Check for updates

DOI: 10.1002/jcd.21751

WILEY

A reduction of the spectrum problem for odd sun systems and the prime case

Marco Buratti¹ 💿 | Anita Pasotti² 💿 | Tommaso Traetta² 💿

¹Dipartimento di Matematica e Informatica, Università di Perugia, Perugia, Italy
²DICATAM - Sez. Matematica, Università degli Studi di Brescia, Brescia, Italy

Correspondence

Anita Pasotti, DICATAM - Sez. Matematica, Università degli Studi di Brescia, Via Branze 43, I-25123 Brescia, Italy. Email: anita.pasotti@unibs.it

Funding information

GNSAGA of Istituto Nazionale di Alta Matematica

Abstract

A *k*-cycle with a pendant edge attached to each vertex is called a *k*-sun. The existence problem for *k*-sun decompositions of K_{ν} , with *k* odd, has been solved only when k = 3 or 5. By adapting a method used by Hoffmann, Lindner, and Rodger to reduce the spectrum problem for odd cycle systems of the complete graph, we show that if there is a *k*-sun system of K_{ν} (*k* odd) whenever ν lies in the range $2k < \nu < 6k$ and satisfies the obvious necessary conditions, then such a system exists for every admissible $\nu \ge 6k$. Furthermore, we give a complete solution whenever *k* is an odd prime.

K E Y W O R D S

crown graph, cycle systems, graph decompositions, partial mixed differences, sun systems

2010 MATHEMATICS SUBJECT CLASSIFICATION 05B30, 05C51

1 | INTRODUCTION

We denote by $V(\Gamma)$ and $E(\Gamma)$ the set of vertices and the list of edges of a graph Γ , respectively. Also, we denote by $\Gamma + w$ the graph obtained by adding to Γ an independent set $W = \{\infty_i | 1 \le i \le w\}$ of $w \ge 0$ vertices each adjacent to every vertex of Γ , namely,

 $\Gamma + w \coloneqq \Gamma \cup K_{V(\Gamma),W},$

where $K_{V(\Gamma),W}$ is the complete bipartite graph with parts $V(\Gamma)$ and W. Denoting by K_v the *complete graph* of order v, it is clear that $K_v + 1$ is isomorphic to K_{v+1} .

We denote by $x_1 \sim x_2 \sim \cdots \sim x_k$ the *path* with edges $\{x_{i-1}, x_i\}$ for $2 \le i \le k$. By adding the edge $\{x_1, x_k\}$ when $k \ge 3$, we obtain a *cycle of length* k (briefly, a *k-cycle*) denoted by $(x_1, x_2, ..., x_k)$. A *k*-cycle with further $v - k \ge 0$ isolated vertices will be referred to as a *k*-cycle of order v. By adding to $(x_1, x_2, ..., x_k)$ an independent set of edges $\{\{x_i, x_i'\} \mid 1 \le i \le k\}$, we obtain the *k-sun* on 2k vertices (sometimes referred to as *k*-crown graph) denoted by

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_{k-1} & x_k \\ x'_1 & x'_2 & \cdots & x'_{k-1} & x'_k \end{pmatrix}$$

whose edge-set is therefore $\{\{x_i, x_{i+1}\}, \{x_i, x'_i\} | 1 \le i \le k\}$, where $x_{k+1} = x_1$.

• WILEY

A decomposition of a graph K is a set { Γ_1 , Γ_2 , ..., Γ_l } of subgraphs of K whose edge-sets between them partition the edge-set of K; in this case, we briefly write $K = \bigoplus_{i=1}^{t} \Gamma_i$. If each Γ_i is isomorphic to Γ , we speak of a Γ -decomposition of K. If Γ is a k-cycle (resp., k-sun), we also speak of a k-cycle system (resp., k-sun system) of K.

In this paper we study the existence problem for k-sun systems of K_v (v > 1). Clearly, for such a system to exist we must have

$$v \ge 2k$$
 and $v(v-1) \equiv 0 \pmod{4k}$. (*)

As far as we know, this problem has been completely settled only when k = 3, 5 [8,10], k = 4, 6, 8 [12], and when k = 10, 14 or $2^t \ge 4$ [9]. It is important to notice that, as a consequence of a general result proved in [14], condition (*) is sufficient whenever v is large enough with respect to k. These results seem to suggest the following.

Conjecture 1. Let $k \ge 3$ and v > 1. There exists a k-sun system of K_v if and only if (*) holds.

Our constructions rely on the existence of *k*-cycle systems of K_v , a problem that has been completely settled in [1,4,5,11,13]. More precisely, [4] and [11] reduce the problem to the orders v in the range $k \le v < 3k$, with v odd. These cases are then solved in [1,13]. For odd k, an alternative proof based on 1-rotational constructions is given in [5]. Further results on *k*-cycle systems of K_v with an automorphism group acting sharply transitively on all but at most one vertex can be found in [2,6,7,15].

The main results of this paper focus on the case where k is odd. By adapting a method used in [11] to reduce the spectrum problem for odd cycle systems of the complete graph, we show that if there is a k-sun system of K_v (k odd) whenever v lies in the range 2k < v < 6k and satisfies the obvious necessary conditions, then such a system exists for every admissible $v \ge 6k$. In other words, we show the following.

Theorem 1.1. Let $k \ge 3$ be an odd integer and v > 1. Conjecture 1 is true if and only if there exists a k-sun system of K_v for all v satisfying the necessary conditions in (*) with 2k < v < 6k.

We would like to point out that we strongly believe the reduction methods used in [4,11] could be further developed to reduce the spectrum problem of other types of graph decompositions of K_{ν} .

In Section 6, we construct *k*-sun systems of K_v for every odd prime *k* whenever 2k < v < 6k and (*) holds. Therefore, as a consequence of Theorem 1.1, we solve the existence problem for *k*-sun systems of K_v whenever *k* is an odd prime.

Theorem 1.2. For every odd prime p there exists a p-sun system of K_v with v > 1 if and only if $v \ge 2p$ and $v(v - 1) \equiv 0 \pmod{4p}$.

Both results rely on the difference methods described in Section 2. These methods are used in Section 3 to construct specific *k*-cycle decompositions of some subgraphs of $K_{2k} + w$, which we then use in Section 4 to build *k*-sun systems of $K_{4k} + n$. This is the last ingredient we need in Section 5 to prove Theorem 1.1. Difference methods are finally used in Section 6 to construct *k*-sun systems of K_v for every odd prime *k* whenever 2k < v < 6k and (*) holds.

2 | PRELIMINARIES

Henceforward, $k \ge 3$ is an odd integer, and $\ell = \frac{k-1}{2}$. Also, given two integers $a \le b$, we denote by [a, b] the interval containing the integers $\{a, a + 1, ..., b\}$. If a > b, then [a, b] is empty.

In our constructions we make extensive use of the method of partial mixed differences which we now recall but limited to the scope of this paper.

Let *G* be an abelian group of odd order *n* in additive notation, let $W = \{\infty_u | 1 \le u \le w\}$, and denote by Γ a graph with vertices in $V = (G \times [0, m - 1]) \cup W$. For any permutation *f* of *V*, we denote by $f(\Gamma)$ the graph obtained by replacing each vertex of Γ , say *x*, with f(x). Letting τ_g , with $g \in G$, be the permutation of *V* fixing each $\infty_u \in W$ and mapping $(x, i) \in G \times [0, m - 1]$ to (x + g, i), we call τ_g the *translation by g* and $\tau_g(\Gamma)$ the related translate of Γ .

We denote by $Orb_G(\Gamma) = \{\tau_g(\Gamma) | g \in G\}$ the *G*-orbit of Γ , that is, the set of all distinct translates of Γ , and by $Dev_G(\Gamma) = \bigcup_{g \in G} \tau_g(\Gamma)$ the graph union of all translates of Γ . Further, by $Stab_G(\Gamma) = \{g \in G | \tau_g(\Gamma) = \Gamma\}$ we denote the *G*-stabilizer of Γ , namely, the set of translations fixing Γ . We recall that $Stab_G(\Gamma)$ is a subgroup of *G*, hence $s = |Stab_G(\Gamma)|$ is a divisor of n = |G|. Henceforward, when $G = \mathbb{Z}_k$, we will simply write $Orb(\Gamma)$, $Dev(\Gamma)$, and $Stab(\Gamma)$.

Suppose now that Γ is either a *k*-cycle or a *k*-sun with vertices in *V*. For every $i, j \in [0, m - 1]$, the list of (i, j)-differences of Γ is the multiset $\Delta_{ii}\Gamma$ defined as follows:

1. if $\Gamma = (x_1, x_2, ..., x_k)$, then

$$\Delta_{ij}\Gamma = \{a_{h+1} - a_h | x_h = (a_h, i), x_{h+1} = (a_{h+1}, j), 1 \le h \le k/s\}$$

$$\cup \{a_h - a_{h+1} | x_h = (a_h, j), x_{h+1} = (a_{h+1}, i), 1 \le h \le k/s\};$$

2. if
$$\Gamma = \begin{pmatrix} x_1 & x_2 & \cdots & x_k \\ x'_1 & x'_2 & \cdots & x'_k \end{pmatrix}$$
, then

$$\Delta_{ij}\Gamma = \Delta_{ij}(x_1, x_2, \dots, x_k) \cup \{a'_h - a_h | x_h = (a_h, i), x'_h = (a'_h, j), 1 \le h \le k/s\}$$

$$\cup \{a_h - a'_h | x_h = (a_h, j), x'_h = (a'_h, i), 1 \le h \le k/s\}.$$

We notice that when s = 1 we find the classic concept of list of differences. Usually, one speaks of *pure or mixed differences* according to whether i = j or not, and when m = 1 we simply write

7

* WILEY

 $\Delta\Gamma$. This concept naturally extends to a family \mathcal{F} of graphs with vertices in V by setting $\Delta_{ij}\mathcal{F} = \bigcup_{\Gamma \in \mathcal{F}} \Delta_{ij}\Gamma$. Clearly, $\Delta_{ij}\Gamma = -\Delta_{ji}\Gamma$, hence $\Delta_{ij}\mathcal{F} = -\Delta_{ji}\mathcal{F}$, for every $i, j \in [0, m - 1]$.

We also need to define the *list of neighbors* of ∞_u in \mathcal{F} , that is, the multiset $N_{\mathcal{F}}(\infty_u)$ of the vertices in V adjacent to ∞_u in some graph $\Gamma \in \mathcal{F}$.

Finally, we introduce a special class of subgraphs of K_{mn} . To this purpose, we take $V(K_{mn}) = G \times [0, m - 1]$. Letting $D_{ii} \subseteq G \setminus \{0\}$ for every $0 \le i \le m - 1$, and $D_{ij} \subseteq G$ for every $0 \le i < j \le m - 1$, we denote by

$$\langle D_{ij} | 0 \le i \le j \le m - 1 \rangle$$

the spanning subgraph of K_{mn} containing exactly the edges $\{(g, i), (g + d, j)\}$ for every $g \in G$, $d \in D_{ij}$, and $0 \le i \le j \le m - 1$. The reader can easily check that this graph remains unchanged if we replace any set D_{ii} with $\pm D_{ii}$.

The following result, standard in the context of difference families, provides us with a method to construct Γ -decompositions for subgraphs of $K_{mn} + w$.

Proposition 2.1. Let G be an abelian group of odd order n, let m and w be nonnegative integers, and denote by \mathcal{F} a family of k-cycles (resp., k-suns) with vertices in $(G \times [0, m-1]) \cup \{\infty_u | u \in \mathbb{Z}_w\}$ satisfying the following conditions:

Δ_{ij} F has no repeated elements, for every 0 ≤ i ≤ j < m;
 N_F(∞_u) = {(g_{u,i}, i)|0 ≤ i < m, g_{u,i} ∈ G} for every 1 ≤ u ≤ w.

Then $\bigcup_{\Gamma \in \mathcal{F}} Orb_G(\Gamma) = \{\tau_g(\Gamma) | g \in G, \Gamma \in \mathcal{F}\}$ is a k-cycle (resp., k-sun) system of $\langle \Delta_{ij}\mathcal{F} | 0 \leq i \leq j \leq m-1 \rangle + w$.

Proof. Let $\mathcal{F}^* = \bigcup_{\Gamma \in \mathcal{F}} Orb_G(\Gamma)$, $K = \langle \Delta_{ij} \mathcal{F} | 0 \le i \le j \le m - 1 \rangle$, and let ϵ be an edge of K + w. We are going to show that ϵ belongs to exactly one graph of \mathcal{F}^* .

If $\varepsilon \in E(K)$, by recalling the definition of K we have that $\varepsilon = \{(g, i), (g + d, j)\}$ for some $g \in G$ and $d \in \Delta_{ij}\mathcal{F}$, with $0 \le i \le j < m$. Hence, there is a graph $\Gamma \in \mathcal{F}$ such that $d \in \Delta_{ij}\Gamma$. This means that Γ contains the edge $\varepsilon' = \{(g', i), (g' + d, j)\}$ for some $g' \in G$, therefore $\varepsilon = \tau_{g-g'}(\varepsilon') \in \tau_{g-g'}(\Gamma) \in \mathcal{F}^*$. To prove that ε only belongs to $\tau_{g-g'}(\Gamma)$, let Γ' be any graph in \mathcal{F} such that $\varepsilon \in \tau_x(\Gamma')$, for some $x \in G$. Since translations preserve differences, we have that $d \in \Delta_{ij}\tau_x(\Gamma') = \Delta_{ij}\Gamma'$. Considering that $d \in \Delta_{ij}\Gamma \cap \Delta_{ij}\Gamma'$ and, by condition (1), $\Delta_{ij}\mathcal{F}$ has no repeated elements, we necessarily have that $\Gamma' = \Gamma$, hence $\tau_{-x}(\varepsilon) \in \Gamma$. Again, since $\Delta_{ij}\Gamma$ has no repeated elements (condition 1), and considering that ε' and $\tau_{-x}(\varepsilon)$ are edges of Γ that yield the same differences, then $\tau_{-x}(\varepsilon) = \varepsilon' = \tau_{g'-g}(\varepsilon)$, that is, $\tau_{g'-g+x}(\varepsilon) = \varepsilon$. Since G has odd order, it has no element of order 2, hence g' - g + x = 0, that is, x = g - g', therefore $\tau_{g-g'}(\Gamma)$ is the only graph of \mathcal{F}^* containing ε .

Similarly, we show that every edge of $(K + w) \setminus K$ belongs to exactly one graph of \mathcal{F}^* . Let $\varepsilon = \{\infty_u, (g, i)\}$ for some $u \in \mathbb{Z}_w$ and $(g, i) \in G \times [0, m - 1]$. By assumption, there is a graph $\Gamma \in \mathcal{F}^*$ containing the edge $\varepsilon' = \{\infty_u, (g_{u,i}, i)\}$ with $g_{u,i} \in G$. Hence, $\varepsilon = \tau_{g-g_{u,i}}(\varepsilon') \in \tau_{g-g_{u,i}}(\Gamma)$. Finally, if $\varepsilon \in \tau_x(\Gamma')$ for some $x \in G$ and $\Gamma' \in \mathcal{F}$, then $\{\infty_u, (g - x, i)\} = \tau_{-x}(\varepsilon) \in \Gamma'$. Since condition (2) implies that $N_{\mathcal{F}}(\infty_u)$ contains exactly one pair from $G \times \{i\}$, we necessarily have that $\Gamma = \Gamma'$ and $x = g - g_{u,i}$; therefore, there is exactly one graph of \mathcal{F}^* containing ε . Condition (2) also implies that $N_{\mathcal{F}}(\infty_u)$ is disjoint from $\{\infty_u | u \in \mathbb{Z}_w\}$, and this guarantees that no graph in \mathcal{F}^* contains edges joining two infinities. Therefore, \mathcal{F}^* is the desired decomposition of K + w.

Considering that $K_{mn} = \langle D_{ij} | 0 \le i \le j \le m - 1 \rangle$ if and only if $\pm D_{ii} = G \setminus \{0\}$ for every $i \in [0, m - 1]$, and $D_{ij} = G$ for every $0 \le i < j \le m - 1$, the proof of the following corollary to Proposition 2.1 is straightforward.

Corollary 2.2. Let G be an abelian group of odd order n, let m and w be nonnegative integers, and denote by \mathcal{F} a family of k-cycles (resp., k-suns) with vertices in $(G \times [0, m - 1]) \cup \{\infty_u | u \in \mathbb{Z}_w\}$ satisfying the following conditions:

1.
$$\Delta_{ij}\mathcal{F} = \begin{cases} G \setminus \{0\} & \text{if } 0 \le i = j \le m - 1, \\ G & \text{if } 0 \le i < j \le m - 1, \end{cases}$$

2.
$$N_{\mathcal{F}}(\infty_u) = \{(g_{u,i}, i) | 0 \le i < m, g_{u,i} \in G\} \text{ for every } 1 \le u \le w.$$

Then $\bigcup_{\Gamma \in \mathcal{F}} Orb_G(\Gamma)$ is a k-cycle (resp., k-sun) system of $K_{mn} + w$.

3 | CONSTRUCTING k-CYCLE SYSTEMS OF $\langle D_{00}, D_{01}, D_{11} \rangle + w$

In this section, we recall and generalize some results from [11] to provide conditions on $D_{00}, D_{01}, D_{11} \subseteq \mathbb{Z}_k$ that guarantee the existence of a *k*-cycle system for the subgraph $\langle D_{00}, D_{01}, D_{11} \rangle + w$ of $K_{2k} + w$, where $V(K_{2k}) = \mathbb{Z}_k \times \{0, 1\}$.

We recall that every connected 4-regular Cayley graph over an abelian group has a Hamilton cycle system [3] and show the following.

Lemma 3.1. Let $[a, b], [c, d] \subseteq [1, \ell]$. The graph $\langle [a, b], \emptyset, [c, d] \rangle$ has a k-cycle system whenever both [a, b] and [c, d] satisfy the following condition: the interval has even size or contains an integer coprime with k.

