w ν= − 2 = 2 +2 1 . Note that a k‐sun system of

wΓ [2] +*2 2 can be obtained as in Case 1, where Γ2,1 is empty. □

Theorem 4.10. Let k 3 (mod 4) 11≡ ≥ and n 0, 1 (mod 4)≡ with k n k2 < < 10 . If
n

k

− 4

− 1
⎢⎣ ⎥⎦ is even, and n k2, 3 (mod − 1)≡ , then there is a k‐sun system of K n+k4 , except

possibly when k n( , ) {(11, 112), (11, 113)}∈ .

Proof. Let n q r ν= 2( + ) +ℓ with r1 ≤ ≤ ℓ and ν {2, 3}∈ . Clearly, q =
n

k

− 4

− 1
⎢⎣ ⎥⎦, hence q

is even. Since k 11≥ , k n k2 < < 10 , and n 2, 3 (mod 2 )≡ ℓ , we have that

q q ris even with 2 10 and = 5 is odd .≤ ≤ ℓ ≥

As before, let  V K n h( + ) = ( × [0, 3]) { | } { , , }′ ′ ′k k h n ν ν4 − 1 2∪ ∞ ∈ ∪ ∞ ∞ ∞ .
We start decomposing K k2 into the following two graphs:

k k kΓ = [3, ], [ − 3, ], [4, ] , Γ = {1, 2}, [1, − 4], {1, 2, 3} .1 2⟨ ℓ ℓ ⟩ ⟨ ⟩

If q = 2, 4, Γ1 can be further decomposed into

k k q k q kΓ = , [ − 3, − 4 + ], , Γ = , [ − 3 + , ], { } ,

Γ = [3, ], , [4, − 1] .

1,1 1,2

1,3

⟨∅ ∅⟩ ⟨∅ ℓ ⟩

⟨ ℓ ∅ ℓ ⟩

BURATTI ET AL. | 21

 15206610, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21751 by U

niversita D
i B

rescia, W
iley O

nline L
ibrary on [18/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The graph Γ1,1 decomposes into q 1‐factors, say J J, …, q1 . Letting w q=1 ℓ, by Lemma 4.2
we have that

w w JΓ + = (Γ + ) Γ Γ = ( + ) Γ Γ .i
q

i1 1 1,1 1 1,2 1,3 =1 1,2 1,3⊕ ⊕ ⊕ ℓ ⊕ ⊕

Lemmas 3.4, 3.2, and 3.1 guarantee that each J +i ℓ, Γ1,2, and Γ1,3 decompose into k‐cycles,
hence wΓ +1 1 has a k‐cycle system. Suppose now q 6≥ . By k n( , ) {(11, 112), (11, 113)}∉ ,
we have q( , ) (5, 10)ℓ ≠ . In this case Γ1 can be further decomposed into

k k
q q

q q

Γ = , [ − 3, − 1], , Γ = + 3 −
2

, , {0}, + 3 −
2

, ,

Γ = 3, + 2 −
2

, , 4, + 2 −
2

.

1,1 1,2

1,3

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

〈∅ ∅〉 ℓ ℓ ℓ ℓ

ℓ ∅ ℓ

The graph Γ1,1 can be decomposed into three 1‐factors say J J J, ,1 2 3, also by Lemma 3.5 the
graph Γ1,2 can be decomposed into q( − 3) 1‐factors say J J, …,′ ′q1 −3. Set again w q=1 ℓ, by
Lemma 4.2 we have that

w q J JΓ + = (Γ + 3 ) (Γ + ( − 3) ) Γ = ( + ) [ ( + )] Γ .′i i j
q

j1 1 1,1 1,2 1,3 =1
3

=1
−3

1,3ℓ ⊕ ℓ ⊕ ⊕ ℓ ⊕ ⊕ ℓ ⊕

By Lemmas 3.4 and 3.1 we have that each J +i ℓ, each J +′j ℓ, and Γ1,3 decompose into k‐
cycles, hence wΓ +1 1 has a k‐cycle system. Therefore for any value of q we have proved
that wΓ +1 1 has a k‐cycle system.

Now, setting w n w ν= − 2 = 2 +2 1 ℓ and recalling that K = Γ Γk2 1 2⊕ , by Lemma 4.6 it
is left to show that wΓ [2] +*2 2 has a k‐sun system. Let r1 and r 22 ≥ be an odd and an even
integer, respectively, such that r r r+ = =1 2 ℓ. Note that Γ2 can be further
decomposed into

k r k r kΓ = {1}, [1, − 2 − 2], {1} , Γ = {2}, [ − 2 − 1, − 4], {2, 3} .2,1 1 2,2 1⟨ ⟩ ⟨ ⟩

Recalling that IΓ [2] = Γ [2]*2 2 ⊕ , where I denotes the 1‐factor z z z{{ , }| × {0, 1}}k∈ of
K k4 , by Lemma 4.2 we have that

w r I νΓ [2] + = (Γ + )[2] ( + ).* i i i2 2 =1
2

2,⊕ ⊕

By Lemma 3.3 there are a k‐cycle A y y x x a a= ( , , , , , …, )k1 2 3 4 5 of rΓ +2,1 1 and a k‐cycle
B x x y y b b= ( , , , , , …, )k1 2 3 4 5 of rΓ +2,2 2 such that




Orb A Orb B k

Dev x x Dev x x k

Dev y y Dev y y k

( ) ( ) is a ‐cycle system of Γ + ,

({ , }) and ({ , }) are ‐cycles with vertices in × {0},

({ , }) and ({ , }) are ‐cycles with vertices in × {1}.

k

k

2

1 2 3 4

1 2 3 4

∪ ℓ
(7)

Set A y y x x a a′ = ( , , , , , …, )k1 2 3 4 5 and B x x y y b b′ = ( , , , , , …, )k1 2 3 4 5 . Let =
σ A σ A σ B σ B{ ( ′), ( ′), ( ′), ( ′)}, by Lemma 4.5, we have that Orb S( )S ⋃ ∈ is a k‐sun system
of w I ν(Γ + )[2] = Γ [2] + 2 = (Γ [2] + )\( + )*2 2 2 2ℓ ℓ . To construct a k‐sun system of

wΓ [2] +*2 2, we build a family T T T T= { , , , }1 2 3 4 of k‐suns by modifying the graphs in  so
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that Orb T( )T ⋃ ∈ covers all the edges incident with ,′ ′1 2∞ ∞ , and possibly ′3∞ when ν = 3.
We then construct further ν(2 + 1) k‐suns G G G, , …, ν1 2 2 +1 which cover the remaining
edges exactly once. Hence, Orb T G G G( ) { , , …, }T ν1 2 2 +1⋃ ∪∈ is a k‐sun system
of wΓ [2] +*2 2.

