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1 | INTRODUCTION

We denote by V (I') and E(T) the set of vertices and the list of edges of a graph T, respectively.
Also, we denote by I' + w the graph obtained by adding to I' an independent set
W = {o0;11 <i < w} of w > 0 vertices each adjacent to every vertex of I, namely,

F'+w:=TuU KV(F),W,

where Ky r,w is the complete bipartite graph with parts V' (I') and W. Denoting by K, the
complete graph of order v, it is clear that K, + 1 is isomorphic to K, ;.
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6 Wl LEY BURATTI ET AL.

We denote by x3 ~ X% ~ --- ~ X, the path with edges {x;_1, x;} for 2 < i < k. By adding the
edge {x, xi} when k > 3, we obtain a cycle of length k (briefly, a k-cycle) denoted by (3, %, ..., Xk).
A k-cycle with further v — k > 0 isolated vertices will be referred to as a k-cycle of order v. By
adding to (g, %, ..., xx) an independent set of edges {{x;, x/}|1 < i < k}, we obtain the k-sun on
2k vertices (sometimes referred to as k-crown graph) denoted by

X1 X ot Xg—1 Xk
! ! ! /A Bl
Xy Xy ot X1 X

whose edge-set is therefore {{x;, x;41}, {x;, x/}11 < i < k}, where x¢,1 = x.

A decomposition of a graph K is a set {I, b, ..., [;} of subgraphs of K whose edge-sets
between them partition the edge-set of K; in this case, we briefly write K = @i_;[;. If each T is
isomorphic to ', we speak of a I'-decomposition of K. If T is a k-cycle (resp., k-sun), we also
speak of a k-cycle system (resp., k-sun system) of K.

In this paper we study the existence problem for k-sun systems of K, (v > 1). Clearly, for
such a system to exist we must have

v>2k and v — 1) =0 (mod 4k). *)

As far as we know, this problem has been completely settled only when k = 3,5 [8,10],
k =4,6,8 [12], and when k = 10, 14 or 2! > 4 [9]. It is important to notice that, as a con-
sequence of a general result proved in [14], condition (*) is sufficient whenever v is large
enough with respect to k. These results seem to suggest the following.

Conjecture 1. Let k > 3 and v > 1. There exists a k-sun system of K, if and only if (*)
holds.

Our constructions rely on the existence of k-cycle systems of K, a problem that has been
completely settled in [1,4,5,11,13]. More precisely, [4] and [11] reduce the problem to the orders
v in the range k < v < 3k, with v odd. These cases are then solved in [1,13]. For odd k, an
alternative proof based on 1-rotational constructions is given in [5]. Further results on k-cycle
systems of K, with an automorphism group acting sharply transitively on all but at most one
vertex can be found in [2,6,7,15].

The main results of this paper focus on the case where k is odd. By adapting a method used
in [11] to reduce the spectrum problem for odd cycle systems of the complete graph, we show
that if there is a k-sun system of K, (k odd) whenever v lies in the range 2k < v < 6k and
satisfies the obvious necessary conditions, then such a system exists for every admissible v > 6k.
In other words, we show the following.

Theorem 1.1. Let k > 3 be an odd integer and v > 1. Conjecture 1 is true if and only if
there exists a k-sun system of K, for all v satisfying the necessary conditions in (*¥)
with 2k < v < 6k.

We would like to point out that we strongly believe the reduction methods used in
[4,11] could be further developed to reduce the spectrum problem of other types of graph
decompositions of K.
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In Section 6, we construct k-sun systems of K, for every odd prime k whenever 2k < v < 6k
and (*) holds. Therefore, as a consequence of Theorem 1.1, we solve the existence problem for
k-sun systems of K, whenever k is an odd prime.

Theorem 1.2. For every odd prime p there exists a p-sun system of K, with v > 1 if and
only if v>2p and v(v — 1) = 0 (mod 4p).

Both results rely on the difference methods described in Section 2. These methods are used
in Section 3 to construct specific k-cycle decompositions of some subgraphs of K>, + w, which
we then use in Section 4 to build k-sun systems of Ky, + n. This is the last ingredient we need in
Section 5 to prove Theorem 1.1. Difference methods are finally used in Section 6 to construct
k-sun systems of K, for every odd prime k whenever 2k < v < 6k and (*) holds.

2 | PRELIMINARIES

Henceforward, k > 3 is an odd integer, and ¢ = % Also, given two integers a < b, we denote
by [a, b] the interval containing the integers {a, a + 1, ..., b}. If a > b, then [a, b] is empty.

In our constructions we make extensive use of the method of partial mixed differences
which we now recall but limited to the scope of this paper.

Let G be an abelian group of odd order n in additive notation, let W = {o0, 11 < u < w}, and
denote by I' a graph with vertices in V = (G X [0, m — 1]) U W. For any permutation f of V,
we denote by f(I') the graph obtained by replacing each vertex of T', say x, with f (x). Letting z,,
with g € G, be the permutation of V fixing each o0, € W and mapping (x, i) € G X [0, m — 1]
to (x + g, i), we call 7, the translation by g and 7,(I") the related translate of I

We denote by Orbg(T') = {r,(I')|g € G} the G-orbit of I', that is, the set of all distinct
translates of I', and by Devg (') = (Jge 74 () the graph union of all translates of I'. Further, by
Stabg(I') = {g € Gl7g(T') = I'} we denote the G-stabilizer of ', namely, the set of translations
fixing I'. We recall that Stabg (I') is a subgroup of G, hence s = |Stabg (I')! is a divisor of n = IG|.
Henceforward, when G = Z, we will simply write Orb(T"), Dev(T'), and Stab(T).