Proof. The graph $\langle [a, b], \emptyset, [c, d] \rangle$ decomposes into $\langle [a, b], \emptyset, \emptyset \rangle$ and $\langle \emptyset, \emptyset, [c, d] \rangle$. The first one is the Cayley graph $\Gamma = Cay(\mathbb{Z}_k, [a, b])$ with further k isolated vertices, while the second one is isomorphic to $\langle [c, d], \emptyset, \emptyset \rangle$. Therefore, it is enough to show that Γ has a k-cycle system.

Note that Γ decomposes into the subgraphs $Cay(\mathbb{Z}_k, D_i)$, for $0 \le i \le t$, whenever the sets D_i between them partition [a, b]. By assumption, [a, b] has even size or contains an integer coprime with k. Therefore, we can assume that for every i > 0 the set D_i is a pair of integers at distance 1 or 2, and D_0 is either empty or contains exactly one integer coprime with k. Clearly, $Cay(\mathbb{Z}_k, D_0)$ is either the empty graph or a k-cycle, and the remaining $Cay(\mathbb{Z}_k, D_i)$ are 4-regular Cayley graphs. Also, for every i > 0 we have that D_i is a generating set of \mathbb{Z}_k (since k is odd and D_i contains integers at distance 1 or 2), hence the graph $Cay(\mathbb{Z}_k, D_i)$ is connected. It follows that each $Cay(\mathbb{Z}_k, D_i)$, with i > 0, decomposes into two k-cycles, thus the assertion is proven.

Lemma 3.2. Let $S \subseteq \{2i - 1 | 1 \le i \le \ell\}$. Then there exist k-cycle systems for the graphs $\langle \{\ell\}, S \cup (S + 1), \emptyset \rangle$ and $\langle \{\ell\}, (S + 1) \cup (S + 2), \emptyset \rangle$.

Proof. We note that the result is trivial when $S = \emptyset$, since $\langle \{\ell\}, \emptyset, \emptyset \rangle$ is a k-cycle.

The existence of a *k*-cycle system of $\Gamma = \langle \{\ell\}, S \cup (S + 1), \emptyset \rangle$ has been proven in [11, Lemma 3] when $S \subseteq \{2i - 1 | 1 \le i \le \ell\}$. Consider now the permutation f of $\mathbb{Z}_k \times \{0, 1\}$ fixing $\mathbb{Z}_k \times \{0\}$ pointwise, and mapping (i, 1) to (i + 1, 1) for every $i \in \mathbb{Z}_k$. It is not difficult to check that $f(\Gamma) = \langle \{\ell\}, (S + 1) \cup (S + 2), \emptyset \rangle$ which is therefore isomorphic to Γ , and hence it has a *k*-cycle system.

Lemma 3.3. Let r, s, and s' be integers such that $1 \le s \le s' \le \min\{s + 1, \ell\}$, and $0 < r \ne s + s' \pmod{2}$. Also, let $D \subseteq [0, k - 1]$ be a nonempty interval of size k - (s + s' + 2r). Then there is a cycle $C = (x_1, x_2, ..., x_k)$ of $\Gamma = \langle [1 + \epsilon, s + \epsilon], D, [1 + \epsilon, s' + \epsilon] \rangle + r$, for every $\epsilon \in \{0, 1\}$, such that Orb(C) is a k-cycle system of Γ . Furthermore, if u = 0 or $u = 1 - \epsilon = 1 \le s - 1$, then

1. $Dev(\{x_{2-u}, x_{3-u}\})$ is a k-cycle with vertices in $\mathbb{Z}_k \times \{0\}$;

2. $Dev(\{x_{4+u}, x_{5+u}\})$ is a k-cycle with vertices in $\mathbb{Z}_k \times \{1\}$.

Proof. Set t = k - (s + s' + 2r) and let $\Omega = \langle [1 + \epsilon, s + \epsilon], [0, t - 1], [1 + \epsilon, s' + \epsilon] \rangle + r$. For $i \in [0, s + s' + 1]$ and $j \in [0, t + r - 1]$, let a_i and b_j be the elements of $\mathbb{Z}_k \times \{0, 1\}$ defined as follows:

$$a_{i} = \begin{cases} \left(-\frac{i}{2}, 0\right) & \text{if } i \in [0, s] \text{ is even}, \\ \left(-s - \epsilon + \frac{i - 1}{2}, 0\right) & \text{if } i \in [1, s] \text{ is odd}, \\ a_{2s+1-i} + (0, 1) & \text{if } i \in [s + 1, 2s + 1], \\ (-s' - \epsilon, 1) & \text{if } i = s + s' + 1 > 2s + 1 \end{cases}$$

$$b_{j} = \begin{cases} \left(\frac{j}{2}, 0\right) & \text{if } j \in [0, t + r - 2] \text{ is even}, \\ \left(t - \frac{j + 1}{2}, 1\right) & \text{if } j \in [1, t - 1] \text{ is odd}, \\ \left(t + \left\lfloor\frac{j - t}{2}\right\rfloor, 1\right) & \text{if } j \in [t, t + r - 2] \text{ is odd}, \\ a_{s+s'+1} & \text{if } j = t + r - 1. \end{cases}$$

Since the elements a_i and b_j are pairwise distinct, except for $a_0 = b_0$ and $a_{s+s'+1} = b_{t+r-1}$, then the union *F* of the following two paths is a *k*-cycle:

$$P = a_0 \sim a_1 \sim \cdots \sim a_{s+s+1},$$

$$Q = b_0 \sim b_1 \sim \cdots \sim b_{t-1} \sim \infty_1 \sim b_t \sim \infty_2 \sim b_{t+1} \sim \cdots \sim \infty_r \sim b_{t+r-1}.$$

Since $\Delta_{ij}F = \Delta_{ij}P \cup \Delta_{ij}Q$, for $i, j \in \{0, 1\}$, where

$$\Delta_{00}P = \pm [1 + \epsilon, s + \epsilon], \quad \Delta_{01}P = \{0\}, \qquad \Delta_{11}P = \pm [1 + \epsilon, s' + \epsilon],$$

$$\Delta_{00}Q = \emptyset, \qquad \Delta_{01}Q = [1, t - 1], \quad \Delta_{11}Q = \emptyset,$$

and considering that $N_F(\infty_h) = N_Q(\infty_h) = \{b_{t+h-2}, b_{t+h-1}\}$ for every $h \in [1, r]$, Proposition 2.1 guarantees that Orb(F) is a *k*-cycle system of Ω . Furthermore, if u = 0or $u = 1 - \epsilon = 1 \le s - 1$, then

$$\pm (a_{s-u} - a_{s-u-1}) = \pm (a_{s+u+2} - a_{s+u+1}) = \pm (u + \epsilon + 1, 0).$$

Since k is odd, we have that $Dev(\{a_{s-u-1}, a_{s-u}\})$ and $Dev(\{a_{s+u+2}, a_{s+u+1}\})$ are k-cycles with vertices in $\mathbb{Z}_k \times \{0\}$ and $\mathbb{Z}_k \times \{1\}$, respectively.

If D = [g, g + t - 1] is any interval of [0, k - 1] of size t, and f is the permutation of $\mathbb{Z}_k \times \{0, 1\}$ fixing $\mathbb{Z}_k \times \{0\}$ pointwise, and mapping (i, 1) to (i + g, 1) for every $i \in \mathbb{Z}_k$, one can check that C = f(F) is the desired k-cycle of $\Gamma = f(\Omega)$.

Lemma 3.4.

1. Let ℓ be odd. If Γ is a 1-factor of K_{2k} , then $\Gamma + \ell$ decomposes into k cycles of length k, each of which contains exactly one edge of Γ . Furthermore, if $\Gamma = \langle \emptyset, \{d\}, \emptyset \rangle$, then there exists a k-cycle $C = (c_1, c_2, ..., c_k)$ of $\Gamma + \ell$, with $c_1 \in \mathbb{Z}_k \times \{0\}$ and $c_2 \in \mathbb{Z}_k \times \{1\}$, such that

 $Dev(\{c_1, c_2\}) = \Gamma$ and Orb(C) is a k-cycle system of $\Gamma + \ell$.

2. Let ℓ be even. If Γ is a k-cycle of order 2k, then $\Gamma + \ell$ decomposes into k cycles of length k, each of which contains exactly one edge of Γ . Furthermore, if $\Gamma = \langle \{d\}, \emptyset, \emptyset \rangle$ and d is coprime with k, then there exists a k-cycle $C = (c_1, c_2, ..., c_k)$ of $\Gamma + \ell$, with $c_1, c_2 \in \mathbb{Z}_k \times \{0\}$, such that

 $Dev(\{c_1, c_2\})$ is the k-cycle of Γ and Orb(C) is a k-cycle system of $\Gamma + \ell$.

Proof. Permuting the vertices of K_{2k} if necessary, we can assume that Γ is the 1-factor $\Gamma_0 = \langle \emptyset, \{0\}, \emptyset \rangle$ when ℓ is odd, and the *k*-cycle $\Gamma_1 = \langle \{\ell\}, \emptyset, \emptyset \rangle$ (of order 2k) when ℓ is even. For $h \in \{0, 1\}$, let $C_h = (c_{h,1}, c_{h,2}, \infty_1, c_3, \infty_2, c_4, ..., \infty_{\ell-1}, c_{\ell+1}, \infty_{\ell})$ be the *k*-cycle of $\Gamma_h + \ell$, where

$$c_{h,1} = (0, 1 - h), \quad c_{h,2} = (h\ell, 0), \quad \text{and} \quad c_j = \begin{cases} \left(\frac{j-1}{2}, 1\right) & \text{if } j \in [3, \ell+1] \text{ is odd,} \\ \left(\frac{j}{2}, 0\right) & \text{if } j \in [4, \ell+1] \text{ is even.} \end{cases}$$

Note that the sets $\Delta_{ij}C_h$ are empty, except for $\Delta_{01}C_0 = \{0\}$ and $\Delta_{00}C_1 = \{\pm \ell\}$. Also, the two neighbors of ∞_u in C_h belong to $\mathbb{Z}_k \times \{0\}$ and $\mathbb{Z}_k \times \{1\}$, respectively. Hence, Proposition 2.1 guarantees that $Orb(C_h)$ is a *k*-cycle system of $\Gamma_h + \ell$, for $h \in \{0, 1\}$. We finally notice that $Dev(\{c_{h,1}, c_{h,2}\}) = \Gamma_h$ (up to isolated vertices) and this completes the proof.

The following result has been proven in [11].

Lemma 3.5. Let $D \subseteq [1, \ell]$. The subgraph $\langle D, \{0\}, D \rangle$ of K_{2k} has a 1-factorization.

Remark 3.6. Considering the permutation f of $\mathbb{Z}_k \times \{0, 1\}$ such that f(i, j) = (i, 1 - j), and a graph $\Gamma = \langle D_0, D_1, D_2 \rangle$, we have that $f(\Gamma) = \langle D_2, -D_1, D_0 \rangle$. Therefore, Lemmas 3.1–3.5 continue to hold when we replace Γ by $f(\Gamma)$.

4 | k-SUN SYSTEMS OF $K_{4k} + n$

In this section we provide sufficient conditions for a k-sun system of $K_{4k} + n$ to exist, when $n \equiv 0, 1 \pmod{4}$. More precisely, we show the following.

Theorem 4.1. Let $k \ge 7$ be an odd integer and let $n \equiv 0, 1 \pmod{4}$ with 2k < n < 10k; then there exists a k-sun system of $K_{4k} + n$, except possibly when

- k = 7 and n = 20, 21, 32, 33, 44, 45, 56, 57, 64, 65, 68, 69,
- *k* = 11 and *n* = 100, 101, 112, 113.

To prove Theorem 4.1, we start by introducing some notions and prove some preliminary results. Let *M* be a positive integer and take $V(K_{2^iM}) = \mathbb{Z}_M \times [0, 2^i - 1]$ and $V(K_{2^iM} + w) = V(K_{2^iM}) \cup \{\infty_h | h \in \mathbb{Z}_w\}$, for $i \in \{1, 2\}$ and w > 0.

Now assume that w = 2u, and let $x \mapsto \overline{x}$ be the permutation of $V(K_{4M} + 2u)$ defined as follows:

$$\overline{x} = \begin{cases} (a, 2 - j) & \text{if } x = (a, j) \in \mathbb{Z}_M \times \{0, 2\}, \\ (a, 4 - j) & \text{if } x = (a, j) \in \mathbb{Z}_M \times \{1, 3\}, \\ \infty_{h+u} & \text{if } x = \infty_h. \end{cases}$$

For any subgraph Γ of $K_{4M} + 2u$, we denote by $\overline{\Gamma}$ the graph (isomorphic to Γ) obtained by replacing each vertex x of Γ with \overline{x} .

Given a subgraph Γ of $K_{2M} + u$, we denote by $\Gamma[2]$ the spanning subgraph of $K_{4M} + 2u$ whose edge-set is

$$E(\Gamma[2]) = \{\{x, y\}, \{x, \overline{y}\}, \{\overline{x}, y\}, \{\overline{x}, \overline{y}\} | \{x, y\} \in E(\Gamma)\}$$

and let $\Gamma^*[2] = \Gamma[2] \oplus I$ be the graph obtained by adding to $\Gamma[2]$ the 1-factor

$$I = \{\{x, \overline{x}\} | x \in \mathbb{Z}_M \times \{0, 1\}\}.$$

Note that, up to isolated vertices, $\Gamma[2]$ is the *lexicographic product* of Γ with the empty graph on two vertices.

The proof of the following elementary lemma is left to the reader.

Lemma 4.2. Let $\Gamma = \bigoplus_{i=1}^{n} \Gamma_i$ and let $w = \sum_{i=1}^{n} w_i$ with $w_i \ge 0$. If Γ and the Γ_i s have the same vertex-set (possibly with isolated vertices), then

1. $\Gamma + w = \bigoplus_{i=1}^{n} (\Gamma_i + w_i);$

13

WILEY

We start showing that if C is a k-cycle, then C[2] decomposes into two k-suns.

Lemma 4.3. Let $C = (c_1, c_2, ..., c_k)$ be a cycle with vertices in $(\mathbb{Z}_M \times \{0, 1\}) \cup \{\infty_h | h \in \mathbb{Z}_u\}$ and let *S* be the *k*-sun defined as follows:

$$S = \left(\frac{s_1 \dots s_{k-1} s_k}{s_2 \dots s_k s_k}\right),\tag{1}$$

where $s_i \in \{c_i, \overline{c_i}\}$ for every $i \in [1, k]$. Then $C[2] = S \oplus \overline{S}$.

Proof. It is enough to notice that *S* contains the edges $\{s_i, s_{i+1}\}$ and $\{s_i, \overline{s_{i+1}}\}$, while \overline{S} contains $\{\overline{s_i}, \overline{s_{i+1}}\}$ and $\{\overline{s_i}, s_{i+1}\}$, for every $i \in [1, k]$, where $s_{k+1} = s_1$ and $\overline{s_{k+1}} = \overline{s_1}$.

Example 4.4. In Figure 1 we have the graph $C_7[2]$ which can be decomposed into two 7-suns *S* and \overline{S} . The nondashed edges are those of *S*, while the dashed edges are those of \overline{S} .

For every cycle $C = (c_1, c_2, ..., c_k)$ with vertices in $\mathbb{Z}_M \times \{0, 1\}$, we set

$$\sigma(C) = \begin{pmatrix} c_1 \dots c_{k-1} & c_k \\ \overline{c_2} \dots & \overline{c_k} & \overline{c_1} \end{pmatrix}$$

Clearly, $C[2] = \sigma(C) \oplus \overline{\sigma(C)}$ by Lemma 4.3.

Lemma 4.5. If $C = \{C_1, C_2, ..., C_t\}$ is a k-cycle system of $\Gamma + u$, where Γ is a subgraph of K_{2M} , and S_i is a k-sun obtained from C_i as in Lemma 4.3, then $S = \{S_i, \overline{S_i} | i \in [1, t]\}$ is a k-sun system of $\Gamma[2] + 2u$. In particular, if $C = Orb(C_1)$, then $Orb(S_1) \cup Orb(\overline{S_1})$ is a k-sun system of $\Gamma[2] + 2u$.

Proof. By assumption $\Gamma + u = \bigoplus_{i=1}^{t} C_i$, where each C_i is a *k*-cycle. Also, by Lemma 4.2, we have that $\Gamma[2] + 2u = (\Gamma + u)[2] = \bigoplus_{i=1}^{t} C_i[2]$. Since $C_i[2] = S_i \oplus \overline{S_i}$ by Lemma 4.3, then S is a *k*-sun system of $\Gamma[2] + 2u$.

The second part easily follows by noticing that if $C_i = \tau_g(C_1)$ for some $g \in \mathbb{Z}_M$, then $C_i[2] = \tau_g(C_1[2]) = \tau_g(S_1) \oplus \tau_g(\overline{S_1})$.

FIGURE 1 $C_7[2] = S \oplus \overline{S}$

HILEY-

The following lemma describes the general method we use to construct *k*-sun systems of $K_{4k} + n$. We point out that throughout the rest of this section we take $V(K_{2k}) = \mathbb{Z}_k \times \{0, 1\}$ and $V(K_{4k}) = \mathbb{Z}_k \times [0, 3]$.

Lemma 4.6. Let $K_{2k} = \Gamma_1 \oplus \Gamma_2$ with $V(\Gamma_1) = V(\Gamma_2) = V(K_{2k})$. If $\Gamma_1 + w_1$ has a k-cycle system and $\Gamma_2^*[2] + w_2$ has a k-sun system, then $K_{4k} + (2w_1 + w_2)$ has a k-sun system.

Proof. The result follows by Lemma 4.2. In fact, noting that $K_{4k} = K_{2k}[2] \oplus I$, where $I = \{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}$, we have that

$$\begin{aligned} K_{4k} + (2w_1 + w_2) &= (\Gamma_1[2] \oplus (\Gamma_2[2] \oplus I)) + 2w_1 + w_2 \\ &= (\Gamma_1[2] + 2w_1) \oplus (\Gamma_2^*[2] + w_2) = (\Gamma_1 + w_1)[2] \oplus (\Gamma_2^*[2] + w_2). \end{aligned}$$

The result then follows by Lemma 4.5.

We are now ready to prove the main result of this section, Theorem 4.1. The case $k \equiv 1 \pmod{4}$ is proven in Theorem 4.7, while the case $k \equiv 3 \pmod{4}$ is dealt with in Theorems 4.9-4.12.