The graphs T T, …,1 4 and G G, …, ν1 2 +1 are the following, where as before the elements
in bold are the replaced vertices.

T
y y x x a a a

x x a a a y

T

y x x a a a

x x a a a y
ν

y x x a a a

x a a a y
ν

T
x x y y b b b

y b b b x

T

x x y y b b b

y y b b b x
ν

x x y b b b

y y b b b x
ν

= ,

=

if = 2,

if = 3,

= ,

=

if = 2,

if = 3.

′

′

′

′

′ ′

′ ′

′

′

′

k k

k

k k

k

k k

k

k k

k

k k

k

k k

k

2
1

1 2 3 4 5 −1

3 4 5 6 1

2

1 1 3 4 5 −1

2 3 4 5 6 1

1 1 3 4 5 −1

2 3 3 5 6 1

3
1 2 3 4 5 −1

2 3 1 5 6 1

4

1 2 3 4 5 −1

2 3 4 5 6 1

1 2 3 4 5 −1

2 3 4 5 6 1

∞

∞

∞

∞

∞ ∞

∞ ∞

∞

∞

∞

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

G Dev y y x G Dev y y y

G Dev y y y G Dev x x x y

G
Dev x x x ν

Dev x x y ν
G Dev x x x

G Dev y y y

= ( ), = ( ),

= ( ), = ({ , } { , }),

=
( ) if = 2,

( ) if = 3,
= ( }),

= ( ).

1 1 2 3 2 2 1 2

3 3 4 4 4 1 2 3 2

5
1 2 2

1 2 3
6 3 4 4

7 4 3 4

⎧⎨⎩

∼ ∼ ∼ ∼

∼ ∼ ⊕

∼ ∼

∼ ∼
∼ ∼

∼ ∼

By recalling (7), it is not difficult to check that the graphs Gh are k‐suns. □

Theorem 4.11. Let k 3 (mod 4) 7≡ ≥ and n 0, 1 (mod 4)≡ with k n k2 < < 10 . If
n

k

− 4

− 1
⎢⎣ ⎥⎦ is odd and n k0, 1 (mod − 1)≢ , then there is a k‐sun system of K n+k4 .

Proof. Let n q r ν= 2( + ) +ℓ with r1 ≤ ≤ ℓ and ν {2, 3}∈ . Clearly, q =
n

k

− 4

− 1
⎢⎣ ⎥⎦. Also,

we have that q and 3ℓ ≥ are odd, and n 0, 1 (mod 4)≡ ; hence r is even. Furthermore, we
have that q2 10≤ ≤ , since by assumption k n k2 < < 10 . Considering now the
hypothesis that n 0, 1 (mod 2 )≢ ℓ , it follows that r − 1≠ ℓ . To sum up,

q q r ris odd with 3 9, and is even with 2 − 3.≤ ≤ ≤ ≤ ℓ (8)

As before, let  V K n h( + ) = ( × [0, 3]) { | } { , , }′ ′ ′k k h n ν ν4 − 1 2∪ ∞ ∈ ∪ ∞ ∞ ∞ .
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We start decomposing K k2 into the following two graphs:

k r k k rΓ = [4, ], [ − 2 − 1, ], [3, ] and Γ = [1, 3], [1, − 2 − 2], [1, 2] .1 2⟨ ℓ ℓ ⟩ ⟨ ⟩

Considering that q r3 9 2 + 5≤ ≤ ≤ , the graph Γ1 can be further decomposed into the
following graphs:

k r q k

k r k r q

Γ = [4, ], , [3, − 1] , Γ = , [ − 2 − 4 + , ], { } , and

Γ = , [ − 2 − 1, − 2 − 5 + ], .

1,1 1,2

1,3

⟨ ℓ ∅ ℓ ⟩ ⟨∅ ℓ ⟩

⟨∅ ∅⟩

The first two have a k‐cycle system by Lemmas 3.1 and 3.2, while Γ1,3 decomposes into
q( − 3) 1‐factors, say J J J, , …, q1 2 −3. Letting w q= ( − 3)1 ℓ, by Lemma 4.2 we have that

w JΓ + = ( + ) (Γ Γ ).i
q

i1 1 =1
−3

1,1 1,2⊕ ℓ ⊕ ⊕

Therefore, wΓ +1 1 has a k‐cycle system, since each J +i ℓ decomposes into k‐cycles by
Lemma 3.4. Setting w n w r ν= − 2 = 2(3 + ) +2 1 ℓ and recalling that K = Γ Γk2 1 2⊕ , by
Lemma 4.6 it is left to show that wΓ [2] +*2 2 has a k‐sun system.

We start decomposing Γ2 into the following graphs:

k r

k r i i

Γ = [1, 3], [1, − 2 − 5], [1, 2] and

Γ = , { − 2 − 5 + }, for 1 3.i

2,0

2,

〈 〉

〈∅ ∅〉 ≤ ≤

Recalling that IΓ [2] = Γ [2]*2 2 ⊕ , where I denotes the 1‐factor z z z{{ , }| × {0, 1}}k∈ of
K k4 , by Lemma 4.2 we have that

w r I νΓ [2] + = (Γ + )[2] (Γ + )[2] ( + ).* i i2 2 =1
3

2, 2,0⊕ ℓ ⊕ ⊕

By Lemmas 3.3 and 3.4 there exist a k‐cycle A x x x y y y a a= ( , , , , , , , …, )k1 2 3 4 5 6 7 of rΓ +2,0 , a
k‐cycle B x y b b= ( , , , …, )k1 1,0 1,1 1,2 1, −1 of Γ +2,1 ℓ, and a k‐cycle B y x b b= ( , , , …, )i i i i i k,0 ,1 ,2 , −1

of Γ +i2, ℓ, for i2 3≤ ≤ , satisfying the following properties:




Dev x x Dev x x k

Dev y y Dev y y k

({ , }) and ({ , }) are ‐cycles with vertices in × {0},

({ , }) and ({ , }) are ‐cycles with vertices in × {1},

k

k

1 2 2 3

4 5 5 6

(9)

 x x x y y y, , × {0}, , , × {1},k k1,0 2,1 3,1 1,1 2,0 3,0∈ ∈ (10)

Orb B Orb A k r( ) ( ) is a ‐cycle system of Γ + (3 + ).
i

i
=1

3

2⋃ ∪ ℓ (11)

Set A x x x y y y a a a a′ = ( , , , , , , , , …, , )k k1 2 3 4 5 6 7 8 −1 and let = σ A σ A{ ( ′), ( ′)} ∪

σ B σ B i{ ( ), ( )|1 3}i i ≤ ≤ . By Lemma 4.5, we have that Orb S( )S ⋃ ∈ is a k‐sun system of

r r w I ν(Γ + (3 + ))[2] = Γ [2] + 2(3 + ) = (Γ [2] + )\( + )*2 2 2 2ℓ ℓ .