Suppose now that I' is either a k-cycle or a k-sun with vertices in V. For every
i,j € [0, m — 1], the list of (i, j)-differences of I' is the multiset AT defined as follows:

1. if T = (xq, %, ..., X¢), then

AT ={aps1 — aplxy = (an, 1), Xpy1 = (@py1, ), 1 < h < k/s}
U {ah - ah+1|xh = (ah’j)s xl’l+1 = (ah+l’ l)s 1 S h S k/S},

. X1 X% - Xk
2. ifr=|_, , , |, then
xl x2 e xk

AT = Ay, X%, .y Xi) U {ay, — aplxy, = (an, i), X, = (ap, j), 1 < h < k/s}
Ufay — aglx, = (ap, j), x; = (a4, 1), 1 < h < k/s}.

We notice that when s = 1 we find the classic concept of list of differences. Usually, one speaks
of pure or mixed differences according to whether i = j or not, and when m = 1 we simply write
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AT'. This concept naturally extends to a family F of graphs with vertices in V' by setting
AyF = Urer AyT. Clearly, A;T = —A;T, hence AyF = —A;F, for every i,j € [0, m — 1].

We also need to define the list of neighbors of oo, in F, that is, the multiset Nr (o0,) of the
vertices in V' adjacent to oo, in some graph I' € F.

Finally, we introduce a special class of subgraphs of K,,. To this purpose, we take
V (Kmun) = G X [0, m — 1]. Letting D;; € G\{0} for every 0 < i < m — 1, and D; C G for every
0 <i<j<m-—1, we denote by

(Djl0<i<j<m—1)

the spanning subgraph of K,,,, containing exactly the edges {(g, i), (g + d, j)} for every g € G,
d € Dj,and 0 < i <j < m — 1. The reader can easily check that this graph remains unchanged
if we replace any set D;; with +D;;.

The following result, standard in the context of difference families, provides us with a
method to construct I'-decompositions for subgraphs of K,,, + w.

Proposition 2.1. Let G be an abelian group of odd order n, let m and w be nonnegative
integers, and denote by F a family of k-cycles (resp., k-suns) with vertices in
(G x[0,m —1]) U {oo, lu € Z,)} satisfying the following conditions:

1. AyF has no repeated elements, for every 0 < i <j < m;
2. Nr(ooy) = {(g,;,DI0<i<m,g,,; €G}foreveryl <u<w.

Then |JrerOrbg(T) ={g,(D)Ige G,T € F} is a k-cycle (resp., k-sun) system of
(AjFIO<i<j<m—1)+w.

Proof. Let F* = [JresOrbg(T),K = (A;F10 < i <j<m—1), and let ¢ be an edge of
K + w. We are going to show that € belongs to exactly one graph of F*.

If € € E(K), by recalling the definition of K we have that € = {(g, i), (g + d, j)} for
some g € G and d € Ay F, with 0 < i < j < m. Hence, there is a graph I € F such that
d € AyT. This means that I contains the edge ¢’ = {(g’, i), (g’ + d,j)} for some g’ € G,
therefore € = 7,_g,(¢") € 7,_¢,(I') € F*. To prove that € only belongs to 7,_, ('), let I be
any graph in F such that ¢ € 7, (I'), for some x € G. Since translations preserve
differences, we have that d € A7 (I') = A;I”. Considering that d € Ay;T' N Ay and, by
condition (1), A;F has no repeated elements, we necessarily have that I'" =T, hence
7_x(€) € T'. Again, since A;I" has no repeated elements (condition 1), and considering that
¢’ and 7_,(¢) are edges of I that yield the same differences, then 7_.(¢) = €' = 75, _¢(e),
that is, Tg,_g+x(e) = €. Since G has odd order, it has no element of order 2, hence
g — g+ x=0,thatis, x = g — g/, therefore 7,_, (T') is the only graph of 7* containing €.

Similarly, we show that every edge of (K + w)\K belongs to exactly one graph of 7 *.
Let ¢ = {00y, (g, i)} for some u € Z,, and (g, i) € G X [0, m — 1]. By assumption, there is
a graph ' € F* containing the edge ¢’ ={coy,(g,;;1)} with g, ; € G. Hence,
€ =Tgyg,,(€) €E gy (). Finally, if ¢ € 7, (") for some x€ G and I' € F, then
{ooy, (g - x, D} = r_;c (e) e I'". Since condition (2) implies that Nr(o0,) contains exactly
one pair from G X {i}, we necessarily have thatI" = T" and x = g — g, ; therefore, there is
exactly one graph of F* containing €. Condition (2) also implies that N (o0,) is disjoint
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from {oo, lu € Z,}, and this guarantees that no graph in F* contains edges joining two
infinities. Therefore, F* is the desired decomposition of K + w. |

Considering that K,,, = (D;l0 <i <j<m—1) if and only if +D; = G\{0} for every
i €[0,m —1],and Dy = G for every 0 < i < j < m — 1, the proof of the following corollary to

Proposition 2.1 is straightforward.