Theorem 4.7. If $k \equiv 1 \pmod{4} \ge 9$ and $n \equiv 0, 1 \pmod{4}$ with 2k < n < 10k, then there exists a k-sun system of $K_{4k} + n$.

Proof. Let $n = 2(q\ell + r) + \nu$ with $1 \le r \le \ell$ and $\nu \in \{2, 3\}$. Note that $\ell \ge 4$ is even and r is odd, since $n \equiv 0, 1 \pmod{4} \ge 9$ and $k \equiv 1 \pmod{4}$. Considering also that 2k < n < 10k, we have that $2 \le q \le 10 \le k + 2r - 1$. Furthermore, let $V(K_{4k} + n)$ $= (\mathbb{Z}_k \times [0, 3]) \cup \{\infty_h | h \in \mathbb{Z}_{n-\nu}\} \cup \{\infty'_1, \infty'_2, \infty'_\nu\}.$

We start decomposing K_{2k} into the following two graphs:

$$\Gamma_1 = \langle [2, \ell], [k - 2r - 2, k - 1], [2, \ell - 1] \rangle$$
 and $\Gamma_2 = \langle \{1\}, [0, k - 2r - 3], \{1, \ell\} \rangle$

We notice that Γ_1 further decomposes into the following graphs:

$$\langle [2, \ell-1], \emptyset, \emptyset \rangle, \quad \langle \emptyset, \emptyset, [2, \ell-1] \rangle, \quad \langle \{\ell\}, [k-2r-2, k-1], \emptyset \rangle,$$

each of which decomposes into *k*-cycles by Lemmas 3.1 and 3.2; hence Γ_1 has a *k*-cycle system $\{C_1, C_2, ..., C_{\gamma}\}$, where $\gamma = k + 2r - 2$. Note that this system is nonempty, since $1 \le q - 1 \le \gamma$. Without loss of generality, we can assume that each cycle C_i has order 2k and

$$C_1$$
 is a subgraph of $\langle [2, \ell - 1], \emptyset, \emptyset \rangle$. (2)

Now set $\Omega_1 = \Gamma_1 \setminus C_1$ and $\Omega_2 = \Gamma_2 \oplus C_1$. Letting $w_1 = (q-2)\ell = \sum_{j=2}^{\gamma} w_{1,j}$, where $w_{1,j} = \ell$ when j < q, and $w_{1,j} = 0$ otherwise, by Lemma 4.2 we have that $\Omega_1 + w_1 = \bigoplus_{i=2}^{\gamma} (C_i + w_{1,i})$. Therefore, $\Omega_1 + w_1$ has a *k*-cycle system, since each $C_i + w_{1,i}$ decomposes into *k*-cycles by Lemma 3.4. Setting $w_2 = n - 2w_1 = 2(2\ell + r) + \nu$ and

considering that $K_{2k} = \Gamma_1 \oplus \Gamma_2 = \Omega_1 \oplus \Omega_2$, by Lemma 4.6 it is left to show that $\Omega_2^*[2] + w_2$ has a k-sun system.

Set $\Gamma_3 = C_1$, and recall that $\Omega_2^*[2] = \Omega_2[2] \oplus I = \Gamma_2[2] \oplus \Gamma_3[2] \oplus I$, where *I* denotes the 1-factor $\{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}$ of K_{4k} . Hence,

$$\Omega_2^*[2] + w_2 = (\Gamma_2 + (\ell + r))[2] \oplus (\Gamma_3 + \ell)[2] \oplus (I + \nu)$$
(3)

by Lemma 4.2. Clearly, $\Gamma_2 = \Gamma_{2,1} \oplus \Gamma_{2,2}$ where $\Gamma_{2,1} = \langle \{1\}, [0, k - 2r - 3], \{1\} \rangle$ and $\Gamma_{2,2} = \langle \emptyset, \emptyset, \{\ell\} \rangle$, hence $\Gamma_2 + (\ell + r) = (\Gamma_{2,1} + r) \oplus (\Gamma_{2,2} + \ell)$. By Lemmas 3.3 and 3.4, there exists a *k*-cycle $A = (x_1, x_2, y_3, y_4, a_5, ..., a_k)$ of $\Gamma_{2,1} + r$ and a *k*-cycle $B = (y_1, y_2, b_3, ..., b_k)$ of $\Gamma_{2,2} + \ell$ satisfying the following properties:

$$Orb(A) \cup Orb(B)$$
 is a k-cycle system of $\Gamma_2 + (\ell + r)$, (4)

$$Dev(\{x_1, x_2\})$$
 is a k-cycle with vertices in $\mathbb{Z}_k \times \{0\},$ (5)

$$Dev(\{y_1, y_2\})$$
 and $Dev(\{y_3, y_4\})$ are k-cycles with vertices in $\mathbb{Z}_k \times \{1\}$. (6)

Furthermore, denoted by $(c_1, c_2, ..., c_k)$ the cycle in Γ_3 , Lemma 3.4 guarantees that

 $\Gamma_3 + \ell$ has a *k*-cycle system $\{F_1, F_2, ..., F_k\}$ such that $F_j = (c_j, c_{j+1}, f_{j,3}, f_{j,4}, ..., f_{j,k})$ for every $j \in [1, k]$ (with $c_{k+1} = c_1$).

Let $S = \{S_1, S_2, S_3, S_4\}$ and $S' = \{S_{3+2j}, S_{4+2j} | j \in [1, k]\}$, where

$$S_{1} = \sigma(x_{1}, \overline{x_{2}}, y_{3}, y_{4}, a_{5}, ..., a_{k}), \quad S_{3} = \sigma(y_{1}, \overline{y_{2}}, b_{3}, ..., b_{k}),$$

$$S_{3+2j} = \sigma(c_{j}, \overline{c_{j+1}}, f_{j,3}, f_{j,4}, ..., f_{j,k}) \quad \text{for } j \in [1, k], \text{ and}$$

$$S_{2i} = \overline{S_{2i-1}} \quad \text{for } i \in [1, k+2].$$

By Lemma 4.5 we have that $\bigcup_{S \in S} Orb(S)$ is a *k*-sun system of $(\Gamma_2 + (\ell + r))[2]$, and S' is a *k*-sun system of $(\Gamma_3 + \ell)[2]$. It follows by (3) that $\bigcup_{S \in S} Orb(S) \cup S'$ decomposes $(\Omega_2^*[2] + w_2) \setminus (I + \nu)$.

To construct a k-sun system of $\Omega_2^*[2] + w_2$, we first modify the k-suns in $S \cup S'$ by replacing some of their vertices with ∞'_1 , ∞'_2 , and possibly ∞'_3 when $\nu = 3$. More precisely, following Table 1, we obtain T_i from S_i by replacing the ordered set V_i of vertices of S_i with V_i' . This yields a set M_i of 'missing' edges no longer covered by T_i after this substitution, but replaced by those in N_i , namely,

$$E(T_i) = (E(S_i) \setminus M_i) \cup N_i.$$

We point out that $T_{3+2j} = S_{3+2j}$, and $T_{4+2j} = S_{4+2j}$ when $\nu = 2$, for every $j \in [1, k]$. The remaining graphs T_i are explicitly given below, where the elements in bold are the replaced vertices.

i	$V_i {\rightarrow} V_i^{'}$	M_i	N_i	2
1	$(\mathfrak{X}_2, \mathfrak{Y}_3) o (\mathfrak{w}_1', \mathfrak{w}_2')$	$\{x_1, x_2\}, \{\overline{x_2}, y_3\}, \{y_3, y_4\}, \{y_3, \overline{y_4}\}$	$\{ \boldsymbol{\omega}_1', \boldsymbol{x}_1 \}, \{ \boldsymbol{\omega}_2', \overline{\boldsymbol{y}} \}, \{ \boldsymbol{\omega}_2', \boldsymbol{y} \}, \{ \boldsymbol{\omega}_2', \overline{\boldsymbol{y}} \}$	2, 3
2	$(\overline{x_2},y_3) ightarrow (\infty_1',\infty_2')$	$\{\overline{x_1}, \overline{x_2}\}, \{x_2, y_3\}$	$\{\infty'_1, \overline{x_1}\}, \{\infty'_2, x_2\}$	2
2	$(\overline{x_2}, y_3, \overline{y_3}) ightarrow (\infty_1', \infty_2', \infty_3')x$	$\{\overline{x_1}, \overline{x_2}\}, \{x_2, y_3\}, \{x_2, \overline{y_3}\}, \{\overline{y_3}, \overline{y_4}\}, \{\overline{y_3}, y_4\}$	$\{ \omega_1', \overline{x_1} \}, \{ \omega_2', x_2 \}, \{ \omega_3', x_2 \}, \{ \omega_5', \overline{y_4} \}, \{ \omega_3', y_4 \}$	3
3	$y_2 ightarrow {oldsymbol \infty}'_1$	$\{y_1, y_2\}$	$\{\omega'_1, y_1\}$	2, 3
4	$\overline{y_2} ightarrow\infty_1'$	$\{\overline{y_1}, \overline{y_2}\}$	$\{\omega'_1, \overline{y_1}\}$	2, 3
3 + 2 <i>j</i>	Ø	Ø	8	2, 3
4 + 2j	Ø	Ø	Ø	5
4 + 2j	$\overline{c_{j+1}} ightarrow \infty'_3$	$\{\overline{c_j}, \overline{c_{j+1}}\}$	$\{\infty'_5, \vec{r}\}$	ю

TABLE 1 From S_i to T_i

$$\begin{split} T_1 &= \begin{pmatrix} x_1 & \overline{x_2} & \mathbf{\omega}'_2 & y_4 & a_5 & \cdots & a_{k-1} & a_k \\ \mathbf{\omega}'_1 & \overline{y_3} & \overline{y_4} & \overline{a_5} & \overline{a_6} & \cdots & \overline{a_k} & \overline{x_1} \end{pmatrix}, \\ T_2 &= \begin{cases} \begin{pmatrix} \overline{x_1} & x_2 & \overline{y_3} & \overline{y_4} & \overline{a_5} & \cdots & \overline{a_{k-1}} & \overline{a_k} \\ \mathbf{\omega}'_1 & \mathbf{\omega}'_2 & y_4 & a_5 & a_6 & \cdots & a_k & x_1 \end{pmatrix} & \text{if } \nu = 2, \\ \begin{pmatrix} \overline{x_1} & x_2 & \mathbf{\omega}'_3 & \overline{y_4} & \overline{a_5} & \cdots & \overline{a_{k-1}} & \overline{a_k} \\ \mathbf{\omega}'_1 & \mathbf{\omega}'_2 & y_4 & a_5 & a_6 & \cdots & a_k & x_1 \end{pmatrix} & \text{if } \nu = 3, \\ T_3 &= \begin{pmatrix} y_1 & \overline{y_2} & b_3 & \cdots & b_{k-1} & b_k \\ \mathbf{\omega}'_1 & \overline{b_3} & \overline{b_4} & \cdots & \overline{b_k} & \overline{y_1} \end{pmatrix}, & T_4 = \begin{pmatrix} \overline{y_1} & y_2 & \overline{b_3} & \cdots & \overline{b_{k-1}} & \overline{b_k} \\ \mathbf{\omega}'_1 & b_3 & b_4 & \cdots & b_k & y_1 \end{pmatrix}, \\ T_{4+2j} &= \begin{pmatrix} \overline{c_j} & c_{j+1} & \overline{f_{j,3}} & \cdots & \overline{f_{j,k-1}} & \overline{f_{j,k}} \\ \mathbf{\omega}'_3 & f_{j,3} & f_{j,4} & \cdots & f_{j,k} & c_j \end{pmatrix} & \text{for every } j \in [1, k]. \end{split}$$

We notice that $\bigcup_{i=1}^{4} Dev(N_i) \cup \bigcup_{i=5}^{2k+4} N_i = \{\{\infty'_j, x\} | j \in [1, \nu], x \in \mathbb{Z}_k \times [0, 3]\}$. We finally build the following $2\nu + 1$ graphs:

$$G_{1} = \begin{cases} Dev(x_{1} \sim x_{2} \sim \overline{x_{2}}) & \text{if } \nu = 2, \\ Dev(x_{1} \sim x_{2} \sim \overline{y_{3}}) & \text{if } \nu = 3, \end{cases} \quad G_{2} = Dev(\overline{x_{1}} \sim \overline{x_{2}} \sim y_{3}), \\ G_{3} = Dev(y_{4} \sim y_{3} \sim x_{2}), \qquad \qquad G_{4} = Dev(y_{1} \sim y_{2} \sim \overline{y_{2}}), \\ G_{5} = Dev(\{\overline{y_{1}}, \overline{y_{2}}\} \bigoplus \{y_{3}, \overline{y_{4}}\}), \qquad \qquad G_{6} = Dev(\overline{y_{4}} \sim \overline{y_{3}} \sim y_{4}), \\ G_{7} = \begin{pmatrix} \overline{c_{1}} & \overline{c_{2}} & \dots & \overline{c_{k}} \\ c_{1} & c_{2} & \dots & c_{k} \end{pmatrix}. \end{cases}$$

By recalling (2) and (4)–(6), it is not difficult to check that $G_1, G_2, ..., G_{2\nu+1}$ are k-suns. Furthermore,

$$\bigcup_{i=1}^{2\nu+1} E(G_i) = \bigcup_{i=1}^{4} Dev(M_i) \cup \bigcup_{i=5}^{2k+4} M_i \cup E(I),$$

where, we recall, I denotes the 1-factor $\{\{z, \overline{z}\}|z \in \mathbb{Z}_k \times \{0, 1\}\}$ of K_{4k} . Therefore, $\bigcup_{i=1}^4 Orb(T_i) \cup \{T_5, T_6, ..., T_{2k+4}\} \cup \{G_1, G_2, ..., G_{2\nu+1}\}$ is a k-sun system of $\Omega_2^*[2] + w_2$, and this concludes the proof.

Example 4.8. By following the proof of Theorem 4.7, we construct a *k*-sun system of $K_{4k} + n$ when (k, n) = (9, 21); hence $(\ell, q, r, \nu) = (4, 2, 1, 3)$.

The graphs $\Gamma_1 = \langle [2, 4], [5, 8], [2, 3] \rangle$ and $\Gamma_2 = \langle \{1\}, [0, 4], \{1, 4\} \rangle$ decompose the complete graph K_{18} with vertex-set $\mathbb{Z}_9 \times \{0, 1\}$. Also Γ_1 decomposes into the following 9-cycles of order 18, where i = 0, 1:

17

WILFY

$$\begin{split} C_{1+i} &= ((0, i), (2, i), (8, i), (1, i), (3, i), (5, i), (7, i), (4, i), (6, i)), \\ C_{3+i} &= ((0, i), (3, i), (6, i), (8, i), (5, i), (2, i), (4, i), (1, i), (7, i)), \\ C_{5+i} &= ((4i, 0), (8 + 4i, 1), (1 + 4i, 0), (4i, 1), (2 + 4i, 0), (1 + 4i, 1), \\ &\quad (3 + 4i, 0), (2 + 4i, 1), (4 + 4i, 0)), \\ C_{7+i} &= ((8 + 4i, 0), (5 + 4i, 1), (4i, 0), (6 + 4i, 1), (1 + 4i, 0), (7 + 4i, 1), \\ &\quad (2 + 4i, 0), (8 + 4i, 1), (3 + 4i, 0)), \\ C_{9} &= ((7, 0), (2, 0), (6, 0), (1, 0), (5, 0), (0, 0), (7, 1), (8, 0), (4, 1)). \end{split}$$

Clearly, $K_{18} = \Omega_1 \oplus \Omega_2$, where $\Omega_1 = \Gamma_1 \setminus C_1$ and $\Omega_2 = \Gamma_2 \oplus C_1$.

Let $V(K_{36}) = \mathbb{Z}_9 \times [0, 3]$, and denote by *I* the 1-factor of K_{36} containing all edges of the form $\{(a, i), (a, i + 2)\}$, with $a \in \mathbb{Z}_9$ and $i \in \{0, 1\}$. Then,

 $K_{36} = K_{18}[2] \oplus I = \Omega_1[2] \oplus \Omega_2[2] \oplus I.$

Considering that $(\Omega_2 + 9)[2] = \Omega_2[2] + 18$, we have

18

WILEY

$$K_{36} + 21 = \Omega_1[2] \oplus (\Omega_2[2] + 18) \oplus (I+3) = \Omega_1[2] \oplus (\Omega_2 + 9)[2] \oplus (I+3).$$

Since the set $\{\sigma(C_i), \overline{\sigma(C_i)} | i \in [2, 9]\}$ is a 9-sun system of $\Omega_1[2]$, it is left to build a 9-sun system of $\Omega_2^*[2] + 21 = (\Omega_2[2] + 18) \oplus (I + 3)$.