To construct a k‐sun system of wΓ [2] +*2 2, we build a family T T T= { , , …, }0 1 7 of k‐suns
by modifying the graphs in  so that Orb T( )T ⋃ ∈ covers all the edges incident with ,′ ′1 2∞ ∞ ,

and possibly ′3∞ when ν = 3. We then construct further ν k(2 + 1) ‐suns G G G, , …, ν1 2 2 +1

24 | BURATTI ET AL.
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which cover the remaining edges exactly once. Hence, Orb T G G G( ) { , , …, }T ν1 2 2 +1⋃ ∪∈ is a

k‐sun system of wΓ [2] +*2 2.
The graphs T T, …,0 7 and G G, …, ν1 2 +1 are the following, where as before the elements

in bold are the replaced vertices.

y

y

T

x x x y y y a a a

x y y a a a x
ν

x x x y y y a a a

y y a a a x
ν

T

x x x y y y a a a

x y a a a x
ν

x x x y y y a a a

y a a a x
ν

T
x y b b b

b b b x

T
x y b b b

b b b x

T
y x b b b

b b b y

T
y x b b b

b b b y

T

σ B ν

y x b b b

b b b y
ν

T

σ B ν

y x b b b

b b b y
ν

=

if = 2,

if = 3,

=

if = 2,

if = 3,

= ,

= ,

= ,

= ,

=

( ) if = 2,

if = 3,

=

( ) if = 2,

if = 3,

′ ′

′ ′ ′

′ ′

′ ′ ′

′

′

′

′

′

′

k k

k

k k

k

k k

k

k k

k

k k

k

k k

k

k k

k

k k

k

k k

k

k k

k

2

3 1 2

1 2 5

3 1 2 5

2

2

1

1

3

3

0

1 2 3 4 5 6 7 −1

2 1 4 6 7 8 1

1 2 3 4 5 6 7 −1

4 6 7 8 1

1

1 2 3 4 5 6 7 −1

2 4 7 8 1

1 2 3 4 5 6 7 −1

4 7 8 1

2
1,0 1,1 1,2 1, −2 1, −1

1,2 1,3 1, −1 1,0

3
1,0 1,1 1,2 1, −2 1, −1

1,2 1,3 1, −1 1,0

4
2,0 2,1 2,2 2, −2 2, −1

2,2 2,3 2, −1 2,0

5
2,0 2,1 2,2 2, −2 2, −1

2,2 2,3 2, −1 2,0

6

3

3,0 3,1 3,2 3, −2 3, −1

3,2 3,3 3, −1 3,0

7

3

3,0 3,1 3,2 3, −2 3, −1

3,2 3,3 3, −1 3,0

∞

∞ ∞ ∞

∞ ∞

∞ ∞ ∞

∞

∞

∞

∞

∞

∞

∞

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎧
⎨⎪⎪

⎩⎪⎪
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

G Dev x x x G Dev x x x y

G Dev y y y x G Dev y y y x

G Dev y y y x G Dev x x x y

G Dev x x x y

= ( ~ ~ ), = ({ , } { , }),

= ({ , } { , }), = ({ , } { , }),

= ({ , } { , }), = ({ , } { , }),

= ({ , } { , }).

1 2 3 3 2 2 3 1,0 1,1

3 4 5 2,0 2,1 4 4 5 2,0 2,1

5 5 6 1,1 1,0 6 1 2 3,1 3,0

7 1 2 3,1 3,0

⊕

⊕ ⊕

⊕ ⊕

⊕

By recalling (9)–(11), it is not difficult to check that the graphs Gh are k‐suns. □
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Theorem 4.12. Let k 3 (mod 4) 7≡ ≥ and n 0, 1 (mod 4)≡ with k n k2 < < 10 . If
n

k

− 4

− 1
⎢⎣ ⎥⎦ is odd, and n k0, 1 (mod − 1)≡ , then there is a k‐sun system of K n+k4 except

possibly when k n( , ) {(11, 100), (11, 101)}∈ .

Proof. Let n q r ν= 2( + ) +ℓ with r1 ≤ ≤ ℓ and ν {2, 3}∈ . Reasoning as in the proof of
Theorem 4.11 and considering that n 0, 1 (mod 2 )≡ ℓ and k n( , ) {(11, 100), (11, 101)}∉ ,
we have that

q q r r qis odd with 3 9, = − 1 2, is even , and ( , ) (5, 9).≤ ≤ ℓ ≥ ℓ ≠ (12)

As before, let  V K n h( + ) = ( × [0, 3]) { | } { , , }′ ′ ′k k h n ν ν4 − 1 2∪ ∞ ∈ ∪ ∞ ∞ ∞ .
We start decomposing K k2 into the following two graphs

kΓ = [3, ], {0}, [3, ] and Γ = {1, 2}, [1, − 1], {1, 2} .1 2〈 ℓ ℓ 〉 〈 〉

Considering (12), we can further decompose Γ1 into the following two graphs:

q q q q
Γ = 3,

+ 3

2
, {0}, 3,

+ 3

2
, Γ =

+ 5

2
, , ,

+ 5

2
, .1,1 1,2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ℓ ∅ ℓ

By Lemma 3.5, the graph Γ1,1 decomposes into q 1‐factors, say J J J, , …, q1 2 . Letting
w q=1 ℓ, by Lemma 4.2 we have that

w w JΓ + = (Γ + ) Γ = ( + ) Γ .i
q

i1 1 1,1 1 1,2 =1 1,2⊕ ⊕ ℓ ⊕

Lemmas 3.4 and 3.1 guarantee that each J +i ℓ and Γ1,2 decompose into k‐cycles,
hence wΓ +1 1 has a k‐cycle system. Let r1 and r2 be odd positive integers such
that r r r= − 1 = +1 2ℓ . Then, setting w n w r r ν= − 2 = 2( + ) +2 1 1 2 and recalling
that K = Γ Γk2 1 2⊕ , by Lemma 4.6 it is left to show that wΓ [2] +*2 2 has a k‐sun
system.