3

Corollary 2.2. Let G be an abelian group of odd order n, let m and w be nonnegative
integers, and denote by F a family of k-cycles (resp., k-suns) with vertices in
(G x[0,m — 1]) U {oo, lu € Z,)} satisfying the following conditions:

G\{0} ifo<i=j<m-1,
G ifo<i<j<m-1,
2. Nr(ooy) = {(g,»DI0<i<m,g,; €G}foreveryl <u<w.

Then | rer Orbg (D) is a k-cycle (resp., k-sun) system of Ky, + w.

CONSTRUCTING k-CYCLE SYSTEMS

OF <D009D01aD11> +w

In this section, we recall and generalize some results from [11] to provide conditions on
Doy, Do1, D11 C 7y, that guarantee the existence of a k-cycle system for the subgraph

<D00, D01, D11> + w of sz + w, where V(sz) = Zk X {0, 1}

We recall that every connected 4-regular Cayley graph over an abelian group has a Hamilton

cycle system [3] and show the following.

Lemma 3.1. Let|[a,b], [c,d] C [1,¢]. The graph ([a, b], @, [c, d]) has a k-cycle system
whenever both [a, b] and [c, d] satisfy the following condition: the interval has even size or
contains an integer coprime with k.

Proof. The graph ([a, b], @, [c, d]) decomposes into ([a, b], @, @) and (&, @, [c, d]).
The first one is the Cayley graph T' = Cay(Z, [a, b]) with further k isolated vertices,
while the second one is isomorphic to {[c, d], @, @). Therefore, it is enough to show that
I has a k-cycle system.

Note that I' decomposes into the subgraphs Cay (Zy, D;), for 0 < i < t, whenever the
sets D; between them partition [a, b]. By assumption, [a, b] has even size or contains an
integer coprime with k. Therefore, we can assume that for every i > 0 the set D; is a pair
of integers at distance 1 or 2, and D, is either empty or contains exactly one integer
coprime with k. Clearly, Cay(Zy, Do) is either the empty graph or a k-cycle, and the
remaining Cay (Zy, D;) are 4-regular Cayley graphs. Also, for every i > 0 we have that D,
is a generating set of Z; (since k is odd and D; contains integers at distance 1 or 2), hence
the graph Cay(Z,D;) is connected. It follows that each Cay(Z, D;), with i > 0,
decomposes into two k-cycles, thus the assertion is proven. O

Lemma 3.2. Let S C {2i — 1|1 < i < ¢}. Then there exist k-cycle systems for the graphs
(L, SU(S+ 1), ) and ({¢}, (S + D U (S + 2), D).

WILEY-—2
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Proof. We note that the result is trivial when S = @, since ({¢}, @, @) is a k-cycle.
The existence of a k-cycle system of I' = ({¢}, S U (S + 1), @) has been proven in [11,
Lemma 3] when S C {2i — 111 < i < ¢}. Consider now the permutation f of Z; x {0, 1}
fixing Zj X {0} pointwise, and mapping (i,1) to (i + 1,1) for every i € Z. It is not
difficult to check that f(T') = ({¢}, (S + 1) U (S + 2), @) which is therefore isomorphic to
', and hence it has a k-cycle system. O

Lemma 3.3. Letr,s, and s’ be integers such that1 < s < s’ <min{s + 1,¢},and 0 < r
# 5 + s’ (mod 2). Also, let D C [0, k — 1] be a nonempty interval of sizek — (s + s’ + 2r).
Then there is a cycle C = (54, %, ...Xx) of T = {([1 +¢,s+€|,D,[1 +¢,8 +¢€]) +r, for
every ¢ € {0, 1}, such that Orb(C) is a k-cycle system of T. Furthermore, if u =0 or
u=1—-e¢=1<s -1, then

1. Dev({6_y, x3_4}) is a k-cycle with vertices in Z; X {0};
2. Dev({X41u, Xs4u}) is a k-cycle with vertices in Z; X {1}.

Proof. Sett=k—(s+s" +2r)andletQ =([1 +¢,s+¢€],[0,t—1],[1 +¢,5 +€])+
r.Fori €[0,s +s" + 1]and j € [0,t + r — 1], let a; and b; be the elements of Z; X {0, 1}
defined as follows:

( .
(—é, 0) if i €[0,s] iseven,

i — 1 P .
ai:<(—s—e+lT,0) if i €[1,s] isodd,

y1-; + (0,1) ifiel[s+1,2s +1],
L(—s’—e,l) ifi=s+s8+1>25+1,
( .

(%,0) if je[0,t+ r — 2] iseven,

j 1
\ (t—i,l) if je[1,t—1] is odd,
)j = 1

(Hl]—_tJ’ 1) it je[t,t+r—2] isodd,

| Gs+sr+1 ifj=t+r-—1.

Since the elements a; and b; are pairwise distinct, except for ag = by and ag45,+1 = by r—1,
then the union F of the following two paths is a k-cycle:

P =ap~01~~Asy5/41,
Q =bo~by~+++~by_1~001~b;~00;~byy1~+++~00, ~bpy 1.