We start by decomposing $\Omega_2 + 9$ into 9-cycles. Since $\Omega_2 = \Gamma_{2,1} \oplus \Gamma_{2,2} \oplus \Gamma_3$ with $\Gamma_{2,1} = \langle \{1\}, [0, 4], \{1\} \rangle, \Gamma_{2,2} = \langle \emptyset, \emptyset, \{4\} \rangle$ and $\Gamma_3 = C_1$, then

$$\Omega_2 + 9 = (\Gamma_{2,1} + 1) \oplus (\Gamma_{2,2} + 4) \oplus (\Gamma_3 + 4)$$

Let $A = (x_1, x_2, y_3, y_4, a_5, ..., a_9)$ and $B = (y_1, y_2, b_3, ..., b_9)$ be the 9-cycles defined as follows:

$$\begin{aligned} (x_1, x_2, y_3, y_4) &= ((0, 0), (-1, 0), (-1, 1), (0, 1)), \\ (a_5, ..., a_9) &= (\infty_1, (2, 0), (3, 1), (1, 0), (4, 1)), \\ (y_1, y_2) &= ((0, 1), (4, 1)), \\ (b_3, ..., b_9) &= (\infty_2, (1, 0), \infty_3, (1, 1), \infty_4, (0, 0), \infty_5). \end{aligned}$$

One can easily check that Orb(A) (resp., Orb(B)) decomposes $\Gamma_{2,1} + 1$ (resp., $\Gamma_{2,2} + 4$). Also, for every edge $\{c_j, c_{j+1}\}$ of C_1 , with $j \in [1, 9]$ and $c_{10} = c_1$, we construct the cycle $F_j = (c_j, c_{j+1}, f_{j,3}, f_{j,4}, ..., f_{j,9})$, where

$$(f_{i,3}, f_{i,4}, \dots, f_{i,9}) = (\infty_6, (1, 0), \infty_7, (1, 1), \infty_8, (0, 0), \infty_9)$$

One can check that $\{F_1, F_2, ..., F_9\}$ is a 9-cycle system of $\Gamma_3 + 4$. Therefore, $\mathcal{U}_1 = Orb(A) \cup Orb(B) \cup \{F_1, F_2, ..., F_9\}$ provides a 9-cycle system of $\Omega_2 + 9$. Since the set $\{C[2]|C \in \mathcal{U}_1\}$ decomposes $(\Omega_2 + 9)[2]$, and each C[2] decomposes into two 9-suns, we can easily obtain a 9-sun system of $(\Omega_2 + 9)[2]$. Indeed, letting

$$S_{1} = \sigma(x_{1}, \overline{x_{2}}, y_{3}, y_{4}, a_{5}, ..., a_{9}), \quad S_{3} = \sigma(y_{1}, \overline{y_{2}}, b_{3}, ..., b_{9}),$$

$$S_{3+2j} = \sigma(c_{j}, \overline{c_{j+1}}, f_{j,3}, f_{j,4}, ..., f_{j,9}) \quad \text{for } j \in [1, 9], \text{ and}$$

$$S_{2i} = \overline{S_{2i-1}} \quad \text{for } i \in [1, 11],$$

we have that $A[2] = S_1 \oplus S_2$, $B[2] = S_3 \oplus S_4$, and $F_j[2] = S_{3+2j} \oplus S_{4+2j}$, for every $j \in [1, 9]$. Therefore $\mathcal{U}_2 = \bigcup_{i=1}^4 Orb(S_i) \cup \{S_5, S_6, ..., S_{22}\}$ is a 9-sun system of $\Omega_2[2] + 18$.

We finally use U_2 to build a 9-sun system of $\Omega_2^*[2] + 21 = (\Omega_2[2] + 18) \bigoplus (I + 3)$. By replacing the vertices of each S_i , as outlined in Table 1, we obtain the 9-sun T_i . The new 22 graphs, T_1 , T_2 , ..., T_{22} , are built in such a way that

- (a) $\bigcup_{i=1}^{4} Orb(T_i) \cup \{T_5, T_6, ..., T_{22}\}$ decomposes a subgraph K of $\Omega_2^*[2] + 21;$
- (b) $(\Omega_2^*[2] + 21) \setminus K$ decomposes into seven 9-suns.

This way we obtain a 9-sun system of $\Omega_2^*[2] + 21$, and hence the desired 9-sun system of $K_{36} + 21$.

Theorem 4.9. Let $k \equiv 3 \pmod{4} \ge 7$ and $n \equiv 0, 1 \pmod{4}$ with 2k < n < 10k. If $n \not\equiv 2, 3 \pmod{k-1}$ and $\lfloor \frac{n-4}{k-1} \rfloor$ is even, then there exists a k-sun system of $K_{4k} + n$ except possibly when $(k, n) \in \{(7, 64), (7, 65)\}$.

Proof. First, $k \equiv 3 \pmod{4} \ge 7$ implies that $\ell \ge 3$ is odd. Now, let $n = 2(q\ell + r) + \nu$ with $1 \le r \le \ell$ and $\nu \in \{2, 3\}$. Note that $q = \left\lfloor \frac{n-4}{k-1} \right\rfloor$, hence q is even. Also, since 2k < n < 10k, we have $2 \le q \le 10$. By q even and $n \equiv 0, 1 \pmod{4}$ it follows that r is odd, and $n \not\equiv 2, 3 \pmod{k-1}$ implies that $r \ne \ell$. To sum up,

q is even with $2 \le q \le 10$, and r is odd with $1 \le r \le \ell - 2$.

As in the previous theorem, let $V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup \{\infty_h | h \in \mathbb{Z}_{n-\nu}\} \cup \{\infty'_1, \infty'_2, \infty'_\nu\}.$

We split the proof into two cases.

Case 1. $q \leq 2r + 4$. We start decomposing K_{2k} into the following two graphs:

$$\Gamma_1 = \langle [3, \ell], [k - 2r - 2, k], [3, \ell] \rangle$$
 and $\Gamma_2 = \langle \{1, 2\}, [1, k - 2r - 3], \{1, 2\} \rangle$

Since $q \leq 2r + 4$, the graph Γ_1 can be further decomposed into the following graphs:

$$\Gamma_{1,1} = \langle \{\ell\}, [k - 2r + q - 3, k], \emptyset \rangle, \quad \Gamma_{1,2} = \langle [3, \ell - 1], \emptyset, [3, \ell] \rangle,$$

$$\Gamma_{1,3} = \langle \emptyset, [k - 2r - 2, k - 2r + q - 4], \emptyset \rangle.$$

The first two graphs have a *k*-cycle system by Lemmas 3.2 and 3.1, while $\Gamma_{1,3}$ decomposes into (q-1) 1-factors, say $J_1, J_2, ..., J_{q-1}$. Setting $w_1 = (q-1)\ell$, by Lemma 4.2 we have that:

$$\Gamma_1 + (q-1)\ell = \bigoplus_{i=1}^{q-1} (J_i + \ell) \oplus (\Gamma_{1,1} \oplus \Gamma_{1,2})$$

Hence $\Gamma_1 + (q - 1)\ell$ has a k-cycle system since each $J_i + \ell$ decomposes into k-cycles by Lemma 3.4.

Letting $w_2 = n - 2w_1 = 2(\ell + r) + \nu$ and recalling that $K_{2k} = \Gamma_1 \oplus \Gamma_2$, by Lemma 4.6 it remains to construct a *k*-sun system of $\Gamma_2^*[2] + w_2$. We start decomposing Γ_2 into the following graphs:

$$\pm$$
WILE

20

$$\Gamma_{2,0} = \langle \{1, 2\}, [1, k - 2r - 4], \{1, 2\} \rangle$$
 and $\Gamma_{2,1} = \langle \emptyset, \{k - 2r - 3\}, \emptyset \rangle$.

Recalling that $\Gamma_2^*[2] = \Gamma_2[2] \oplus I$, where *I* denotes the 1-factor $\{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}$ of K_{4k} , by Lemma 4.2 we have that

$$\Gamma_2^*[2] + w_2 = (\Gamma_{2,1} + \ell)[2] \oplus (\Gamma_{2,0} + r)[2] \oplus (I + \nu).$$

By Lemmas 3.3 and 3.4 there exist a *k*-cycle $A = (x_1, x_2, x_3, y_4, y_5, y_6, a_7, ..., a_k)$ of $\Gamma_{2,0} + r$ and a *k*-cycle $B = (y, x, b_3, ..., b_k)$ of $\Gamma_{2,1} + \ell$, satisfying the following properties:

 $Orb(A) \cup Orb(B)$ is a *k*-cycle system of $\Gamma_2 + (\ell + r)$; $Dev(\{x_1, x_2\})$ and $Dev(\{x_2, x_3\})$ are *k*-cycles with vertices in $\mathbb{Z}_k \times \{0\}$; $Dev(\{y_4, y_5\})$ and $Dev(\{y_5, y_6\})$ are *k*-cycles with vertices in $\mathbb{Z}_k \times \{1\}$; $x \in \mathbb{Z}_k \times \{0\}$ and $y \in \mathbb{Z}_k \times \{1\}$.

Set $A' = (x_1, \overline{x_2}, x_3, y_4, \overline{y_5}, y_6, a_7, ..., a_k)$ and $B' = (y, \overline{x}, b_3, ..., b_k)$ and let $S = \{\sigma(A'), \overline{\sigma(A')}, \sigma(B'), \overline{\sigma(B')}\}$. By Lemma 4.5, we have that $\bigcup_{S \in S} Orb(S)$ is a k-sun system of $(\Gamma_2 + (\ell + r))[2] = \Gamma_2[2] + 2(\ell + r) = (\Gamma_2^*[2] + w_2) \setminus (I + \nu)$.

To construct a *k*-sun system of $\Gamma_2^*[2] + w_2$ we proceed as in Theorem 4.7. We modify the graphs in S and obtain four *k*-suns T_1 , T_2 , T_3 , T_4 whose translates between them cover all edges incident with ∞'_1 , ∞'_2 , and possibly ∞'_3 when $\nu = 3$. Then we construct further $2\nu + 1$ *k*-suns $G_1, ..., G_{2\nu+1}$ to cover the missing edges. The reader can check that $\bigcup_{i=1}^4 Orb(T_i) \cup \{G_1, ..., G_{2\nu+1}\}$ is a *k*-sun system of $\Gamma_2^*[2] + w_2$.

The graphs T_i are the following, where the elements in bold are the replaced vertices:

$$T_{1} = \begin{cases} \begin{pmatrix} x_{1} & \overline{x_{2}} & x_{3} & \mathbf{\omega}_{2}' & \overline{y_{5}} & y_{6} & a_{7} & \cdots & a_{k-1} & a_{k} \\ \mathbf{\omega}_{1}^{'} & \overline{x_{3}} & \overline{y_{4}} & y_{5} & \mathbf{y_{4}} & \overline{a_{7}} & \overline{a_{8}} & \cdots & \overline{a_{k}} & \overline{x_{1}} \end{pmatrix} & \text{if } \nu = 2\\ \begin{pmatrix} x_{1} & \overline{x_{2}} & x_{3} & \mathbf{\omega}_{2}' & \overline{y_{5}} & y_{6} & a_{7} & \cdots & a_{k-1} & a_{k} \\ \mathbf{\omega}_{1}^{'} & \mathbf{\omega}_{3}^{'} & \overline{y_{4}} & y_{5} & \mathbf{y_{4}} & \overline{a_{7}} & \overline{a_{8}} & \cdots & \overline{a_{k}} & \overline{x_{1}} \end{pmatrix} & \text{if } \nu = 3\\ \begin{pmatrix} \overline{x_{1}} & x_{2} & \overline{x_{3}} & \mathbf{\omega}_{1}' & y_{5} & \overline{y_{6}} & \overline{a_{7}} & \cdots & \overline{a_{k-1}} & \overline{a_{k}} \\ \mathbf{\omega}_{2}^{'} & x_{3} & y_{4} & \overline{y_{5}} & y_{6} & a_{7} & a_{8} & \cdots & a_{k} & x_{1} \end{pmatrix} & \text{if } \nu = 2\\ \begin{pmatrix} \overline{x_{1}} & x_{2} & \overline{x_{3}} & \mathbf{\omega}_{1}' & y_{5} & \overline{y_{6}} & \overline{a_{7}} & \cdots & \overline{a_{k-1}} & \overline{a_{k}} \\ \mathbf{\omega}_{2}^{'} & \mathbf{\omega}_{3}^{'} & y_{4} & \overline{y_{5}} & y_{6} & a_{7} & a_{8} & \cdots & a_{k} & x_{1} \end{pmatrix} & \text{if } \nu = 3\\ \begin{pmatrix} \overline{x_{1}} & x_{2} & \overline{x_{3}} & \mathbf{\omega}_{1}' & y_{5} & \overline{y_{6}} & \overline{a_{7}} & \cdots & \overline{a_{k-1}} & \overline{a_{k}} \\ \mathbf{\omega}_{2}^{'} & \mathbf{\omega}_{3}^{'} & y_{4} & \overline{y_{5}} & y_{6} & a_{7} & a_{8} & \cdots & a_{k} & x_{1} \end{pmatrix} & \text{if } \nu = 3\\ \begin{pmatrix} \overline{x_{1}} & x_{2} & \overline{x_{3}} & \mathbf{\omega}_{1}' & y_{5} & \overline{y_{6}} & \overline{a_{7}} & a_{8} & \cdots & a_{k} & x_{1} \end{pmatrix} & \text{if } \nu = 3,\\ T_{3} = \begin{cases} \sigma(B') & \text{if } \nu = 2, \\ \begin{pmatrix} y & \overline{x} & b_{3} & b_{4} & \cdots & b_{k-1} & b_{k} \\ \mathbf{\omega}_{3}^{'} & \overline{b_{3}} & \overline{b_{4}} & \overline{b_{5}} & \cdots & \overline{b_{k}} & \overline{y} \end{pmatrix} & \text{if } \nu = 3,\\ T_{4} = \begin{cases} \overline{\sigma(B')} & \text{if } \nu = 2, \\ \begin{pmatrix} \overline{y} & x & \overline{b_{3}} & \overline{b_{4}} & \cdots & \overline{b_{k-1}} & \overline{b_{k}} \\ \mathbf{\omega}_{3}^{'} & b_{3} & b_{4} & b_{5} & \cdots & b_{k} & y \end{pmatrix} & \text{if } \nu = 3. \end{cases}$$

The graphs G_i , for $i = [1, 2\nu + 1]$, are so defined:

 $\begin{array}{ll} G_1 = Dev\left(x_1 \sim x_2 \sim \overline{x_2}\right), & G_2 = Dev\left(y_5 \sim y_4 \sim x_3\right), \\ G_3 = Dev\left(\{\overline{x_1}, \overline{x_2}\} \oplus \{\overline{x_3}, \overline{y_4}\}\right), & G_4 = Dev\left(\overline{y_5} \sim \overline{y_4} \sim y_5\right), \\ G_5 = Dev\left(\overline{y_5} \sim \overline{y_6} \sim y_6\right), & G_6 = Dev\left(\{x_2, x_3\} \oplus \{x, y\}\right), \\ G_7 = Dev\left(\{\overline{x_2}, \overline{x_3}\} \oplus \{\overline{x}, \overline{y}\}\right). \end{array}$

Case 2. $q \ge 2r + 6$. Note that this implies r = 1 and q = 8, 10. As before $K_{2k} = \Gamma_1 \oplus \Gamma_2$ where

$$\Gamma_1 = \langle [3, \ell], \{0\} \cup [k - 5, k - 1], [3, \ell] \rangle$$
 and $\Gamma_2 = \langle \{1, 2\}, [1, k - 6], \{1, 2\} \rangle$.

Since $(k, n) \neq (7, 64)$, (7, 65) then $(\ell, q) \neq (3, 10)$, hence the graph Γ_1 can be decomposed into the following graphs:

$$\begin{split} &\Gamma_{1,1} = \langle \emptyset, [k-5, k-1], \emptyset \rangle, \quad \Gamma_{1,2} = \left\langle \left[3, \frac{q-2}{2}\right], \{0\}, \left[3, \frac{q-2}{2}\right] \right\rangle, \\ &\Gamma_{1,3} = \left\langle \left[\frac{q}{2}, \ell\right], \emptyset, \left[\frac{q}{2}, \ell\right] \right\rangle. \end{split}$$

The graph $\Gamma_{1,1}$ decomposes into five 1-factors $J_1, ..., J_5$, while by Lemma 3.5 $\Gamma_{1,2}$ decomposes into (q - 5) 1-factors $J'_1, ..., J'_{q-5}$. Letting $w_1 = q\ell$, by Lemma 4.2 we have that

$$\Gamma_{1} + w_{1} = (\Gamma_{1,1} + 5\ell) \oplus (\Gamma_{1,2} + (q-5)\ell) \oplus \Gamma_{1,3} = \bigoplus_{i=1}^{5} (J_{i} + \ell) \oplus \left[\bigoplus_{i=1}^{q-5} (J_{i}' + \ell) \right] \oplus \Gamma_{1,3}.$$

By Lemmas 3.4 and 3.1, each $J_i + \ell$, each $J'_i + \ell$ and $\Gamma_{1,3}$ decompose into *k*-cycles. Hence $\Gamma_1 + q\ell$ has a *k*-cycle system. Let now $w_2 = n - 2w_1 = 2 + \nu$. Note that a *k*-sun system of $\Gamma_2^*[2] + w_2$ can be obtained as in Case 1, where $\Gamma_{2,1}$ is empty.

Theorem 4.10. Let $k \equiv 3 \pmod{4} \ge 11$ and $n \equiv 0, 1 \pmod{4}$ with 2k < n < 10k. If $\left\lfloor \frac{n-4}{k-1} \right\rfloor$ is even, and $n \equiv 2, 3 \pmod{k-1}$, then there is a k-sun system of $K_{4k} + n$, except possibly when $(k, n) \in \{(11, 112), (11, 113)\}$.

Proof. Let $n = 2(q\ell + r) + \nu$ with $1 \le r \le \ell$ and $\nu \in \{2, 3\}$. Clearly, $q = \lfloor \frac{n-4}{k-1} \rfloor$, hence q is even. Since $k \ge 11$, 2k < n < 10k, and $n \equiv 2, 3 \pmod{2\ell}$, we have that

q is even with $2 \le q \le 10$ and $r = \ell \ge 5$ is odd.