We start decomposing Γ2 into the following graphs:

k r k r kΓ = {1}, [1, − 2 − 2], {1} and Γ = {2}, [ − 2 − 1, − 1], {2} .2,1 1 2,2 1⟨ ⟩ ⟨ ⟩

Recalling that IΓ [2] = Γ [2]*2 2 ⊕ , where I denotes the 1‐factor z z z{{ , } × {0, 1}}k∣ ∈ of
K k4 , by Lemma 4.2 we have that

w r r I νΓ [2] + = (Γ + )[2] (Γ + )[2] ( + ).*2 2 2,1 1 2,2 2⊕ ⊕ (13)

By Lemma 3.3 there are a k‐cycle A y y x x a a= ( , , , , , …, )k1 2 3 4 5 of rΓ +2,1 1 and a k‐cycle
B x x y y b b= ( , , , , , …, )k1 2 3 4 5 of rΓ +2,2 2 such that




Orb A Orb B k r

Dev x x Dev x x k

Dev y y Dev y y k

( ) ( ) is a ‐cycle system of Γ + ,

({ , }) and ({ , }) are ‐cycles with vertices in × {0},

({ , }) and ({ , }) are ‐cycles with vertices in × {1}.

k

k

2

3 4 1 2

1 2 3 4

∪
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Set A y y x x a a′ = ( , , , , , …, )k1 2 3 4 5 , B x x y y b b′ = ( , , , , , …, )k1 2 3 4 5 and let σ A σ A σ B σ B= { ( ′), ( ′), ( ′), ( ′)} .
By Lemma 4.5, we have that Orb S( )S ⋃ ∈ is a k‐sun system of w I ν(Γ [2] + )\( + )*2 2 .

To construct a k‐sun system of wΓ [2] +*2 2, we build a family T T T T= { , , , }1 2 3 4 of four
k‐suns, each of which is obtained from a graph in  by replacing some of their vertices
with ,′ ′1 2∞ ∞ , and possibly ′3∞ when ν = 3. Then we construct further ν(2 + 1) k‐suns
G G G, , …, ν1 2 2 +1 so that Orb T G G G( ) { , , …, }T ν1 2 2 +1⋃ ∪∈ is a k‐sun system of wΓ [2] +*2 2.

y

T

y y x x a a a

x a a a y
ν

y y x a a a

x a a a y
ν

T
y y x x a a a

x a a a y

T
x x y y b b b

b b b x

T

x x y y b b b

y b b b x
ν

x x y y b b b

b b b x
ν

=

if = 2,

if = 3,

= ,

= ,

=

if = 2,

if = 3,

′ ′

′

′ ′

′ ′

′ ′

′ ′

′ ′ ′

k k

k

k k

k

k k

k

k k

k

k k

k

k k

k

1

1

1

1 3

1

1

1

1 2 3 4 5 −1

2 4 5 6 1

1 2 3 4 5 −1

2 4 5 6 1

2
1 2 3 4 5 −1

2 4 5 6 1

3
1 2 3 4 5 −1

2 5 6 1

4

1 2 3 4 5 −1

2 4 5 6 1

1 2 3 4 5 −1

2 3 5 6 1

∞ ∞

∞

∞ ∞

∞ ∞

∞ ∞

∞ ∞

∞ ∞ ∞

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

G Dev y y x G Dev y y x

G Dev y y x G Dev x x x

G
Dev x x y ν

Dev x x x x ν
G Dev y y x

G Dev x x y

= ( ), = ( ),

= ( ), = ( ),

=
( ) if = 2,

({ , } { , }) if = 3,
= ( ),

= ( ).

1 1 2 3 2 1 2 3

3 4 3 2 4 1 2 2

5

1 2 3

1 2 4 3
6 4 3 2

7 4 3 2

⎪

⎪

⎧
⎨
⎩

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

∼ ∼

⊕
∼ ∼

∼ ∼

By (13), it is not difficult to check that the graphs Gh are k‐suns. □

5 | IT IS SUFFICIENT TO SOLVE k v k2 < < 6

In this section we show that if the necessary conditions in (*), for the existence of a k‐sun
system of Kv, are sufficient for all v satisfying k v k2 < < 6 , then they are sufficient for all v. In
other words, we prove Theorem 1.1.

We start by showing how to construct k‐sun systems of Kg h× (i.e., the complete multipartite
graph with g parts each of size h) when h k= 4 .

Theorem 5.1. For any odd integer k 3≥ and any integer g 3≥ , there exists a k‐sun
system of Kg k×4 .
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Proof. Set V K( ) = × [0, 1]g k gk×2 and let K K= [2]g k g k×4 ×2 . In [11, Theorem 2] the
authors proved the existence of a k‐cycle system of Kg k×2 . By applying Lemma 4.5 (with

KΓ = g k×2 and u = 0) we obtain the existence of a k‐sun system of Kg k×4 . □

The following result exploits Theorem 5.1 and shows how to construct k‐sun systems of
K kg n4 + , for g 2≠ , starting from a k‐sun system of K n+k4 and a k‐sun system of either Kn

or K k n4 + .

Theorem 5.2. Let k 3≥ be an odd integer and assume that both the following
conditions hold:

1. there exists a k‐sun system of either Kn or K k n4 + ;
2. there exists a k‐sun system of K n+k4 .

Then there is a k‐sun system of K kg n4 + for all positive g 2≠ .

Proof. Suppose there exists a k‐sun system 1 of Kn, also, by (2), there exists a k‐sun
system 2 of K n+k4 . Clearly, 1 2 ∪ is a k‐sun system of K K K n= ( + )n k n k+4 4⊕ .
Hence we can suppose g 3≥ . Let V , H , and G be sets of size n, k4 , and g, respectively,
such thatV H G( × ) =∩ ∅. Let  be a k‐sun system of Kn (resp., Kn k+4 ) with vertex‐setV

(resp., V H x( × { })0∪ for some x G0 ∈ ). By assumption, for each x G∈ , there is a k‐sun
system, say x , of K n+k4 with vertex‐set V H x( × { })∪ , where V K H x( ) = × { }k4 . Also,
by Theorem 5.1 there is a k‐sun system  of Kg k×4 whose parts are H x× { } with x G∈ .
Hence the k‐suns of x with x G∈ (resp., x G x{ }0∈ ⧹ ),  and  form a k‐sun system of
Kn kg+4 with vertex‐set V H G( × )∪ . □

We are now ready to prove Theorem 1.1 whose statement is recalled below.

Theorem 1.1. Let k 3≥ be an odd integer and v > 1. Conjecture 1 is true if and only if
there exists a k‐sun system of Kv for all v satisfying the necessary conditions in (*)
with k v k2 < < 6 .

Proof. The existence of 3‐sun systems and 5‐sun systems has been solved in [10] and in
[8], respectively. Hence we can suppose k 7≥ and k v k2 < < 6 .