Since AjF = AP U A;Q, for i,j € {0, 1}, where

AP = +[1 +¢,5 + €], AgP = {0}, ApP = £[1 +¢,5 +e€l,
AOOQ = ®9 AOIQ = [1’ t— 1]7 AllQ = @7
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and considering that Np(oop) = Ng(oop) = {bryn—2, bryn—1} for every h€|[1,r],
Proposition 2.1 guarantees that Orb(F) is a k-cycle system of Q. Furthermore, ifu = 0
oru=1—-—¢e¢=1<s -1, then

(A5 = s—y—1) = +(Ag4ut2 — Asuv1) = £ + € + 1,0).

Since k is odd, we have that Dev ({a;_,_1, as—,}) and Dev ({as4y+2, @s+u+1}) are k-cycles
with vertices in Z; X {0} and Z; X {1}, respectively.

If D=[g,g + t— 1] is any interval of [0, kK — 1] of size ¢, and f is the permutation of
Zy % {0, 1} fixing Zy X {0} pointwise, and mapping (i, 1) to (i + g, 1) for every i € Z, one
can check that C = f (F) is the desired k-cycle of T = f(Q). O

Lemma 3.4.

1. Let € be odd. If T is a 1-factor of Ky, then I' + € decomposes into k cycles of length k,
each of which contains exactly one edge of T'. Furthermore, if T = (@, {d}, @), then there
exists a k-cycle C = (cy, Cay .. k) Of T + €, with ¢; € Zy X {0} and ¢, € Zy X {1},
such that

Dev({c;,c}) =T and Orb(C) isa k-cyclesystemof T + €.

2. Let € be even. IfT is a k-cycle of order 2k, then T + ¢ decomposes into k cycles of length k,
each of which contains exactly one edge of T'. Furthermore, if T = ({d}, @, @) and d is
coprime with k, then there exists a k-cycle C = (cy,¢s ..., c) of T + €, with
1, ¢y € Zy X {0}, such that

Dev ({c1, c3}) isthe k-cycleof T and Orb(C) isa k-cyclesystemof T + €.

Proof. Permuting the vertices of Ky, if necessary, we can assume that I' is the 1-factor
I, = (@, {0}, @) when ¢ is odd, and the k-cycle [; = ({¢}, @, @) (of order 2k) when ¢ is
even. For h € {0, 1}, let C;, = (cp.1, Ch.2, 01, €3, 002, C4y ..y DOp—1, Co+1, ©0¢) be the k-cycle of
I, + €, where

i—1
(]T 1) if j € [3,¢ + 1] isodd,
Ch1 = (0’ 1- h')5 Ch2 = (h€9 0)5 and cj = .
(%0) if j € [4,¢ + 1] iseven.

Note that the sets A;C, are empty, except for Ay;Co = {0} and Ay C; = {+¢}. Also, the two
neighbors of o, in Cj, belong to Z; x {0} and Z; X {1}, respectively. Hence, Proposition 2.1
guarantees that Orb(Cy,) is a k-cycle system of I}, + ¢, for h € {0, 1}. We finally notice that
Dev({cn1, cn2}) = I, (up to isolated vertices) and this completes the proof. O

The following result has been proven in [11].
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2 LwiLey
Lemma 3.5. Let D C [1, ¢]. The subgraph (D, {0}, D) of Ky has a 1-factorization.

Remark 3.6. Considering the permutation f of Z; X {0, 1} such that f(i,j) = (i, 1 — j),
and a graph T = (D, D;,D;), we have that f(T')=(D,, —Dj, Dy). Therefore,
Lemmas 3.1-3.5 continue to hold when we replace T' by f(T').

4 | k-SUN SYSTEMS OF Ky +n

In this section we provide sufficient conditions for a k-sun system of K, + n to exist, when
n = 0,1 (mod 4). More precisely, we show the following.

Theorem 4.1. Let k > 7 be an odd integer and let n = 0, 1 (mod 4) with 2k < n < 10k;
then there exists a k-sun system of K4 + n, except possibly when

« k=7andn = 20, 21, 32, 33, 44, 45, 56, 57, 64, 65, 68, 69,
« k=11 and n = 100, 101, 112, 113.

To prove Theorem 4.1, we start by introducing some notions and prove some preliminary
results. Let M be a positive integer and take V (Kay) = Zy X [0, 2! — 1] and V (Kaipy + w)
= V(Ksy) U {ooplh € Z,}, fori € {1,2} and w > 0.

Now assume that w = 2u, and let x — X be the permutation of V (K4, + 2u) defined as
follows:

(@,2—j) if x = (a,)) € Zy x {0, 2},
X =4(a,4—j) if x={(a,j) € Zy x {1, 3},
Ontu if x = o0y

For any subgraph T' of Ky + 2u, we denote by T' the graph (isomorphic to T') obtained by
replacing each vertex x of I' with Xx.

Given a subgraph I' of Ky, + u, we denote by I'[2] the spanning subgraph of Ky + 2u
whose edge-set is

ET[2D) = {{x, ¥} b ¥} X, 0} X, V3 Hx, ) € E(D),
and let T*[2] = T'[2] & I be the graph obtained by adding to T'[2] the 1-factor
I={{x,x}Ix € Zy x {0, 1}}.
Note that, up to isolated vertices, I'[2] is the lexicographic product of T with the empty graph on
two vertices.