As before, let $V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup \{\infty_h | h \in \mathbb{Z}_{n-\nu}\} \cup \{\infty'_1, \infty'_2, \infty'_{\nu}\}.$ We start decomposing K_{2k} into the following two graphs:

$$\Gamma_1 = \langle [3, \ell], [k - 3, k], [4, \ell] \rangle, \quad \Gamma_2 = \langle \{1, 2\}, [1, k - 4], \{1, 2, 3\} \rangle.$$

If $q = 2, 4, \Gamma_1$ can be further decomposed into

$$\begin{split} &\Gamma_{1,1} = \langle \emptyset, [k-3, k-4+q], \emptyset \rangle, \quad \Gamma_{1,2} = \langle \emptyset, [k-3+q, k], \{\ell\} \rangle, \\ &\Gamma_{1,3} = \langle [3, \ell], \emptyset, [4, \ell-1] \rangle. \end{split}$$

The graph $\Gamma_{1,1}$ decomposes into q 1-factors, say $J_1, ..., J_q$. Letting $w_1 = q\ell$, by Lemma 4.2 we have that

$$\Gamma_1 + w_1 = (\Gamma_{1,1} + w_1) \oplus \Gamma_{1,2} \oplus \Gamma_{1,3} = \bigoplus_{i=1}^q (J_i + \ell) \oplus \Gamma_{1,2} \oplus \Gamma_{1,3}$$

Lemmas 3.4, 3.2, and 3.1 guarantee that each $J_i + \ell$, $\Gamma_{1,2}$, and $\Gamma_{1,3}$ decompose into *k*-cycles, hence $\Gamma_1 + w_1$ has a *k*-cycle system. Suppose now $q \ge 6$. By $(k, n) \notin \{(11, 112), (11, 113)\}$, we have $(\ell, q) \neq (5, 10)$. In this case Γ_1 can be further decomposed into

$$\begin{split} &\Gamma_{1,1} = \langle \emptyset, [k-3, k-1], \emptyset \rangle, \quad \Gamma_{1,2} = \left\langle \left[\ell + 3 - \frac{q}{2}, \ell\right], \{0\}, \left[\ell + 3 - \frac{q}{2}, \ell\right] \right\rangle, \\ &\Gamma_{1,3} = \left\langle \left[3, \ell + 2 - \frac{q}{2}\right], \emptyset, \left[4, \ell + 2 - \frac{q}{2}\right] \right\rangle. \end{split}$$

The graph $\Gamma_{1,1}$ can be decomposed into three 1-factors say J_1, J_2, J_3 , also by Lemma 3.5 the graph $\Gamma_{1,2}$ can be decomposed into (q - 3) 1-factors say $J'_1, ..., J'_{q-3}$. Set again $w_1 = q\ell$, by Lemma 4.2 we have that

 $\Gamma_{1} + w_{1} = (\Gamma_{1,1} + 3\ell) \oplus (\Gamma_{1,2} + (q-3)\ell) \oplus \Gamma_{1,3} = \bigoplus_{i=1}^{3} (J_{i} + \ell) \oplus [\bigoplus_{j=1}^{q-3} (J_{j}' + \ell)] \oplus \Gamma_{1,3}.$

By Lemmas 3.4 and 3.1 we have that each $J_i + \ell$, each $J'_j + \ell$, and $\Gamma_{1,3}$ decompose into *k*-cycles, hence $\Gamma_1 + w_1$ has a *k*-cycle system. Therefore for any value of *q* we have proved that $\Gamma_1 + w_1$ has a *k*-cycle system.

Now, setting $w_2 = n - 2w_1 = 2\ell + \nu$ and recalling that $K_{2k} = \Gamma_1 \oplus \Gamma_2$, by Lemma 4.6 it is left to show that $\Gamma_2^*[2] + w_2$ has a *k*-sun system. Let r_1 and $r_2 \ge 2$ be an odd and an even integer, respectively, such that $r_1 + r_2 = r = \ell$. Note that Γ_2 can be further decomposed into

$$\Gamma_{2,1} = \langle \{1\}, [1, k - 2r_1 - 2], \{1\} \rangle, \quad \Gamma_{2,2} = \langle \{2\}, [k - 2r_1 - 1, k - 4], \{2, 3\} \rangle.$$

Recalling that $\Gamma_2^*[2] = \Gamma_2[2] \oplus I$, where *I* denotes the 1-factor $\{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}$ of K_{4k} , by Lemma 4.2 we have that

$$\Gamma_2^*[2] + w_2 = \bigoplus_{i=1}^2 (\Gamma_{2,i} + r_i)[2] \oplus (I + \nu).$$

By Lemma 3.3 there are a *k*-cycle $A = (y_1, y_2, x_3, x_4, a_5, ..., a_k)$ of $\Gamma_{2,1} + r_1$ and a *k*-cycle $B = (x_1, x_2, y_3, y_4, b_5, ..., b_k)$ of $\Gamma_{2,2} + r_2$ such that

 $Orb(A) \cup Orb(B) \quad \text{is a } k\text{-cycle system of } \Gamma_2 + \ell,$ $Dev(\{x_1, x_2\}) \quad \text{and} \quad Dev(\{x_3, x_4\}) \quad \text{are } k\text{-cycles with vertices in } \mathbb{Z}_k \times \{0\},$ $Dev(\{y_1, y_2\}) \quad \text{and} \quad Dev(\{y_3, y_4\}) \quad \text{are } k\text{-cycles with vertices in } \mathbb{Z}_k \times \{1\}.$ (7)

Set $A' = (y_1, \overline{y_2}, x_3, \overline{x_4}, a_5, ..., a_k)$ and $B' = (x_1, \overline{x_2}, y_3, \overline{y_4}, b_5, ..., b_k)$. Let $S = \{\sigma(A'), \overline{\sigma(A')}, \sigma(B'), \overline{\sigma(B')}\}$, by Lemma 4.5, we have that $\bigcup_{S \in S} Orb(S)$ is a *k*-sun system of $(\Gamma_2 + \ell)[2] = \Gamma_2[2] + 2\ell = (\Gamma_2^*[2] + w_2) \setminus (I + \nu)$. To construct a *k*-sun system of $\Gamma_2^*[2] + w_2$, we build a family $\mathcal{T} = \{T_1, T_2, T_3, T_4\}$ of *k*-suns by modifying the graphs in S so

that $\bigcup_{T \in \mathcal{T}} Orb(T)$ covers all the edges incident with ω'_1, ω'_2 , and possibly ω'_3 when $\nu = 3$. We then construct further $(2\nu + 1)$ k-suns $G_1, G_2, ..., G_{2\nu+1}$ which cover the remaining edges exactly once. Hence, $\bigcup_{T \in \mathcal{T}} Orb(T) \cup \{G_1, G_2, ..., G_{2\nu+1}\}$ is a k-sun system of $\Gamma_2^*[2] + w_2$.

The graphs T_1 , ..., T_4 and G_1 , ..., $G_{2\nu+1}$ are the following, where as before the elements in bold are the replaced vertices.

$$T_{1} = \begin{pmatrix} y_{1} & \overline{y_{2}} & x_{3} & \overline{x_{4}} & a_{5} & \cdots & a_{k-1} & a_{k} \\ \boldsymbol{\omega}_{2}' & \overline{x_{3}} & x_{4} & \overline{a_{5}} & \overline{a_{6}} & \cdots & \overline{a_{k}} & \overline{y_{1}} \end{pmatrix},$$

$$T_{2} = \begin{cases} \begin{pmatrix} \overline{y_{1}} & \boldsymbol{\omega}_{1}' & \overline{x_{3}} & x_{4} & \overline{a_{5}} & \cdots & \overline{a_{k-1}} & \overline{a_{k}} \\ \boldsymbol{\omega}_{2}' & x_{3} & \overline{x_{4}} & a_{5} & a_{6} & \cdots & a_{k} & \overline{y_{1}} \end{pmatrix} & \text{if } \nu = 2, \\ \begin{pmatrix} \overline{y_{1}} & \boldsymbol{\omega}_{1}' & \overline{x_{3}} & x_{4} & \overline{a_{5}} & \cdots & \overline{a_{k-1}} & \overline{a_{k}} \\ \boldsymbol{\omega}_{2}' & x_{3} & \boldsymbol{\omega}_{3}' & a_{5} & a_{6} & \cdots & a_{k} & \overline{y_{1}} \end{pmatrix} & \text{if } \nu = 3, \end{cases}$$

$$T_{3} = \begin{pmatrix} x_{1} & \overline{x_{2}} & y_{3} & \overline{y_{4}} & \overline{b_{5}} & \cdots & \overline{b_{k-1}} & \overline{b_{k}} \\ \boldsymbol{\omega}_{2}' & \overline{y_{3}} & \boldsymbol{\omega}_{1}' & \overline{b_{5}} & \overline{b_{6}} & \cdots & \overline{b_{k}} & \overline{x_{1}} \end{pmatrix},$$

$$T_{4} = \begin{cases} \begin{pmatrix} \overline{x_{1}} & x_{2} & \overline{y_{3}} & y_{4} & \overline{b_{5}} & \cdots & \overline{b_{k-1}} & \overline{b_{k}} \\ \boldsymbol{\omega}_{2}' & y_{3} & \overline{y_{4}} & \overline{b_{5}} & \cdots & \overline{b_{k-1}} & \overline{b_{k}} \\ \boldsymbol{\omega}_{2}' & y_{3} & \overline{y_{4}} & \overline{b_{5}} & \cdots & \overline{b_{k-1}} & \overline{b_{k}} \\ \boldsymbol{\omega}_{2}' & y_{3} & \overline{y_{4}} & \overline{b_{5}} & \cdots & \overline{b_{k-1}} & \overline{b_{k}} \\ \boldsymbol{\omega}_{2}' & y_{3} & \overline{y_{4}} & \overline{b_{5}} & \overline{b_{6}} & \cdots & \overline{b_{k}} & x_{1} \end{pmatrix} & \text{if } \nu = 3.$$

$$G_{1} = Dev(y_{1} \sim y_{2} \sim x_{3}), \quad G_{2} = Dev(\overline{y_{2}} \sim \overline{y_{1}} \sim y_{2}),$$

$$G_{3} = Dev(y_{3} \sim y_{4} \sim \overline{y_{4}}), \quad G_{4} = Dev(\{\overline{x_{1}}, \overline{x_{2}}\} \bigoplus \{\overline{x_{3}}, y_{2}\}),$$

$$G_{5} = \begin{cases} Dev(x_{1} \sim x_{2} \sim \overline{x_{2}}) & \text{if } \nu = 2, \\ Dev(x_{1} \sim x_{2} \sim \overline{y_{3}}) & \text{if } \nu = 3, \end{cases}$$

$$G_{6} = Dev(\overline{x_{3}} \sim \overline{x_{4}} \sim x_{4}\})$$

$$G_{7} = Dev(\overline{y_{4}} \sim \overline{y_{3}} \sim y_{4}).$$

By recalling (7), it is not difficult to check that the graphs G_h are k-suns.

Theorem 4.11. Let $k \equiv 3 \pmod{4} \ge 7$ and $n \equiv 0, 1 \pmod{4}$ with 2k < n < 10k. If $\left\lfloor \frac{n-4}{k-1} \right\rfloor$ is odd and $n \not\equiv 0, 1 \pmod{k-1}$, then there is a k-sun system of $K_{4k} + n$.

Proof. Let $n = 2(q\ell + r) + \nu$ with $1 \le r \le \ell$ and $\nu \in \{2, 3\}$. Clearly, $q = \lfloor \frac{n-4}{k-1} \rfloor$. Also, we have that q and $\ell \ge 3$ are odd, and $n \equiv 0, 1 \pmod{4}$; hence r is even. Furthermore, we have that $2 \le q \le 10$, since by assumption 2k < n < 10k. Considering now the hypothesis that $n \ne 0, 1 \pmod{2\ell}$, it follows that $r \ne \ell - 1$. To sum up,

q is odd with
$$3 \le q \le 9$$
, and r is even with $2 \le r \le \ell - 3$. (8)

As before, let $V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup \{\infty_h | h \in \mathbb{Z}_{n-\nu}\} \cup \{\infty'_1, \infty'_2, \infty'_\nu\}.$

23

WILE

We start decomposing K_{2k} into the following two graphs:

$$\Gamma_1 = \langle [4, \ell], [k - 2r - 1, k], [3, \ell] \rangle$$
 and $\Gamma_2 = \langle [1, 3], [1, k - 2r - 2], [1, 2] \rangle$.

Considering that $3 \le q \le 9 \le 2r + 5$, the graph Γ_1 can be further decomposed into the following graphs:

$$\Gamma_{1,1} = \langle [4, \ell], \emptyset, [3, \ell - 1] \rangle, \quad \Gamma_{1,2} = \langle \emptyset, [k - 2r - 4 + q, k], \{\ell\} \rangle, \text{ and } \\ \Gamma_{1,3} = \langle \emptyset, [k - 2r - 1, k - 2r - 5 + q], \emptyset \rangle.$$

The first two have a *k*-cycle system by Lemmas 3.1 and 3.2, while $\Gamma_{1,3}$ decomposes into (q-3) 1-factors, say $J_1, J_2, ..., J_{q-3}$. Letting $w_1 = (q-3)\ell$, by Lemma 4.2 we have that

$$\Gamma_1 + w_1 = \bigoplus_{i=1}^{q-3} (J_i + \ell) \oplus (\Gamma_{1,1} \oplus \Gamma_{1,2}).$$

Therefore, $\Gamma_1 + w_1$ has a *k*-cycle system, since each $J_i + \ell$ decomposes into *k*-cycles by Lemma 3.4. Setting $w_2 = n - 2w_1 = 2(3\ell + r) + \nu$ and recalling that $K_{2k} = \Gamma_1 \oplus \Gamma_2$, by Lemma 4.6 it is left to show that $\Gamma_2^*[2] + w_2$ has a *k*-sun system.

We start decomposing Γ_2 into the following graphs:

$$\Gamma_{2,0} = \langle [1,3], [1, k - 2r - 5], [1,2] \rangle \text{ and} \Gamma_{2,i} = \langle \emptyset, \{k - 2r - 5 + i\}, \emptyset \rangle \text{ for } 1 \le i \le 3.$$

Recalling that $\Gamma_2^*[2] = \Gamma_2[2] \oplus I$, where *I* denotes the 1-factor $\{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}$ of K_{4k} , by Lemma 4.2 we have that

$$\Gamma_2^*[2] + w_2 = \bigoplus_{i=1}^3 (\Gamma_{2,i} + \ell)[2] \oplus (\Gamma_{2,0} + r)[2] \oplus (I + \nu).$$

By Lemmas 3.3 and 3.4 there exist a *k*-cycle $A = (x_1, x_2, x_3, y_4, y_5, y_6, a_7, ..., a_k)$ of $\Gamma_{2,0} + r$, a *k*-cycle $B_1 = (x_{1,0}, y_{1,1}, b_{1,2}, ..., b_{1,k-1})$ of $\Gamma_{2,1} + \ell$, and a *k*-cycle $B_i = (y_{i,0}, x_{i,1}, b_{i,2}, ..., b_{i,k-1})$ of $\Gamma_{2,i} + \ell$, for $2 \le i \le 3$, satisfying the following properties:

$$Dev(\{x_1, x_2\})$$
 and $Dev(\{x_2, x_3\})$ are k-cycles with vertices in $\mathbb{Z}_k \times \{0\}$, (9)
 $Dev(\{y_4, y_5\})$ and $Dev(\{y_5, y_6\})$ are k-cycles with vertices in $\mathbb{Z}_k \times \{1\}$,

$$x_{1,0}, x_{2,1}, x_{3,1} \in \mathbb{Z}_k \times \{0\}, \quad y_{1,1}, y_{2,0}, y_{3,0} \in \mathbb{Z}_k \times \{1\},$$
 (10)

$$\bigcup_{i=1}^{3} Orb(B_i) \cup Orb(A) \quad \text{is a } k\text{-cycle system of } \Gamma_2 + (3\ell + r).$$
(11)

Set $A' = (x_1, \overline{x_2}, x_3, \overline{y_4}, y_5, \overline{y_6}, a_7, a_8, ..., a_{k-1}, a_k)$ and let $S = \{\sigma(A'), \overline{\sigma(A')}\} \cup \{\sigma(B_i), \overline{\sigma(B_i)} | 1 \le i \le 3\}$. By Lemma 4.5, we have that $\bigcup_{S \in S} Orb(S)$ is a k-sun system of $(\Gamma_2 + (3\ell + r))[2] = \Gamma_2[2] + 2(3\ell + r) = (\Gamma_2^*[2] + w_2) \setminus (I + \nu)$.

To construct a *k*-sun system of $\Gamma_2^*[2] + w_2$, we build a family $\mathcal{T} = \{T_0, T_1, ..., T_7\}$ of *k*-suns by modifying the graphs in S so that $\bigcup_{T \in \mathcal{T}} Orb(T)$ covers all the edges incident with ∞'_1, ∞'_2 , and possibly ∞'_3 when $\nu = 3$. We then construct further $(2\nu + 1)$ *k*-suns $G_1, G_2, ..., G_{2\nu+1}$

WILEY[⊥]

25

which cover the remaining edges exactly once. Hence, $\bigcup_{T \in \mathcal{T}} Orb(T) \cup \{G_1, G_2, ..., G_{2\nu+1}\}$ is a *k*-sun system of $\Gamma_2^*[2] + w_2$.