We first deal with the case where k v( , ) (7, 21)≠ . By assumption there exists a k‐sun
system of Kv, which implies v v( − 1) 0 (mod 4)≡ , hence Theorem 4.1 guarantees the
existence of a k‐sun system of K v+k4 . Therefore, by Theorem 5.2 there is a k‐sun
decomposition of K kg v4 + whenever g 2≠ . To decompose K k v8 + into k‐suns, we first
decompose K k v8 + into K k v4 + and K k v+ (4 + )k4 . By Theorem 5.2 (with g = 1), there is a
k‐sun system of K k v4 + . Furthermore, Theorem 4.1 guarantees the existence of a k‐sun system
of K k v+ (4 + )k4 , except possibly when k k v( , 4 + ) ∈{(7, 56), (7, 57), (7, 64), (11, 100)}.
Therefore, by Theorem 5.2, there is a k‐sun decomposition of K k v8 + whenever
k k v( , 4 + ) {(7, 56), (7, 57), (7, 64), (11, 100)}∉ . For each of these four cases we construct

k‐sun systems of K k v8 + as follows.
If k = 7 and k v4 + = 56, set V K( ) = { }84 83 ∪ ∞ . We consider the following 7‐suns:
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( )
( )
( )

T

T

T

=
0 −1 3 −4 6 −7 16
31 27 37 18 43 12 56

,

=
0 −2 3 −5 6 −8 17

32 27 38 19 44 12 58
,

=
0 −3 3 −6 6 −9 18

33 27 39 20 45 12
.

1

2

3 ∞

One can easily check that Orb T( )i i=1
3

83
⋃ is a 7‐sun system of K84.

If k = 7 and k v4 + = 57, set V K( ) =85 85. LetT1 andT2 be defined as above, and letT′3
be the graph obtained from T3 replacing ∞ with 60. It is immediate that

 Orb T Orb T( ) ( )′i i=1
2

385 85
⋃ ∪ is a 7‐sun system of K85.

If k = 7 and k v4 + = 64, set  V K( ) = ( × ) { }92 7 13 ∪ ∞ . We consider the following
7‐suns:

 

T

T

T

T Dev T Dev

=
(0, 0) (1, 1) −(2, 1) (3, 1) −(4, 1) (5, 1) −(6, 1)

(−1, 1) (2, 7) (−3, 5) −(3, 5) −(5, 7) (6, 7)
,

=
(0, 0) (1, 2) −(2, 2) (3, 2) −(4, 2) (5, 2) −(6, 2)

(0, 10) −(1, 8) (2, 8) (−3, 7) −(3, 7) −(5, 8) (6, 8)
,

=
(0, 0) (1, 3) −(2, 3) (3, 3) −(4, 3) (5, 3) −(6, 3)

(0, 12) −(1, 9) (2, 9) (−3, 9) −(3, 9) −(5, 9) (6, 9)
,

= ((0, 0) (4, 0) (6, 8)), = ((0, 0) (6, 0) (6, 8)).

1

2

3

4 ×{0} 5 ×{0}7 7

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∞

∼ ∼ ∼ ∼

One can easily check that   Orb T Orb T( ) ( )i i i i=1
3

× =4
5

{0}×7 13 13
⋃ ∪ ⋃ is a 7‐sun system of K92.

If k = 11 and k v4 + = 100, set  V K( ) = ( × ) { }144 11 13 ∪ ∞ . We consider the
following 11‐suns:

 



T

T

T

T Dev T Dev

T Dev

=
(0, 0) (1, 1) −(2, 1) (3, 1) −(4, 1) (5, 1) −(6, 1) (7, 1) −(8, 1) (9, 1) −(10, 1)

(−1, 1) (2, 7) −(3, 7) (4, 7) (−5, 1) −(5, 5) −(7, 7) (8, 7) −(9, 7) (10, 7)
,

=
(0, 0) (1, 2) −(2, 2) (3, 2) −(4, 2) (5, 2) −(6, 2) (7, 2) −(8, 2) (9, 2) −(10, 2)

(0, 10) −(1, 8) (2, 8) −(3, 8) (4, 8) (−5, 6) −(5, 7) −(7, 8) (8, 8) −(9, 8) (10, 8)
,

=
(0, 0) (1, 3) −(2, 3) (3, 3) −(4, 3) (5, 3) −(6, 3) (7, 3) −(8, 3) (9, 3) −(10, 3)

(0, 12) −(1, 9) (2, 9) −(3, 9) (4, 9) (−5, 9) −(5, 9) −(7, 9) (8, 9) −(9, 9) (10, 9)
,

= ((0, 0) (4, 0) (6, 8)), = ((0, 0) (6, 0) (5, 8)),

= ((0, 0) (8, 0) (8, 8)).

1

2

3

4 ×{0} 5 ×{0}

6 ×{0}

11 11

11

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∞

∼ ∼ ∼ ∼

∼ ∼

One can check that   Orb T Orb T( ) ( )i i i i=1
3

× =4
6

{0}×11 13 13
⋃ ∪ ⋃ is an 11‐sun system of K144.

It is left to prove the existence of a k‐sun system of K kg v4 + when k v( , ) = (7, 21) and for
every g 1≥ . If g = 1, a 7‐sun system of K49 can be obtained as a particular case of the
following construction. Let p be a prime, q p= 1 (mod 4)n ≡ and r be a primitive root of
q. Setting S Dev r r= (0 + 1)r ∼ ∼〈 〉 where r jr j p= { |1 }〈 〉 ≤ ≤ , we have that

Orb r S( )i
i

=0
2

q

q

−5
4⋃ is a p‐sun system of Kq.
If g 2≥ , we notice that K K=g g28 +21 28( −1)+49. Considering the 7‐sun system of K49 just

built, and recalling that by Theorem 4.1 there is a 7‐sun system of K + 4928 , then
Theorem 5.2 guarantees the existence of a 7‐sun system of K g28( −1)+49 whenever g 3≠ .
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When g = 3, a 7‐sun system of K105 is constructed as follows. Set  V K( ) = ×105 7 15. Let
Si j, andT be the 7‐suns defined below, where i j X( , ) = ([1, 3] × [1, 7]) {(1, 3), (1, 6)}∈ ⧹ :

S
i j i j i i j i i j

i j i i j i j i j i j j

T

=
(0, 0) ( , 2) (2 , ) (3 , 0) (4 , ) (5 , 0) (6 , )

( , − 2) (2 , 0) (3 , 2 ) (4 , − ) (5 , 2 ) (6 , − ) (0, 2 )
,

=
(0, 0) (0, 7) (0, 2) (0, 5) (0, −1) (0, 3) (0, 1)

(2, 0) (3, 7) (1, 2) (1, 8) (1, 5) (1, 0) (1, 10)
.

i j,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∕

∕

One can check that   Orb S Orb T( ) ( )i j X i j( , ) {0}× , ×15 7 15
⋃ ∪∈ is a 7‐sun system of K105. □

6 | CONSTRUCTION OF p‐SUN SYSTEMS, p PRIME

In this section we prove Theorem 1.2. Clearly in view of Theorem 1.1 it is sufficient to construct
a p‐sun system of Kv for any admissible v with p v p2 < < 6 . Hence, we are going to prove the
following result.

Theorem 6.1. Let p be an odd prime and let v v p( − 1) 0 (mod 4 )≡ with p v p2 < < 6 .
Then there exists a p‐sun system of Kv.

Since the existence of p‐sun systems with p = 3, 5 has been proved in [10] and in [8],
respectively, here we can assume p 7≥ .