The proof of the following elementary lemma is left to the reader.

Lemma 4.2. LetT = @ I; and let w = Zi":l w; with w; > 0. If T’ and the Iis have the
same vertex-set (possibly with isolated vertices), then

1. T+w=L,+w);
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2. T[2] = @ L[2);
3. (T + w)[2] =T[2] + 2w.

We start showing that if C is a k-cycle, then C [2] decomposes into two k-suns.

Lemma 4.3. Let C = (cy, C, ..., ) be a cycle with vertices in (Zy; X {0, 1}) U {coplh € Z,}
and let S be the k-sun defined as follows:

g (sl v Sk—1 sk)’ )

where s; € {c;, T;} for everyi € [1,k]. Then C[2] =S @ S.

Proof. Tt is enough to notice that S contains the edges {s;, s;;1} and {s;, 5;11}, while S
contains {57, S;11} and {57, si1}, for every i € [1, k], where sg,; = s; and 51 = 57. O

Example 4.4. In Figure 1 we have the graph C,[2] which can be decomposed into two
7-suns S and S. The nondashed edges are those of S, while the dashed edges are those
of 5.

For every cycle C = (¢, ¢, ..., ¢) With vertices in Zy; X {0, 1}, we set

€1 e Ci—1 ck)

o(C) = (_

Cy ... G 1
Clearly, C[2] = o(C) & o(C) by Lemma 4.3.

Lemma 4.5. IfC={C, C,, ..., Ci} is a k-cycle system of T + u, where T is a subgraph of
Ko, and S; is a k-sun obtained from C; as in Lemma 4.3, then S = {S;, S;1i € [1,t]} is a
k-sun system of T[2] + 2u. In particular, if C = Orb(Cy), then Orb(S;) U Orb(S,) is a k-sun
system of T'[2] + 2u.

Proof. By assumption T’ + u = @!_,C;, where each C; is a k-cycle. Also, by Lemma 4.2,
we have that T'[2] + 2u = (T + w)[2] = &'_,C;[2]. Since C;[2] = S; @ S; by Lemma 4.3,
then S is a k-sun system of I'[2] + 2u.

The second part easily follows by noticing that if C; = 7, (C;) for some g € Zy, then
Cil2] = 7(C1[2]) = 7, () & 7 (50). O

FIGURE1 G [2]=S®38
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The following lemma describes the general method we use to construct k-sun systems of
K4 + n. We point out that throughout the rest of this section we take V (Ky) = Z X {0, 1}
and V(K4k) =7y X [0, 3].

Lemma 4.6. Let K =L ® L with V(Iy) = V(L) = V(Ky). If L + wy has a k-cycle
system and T'3[2] + w, has a k-sun system, then Ky + (2w, + w,) has a k-sun system.

Proof. The result follows by Lemma 4.2. In fact, noting that K4 = K [2] & I, where
I ={{z,Z}|z € Z x {0, 1}}, we have that

Kuy + Cwi +wy)=T[2] @ ([2] & D)) + 2wy + w,
=(G[2] 4+ 2w) & (T3[2] + wy) = (G 4+ wy)[2] & (T3[2] + wy).

The result then follows by Lemma 4.5. |

We are now ready to prove the main result of this section, Theorem 4.1. The case
k =1 (mod 4) is proven in Theorem 4.7, while the case k = 3 (mod 4) is dealt with in
Theorems 4.9-4.12.

Theorem 4.7. Ifk =1 (mod 4) > 9 andn = 0, 1 (mod 4) with 2k < n < 10k, then there
exists a k-sun system of Ky + n.

Proof. Letn =2(qf +r)+v with1l <r < ¢ and v € {2, 3}. Note that £ > 4 is even
and r is odd, since n =0,1 (mod 4) > 9 and k =1 (mod 4). Considering also that
2k < n< 10k, we have that 2 < q <10 <k + 2r — 1. Furthermore, let V(K4 + n)
= (Zx x [0, 3]) U {ooplh € Zy_y} U {00y, 003, 003}

We start decomposing K into the following two graphs:

L=A(2¢][k—2r—2,k—-1],[2,¢ —1]) and I, =({1},[0,k — 2r — 3], {1, ¢}).

We notice that I further decomposes into the following graphs:
(2,¢-11,2,9), (2.2,[2,¢—-1]), ({ehlk—-2r—2k-1],9),

each of which decomposes into k-cycles by Lemmas 3.1 and 3.2; hence I} has a k-cycle
system {Cy, C5, ..., C,}, where y = k + 2r — 2. Note that this system is nonempty, since
1 < q — 1 <y. Without loss of generality, we can assume that each cycle C; has order
2k and

C; isasubgraph of ([2, ¢ — 1], @, @). @

Now set Q; =L\C, and Q, =1, @ C;. Letting w; =(q —2)¢ = 23{:2 wyj, where
wyj=¢ when j<g, and w;; =0 otherwise, by Lemma 4.2 we have that
Q + w; = ®_,(C; + wy). Therefore, Q; + wy has a k-cycle system, since each C; + wy;
decomposes into k-cycles by Lemma 3.4. Setting w, = n — 2w; = 2(2¢ + r) + v and
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considering that Ky = @& I, = Q; @ Q,, by Lemma 4.6 it is left to show that
Q3[2] + w; has a k-sun system.