The graphs T_0 , ..., T_7 and G_1 , ..., $G_{2\nu+1}$ are the following, where as before the elements in bold are the replaced vertices.

$$T_{0} = \begin{cases} \begin{pmatrix} x_{1} & \overline{x_{2}} & x_{3} & \overline{y_{4}} & y_{5} & \overline{y_{6}} & a_{7} & \cdots & a_{k-1} & a_{k} \\ x_{2} & \omega_{1}' & y_{4} & \omega_{2}' & y_{6} & \overline{a_{7}} & \overline{a_{8}} & \cdots & \overline{a_{k}} & \overline{x_{1}} \end{pmatrix} & \text{if } \nu = 2, \\ \begin{pmatrix} x_{1} & \overline{x_{2}} & x_{3} & \overline{y_{4}} & y_{5} & \overline{y_{6}} & a_{7} & \cdots & a_{k-1} & a_{k} \\ \omega_{3}' & \omega_{1}' & y_{4} & \omega_{2}' & y_{6} & \overline{a_{7}} & \overline{a_{8}} & \cdots & \overline{a_{k}} & \overline{x_{1}} \end{pmatrix} & \text{if } \nu = 3, \\ T_{1} = \begin{cases} \left(\overline{x_{1}} & x_{2} & \overline{x_{3}} & y_{4} & \overline{y_{5}} & y_{6} & \overline{a_{7}} & \cdots & \overline{a_{k-1}} & \overline{a_{k}} \\ \overline{x_{2}} & \omega_{1}' & \overline{y_{4}} & \omega_{2}' & y_{5} & a_{7} & a_{8} & \cdots & a_{k} & x_{1} \\ \end{pmatrix} & \text{if } \nu = 2, \\ \begin{pmatrix} \overline{x_{1}} & x_{2} & \overline{x_{3}} & y_{4} & \overline{y_{5}} & y_{6} & \overline{a_{7}} & \cdots & \overline{a_{k-1}} & \overline{a_{k}} \\ \omega_{3}' & \omega_{1}' & \overline{y_{4}} & \omega_{2}' & y_{5} & a_{7} & a_{8} & \cdots & a_{k} & x_{1} \\ \end{pmatrix} & \text{if } \nu = 3, \end{cases} \\ T_{2} = \begin{pmatrix} x_{1,0} & y_{1,1} & b_{1,2} & \cdots & b_{1,k-2} & b_{1,k-1} \\ \omega_{2}' & b_{1,2} & b_{1,3} & \cdots & b_{1,k-1} & \overline{x_{1,0}} \\ \omega_{1}' & \overline{b_{2,2}} & b_{2,3} & \cdots & b_{1,k-2} & \overline{b_{1,k-1}} \\ \omega_{2}' & b_{1,2} & b_{1,3} & \cdots & b_{1,k-2} & \overline{b_{1,k-1}} \\ \omega_{1}' & \overline{b_{2,2}} & b_{2,3} & \cdots & b_{2,k-1} & \overline{y_{2,0}} \\ \end{cases}, \\ T_{3} = \begin{pmatrix} \overline{y_{2,0}} & \overline{x_{2,1}} & b_{2,2} & \cdots & \overline{b_{2,k-1}} & \overline{y_{2,0}} \\ \omega_{1}' & \overline{b_{2,2}} & b_{2,3} & \cdots & b_{2,k-1} & y_{2,0} \\ \omega_{1}' & \overline{b_{2,2}} & b_{2,3} & \cdots & b_{2,k-1} & y_{2,0} \\ \end{pmatrix}, \\ T_{5} = \begin{pmatrix} \overline{\sigma}(B_{3}) & \text{if } \nu = 2, \\ (y_{3,0} & x_{3,1} & b_{3,2} & \cdots & b_{3,k-2} & b_{3,k-1} \\ \omega_{3}' & \overline{b_{3,2}} & \overline{b_{3,3}} & \cdots & \overline{b_{3,k-1}} & \overline{y_{3,0}} \\ \end{pmatrix} & \text{if } \nu = 3, \\ T_{7} = \begin{cases} \overline{\sigma}(B_{3}) & \text{if } \nu = 2, \\ (\overline{y_{3,0}} & \overline{x_{3,1}} & \overline{b_{3,2}} & \cdots & \overline{b_{3,k-2}} & \overline{b_{3,k-1}} \\ \omega_{3}' & \overline{b_{3,2}} & b_{3,3} & \cdots & \overline{b_{3,k-1}} & y_{3,0} \\ \end{pmatrix} & \text{if } \nu = 3, \\ T_{7} = \begin{cases} \overline{\sigma}(B_{3}) & \text{if } \nu = 3, \\ (\overline{\omega_{3}'} & b_{3,2} & b_{3,3} & \cdots & b_{3,k-1} & y_{3,0} \\ \end{array} \end{pmatrix}$$

 $\begin{array}{ll} G_{1}=Dev\left(x_{2}\sim x_{3}\sim \overline{x_{3}}\right), & G_{2}=Dev\left(\{\overline{x_{2}},\overline{x_{3}}\} \oplus \{\overline{x_{1,0}},y_{1,1}\}\right), \\ G_{3}=Dev\left(\{y_{4},y_{5}\} \oplus \{y_{2,0},\overline{x_{2,1}}\}\right), & G_{4}=Dev\left(\{\overline{y_{4}},\overline{y_{5}}\} \oplus \{\overline{y_{2,0}},x_{2,1}\}\right), \\ G_{5}=Dev\left(\{\overline{y_{5}},\overline{y_{6}}\} \oplus \{\overline{y_{1,1}},x_{1,0}\}\right), & G_{6}=Dev\left(\{x_{1},x_{2}\} \oplus \{x_{3,1},\overline{y_{3,0}}\}\right), \\ G_{7}=Dev\left(\{\overline{x_{1}},\overline{x_{2}}\} \oplus \{\overline{x_{3,1}},y_{3,0}\}\right). \end{array}$

By recalling (9)–(11), it is not difficult to check that the graphs G_h are k-suns.

Theorem 4.12. Let $k \equiv 3 \pmod{4} \ge 7$ and $n \equiv 0, 1 \pmod{4}$ with 2k < n < 10k. If $\left\lfloor \frac{n-4}{k-1} \right\rfloor$ is odd, and $n \equiv 0, 1 \pmod{k-1}$, then there is a k-sun system of $K_{4k} + n$ except possibly when $(k, n) \in \{(11, 100), (11, 101)\}$.

Proof. Let $n = 2(q\ell + r) + \nu$ with $1 \le r \le \ell$ and $\nu \in \{2, 3\}$. Reasoning as in the proof of Theorem 4.11 and considering that $n \equiv 0, 1 \pmod{2\ell}$ and $(k, n) \notin \{(11, 100), (11, 101)\}$, we have that

q is odd with
$$3 \le q \le 9$$
, $r = \ell - 1 \ge 2$, r is even, and $(\ell, q) \ne (5, 9)$. (12)

As before, let $V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup \{\infty_h | h \in \mathbb{Z}_{n-\nu}\} \cup \{\infty'_1, \infty'_2, \infty'_\nu\}.$

We start decomposing K_{2k} into the following two graphs

 $\Gamma_1 = \langle [3, \ell], \{0\}, [3, \ell] \rangle$ and $\Gamma_2 = \langle \{1, 2\}, [1, k - 1], \{1, 2\} \rangle$.

Considering (12), we can further decompose Γ_1 into the following two graphs:

$$\Gamma_{1,1} = \left\langle \left[3, \frac{q+3}{2}\right], \{0\}, \left[3, \frac{q+3}{2}\right] \right\rangle, \quad \Gamma_{1,2} = \left\langle \left[\frac{q+5}{2}, \ell\right], \emptyset, \left[\frac{q+5}{2}, \ell\right] \right\rangle.$$

By Lemma 3.5, the graph $\Gamma_{1,1}$ decomposes into q 1-factors, say $J_1, J_2, ..., J_q$. Letting $w_1 = q\ell$, by Lemma 4.2 we have that

$$\Gamma_1 + w_1 = (\Gamma_{1,1} + w_1) \oplus \Gamma_{1,2} = \bigoplus_{i=1}^q (J_i + \ell) \oplus \Gamma_{1,2}$$

Lemmas 3.4 and 3.1 guarantee that each $J_i + \ell$ and $\Gamma_{1,2}$ decompose into k-cycles, hence $\Gamma_1 + w_1$ has a k-cycle system. Let r_1 and r_2 be odd positive integers such that $r = \ell - 1 = r_1 + r_2$. Then, setting $w_2 = n - 2w_1 = 2(r_1 + r_2) + \nu$ and recalling that $K_{2k} = \Gamma_1 \oplus \Gamma_2$, by Lemma 4.6 it is left to show that $\Gamma_2^*[2] + w_2$ has a k-sun system.

We start decomposing Γ_2 into the following graphs:

$$\Gamma_{2,1} = \langle \{1\}, [1, k - 2r_1 - 2], \{1\} \rangle$$
 and $\Gamma_{2,2} = \langle \{2\}, [k - 2r_1 - 1, k - 1], \{2\} \rangle$.

Recalling that $\Gamma_2^*[2] = \Gamma_2[2] \oplus I$, where *I* denotes the 1-factor $\{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}$ of K_{4k} , by Lemma 4.2 we have that

$$\Gamma_2^*[2] + w_2 = (\Gamma_{2,1} + r_1)[2] \oplus (\Gamma_{2,2} + r_2)[2] \oplus (I + \nu).$$
⁽¹³⁾

By Lemma 3.3 there are a *k*-cycle $A = (y_1, y_2, x_3, x_4, a_5, ..., a_k)$ of $\Gamma_{2,1} + r_1$ and a *k*-cycle $B = (x_1, x_2, y_3, y_4, b_5, ..., b_k)$ of $\Gamma_{2,2} + r_2$ such that

 $Orb(A) \cup Orb(B)$ is a *k*-cycle system of $\Gamma_2 + r$, $Dev(\{x_3, x_4\})$ and $Dev(\{x_1, x_2\})$ are *k*-cycles with vertices in $\mathbb{Z}_k \times \{0\}$, $Dev(\{y_1, y_2\})$ and $Dev(\{y_3, y_4\})$ are *k*-cycles with vertices in $\mathbb{Z}_k \times \{1\}$.

_____ 27

WILEY

Set $A' = (y_1, \overline{y_2}, x_3, \overline{x_4}, a_5, ..., a_k), B' = (x_1, \overline{x_2}, \overline{y_3}, y_4, b_5, ..., b_k)$ and let $S = \{\sigma(A'), \overline{\sigma(A')}, \sigma(B'), \overline{\sigma(B')}\}$. By Lemma 4.5, we have that $\bigcup_{S \in S} Orb(S)$ is a *k*-sun system of $(\Gamma_2^*[2] + w_2) \setminus (I + \nu)$.

To construct a *k*-sun system of $\Gamma_2^*[2] + w_2$, we build a family $\mathcal{T} = \{T_1, T_2, T_3, T_4\}$ of four *k*-suns, each of which is obtained from a graph in S by replacing some of their vertices with ∞'_1, ∞'_2 , and possibly ∞'_3 when $\nu = 3$. Then we construct further $(2\nu + 1)$ *k*-suns $G_1, G_2, ..., G_{2\nu+1}$ so that $\bigcup_{T \in \mathcal{T}} Orb(T) \cup \{G_1, G_2, ..., G_{2\nu+1}\}$ is a *k*-sun system of $\Gamma_2^*[2] + w_2$.

$$T_{1} = \begin{cases} \begin{pmatrix} y_{1} & \overline{y_{2}} & x_{3} & \overline{x_{4}} & a_{5} & \cdots & a_{k-1} & a_{k} \\ \mathbf{\omega}_{1}^{\prime} & \mathbf{\omega}_{2}^{\prime} & x_{4} & \overline{a_{5}} & \overline{a_{6}} & \cdots & \overline{a_{k}} & \overline{y_{1}} \end{pmatrix} & \text{if } \nu = 2, \\ \begin{pmatrix} y_{1} & \overline{y_{2}} & \mathbf{\omega}_{3}^{\prime} & \overline{x_{4}} & a_{5} & \cdots & a_{k-1} & a_{k} \\ \mathbf{\omega}_{1}^{\prime} & \mathbf{\omega}_{2}^{\prime} & x_{4} & \overline{a_{5}} & \overline{a_{6}} & \cdots & \overline{a_{k}} & \overline{y_{1}} \end{pmatrix} & \text{if } \nu = 3, \end{cases} \\ T_{2} = \begin{pmatrix} \overline{y_{1}} & y_{2} & \overline{x_{3}} & x_{4} & \overline{a_{5}} & \cdots & \overline{a_{k-1}} & \overline{a_{k}} \\ \mathbf{\omega}_{1}^{\prime} & \mathbf{\omega}_{2}^{\prime} & \overline{x_{4}} & a_{5} & a_{6} & \cdots & a_{k} & y_{1} \end{pmatrix}, \\ T_{3} = \begin{pmatrix} x_{1} & \overline{x_{2}} & \overline{y_{3}} & y_{4} & b_{5} & \cdots & b_{k-1} & b_{k} \\ \mathbf{\omega}_{1}^{\prime} & \mathbf{\omega}_{2}^{\prime} & y_{3} & \overline{b_{5}} & \overline{b_{6}} & \cdots & b_{k} & x_{1} \end{pmatrix} & \text{if } \nu = 2, \\ \begin{pmatrix} \overline{x_{1}} & x_{2} & y_{3} & \overline{y_{4}} & \overline{b_{5}} & \cdots & b_{k-1} & \overline{b_{k}} \\ \mathbf{\omega}_{1}^{\prime} & \mathbf{\omega}_{2}^{\prime} & \mathbf{\omega}_{3}^{\prime} & b_{5} & \overline{b_{6}} & \cdots & b_{k} & x_{1} \end{pmatrix} & \text{if } \nu = 3, \end{cases} \\ G_{1} = Dev(y_{1} \sim y_{2} \sim x_{3}), & G_{2} = Dev(\overline{y_{1}} \sim \overline{y_{2}} \sim \overline{x_{3}}) \\ G_{3} = Dev(\overline{y_{4}} \sim \overline{y_{3}} \sim x_{2}), & G_{4} = Dev(x_{1} \sim x_{2} \sim \overline{x_{2}}), \\ G_{5} = \begin{cases} Dev(\overline{x_{1}} \sim \overline{x_{2}} \sim y_{3}) & \text{if } \nu = 3, \\ Dev(\overline{x_{1}} \sim \overline{x_{2}} \sim y_{3}) & \text{if } \nu = 3, \end{cases} & G_{6} = Dev(y_{4} \sim y_{3} \sim \overline{x_{2}}), \\ G_{7} = Dev(x_{4} \sim x_{3} \sim \overline{y_{2}}). \end{cases}$$

By (13), it is not difficult to check that the graphs G_h are k-suns.

5 | IT IS SUFFICIENT TO SOLVE $2k < \nu < 6k$

In this section we show that if the necessary conditions in (*), for the existence of a *k*-sun system of K_{ν} , are sufficient for all ν satisfying $2k < \nu < 6k$, then they are sufficient for all ν . In other words, we prove Theorem 1.1.

We start by showing how to construct k-sun systems of $K_{g \times h}$ (i.e., the complete multipartite graph with g parts each of size h) when h = 4k.

Theorem 5.1. For any odd integer $k \ge 3$ and any integer $g \ge 3$, there exists a k-sun system of $K_{g \times 4k}$.

Proof. Set $V(K_{g \times 2k}) = \mathbb{Z}_{gk} \times [0, 1]$ and let $K_{g \times 4k} = K_{g \times 2k}[2]$. In [11, Theorem 2] the authors proved the existence of a *k*-cycle system of $K_{g \times 2k}$. By applying Lemma 4.5 (with $\Gamma = K_{g \times 2k}$ and u = 0) we obtain the existence of a *k*-sun system of $K_{g \times 4k}$.

The following result exploits Theorem 5.1 and shows how to construct k-sun systems of K_{4kg+n} , for $g \neq 2$, starting from a k-sun system of $K_{4k} + n$ and a k-sun system of either K_n or K_{4k+n} .

Theorem 5.2. Let $k \ge 3$ be an odd integer and assume that both the following conditions hold:

- 1. there exists a k-sun system of either K_n or K_{4k+n} ;
- 2. there exists a k-sun system of $K_{4k} + n$.

Then there is a k-sun system of K_{4kg+n} for all positive $g \neq 2$.

Proof. Suppose there exists a *k*-sun system S_1 of K_n , also, by (2), there exists a *k*-sun system S_2 of $K_{4k} + n$. Clearly, $S_1 \cup S_2$ is a *k*-sun system of $K_{n+4k} = K_n \oplus (K_{4k} + n)$. Hence we can suppose $g \ge 3$. Let *V*, *H*, and *G* be sets of size *n*, 4*k*, and *g*, respectively, such that *V* ∩ (*H* × *G*) = Ø. Let *S* be a *k*-sun system of K_n (resp., K_{n+4k}) with vertex-set *V* (resp., $V \cup (H \times \{x_0\})$ for some $x_0 \in G$). By assumption, for each $x \in G$, there is a *k*-sun system, say \mathcal{B}_x , of $K_{4k} + n$ with vertex-set $V \cup (H \times \{x\})$, where $V(K_{4k}) = H \times \{x\}$. Also, by Theorem 5.1 there is a *k*-sun system *C* of $K_{g \times 4k}$ whose parts are $H \times \{x\}$ with $x \in G$. Hence the *k*-suns of \mathcal{B}_x with $x \in G$ (resp., $x \in G \setminus \{x_0\}$), *S* and *C* form a *k*-sun system of K_{n+4kg} with vertex-set $V \cup (H \times G)$.

We are now ready to prove Theorem 1.1 whose statement is recalled below.

Theorem 1.1. Let $k \ge 3$ be an odd integer and v > 1. Conjecture 1 is true if and only if there exists a k-sun system of K_v for all v satisfying the necessary conditions in (*) with 2k < v < 6k.

Proof. The existence of 3-sun systems and 5-sun systems has been solved in [10] and in [8], respectively. Hence we can suppose $k \ge 7$ and 2k < v < 6k.

We first deal with the case where $(k, v) \neq (7, 21)$. By assumption there exists a *k*-sun system of K_v , which implies $v(v - 1) \equiv 0 \pmod{4}$, hence Theorem 4.1 guarantees the existence of a *k*-sun system of $K_{4k} + v$. Therefore, by Theorem 5.2 there is a *k*-sun decomposition of K_{4kg+v} whenever $g \neq 2$. To decompose K_{8k+v} into *k*-suns, we first decompose K_{8k+v} into K_{4kg+v} and $K_{4k} + (4k + v)$. By Theorem 5.2 (with g = 1), there is a *k*-sun system of $K_{4k} + (4k + v)$. Furthermore, Theorem 4.1 guarantees the existence of a *k*-sun system of $K_{4k} + (4k + v)$, except possibly when $(k, 4k + v) \in \{(7, 56), (7, 57), (7, 64), (11, 100)\}$. Therefore, by Theorem 5.2, there is a *k*-sun decomposition of K_{8k+v} whenever $(k, 4k + v) \notin \{(7, 56), (7, 57), (7, 64), (11, 100)\}$. For each of these four cases we construct *k*-sun systems of K_{8k+v} as follows.

If k = 7 and $4k + \nu = 56$, set $V(K_{84}) = \mathbb{Z}_{83} \cup \{\infty\}$. We consider the following 7-suns:

$T_1 = \begin{pmatrix} 0\\ 31 \end{pmatrix}$	-1 27	3 37	-4 18	6 43	-7 12	16 56),
$T_2 = \begin{pmatrix} 0\\ 32 \end{pmatrix}$	-2 27	3 38	-5 19	6 44	-8 12	$\binom{17}{58}$,
$T_3 = \begin{pmatrix} 0\\ 33 \end{pmatrix}$	-3 27	3 39	$-6 \\ 20$	6 45	-9 12	$\binom{18}{\infty}$.