It is immediate to see that by the necessary conditions for the existence of a p‐sun system of
Kv, it follows that v lies in one of the following congruence classes modulo p4 :

1. v p0, 1 (mod 4 )≡ ;
2. v p p p, 3 + 1 (mod 4 )≡ if p 1 (mod 4)≡ ;
3. v p p p+ 1, 3 (mod 4 )≡ if p 3 (mod 4)≡ .

If v p0, 1 (mod 4 )≡ we present a direct construction which holds more in general for p k= ,
where k is an odd integer and not necessarily a prime.

Theorem 6.2. For any k t= 2 + 1 7≥ there exists a k‐sun system of K k4 +1 and a k‐sun
system of K k4 .

Proof. Let C be the k‐cycle with vertices in  so defined:

C t t t t= (0, −1, 1, −2, 2, −3, 3, …, 1 − , − 1, − , 2 ).

Note that the list D1 of the positive differences in  of C is D t t= [1, 2 ] {3 }1 ∪ . Consider
now the ordered k‐set D d d d= { , , …, }k2 1 2 so defined:

D t t t t= [2 + 1, 3 − 1] [3 + 1, 4 + 2].2 ∪

Obviously D D k= [1, 2 ]1 2∪ . Let c c c{ , , …, }k1 2 be the increasing order of the vertices of
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the cycle C and set c d= +r r rℓ for every r k[1, ]∈ , with r
t + 1

2
≠ , and c d= −t t t+1

2
+1
2

+1
2

ℓ

when t is odd. It is not hard to see that V c c c= { , , …, , , , …, }k k1 2 1 2ℓ ℓ ℓ is a set. Note also
that V t t t t{−3 − 1} [− , 5 ] {6 + 2}⊆ ∪ ∪ .

Let S be the sun obtainable from C by adding the pendant edges c{ , }i iℓ for i k[1, ]∈ .
Clearly, S D D kΔ = ±( ) = ±[1, 2 ]1 2∪ . So we can conclude that if we consider the vertices
of S as elements of  k4 +1, the vertices are still pairwise distinct and SΔ = {0}k4 +1⧹ .
Then, by applying Corollary 2.2 (with G m w= , = 1, = 0k4 +1 ), it follows that Orb S

k4 +1

is a k‐sun system of K k4 +1.
Now we construct a k‐sun system of K k4 . Let S be defined as above and note that

d k= 2k . Let S* be the sun obtained by S setting =kℓ ∞. It is immediate that if we
consider the vertices of S* as elements of  { }k4 −1 ∪ ∞ , then Corollary 2.2 (with

G m w= , = 1, = 1k4 −1 ) guarantees that Orb S*
k4 −1

is a k‐sun system of K k4 . □

Example 6.3. Let k t= 2 + 1 = 9, hence t = 4. By following the proof of Theorem 6.2, we
construct a 9‐sun system of K37. Taking C = (0, −1, 1, −2, 2, −3, 3, −4, 8), we have that

d d d

c c c

{ , , …, } = [9, 11] [13, 18],

{ , , …, } = {−4, −3, −2, −1, 0, 1, 2, 3, 8}.
1 2 9

1 2 9

∪

Hence { , , …, } = {5, 7, 9, 12, 14, 16, 18, 20, 26}1 2 9ℓ ℓ ℓ and we obtain the following 9‐sun S

with vertices in 37:

( )S =
0 −1 1 −2 2 −3 3 −4 8

14 12 16 9 18 7 20 5 26
,

such that SΔ = {0}37⧹ . Therefore, Orb S
37

is a 9‐sun system of K37.

From now on, we assume that p is an odd prime number and denote by Σ the following p‐sun:

c c c c
Σ = .

p p

p p

0 1 −2 −1

0 1 −2 −1

⎛
⎝⎜

⎞
⎠⎟

⋯

ℓ ℓ ⋯ ℓ ℓ

Lemma 6.4. Let p be an odd prime. For any x y, p∈ with x 0≠ and any i j, m∈ with
i j≠ there exists a p‐sun S such that S xΔ = ±ii , S y S yΔ = , Δ = −ij ji , and SΔ =hk ∅ for
any  h k i i i j j i( , ) ( × ) {( , ), ( , ), ( , )}m m∈ ⧹ .

Proof. It is easy to see that S Dev i x i y x j= ((0, )~( , )~( + , ))×{0}p
is the required

p‐sun. □

We will call such a p‐sun a sun of type i j( , ). For the following it is important to note that if S

is a p‐sun of type i j( , ), then S S|Δ | = 2, |Δ | = 0ii jj , and S S|Δ | = |Δ | = 1ij ji .
The following two propositions provide us p‐sun systems of Kmp+1 whenever m {3, 5}∈

and p m − 2 (mod 4)≡ .

Proposition 6.5. Let p 1 (mod 4) 13≡ ≥ be a prime. Then there exists a p‐sun system
of K p3 +1.
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Proof. We have to distinguish two cases according to the congruence of p modulo 12.
Case 1. Let p 1 (mod 12)≡ .
If p = 13, we construct a 13‐sun system of K40 as follows. Let S be the following 13‐sun

whose vertices are labeled with elements of  ( × ) { }13 3 ∪ ∞ :

S =
(2, 1) (4, 2) (8, 0) (3, 1) (6, 2) (12, 0) (11, 1) (9, 2) (5, 0) (10, 1) (7, 2) (1, 0)

(0, 2) (4, 1) (8, 1) (3, 2) (6, 0) (12, 1) (11, 2) (9, 0) (5, 1) (10, 2) (7, 0) (1, 1) (2, 2)
.

⎛
⎝⎜

⎞
⎠⎟

∞

We have

S S S S

S S S S S

Δ = Δ = ±{2, 3, 4, 6}, Δ = Δ = ±{1, 4, 5, 6},

Δ =−Δ = {−1, 2, ±3, ±5}, Δ = Δ = , Δ = ±{2}.
12 21 02 20

01 10 00 22 11∅

Now it remains to construct a set  of edge‐disjoint 13‐suns such that

 
Δ = Δ = {0, ±1, ±5}, Δ = Δ = {0, ±2, ±3},

Δ =−Δ = {0, 1, −2, ±4, ±6}, Δ = Δ = , Δ = {±2}.* *
12 21 02 20

01 10 00 22 13 11 13

   

     ⧹

To do this it is sufficient to take, T i T i= { [1, 4]} { | [1, 2]}i i
01 02 ∣ ∈ ∪ ∈

T i T i T i T i{ | [1, 3]} { [1, 2]} { | [1, 3]} { [1, 3]}i i i i
10 12 20 21∪ ∈ ∪ ∣ ∈ ∪ ∈ ∪ ∣ ∈ , where