Set I3 = C, and recall that Q3[2] = Q,[2] ® I = [;[2] @ 3[2] @ I, where I denotes
the 1-factor {{z, Z}1z € Z; X {0, 1}} of K. Hence,

Q2+ wo= M+ €+ )21 G+ 02 & U +v) ®)

by Lemma 4.2. Clearly, I, =1,; @ I, where L,; = ({1}, [0,k — 2r — 3], {1}) and
D, =(D,3,{¢}), hence L + (¢ + r) = ([h; + r) ® (I, + ¢). By Lemmas 3.3 and 3.4,
there exists a k-cycle A= (%,%,);,),0s..,ar) of I;+r and a k-cycle
B = (3,,¥,, b3, ..., by) of I, + ¢ satisfying the following properties:

Orb(A) U Orb(B) isa k-cyclesystemof I, + (¢ + r), “4)
Dev({x,%}) isa k-cycle with vertices in Z; x {0}, ©)
Dev({y;,y,}) and Dev({y;,3}) are k-cycleswith verticesin Z; x {1}. (6)

Furthermore, denoted by (cy, ¢3, ..., ¢x) the cycle in I3, Lemma 3.4 guarantees that

I3 + ¢ hasa k-cycle system {F, F, ..., F} such that
F = (¢, cj+1,]3.,3,fj,4, ...,fj’k) for every j € [1, k] (with cxy1 = ).

Let S = {Sy, 82, S3, S4} and S’ = {S343), Sa425lj € [1, k]}, where

S1=0(,%, Y W, s, oo, k), S3 =00, V5, b3, .., br),
S342i =0 (cj, cj?,fjj,fj#‘, ...,fj’k) for j € [1,k], and

Sy=S8,_, foriell,k+ 2]
By Lemma 4.5 we have that | Jses Orb(S) is a k-sun system of (I + (¢ + r))[2], and S is
a k-sun system of (I3 + ¢)[2]. It follows by (3) that |JsesOrb(S)u S decom-
poses (Q3[2] + wy)\ (I + v).

To construct a k-sun system of Q3[2] + w,, we first modify the k-suns in SU &’ by

replacing some of their vertices with oo}, 00}, and possibly ooy when v = 3. More precisely,
following Table 1, we obtain T; from S; by replacing the ordered set V; of vertices of S; with

V;'. This yields a set M; of ‘missing’ edges no longer covered by T; after this substitution,
but replaced by those in N;, namely,

E(T) = (E(S)\M;) U N..

We point out that Ty, 5 = Sz42j, and Tyyoj = Ss4p When v = 2, for every j € [1, k]. The
remaining graphs T; are explicitly given below, where the elements in bold are the re-
placed vertices.
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br
N ,

We notice that | Ji-, Dev(N) U [JEEN; = {{o0), x}1j € [1, ], x € Zi x [0, 3]}. We finally
build the following 2v + 1 graphs:

G = Dev(g ~x ~x) if v =2,
"TDeviy ~x% ~35) ifv=3,

Gs = Dev(y4 ~ Yy~ X%),
Gs=Dev({y, 75} ® 5. %)),

c1
G7:(1 Cy ...

€1

Ck
Ck'

G, =Dev(q ~% ~ y3),

Gy =Dev(y, ~y, ~¥,),

Go = Dev(% ~ 5 ~ W),

By recalling (2) and (4)-(6), it is not difficult to check that Gy, G, ..., Gay41 are k-suns.

Furthermore,

2v+1

4

2k+4

U EG) = UDev(M) U | M; U E(D),

i=1

i=1

i=5

where, we recall, I denotes the 1-factor {{z,Z}lz € Z; X {0,1}} of K4. Therefore,
+,0rb(T) U{Ts, Ty, ..., Tyya} U {G1, Go, ..., Gayy1} is a k-sun system of Q3[2] + w,, and
this concludes the proof.

O

Example 4.8. By following the proof of Theorem 4.7, we construct a k-sun system of
K4 + n when (k, n) = (9, 21); hence (¢,q,r,v) = (4,2, 1, 3).

The graphs T3 =([2,4],[5,8],[2,3]) and I, = ({1}, [0, 4],{1,4}) decompose the
complete graph Kjg with vertex-set Zo X {0, 1}. Also I; decomposes into the following
9-cycles of order 18, where i = 0, 1:
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Ci4i=((0,10),(2,0), (8, 1), (1,0), (3,1), (5, D), (7, 1), (4, 1), (6, 1)),
Cs4:=((0,1), (3,1), (6, 1), (8, 1), (5, ), (2, D), (4, D), (1, D), (7, D)),
Cs.i =((4i,0),(8 + 4i,1), (1 + 4i,0), (4i,1), (2 + 4i,0), (1 + 4i, 1),
(3 + 4i,0), (2 + 4i,1), (4 + 4i,0)),
Cy.i=((8 + 4i,0),(5 + 4i,1), (4i,0), (6 + 4i,1), (A + 4i,0), (7 + 4i, 1),
(2 + 4i,0),(8 + 4i,1),(3 + 4i,0)),
Co=((7,0),(2,0),(6,0),(1,0),(5,0),(0,0), (7, 1), (8, 0), (4, 1)).
Clearly, Kis = Q @ Q,, where Q; = [\C,and Q, =T, & C,.