One can easily check that $\bigcup_{i=1}^{3} Orb_{\mathbb{Z}_{83}}(T_i)$ is a 7-sun system of K_{84} .

If k = 7 and 4k + v = 57, set $V(K_{85}) = \mathbb{Z}_{85}$. Let T_1 and T_2 be defined as above, and let T'_3 be the graph obtained from T_3 replacing ∞ with 60. It is immediate that $\bigcup_{i=1}^2 Orb_{\mathbb{Z}_{85}}(T_i) \cup Orb_{\mathbb{Z}_{85}}(T'_3)$ is a 7-sun system of K_{85} .

If k = 7 and 4k + v = 64, set $V(K_{92}) = (\mathbb{Z}_7 \times \mathbb{Z}_{13}) \cup \{\infty\}$. We consider the following 7-suns:

$$\begin{split} T_1 &= \begin{pmatrix} (0,0) & (1,1) & -(2,1) & (3,1) & -(4,1) & (5,1) & -(6,1) \\ \infty & (-1,1) & (2,7) & (-3,5) & -(3,5) & -(5,7) & (6,7) \end{pmatrix}, \\ T_2 &= \begin{pmatrix} (0,0) & (1,2) & -(2,2) & (3,2) & -(4,2) & (5,2) & -(6,2) \\ (0,10) & -(1,8) & (2,8) & (-3,7) & -(3,7) & -(5,8) & (6,8) \end{pmatrix}, \\ T_3 &= \begin{pmatrix} (0,0) & (1,3) & -(2,3) & (3,3) & -(4,3) & (5,3) & -(6,3) \\ (0,12) & -(1,9) & (2,9) & (-3,9) & -(3,9) & -(5,9) & (6,9) \end{pmatrix}, \\ T_4 &= Dev_{\mathbb{Z}_7 \times \{0\}}((0,0) \sim (4,0) \sim (6,8)), \quad T_5 = Dev_{\mathbb{Z}_7 \times \{0\}}((0,0) \sim (6,0) \sim (6,8)). \end{split}$$

One can easily check that $\bigcup_{i=1}^{3} Orb_{\mathbb{Z}_{7} \times \mathbb{Z}_{13}}(T_{i}) \cup \bigcup_{i=4}^{5} Orb_{\{0\} \times \mathbb{Z}_{13}}(T_{i})$ is a 7-sun system of K_{92} .

If k = 11 and 4k + v = 100, set $V(K_{144}) = (\mathbb{Z}_{11} \times \mathbb{Z}_{13}) \cup \{\infty\}$. We consider the following 11-suns:

$$\begin{split} T_1 &= \begin{pmatrix} (0,0) & (1,1) & -(2,1) & (3,1) & -(4,1) & (5,1) & -(6,1) & (7,1) & -(8,1) & (9,1) & -(10,1) \\ \infty & (-1,1) & (2,7) & -(3,7) & (4,7) & (-5,1) & -(5,5) & -(7,7) & (8,7) & -(9,7) & (10,7) \end{pmatrix}, \\ T_2 &= \begin{pmatrix} (0,0) & (1,2) & -(2,2) & (3,2) & -(4,2) & (5,2) & -(6,2) & (7,2) & -(8,2) & (9,2) & -(10,2) \\ (0,10) & -(1,8) & (2,8) & -(3,8) & (4,8) & (-5,6) & -(5,7) & -(7,8) & (8,8) & -(9,8) & (10,8) \end{pmatrix}, \\ T_3 &= \begin{pmatrix} (0,0) & (1,3) & -(2,3) & (3,3) & -(4,3) & (5,3) & -(6,3) & (7,3) & -(8,3) & (9,3) & -(10,3) \\ (0,12) & -(1,9) & (2,9) & -(3,9) & (4,9) & (-5,9) & -(5,9) & -(7,9) & (8,9) & -(9,9) & (10,9) \end{pmatrix}, \\ T_4 &= Dev_{\mathbb{Z}_{11}\times[0]}((0,0) \sim (4,0) \sim (6,8)), \quad T_5 &= Dev_{\mathbb{Z}_{11}\times[0]}((0,0) \sim (5,8)), \\ T_6 &= Dev_{\mathbb{Z}_{11}\times[0]}((0,0) \sim (8,0) \sim (8,8)). \end{split}$$

One can check that $\bigcup_{i=1}^{3} Orb_{\mathbb{Z}_{11} \times \mathbb{Z}_{13}}(T_i) \cup \bigcup_{i=4}^{6} Orb_{\{0\} \times \mathbb{Z}_{13}}(T_i)$ is an 11-sun system of K_{144} .

It is left to prove the existence of a *k*-sun system of $K_{4kg+\nu}$ when $(k, \nu) = (7, 21)$ and for every $g \ge 1$. If g = 1, a 7-sun system of K_{49} can be obtained as a particular case of the following construction. Let *p* be a prime, $q = p^n \equiv 1 \pmod{4}$ and *r* be a primitive root of $\mathbb{F}_{q_{\frac{q-5}{1}}}$ Setting $S = Dev_{\langle r \rangle} (0 \sim r \sim r + 1)$ where $\langle r \rangle = \{jr \mid 1 \le j \le p\}$, we have that $\bigcup_{i=0}^{4} Orb_{\mathbb{F}_q}(r^{2i}S)$ is a *p*-sun system of K_q .

If $g \ge 2$, we notice that $K_{28g+21} = K_{28(g-1)+49}$. Considering the 7-sun system of K_{49} just built, and recalling that by Theorem 4.1 there is a 7-sun system of $K_{28} + 49$, then Theorem 5.2 guarantees the existence of a 7-sun system of $K_{28(g-1)+49}$ whenever $g \ne 3$.

When g = 3, a 7-sun system of K_{105} is constructed as follows. Set $V(K_{105}) = \mathbb{Z}_7 \times \mathbb{Z}_{15}$. Let $S_{i,j}$ and T be the 7-suns defined below, where $(i, j) \in X = ([1, 3] \times [1, 7]) \setminus \{(1, 3), (1, 6)\}$:

$$S_{i,j} = \begin{pmatrix} (0,0) & (i,j/2) & (2i,j) & (3i,0) & (4i,j) & (5i,0) & (6i,j) \\ (i,-j/2) & (2i,0) & (3i,2j) & (4i,-j) & (5i,2j) & (6i,-j) & (0,2j) \end{pmatrix}$$
$$T = \begin{pmatrix} (0,0) & (0,7) & (0,2) & (0,5) & (0,-1) & (0,3) & (0,1) \\ (2,0) & (3,7) & (1,2) & (1,8) & (1,5) & (1,0) & (1,10) \end{pmatrix}.$$

One can check that $\bigcup_{(i,i)\in X} Orb_{\{0\}\times\mathbb{Z}_{15}}(S_{i,i}) \cup Orb_{\mathbb{Z}_7\times\mathbb{Z}_{15}}(T)$ is a 7-sun system of K_{105} .

6 | CONSTRUCTION OF p-SUN SYSTEMS, p PRIME

In this section we prove Theorem 1.2. Clearly in view of Theorem 1.1 it is sufficient to construct a *p*-sun system of K_{ν} for any admissible ν with $2p < \nu < 6p$. Hence, we are going to prove the following result.

Theorem 6.1. Let *p* be an odd prime and let $v(v - 1) \equiv 0 \pmod{4p}$ with 2p < v < 6p. Then there exists a *p*-sun system of K_v .

Since the existence of *p*-sun systems with p = 3, 5 has been proved in [10] and in [8], respectively, here we can assume $p \ge 7$.

It is immediate to see that by the necessary conditions for the existence of a *p*-sun system of K_{ν} , it follows that ν lies in one of the following congruence classes modulo 4*p*:

1. $v \equiv 0, 1 \pmod{4p}$; 2. $v \equiv p, 3p + 1 \pmod{4p}$ if $p \equiv 1 \pmod{4}$; 3. $v \equiv p + 1, 3p \pmod{4p}$ if $p \equiv 3 \pmod{4}$.

If $v \equiv 0, 1 \pmod{4p}$ we present a direct construction which holds more in general for p = k, where k is an odd integer and not necessarily a prime.

Theorem 6.2. For any $k = 2t + 1 \ge 7$ there exists a k-sun system of K_{4k+1} and a k-sun system of K_{4k} .

Proof. Let *C* be the *k*-cycle with vertices in \mathbb{Z} so defined:

$$C = (0, -1, 1, -2, 2, -3, 3, ..., 1 - t, t - 1, -t, 2t).$$

Note that the list D_1 of the positive differences in \mathbb{Z} of C is $D_1 = [1, 2t] \cup \{3t\}$. Consider now the ordered *k*-set $D_2 = \{d_1, d_2, ..., d_k\}$ so defined:

$$D_2 = [2t + 1, 3t - 1] \cup [3t + 1, 4t + 2].$$

Obviously $D_1 \cup D_2 = [1, 2k]$. Let $\{c_1, c_2, ..., c_k\}$ be the increasing order of the vertices of

30

the cycle *C* and set $\ell_r = c_r + d_r$ for every $r \in [1, k]$, with $r \neq \frac{t+1}{2}$, and $\ell_{\frac{t+1}{2}} = c_{\frac{t+1}{2}} - d_{\frac{t+1}{2}}$ when *t* is odd. It is not hard to see that $V = \{c_1, c_2, ..., c_k, \ell_1, \ell_2, ..., \ell_k\}$ is a set. Note also that $V \subseteq \{-3t - 1\} \cup [-t, 5t] \cup \{6t + 2\}$.

Let *S* be the sun obtainable from *C* by adding the pendant edges $\{c_i, \ell_i\}$ for $i \in [1, k]$. Clearly, $\Delta S = \pm (D_1 \cup D_2) = \pm [1, 2k]$. So we can conclude that if we consider the vertices of *S* as elements of \mathbb{Z}_{4k+1} , the vertices are still pairwise distinct and $\Delta S = \mathbb{Z}_{4k+1} \setminus \{0\}$. Then, by applying Corollary 2.2 (with $G = \mathbb{Z}_{4k+1}$, m = 1, w = 0), it follows that $Orb_{\mathbb{Z}_{4k+1}}S$ is a *k*-sun system of K_{4k+1} .

Now we construct a *k*-sun system of K_{4k} . Let *S* be defined as above and note that $d_k = 2k$. Let S^* be the sun obtained by *S* setting $\ell_k = \infty$. It is immediate that if we consider the vertices of S^* as elements of $\mathbb{Z}_{4k-1} \cup \{\infty\}$, then Corollary 2.2 (with $G = \mathbb{Z}_{4k-1}, m = 1, w = 1$) guarantees that $Orb_{\mathbb{Z}_{4k-1}}S^*$ is a *k*-sun system of K_{4k} .

Example 6.3. Let k = 2t + 1 = 9, hence t = 4. By following the proof of Theorem 6.2, we construct a 9-sun system of K_{37} . Taking C = (0, -1, 1, -2, 2, -3, 3, -4, 8), we have that

$$\{d_1, d_2, \dots, d_9\} = [9, 11] \cup [13, 18],$$

$$\{c_1, c_2, \dots, c_9\} = \{-4, -3, -2, -1, 0, 1, 2, 3, 8\}$$

Hence $\{\ell_1, \ell_2, ..., \ell_9\} = \{5, 7, 9, 12, 14, 16, 18, 20, 26\}$ and we obtain the following 9-sun *S* with vertices in \mathbb{Z}_{37} :

 $S = \begin{pmatrix} 0 & -1 & 1 & -2 & 2 & -3 & 3 & -4 & 8 \\ 14 & 12 & 16 & 9 & 18 & 7 & 20 & 5 & 26 \end{pmatrix},$

such that $\Delta S = \mathbb{Z}_{37} \setminus \{0\}$. Therefore, $Orb_{\mathbb{Z}_{37}}S$ is a 9-sun system of K_{37} .

From now on, we assume that p is an odd prime number and denote by Σ the following p-sun:

$$\Sigma = \begin{pmatrix} c_0 & c_1 & \cdots & c_{p-2} & c_{p-1} \\ \ell_0 & \ell_1 & \cdots & \ell_{p-2} & \ell_{p-1} \end{pmatrix}$$

Lemma 6.4. Let *p* be an odd prime. For any $x, y \in \mathbb{Z}_p$ with $x \neq 0$ and any $i, j \in \mathbb{Z}_m$ with $i \neq j$ there exists a *p*-sun *S* such that $\Delta_{ii}S = \pm x$, $\Delta_{ij}S = y$, $\Delta_{ji}S = -y$, and $\Delta_{hk}S = \emptyset$ for any $(h, k) \in (\mathbb{Z}_m \times \mathbb{Z}_m) \setminus \{(i, i), (i, j), (j, i)\}.$

Proof. It is easy to see that $S = Dev_{\mathbb{Z}_p \times \{0\}}((0, i) \sim (x, i) \sim (y + x, j))$ is the required *p*-sun.

We will call such a *p*-sun a sun of type (i, j). For the following it is important to note that if *S* is a *p*-sun of type (i, j), then $|\Delta_{ii}S| = 2$, $|\Delta_{jj}S| = 0$, and $|\Delta_{ij}S| = |\Delta_{ji}S| = 1$.

The following two propositions provide us *p*-sun systems of K_{mp+1} whenever $m \in \{3, 5\}$ and $p \equiv m - 2 \pmod{4}$.

Proposition 6.5. Let $p \equiv 1 \pmod{4} \ge 13$ be a prime. Then there exists a *p*-sun system of K_{3p+1} .

Proof. We have to distinguish two cases according to the congruence of p modulo 12. *Case* 1. Let $p \equiv 1 \pmod{12}$.

If p = 13, we construct a 13-sun system of K_{40} as follows. Let *S* be the following 13-sun whose vertices are labeled with elements of $(\mathbb{Z}_{13} \times \mathbb{Z}_3) \cup \{\infty\}$:

$$S = \begin{pmatrix} \infty & (2,1) & (4,2) & (8,0) & (3,1) & (6,2) & (12,0) & (11,1) & (9,2) & (5,0) & (10,1) & (7,2) & (1,0) \\ (0,2) & (4,1) & (8,1) & (3,2) & (6,0) & (12,1) & (11,2) & (9,0) & (5,1) & (10,2) & (7,0) & (1,1) & (2,2) \end{pmatrix}$$

We have

WILEY

$$\Delta_{12}S = \Delta_{21}S = \pm \{2, 3, 4, 6\}, \quad \Delta_{02}S = \Delta_{20}S = \pm \{1, 4, 5, 6\}, \\ \Delta_{01}S = -\Delta_{10}S = \{-1, 2, \pm 3, \pm 5\}, \quad \Delta_{00}S = \Delta_{22}S = \emptyset, \quad \Delta_{11}S = \pm \{2\}.$$

Now it remains to construct a set \mathcal{T} of edge-disjoint 13-suns such that

$$\begin{split} &\Delta_{12}\mathcal{T} = \Delta_{21}\mathcal{T} = \{0, \pm 1, \pm 5\}, \quad \Delta_{02}\mathcal{T} = \Delta_{20}\mathcal{T} = \{0, \pm 2, \pm 3\}, \\ &\Delta_{01}\mathcal{T} = -\Delta_{10}\mathcal{T} = \{0, 1, -2, \pm 4, \pm 6\}, \quad \Delta_{00}\mathcal{T} = \Delta_{22}\mathcal{T} = \mathbb{Z}_{13}^*, \quad \Delta_{11}\mathcal{T} = \mathbb{Z}_{13}^* \setminus \{\pm 2\}. \end{split}$$

To do this it is sufficient to take, $\mathcal{T} = \{T_{01}^i | i \in [1, 4]\} \cup \{T_{02}^i | i \in [1, 2]\} \cup \{T_{10}^i | i \in [1, 3]\} \cup \{T_{12}^i | i \in [1, 2]\} \cup \{T_{20}^i | i \in [1, 3]\} \cup \{T_{21}^i | i \in [1, 3]\}, \text{ where}$

$$\begin{split} T_{01}^{i} &= Dev_{\mathbb{Z}_{13} \times \{0\}}((0, 0) \sim (x_{i}, 0) \sim (y_{i} + x_{i}, 1)), & \text{where } x_{i} \in [1, 4], y_{i} \in \pm \{4, 6\}, \\ T_{02}^{i} &= Dev_{\mathbb{Z}_{13} \times \{0\}}((0, 0) \sim (x_{i}, 0) \sim (y_{i} + x_{i}, 2)), & \text{where } x_{i} \in [5, 6], y_{i} \in \pm \{2\}, \\ T_{10}^{i} &= Dev_{\mathbb{Z}_{13} \times \{0\}}((0, 1) \sim (x_{i}, 1) \sim (y_{i} + x_{i}, 0)), & \text{where } x_{i} \in \{1, 3, 4\}, y_{i} \in \{0, -1, 2\} \\ T_{12}^{i} &= Dev_{\mathbb{Z}_{13} \times \{0\}}((0, 1) \sim (x_{i}, 1) \sim (y_{i} + x_{i}, 2)), & \text{where } x_{i} \in [5, 6], y_{i} \in \pm \{1\}, \\ T_{20}^{i} &= Dev_{\mathbb{Z}_{13} \times \{0\}}((0, 2) \sim (x_{i}, 2) \sim (y_{i} + x_{i}, 0)), & \text{where } x_{i} \in [1, 3], y_{i} \in \{0, \pm 3\}, \\ T_{21}^{i} &= Dev_{\mathbb{Z}_{13} \times \{0\}}((0, 2) \sim (x_{i}, 2) \sim (y_{i} + x_{i}, 1)), & \text{where } x_{i} \in [4, 6], y_{i} \in \{0, \pm 5\}. \end{split}$$

We have that $\mathcal{T} \cup Orb_{\mathbb{Z}_{13} \times \{0\}}S$ is a 13-sun system of K_{40} .