T Dev x y x x y

T Dev x y x x y

T Dev x y x x y

T Dev x y x x y

T Dev x y x x y

T Dev x y x x y

= ((0, 0) ~ ( , 0) ~ ( + , 1)), where [1, 4], ± {4, 6},

= ((0, 0) ~ ( , 0) ~ ( + , 2)), where [5, 6], ± {2},

= ((0, 1) ~ ( , 1) ~ ( + , 0)), where {1, 3, 4}, {0, −1, 2},

= ((0, 1) ~ ( , 1) ~ ( + , 2)), where [5, 6], ± {1},

= ((0, 2) ~ ( , 2) ~ ( + , 0)), where [1, 3], {0, ±3},

= ((0, 2) ~ ( , 2) ~ ( + , 1)), where [4, 6], {0, ±5}.

i
i i i i i

i
i i i i i

i
i i i i i

i
i i i i i

i
i i i i i

i
i i i i i

01 ×{0}

02 ×{0}

10 ×{0}

12 ×{0}

20 ×{0}

21 ×{0}

13

13

13

13

13

13

∈ ∈

∈ ∈

∈ ∈

∈ ∈

∈ ∈

∈ ∈

We have that Orb S×{0}13
 ∪ is a 13‐sun system of K40.

Suppose now that p 37≥ . We proceed in a very similar way to the previous case. Let r

be a primitive root of p. Consider the  (( × ) { })p 3 ∪ ∞ ‐labeling B of Σ so defined:

B c B c r i i p

B B r i

( ) = , ( ) = ( , ) for 1 − 1,

( ) = (0, 2), ( ) = ( , + 2)

i
i

i
i

0

0
+1

∞ ≤ ≤

ℓ ℓ

except for p − 9

4
values of i 1 (mod 3)≡ for which we set B r i( ) = ( , )i

i+1ℓ . Letting S B= (Σ),
it is immediate that the labels of the vertices of S are pairwise distinct. Note that

S S S
p

S S
p

S
p

i j

|Δ | = |Δ | = 0, |Δ | =
− 9

2
, |Δ | = |Δ | =

5 + 7

12
,

|Δ | =
2 − 2

3
for ( , ) {(0, 2), (1, 2), (2, 0), (2, 1)}.ij

00 22 11 01 10

∈

Hence, reasoning as in the previous case, we have to construct a set  of p‐suns such that if
i j≠ , then  SΔ = Δij p ij ⧹ is a set and also  SΔ = Δ*ii p ii ⧹ is a set. In particular, this implies
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that for any T T, ′ ∈ we have T TΔ Δ ′ =ij ij∩ ∅ and that p|Δ | = |Δ | = − 100 22  ,

|Δ | =
p

11
+ 7

2
 , |Δ | =ij

p + 2

3
 for i j( , ) ∈ {(0, 2), (1, 2), (2, 0), (2, 1)}, and |Δ | =01

|Δ | =
p

10
7 − 7

12
 . To do this it is sufficient to take  as a set consisting of p − 1

2
suns of type (0, 1),

p − 1

12
suns of type (1, 0), p + 11

6
suns of type (1, 2), p + 2

3
suns of type (2, 0), and p − 7

6
suns of type

(2, 1), which exist in view of Lemma 6.4. We have that Orb S×{0}p
∪ is a p‐sun system of

K p3 +1.

Case 2. Let p 5 (mod 12)≡ . Let r be a primitive root of p. Consider the

 (( × ) { })p 3 ∪ ∞ ‐labeling B of Σ so defined:

B c B c r i i p B c

B B r B

r i i
p

r i i
p

p

B B

( ) = , ( ) = ( , ) for 1 − 2, ( ) = (1, 0),

( ) = (0, 2), ( ) = ( , 2), ( ) =

( , + 1) for 2,
− 1

2
,

( , + 2) for
+ 1

2
, − 3 ,

( ) = (1, 1), ( ) = (1, 2)

i
i

p

i

i

i

p p

0 −1

0 1

−1

+1

−2 −1

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∞ ≤ ≤

ℓ ℓ ℓ

∈

∈

ℓ ℓ

except for p − 17

6
values of i 0 (mod 3)≡ with i 3,

p − 1

2

⎡⎣ ⎤⎦∈ for which we set

B r i( ) = ( , )i
i−1ℓ and p − 5

12
values of i 0 (mod 3)≡ with i p, − 5

p + 1

2

⎡⎣ ⎤⎦∈ for which we set

( )B r i( ) = ,i
i+1ℓ . Letting S B= (Σ), it is easy to see that the labels of the vertices of S are

pairwise distinct. Note that

S
p

S S S S
p

S S
p

S S
p

|Δ | =
− 9

2
, |Δ | = |Δ | = 0, |Δ | = |Δ | =

+ 1

2
,

|Δ | = |Δ | =
7 + 1

12
, |Δ | = |Δ | =

2 − 4

3
.

00 11 22 01 10

02 20 12 21

Hence, we have to construct a set  of p‐suns such that

p
p p

p p

|Δ | = |Δ | = − 1, |Δ | =
+ 7

2
, |Δ | = |Δ | =

− 1

2
,

|Δ | = |Δ | =
5 − 1

12
, and |Δ | = |Δ | =

+ 4

3
.

11 22 00 01 10

02 20 12 21

    

   

To do this it is sufficient to take  as a set consisting of p + 7

4
suns of type (0, 1), p − 9

4
suns

of type (1, 0), p + 7

4
suns of type (1, 2), p5 − 1

12
suns of type (2, 0), and p − 5

12
suns of type (2, 1)

which exist in view of Lemma 6.4. We have that Orb S
p

∪ is a p‐sun system
of K p3 +1. □

Proposition 6.6. For any prime p 3 (mod 4)≡ there exists a p‐sun system of K p5 +1.

Proof. Set p n= 4 + 3, and let Y n= [1, ] and X n n= [ + 1, 2 + 1]. Consider the
following  ( × ) { }p 5 ∪ ∞ ‐labeling B of Σ defined as follows:
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B c B c i i p

B B y y Y

B n B n

B i i p Y n n

( ) = (0, 0), ( ) = (−1) ( , 1) for every [1, − 1];

( ) = , ( ) = (−1) ( , −1) for every ;

( ) = (−2 − 1, 3), ( ) = (−2 − 1, −3);

( ) = (−1) ( , 3) for every [1, − 1] ( {2 + 1, 2 + 2}).

i
i

y
y

n n

i
i

0
+1

0

2 +1 2 +2

∈

ℓ ∞ ℓ ∈

ℓ ℓ

ℓ ∈ ⧹ ∪

One can directly check that the vertices of S B= (Σ) are pairwise distinct. Also, it is not
hard to verify that SΔ does not have repetitions and that its complement in
 ( × ) {(0, 0)}p 5 ⧹ is the set