Let V (Kss) = Zg X [0, 3], and denote by I the 1-factor of K34 containing all edges of the
form {(a, i), (a,i + 2)}, with a € Zg and i € {0, 1}. Then,

K3 = Kig[2] © T = O[2] © Q[2] © I
Considering that (Q, + 9)[2] = Q,[2] + 18, we have
Kis + 21 = Q[2] @ (Q[2] + 18) & (I + 3) = Qu[2] & (Q + 9[2] & (T + 3).

Since the set {o(C;), o (Cy)li € [2, 9]} is a 9-sun system of Q;[2], it is left to build a 9-sun
system of Q3[2] + 21 = (Q,[2] + 18) & (I + 3).

We start by decomposing Q, + 9 into 9-cycles. Since Q, =15; ® I, & I3 with
L= ({1}, [0,4], {1}), [, = (@, @, {4}) and T3 = (), then

Q+9=D1+ 1)@ (D, +4) D (5 + 4).

Let A = (4, %, ¥3, %, Gs, ..., Q) and B = (¥, ¥,, bs, ..., bg) be the 9-cycles defined as follows:

(a5 %, 3, 33) = ((0, 0), (=1, 0), (=1, 1), (0, 1)),
(@s, ..., @9) = (001, (2,0), (3, 1), (1, 0), (4, 1)),
01,3,) =((0,1), (4, 1)),
(b3, .., by) = (002, (1, 0), 003, (1, 1), 004, (0, 0), c0s).

One can easily check that Orb(A) (resp., Orb(B)) decomposes I;; + 1 (resp., I, + 4).
Also, for every edge {cj, ¢j;1} of Ci, with j € [1, 9] and ¢;o = ¢;, we construct the cycle
E; = (¢, 641, [ 30 f3 40 - fj o), Where

(fr30 10 s Fr9) = (06, (1, 0), 007, (1, 1), oo, (0, 0), o).

One can check that {F,F,..,F} is a 9-cycle system of I3+ 4. Therefore,
U, = Orb(A) U Orb(B) U {F, B, ..., Fg} provides a 9-cycle system of Q, + 9. Since the set
{C[2]|C € U} decomposes (Q, + 9)[2], and each C[2] decomposes into two 9-suns, we
can easily obtain a 9-sun system of (Q, + 9)[2]. Indeed, letting

Sl = O'(Xl, X, Y35 Vi A5y ey ag), S3 = O'(yl, E’ b3, . bg),
S3+2j = G(Cj’ ija,fj,3af;‘,4s "-’j;',g) for J € [1’ 9]’ and
S = Sai1 for i € [1, 11],
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we have that A[2] =S, @ S,, B[2] = S3® S, and Fj[2] = Sz, @ Ss4j, for every
j € [1,9]. Therefore U = | Ji, Orb(S;) U {Ss, S, ..., S»} is a 9-sun system of Q,[2] + 18.

We finally use U, to build a 9-sun system of Q3[2] + 21 = (Q,[2] + 18) & (I + 3). By
replacing the vertices of each S;, as outlined in Table 1, we obtain the 9-sun T;. The new 22
graphs, T, T, ..., Ty, are built in such a way that

4
(@ JOrb(T) u{L, T, ..., Ty} decomposes a subgraph K of Q3[2] + 21;
i=1

(b) (Q3[2] + 21)\K decomposes into seven 9-suns.

This way we obtain a 9-sun system of Q3[2] + 21, and hence the desired 9-sun system
of Kj6 + 21.

Theorem 4.9. Let k=3(mod4)>7 and n=0,1(mod 4) with 2k <n < 10k. If

n#23(modk—1) and [Z:TJ is even, then there exists a k-sun system of Ky + n

except possibly when (k, n) € {(7, 64), (7, 65)}.

Proof. First, k = 3 (mod 4) > 7 implies that ¢ > 3 is odd. Now, let n = 2(q¢ + r) + v
n—4
k-1

with 1 <r < ¢ and v € {2,3}. Note that g :[ J hence ¢ is even. Also, since

2k < n < 10k, we have 2 < q < 10. By g even and n = 0, 1 (mod 4) it follows that r is
odd, and n # 2, 3 (mod k — 1) implies that r # ¢. To sum up,

q isevenwith 2 < g <10, and r isoddwith 1 <r<¢ — 2.

As in the previous theorem, let V (Ky + n) = (Zg X [0,3]) U {ooylh € Z,_,} U
{oof, 004, 004 ).

We split the proof into two cases.

Case 1. q < 2r + 4. We start decomposing Ky, into the following two graphs:

rl = <[3’ €]9 [k —2r — 2’ k]’ [3’ €]> and FZ = <{1s 2}5 [1’ k —2r— 3]1 {1’ 2})
Since q < 2r + 4, the graph [ can be further decomposed into the following graphs:

Lao={eLk—2r+q—-3,kl,@), L,=([3.¢-1],@,I[3¢]),
L3=(@,[k—2r—2,k—2r+q— 4], ®).