Suppose now that $p \ge 37$. We proceed in a very similar way to the previous case. Let r be a primitive root of \mathbb{Z}_p . Consider the $((\mathbb{Z}_p \times \mathbb{Z}_3) \cup \{\infty\})$ -labeling B of Σ so defined:

$$B(c_0) = \infty, \quad B(c_i) = (r^i, i) \quad \text{for } 1 \le i \le p - 1,$$

$$B(\ell_0) = (0, 2), \quad B(\ell_i) = (r^{i+1}, i + 2)$$

except for $\frac{p-9}{4}$ values of $i \equiv 1 \pmod{3}$ for which we set $B(\ell_i) = (r^{i+1}, i)$. Letting $S = B(\Sigma)$, it is immediate that the labels of the vertices of *S* are pairwise distinct. Note that

$$\begin{split} |\Delta_{00}S| &= |\Delta_{22}S| = 0, \quad |\Delta_{11}S| = \frac{p-9}{2}, \quad |\Delta_{01}S| = |\Delta_{10}S| = \frac{5p+7}{12}, \\ |\Delta_{ij}S| &= \frac{2p-2}{3} \quad \text{for } (i,j) \in \{(0,2),(1,2),(2,0),(2,1)\}. \end{split}$$

Hence, reasoning as in the previous case, we have to construct a set \mathcal{T} of *p*-suns such that if $i \neq j$, then $\Delta_{ij}\mathcal{T} = \mathbb{Z}_p \setminus \Delta_{ij}S$ is a set and also $\Delta_{ii}\mathcal{T} = \mathbb{Z}_p^* \setminus \Delta_{ii}S$ is a set. In particular, this implies

that for any $T, T' \in \mathcal{T}$ we have $\Delta_{ij}T \cap \Delta_{ij}T' = \emptyset$ and that $|\Delta_{00}T| = |\Delta_{22}T| = p - 1$, $|\Delta_{11}T| = \frac{p+7}{2}$, $|\Delta_{ij}T| = \frac{p+2}{3}$ for $(i,j) \in \{(0,2), (1,2), (2,0), (2,1)\}$, and $|\Delta_{01}T| = |\Delta_{10}T| = \frac{7p-7}{12}$. To do this it is sufficient to take \mathcal{T} as a set consisting of $\frac{p-1}{2}$ suns of type (0, 1), $\frac{p-1}{12}$ suns of type $(1, 0), \frac{p+11}{6}$ suns of type $(1, 2), \frac{p+2}{3}$ suns of type (2, 0), and $\frac{p-7}{6}$ suns of type (2, 1), which exist in view of Lemma 6.4. We have that $Orb_{\mathbb{Z}_p\times\{0\}}S \cup \mathcal{T}$ is a *p*-sun system of K_{3p+1} .

Case 2. Let $p \equiv 5 \pmod{12}$. Let r be a primitive root of \mathbb{Z}_p . Consider the $((\mathbb{Z}_p \times \mathbb{Z}_3) \cup \{\infty\})$ -labeling B of Σ so defined:

$$\begin{split} B(c_0) &= \infty, \quad B(c_i) = (r^i, i) \quad \text{for } 1 \le i \le p - 2, \quad B(c_{p-1}) = (1, 0), \\ B(\ell_0) &= (0, 2), \quad B(\ell_1) = (r, 2), \quad B(\ell_i) = \begin{cases} (r^{i-1}, i+1) & \text{for } i \in \left[2, \frac{p-1}{2}\right], \\ (r^{i+1}, i+2) & \text{for } i \in \left[\frac{p+1}{2}, p-3\right], \end{cases} \\ B(\ell_{p-2}) &= (1, 1), \quad B(\ell_{p-1}) = (1, 2) \end{split}$$

except for $\frac{p-17}{6}$ values of $i \equiv 0 \pmod{3}$ with $i \in \left[3, \frac{p-1}{2}\right]$ for which we set $B(\ell_i) = (r^{i-1}, i)$ and $\frac{p-5}{12}$ values of $i \equiv 0 \pmod{3}$ with $i \in \left[\frac{p+1}{2}, p-5\right]$ for which we set $B(\ell_i) = \left(r^{i+1}, i\right)$. Letting $S = B(\Sigma)$, it is easy to see that the labels of the vertices of *S* are pairwise distinct. Note that

$$\begin{aligned} |\Delta_{00}S| &= \frac{p-9}{2}, \quad |\Delta_{11}S| = |\Delta_{22}S| = 0, \quad |\Delta_{01}S| = |\Delta_{10}S| = \frac{p+1}{2}, \\ |\Delta_{02}S| &= |\Delta_{20}S| = \frac{7p+1}{12}, \quad |\Delta_{12}S| = |\Delta_{21}S| = \frac{2p-4}{3}. \end{aligned}$$

Hence, we have to construct a set T of *p*-suns such that

$$\begin{aligned} |\Delta_{11}T| &= |\Delta_{22}T| = p - 1, \quad |\Delta_{00}T| = \frac{p + 7}{2}, \quad |\Delta_{01}T| = |\Delta_{10}T| = \frac{p - 1}{2}, \\ |\Delta_{02}T| &= |\Delta_{20}T| = \frac{5p - 1}{12}, \text{ and } |\Delta_{12}T| = |\Delta_{21}T| = \frac{p + 4}{3}. \end{aligned}$$

To do this it is sufficient to take \mathcal{T} as a set consisting of $\frac{p+7}{4}$ suns of type (0, 1), $\frac{p-9}{4}$ suns of type (1, 0), $\frac{p+7}{4}$ suns of type (1, 2), $\frac{5p-1}{12}$ suns of type (2, 0), and $\frac{p-5}{1^2}$ suns of type (2, 1) which exist in view of Lemma 6.4. We have that $Orb_{\mathbb{Z}_p}S \cup \mathcal{T}^1$ is a *p*-sun system of K_{3p+1} .

Proposition 6.6. For any prime $p \equiv 3 \pmod{4}$ there exists a p-sun system of K_{5p+1} .

Proof. Set p = 4n + 3, and let Y = [1, n] and X = [n + 1, 2n + 1]. Consider the following $(\mathbb{Z}_p \times \mathbb{Z}_5) \cup \{\infty\}$ -labeling *B* of Σ defined as follows:

15206610, 2021. 1, Downloaded from https://ulinelibrary.wiley.com/doi/10.1020jcd.21751 by Universita Di Brescia, Wiley Online Library on [18/122024]. See the Terms and Conditions (https://onlinelibrary.wiley.conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Ceative Commons License

$$\begin{split} B(c_0) &= (0, 0), \quad B(c_i) = (-1)^{i+1}(i, 1) \quad \text{for every } i \in [1, p-1]; \\ B(\ell_0) &= \infty, \quad B(\ell_y) = (-1)^y(y, -1) \quad \text{for every } y \in Y; \\ B(\ell_{2n+1}) &= (-2n-1, 3), \quad B(\ell_{2n+2}) = (-2n-1, -3); \\ B(\ell_i) &= (-1)^i(i, 3) \quad \text{for every } i \in [1, p-1] \setminus (Y \cup \{2n+1, 2n+2\}). \end{split}$$

One can directly check that the vertices of $S = B(\Sigma)$ are pairwise distinct. Also, it is not hard to verify that ΔS does not have repetitions and that its complement in $(\mathbb{Z}_p \times \mathbb{Z}_5) \setminus \{(0, 0)\}$ is the set

$$D = \{ \pm (2x, 0) | x \in X \} \cup \{ \pm (2y, 4) | y \in Y \} \cup \{ \pm (0, 1) \}.$$

Clearly, *D* can be partitioned into n + 1 quadruples of the form $D_x = \{\pm (2x, 0), \pm (r_x, s_x)\}$ with $x \in X$ and $s_x \neq 0$. Letting

$$S_x = Dev_{\mathbb{Z}_n \times \{0\}}((0, 0) \sim (2x, 0) \sim (r_x + 2x, s_x))$$

for $x \in X$, it is clear that $\Delta S_x = D_x$, hence $\Delta \{S_x | x \in X\} = D$. Therefore, Corollary 2.2 guarantees that $\bigcup_{x \in X} Orb_{\{0\} \times \mathbb{Z}_5}(S_x) \cup Orb_{\mathbb{Z}_p \times \mathbb{Z}_5}(S)$ is a *p*-sun system of K_{5p+1} .

Example 6.7. Here, we construct a 7-sun system of K_{36} following the proof of Proposition 6.6. In this case, $Y = \{1\}$ and $X = \{2, 3\}$. Now consider the 7-sun *S* defined below, whose vertices lie in $(\mathbb{Z}_7 \times \mathbb{Z}_5) \cup \{\infty\}$:

$$S = \begin{pmatrix} (0,0) & (1,1) & -(2,1) & (3,1) & -(4,1) & (5,1) & -(6,1) \\ \infty & -(1,-1) & (2,3) & (-3,3) & -(3,3) & -(5,3) & (6,3) \end{pmatrix}$$

We have

$$\Delta S = \pm \{(1, 1), (3, 2), (5, 2), (0, 2), (2, 2), (4, 2), (6, 1), (2, 0), (4, 4), (6, -2), (1, -2), (3, 4), (5, 4)\}$$

Hence ΔS does not have repetitions and its complement in $(\mathbb{Z}_7 \times \mathbb{Z}_5) \setminus \{(0,0)\}$ is the set

$$D = \pm \{(4, 0), (6, 0), (2, 4), (0, 1)\}.$$

Now it is sufficient to take

$$S_2 = Dev_{\mathbb{Z}_7 \times \{0\}}((0,0) \sim (4,0) \sim (6,4)), \quad S_3 = Dev_{\mathbb{Z}_7 \times \{0\}}((0,0) \sim (6,0) \sim (6,1)).$$

One can check that $\bigcup_{x \in X} Orb_{\{0\} \times \mathbb{Z}_5}(S_x) \cup Orb_{\mathbb{Z}_7 \times \mathbb{Z}_5}S$ is a 7-sun system of K_{36} .

We finally construct *p*-sun systems of K_{mp} whenever $p \equiv m \pmod{4}$.

Proposition 6.8. Let *m* and *p* be odd prime numbers with $m \le p$ and $m \equiv p \pmod{4}$. Then there exists a *p*-sun system of K_{mp} . *Proof.* For each pair $(r, s) \in \mathbb{Z}_p^* \times \mathbb{Z}_m$, let $B_{r,s} : V(\Sigma) \to \mathbb{Z}_p \times \mathbb{Z}_m$ be the labeling of the vertices of Σ defined as follows:

$$\begin{split} B_{r,s}(c_0) &= (0,0), \\ B_{r,s}(c_i) &= B_{r,s}(c_{i-1}) + \begin{cases} (r,s) & \text{if } i \in [1,m+1] \cup \{m+3,m+5,...,p-1\}, \\ (r,-s) & \text{if } i \in \{m+2,m+4,...,p-2\}, \end{cases} \\ B_{r,s}(\ell_i) &= B_{r,s}(c_i) + \begin{cases} (r,-s) & \text{if } i \in [0,m] \cup \{m+2,m+4,...,p-2\}, \\ (r,s) & \text{if } i \in \{m+1,m+3,...,p-1\}. \end{cases} \end{split}$$

Since $B_{r,s}$ is injective, for every $h \in \mathbb{Z}_m$ the graph $S_{r,s}^h = \tau_{(0,h)}(B_{r,s}(\Sigma))$ is a *p*-sun. For $i, j \in \mathbb{Z}_m$, we also notice that $\Delta_{ij}\{S_{r,s}^h | h \in \mathbb{Z}_m\} = \{\pm r\}$ whenever $i - j = \pm s$, otherwise it is empty.

Letting S be the union of the following two sets of p-suns:

$$\{S_{r,1}^{h} | h \in \mathbb{Z}_{m}, r \in [1, (p + m - 2)/4]\}, \\\{S_{r,s}^{h} | h \in \mathbb{Z}_{m}, r \in [1, (p - 1)/2], s \in [2, (m - 1)/2]\},\$$

it is not difficult to see that for every $i, j \in \mathbb{Z}_m$

$$\Delta_{ij}\mathcal{S} = \begin{cases} \varnothing & \text{if } i = j, \\ \pm \left[1, \frac{p+m-2}{4}\right] & \text{if } i-j = \pm 1, \\ \mathbb{Z}_p^* & \text{otherwise.} \end{cases}$$

It is left to construct a set \mathcal{T} of *p*-suns such that $\Delta_{ij}\mathcal{T} = \mathbb{Z}_p \setminus \Delta_{ij}\mathcal{S}$ whenever $i \neq j$, and $\Delta_{ii}\mathcal{T} = \mathbb{Z}_p^* \setminus \Delta_{ii}\mathcal{S} = \mathbb{Z}_p^*$. Therefore,

$$|\Delta_{ij}\mathcal{T}| = \begin{cases} p-1 & \text{if } i=j,\\ \frac{p-m}{2}+1 & \text{if } i-j=\pm 1,\\ 1 & \text{otherwise.} \end{cases}$$

It is enough to take \mathcal{T} as a set consisting of one sun of type (h, h + x) and $\frac{p-m}{2}$ suns of type (h, h + 1), for every $h \in \mathbb{Z}_m$ and $x \in \left[1, \frac{m-1}{2}\right]$. These *p*-suns exist by Lemma 6.4, therefore $S \cup \mathcal{T}$ is the desired *p*-sun system of K_{mp} .

Example 6.9. Let (m, p) = (3, 11). Following the proof of Proposition 6.8, we construct an 11-sun system of K_{33} . For every $h \in \mathbb{Z}_3$ and $r \in [1, 3]$, let $S_{r,1}^h$ be the 11-sun defined below:

 $S_{r,1}^h$

 $= \begin{pmatrix} (0,h) & (r,h+1) & (2r,h+2) & (3r,h) & (4r,h+1) & (5r,h) & (6r,h+1) & (7r,h) & (8r,h+1) & (9r,h) & (10r,h+1) \\ (r,h+2) & (2r,h) & (3r,h+1) & (4r,h+2) & (5r,h+2) & (6r,h+2) & (7r,h+2) & (8r,h+2) & (9r,h+2) & (10r,h+2) & (0,h+2) \\ \end{pmatrix}.$

One can check that $\Delta_{ij}\{S_{r,1}^0, S_{r,1}^1, S_{r,1}^2\} = \{\pm r\}$ if $i \neq j$, otherwise it is empty. Therefore, letting $S = \{S_{r,1}^h | h \in \mathbb{Z}_3, r \in [1, 3]\}$, we have that $\Delta_{ij}S$ is nonempty only when $i \neq j$, in which case we have $\Delta_{ij}S = \pm [1, 3]$.

Now let $\mathcal{T} = \{T_{hg} | h \in \mathbb{Z}_3, g \in [1, 5]\}$ where T_{hg} is the 11-sun defined as follows:

$$\begin{split} T_{h1} &= Dev_{\mathbb{Z}_{11} \times \{0\}}((0, h) \sim (1, h) \sim (1, h + 1)), \\ T_{hg} &= Dev_{\mathbb{Z}_{11} \times \{0\}}((0, h) \sim (g, h) \sim (9, h + 1)) \quad \text{for every } g \in [2, 5]. \end{split}$$

Note that each T_{hg} is an 11-sun of type (h, h + 1). Therefore we have that

$$\Delta_{ij}\mathcal{T} = \begin{cases} \pm [1, 5] & \text{if } 0 \le i = j \le 2, \\ \{0\} \cup [4, 7] & \text{otherwise.} \end{cases}$$

By Corollary 2.2, it follows that $S \cup T$ is an 11-sun system of K_{33} .

We are now ready to show that the necessary conditions for the existence of a *p*-sun system of K_{ν} are also sufficient whenever *p* is an odd prime. In other words, we end this section by proving Theorem 6.1.

Proof of Theorem 6.1. If p = 3, 5 the result can be found in [10] and in [8], respectively. For $p \ge 7$, the result follows from Propositions 6.5, 6.6, and 6.8.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from GNSAGA of Istituto Nazionale di Alta Matematica.

ORCID

Marco Buratti b http://orcid.org/0000-0003-1140-2251 Anita Pasotti b http://orcid.org/0000-0002-3569-2954 Tommaso Traetta http://orcid.org/0000-0001-8141-0535

REFERENCES

- 1. B. Alspach and H. Gavlas, Cycle decomposition of K_n and $K_n I$, J. Combin. Theory Ser. B 81 (2001), 77–99.
- A. Benini and A. Pasotti, On the existence of elementary abelian cycle systems, Graphs Combin. 25 (2009), 1–14.
- J.-C. Bermond, O. Favaron, and M. Mahéo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Combin. Theory Ser. B 46 (1989), 142–153.
- J. C. Bermond, C. Huang, and G. Sotteau, Balanced cycles and circuit designs: Even case, Ars Combin. 5 (1978), 293–318.
- 5. M. Buratti, Rotational k-cycle systems of order v < 3k; another proof of the existence of odd cycle systems, J. Combin. Des. **11** (2003), 433–441.
- 6. M. Buratti, Existence of 1-rotational k-cycle systems of the complete graph, Graphs Combin. 20 (2004), 41-46.
- M. Buratti and A. Del Fra, Existence of cyclic k-cycle systems of the complete graph, Discrete Math. 261 (2003), 113–125.
- 8. C.-M. Fu, M.-H. Huang, and Y.-L. Lin, On the existence of 5-sun systems, Discrete Math. 313 (2013), 2942–2950.
- 9. C.-M. Fu, N.-H. Jhuang, Y.-L. Lin et al., On the existence of k-sun systems, Discrete Math. 312 (2012), 1931–1939.
- C.-M. Fu, N.-H. Jhuang, Y.-L. Lin et al., From Steiner triple systems to 3-sun systems, Taiwanese J. Math. 16 (2012), 531–543.
- D. G. Hoffman, C. C. Lindner, and C. A. Rodger, On the construction of odd cycle systems, J. Graph Theory 13 (1989), 417–426.

36

- Z. Liang and J. Guo, Decomposition of complete multigraphs into crown graphs, J. Appl. Math. Comput. 32 (2010), 507–517.
- 13. M. Sajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), 27–78.
- R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Congr. Numer. 15 (1976), 647–659.
- 15. S.-L. Wu and M. Buratti, A complete solution to the existence problem for 1-rotational k-cycle systems of K_{ν} , J. Combin. Des. **17** (2009), 283–293.

How to cite this article: Buratti M, Pasotti A, Traetta T. A reduction of the spectrum problem for odd sun systems and the prime case. *J Combin Des.* 2021;29:5–37. https://doi.org/10.1002/jcd.21751

37