D x x X y y Y= {±(2 , 0)| } {±(2 , 4)| } {±(0, 1)}.∈ ∪ ∈ ∪

Clearly, D can be partitioned into n + 1 quadruples of the form
D x r s= {±(2 , 0), ±( , )}x x x with x X∈ and s 0x ≠ . Letting

S Dev x r x s= ((0, 0) (2 , 0) ( + 2 , ))x x x×{0}p
∼ ∼

for x X∈ , it is clear that S DΔ =x x, hence S x X DΔ{ | } =x ∈ . Therefore, Corollary 2.2
guarantees that   Orb S Orb S( ) ( )x X x{0}× ×p5 5

⋃ ∪∈ is a p‐sun system of K p5 +1. □

Example 6.7. Here, we construct a 7‐sun system of K36 following the proof of
Proposition 6.6. In this case, Y = {1} and X = {2, 3}. Now consider the 7‐sun S defined
below, whose vertices lie in  ( × ) { }7 5 ∪ ∞ :

S =
(0, 0) (1, 1) −(2, 1) (3, 1) −(4, 1) (5, 1) −(6, 1)

−(1, −1) (2, 3) (−3, 3) −(3, 3) −(5, 3) (6, 3)
.

⎛
⎝⎜

⎞
⎠⎟∞

We have

SΔ = ±{(1, 1), (3, 2), (5, 2), (0, 2), (2, 2), (4, 2), (6, 1), (2, 0), (4, 4), (6, −2), (1, −2), (3, 4), (5, 4)}.

Hence SΔ does not have repetitions and its complement in  ( × ) {(0, 0)}7 5 ⧹ is the set

D = ± {(4, 0), (6, 0), (2, 4), (0, 1)}.

Now it is sufficient to take

 S Dev S Dev= ((0, 0) (4, 0) (6, 4)), = ((0, 0) (6, 0) (6, 1)).2 ×{0} 3 ×{0}7 7
∼ ∼ ∼ ∼

One can check that   Orb S Orb S( )x X x{0}× ×5 7 5
⋃ ∪∈ is a 7‐sun system of K36.

We finally construct p‐sun systems of Kmp whenever p m (mod 4)≡ .

Proposition 6.8. Let m and p be odd prime numbers with m p≤ and m p (mod 4)≡ .
Then there exists a p‐sun system of Kmp.
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Proof. For each pair  r s( , ) ×*p m∈ , let  B V: (Σ) ×r s p m, → be the labeling of the
vertices of Σ defined as follows:

B c

B c B c
r s i m m m p

r s i m m p

B B c
r s i m m m p

r s i m m p

( ) = (0, 0),

( ) = ( ) +
( , ) if [1, + 1] { + 3, + 5, …, − 1},

( , − ) if { + 2, + 4, …, − 2},

( ) = ( ) +
( , − ) if [0, ] { + 2, + 4, …, − 2},

( , ) if { + 1, + 3, …, − 1}.

r s

r s i r s i

r s i r s i

, 0

, , −1

, ,

⎧⎨⎩
⎧⎨⎩

∈ ∪

∈

ℓ
∈ ∪

∈

Since Br s, is injective, for every h m∈ the graph S τ B= ( (Σ))r s
h

h r s, (0, ) , is a p‐sun. For
i j, m∈ , we also notice that S h rΔ { | } = {± }ij r s

h
m, ∈ whenever i j s− = ± , otherwise it

is empty.
Letting  be the union of the following two sets of p‐suns:




S h r p m

S h r p s m

{ | , [1, ( + − 2)/4]},

{ | , [1, ( − 1)/2], [2, ( − 1)/2]},

r
h

m

r s
h

m

,1

,

∈ ∈

∈ ∈ ∈

it is not difficult to see that for every i j, m∈



i j

p m
i jΔ =

if = ,

± 1,
+ − 2

4
if − = ±1,

otherwise .*

ij

p



⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎤
⎦⎥

∅

It is left to construct a set  of p‐suns such that Δ = Δij p ij ⧹ whenever i j≠ , and
 Δ = Δ =* *ii p ii p ⧹ . Therefore,

p i j
p m

i j|Δ | =

− 1 if = ,
−

2
+ 1 if − = ±1,

1 otherwise .

ij

⎧
⎨
⎪⎪

⎩
⎪⎪

It is enough to take  as a set consisting of one sun of type h h x( , + ) and p m−

2
suns of

type h h( , + 1), for every h m∈ and x 1,
m − 1

2

⎡⎣ ⎤⎦∈ . These p‐suns exist by Lemma 6.4,

therefore  ∪ is the desired p‐sun system of Kmp. □

Example 6.9. Let m p( , ) = (3, 11). Following the proof of Proposition 6.8, we construct an
11‐sun system of K33. For every h 3∈ and r [1, 3]∈ , let Sr

h
,1 be the 11‐sun defined below:

S

h r h r h r h r h r h r h r h r h r h r h

r h r h r h r h r h r h r h r h r h r h h
=

(0, ) ( , + 1) (2 , + 2) (3 , ) (4 , + 1) (5 , ) (6 , + 1) (7 , ) (8 , + 1) (9 , ) (10 , + 1)

( , + 2) (2 , ) (3 , + 1) (4 , + 2) (5 , + 2) (6 , + 2) (7 , + 2) (8 , + 2) (9 , + 2) (10 , + 2) (0, + 2)
.

r
h
,1

⎛
⎝⎜

⎞
⎠⎟

One can check that S S S rΔ { , , } = {± }ij r r r,1
0

,1
1

,1
2 if i j≠ , otherwise it is empty. Therefore,

letting S h r= { | , [1, 3]}r
h
,1 3 ∈ ∈ , we have that Δij is nonempty only when i j≠ , in

which case we have Δ = ±[1, 3]ij .
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Now let T h g= { | , [1, 5]}hg 3 ∈ ∈ where Thg is the 11‐sun defined as follows:





T Dev h h h

T Dev h g h h g

= ((0, ) ~ (1, ) ~ (1, + 1)),

= ((0, ) ~ ( , ) ~ (9, + 1)) for every [2, 5].

h

hg

1 ×{0}

×{0}

11

11
∈

Note that each Thg is an 11‐sun of type h h( , + 1). Therefore we have that

i j
Δ =

±[1, 5] if 0 = 2,

{0} [4, 7] otherwise .
ij

⎧⎨⎩
≤ ≤

∪

By Corollary 2.2, it follows that  ∪ is an 11‐sun system of K33.

We are now ready to show that the necessary conditions for the existence of a p‐sun system
of Kv are also sufficient whenever p is an odd prime. In other words, we end this section by
proving Theorem 6.1.

Proof of Theorem 6.1. If p = 3, 5 the result can be found in [10] and in [8], respectively.
For p 7≥ , the result follows from Propositions 6.5, 6.6, and 6.8. □
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