The first two graphs have a k-cycle system by Lemmas 3.2 and 3.1, while I3 ; decomposes into
(q — 1) 1factors, say Ji, Ja, ..., Jy—1. Setting w; = (¢ — 1)¢, by Lemma 4.2 we have that:

L+(q—1)¢=05'U+¢) & [0, & 0.

Hence I} + (g — 1)¢ has a k-cycle system since each J; + ¢ decomposes into k-cycles by
Lemma 3.4.

Letting w, = n — 2wy = 2(€ + r) + v and recalling that Ky = I; @ I, by Lemma 4.6
it remains to construct a k-sun system of T'5[2] + w,. We start decomposing I5 into the
following graphs:
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Do =<({1,2},[1,k —2r —4],{1,2}) and T, =(@,{k — 2r — 3}, @).

Recalling that T'3[2] = I,[2] @ I, where I denotes the 1-factor {{z, Z}|1z € Z; X {0, 1}} of
K4, by Lemma 4.2 we have that

L32] + wy = (M1 + O)[2] ® (Do + )[2] & I+ v).

By Lemmas 3.3 and 3.4 there exist a k-cycle A = (X1, X%, X3, Y4, V5> Vs> Q75 -, Q) Of oo + 7
and a k-cycle B = (y, x, bs, ..., by) of I ; + ¢, satisfying the following properties:

Orb(A) U Orb(B) isa k-cyclesystemof I, + (€ + r);

Dev({x,%}) and Dev({x,x3}) are k-cycleswith verticesin Z; x {0};
Dev({y,,y}) and Dev({ys,¥}) are k-cycleswith verticesin Z; x {1};
x€Z,x{0} and y € Z; x{1}.

Set A" =04,%,%3, Y, Vs Ve» A7, «oes k) and B = (y,X,bs, ..., by) and let
S={o(A"),0(A"),c(B’),c(B)}. By Lemma 4.5, we have that | Jses Orb(S) is a k-sun
system of (I + (¢ + r))[2] = L[2] + 2(¢ + r) = (T3[2] + w)\U + v).

To construct a k-sun system of I'4[2] + w, we proceed as in Theorem 4.7. We modify
the graphs in S and obtain four k-suns T, T, T, T, whose translates between them cover
all edges incident with oof, 004, and possibly co; when v = 3. Then we construct further
2v + 1 k-suns Gy, ..., G471 to cover the missing edges. The reader can check that

* L 0rb(T) U {Gy, ..., Gpy1} is a k-sun system of T['3[2] 4+ w,.
The graphs T; are the following, where the elements in bold are the replaced vertices:

XN G X % Vs Vs Q7 -+ Qg-1 Gk )
. o o if v = 2,
© X3 N Y5 N a7 ag -+ A X
T= ,
X1 X% X3 % Vi Y Q7 -+ Qg1 Ok .
P if v = 3,
©p 3 Y Y5 YW G7 G35 0 W X
X X% X3 oo Yo @ - Grr Gk
1, 2 X3 9 Y5 Vo Gz k-1 Gk if =2,
0, X3 Y Vs Vg A7 Qg - A X
Té:<
X X% X3 o Y5 Yo G v Qo1 Gx |
, , - if v =3,
©, 03 ¥ Vs Vg Q7 Qg -0 QA X
(o0(B) if v =2,
G=<(Y X b3 b4 bk—l bk X
o — | ifv=3,
003 b3 b4 b5 bk y
(O'(B') ifv=2,
T,=9(¥% x bs by - by by .
) if v = 3.
o3 by by bs -+ by

The graphs G;, for i = [1, 2v + 1], are so defined:
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G1=Dev(x ~ X% ~ %), Gy = Dev(ys ~ yy ~ x3),
G;=Dev({X, %} ® {x5,3}), Ga=Dev(s ~J ~ ¥5),
Gs = Dev(ys ~Js ~ Ys)s Gs = Dev({x, 53} @ {x,y}),

G;=Dev({%,%} @ {X,y}).

Case 2. q > 2r + 6. Note that this implies » = 1 and g = 8, 10. As before Ky = I} & I}
where

L=([3¢],{00uk—5k—-1],[3,¢]) and I, =({1,2},[1,k— 6],{1,2}).

Since (k, n) # (7, 64), (7, 65) then (¢, q) # (3, 10), hence the graph I can be decomposed
into the following graphs:

0,=(0,[k-5k—-1],0), TL,= <[3 —] {0}, [3 TZ]>
won{[g} o3

The graph I} ; decomposes into five 1-factors J, ..., 5, while by Lemma 3.5 I , decom-

poses into (q — 5) 1-factors Jy, ..., Jy_s. Letting w; = g€, by Lemma 4.2 we have that

L+w = (F11+5€)€B(F12+(q—5)€)€BF13—€Bf1(J+€)GB[€B e +€)]@F1,3-

By Lemmas 3.4 and 3.1, each J; + ¢, each J;{ + ¢ and [} 3 decompose into k-cycles. Hence
[ + g¢ has a k-cycle system. Let now w, = n — 2w; = 2 + v. Note that a k-sun system of
I';[2] + w, can be obtained as in Case 1, where I, ; is empty. O

Theorem 4.10. Let k=3 (mod 4) > 11 and n =0,1 (mod 4) with 2k < n < 10k. If

[Z:TJ is even, and n = 2,3 (mod k — 1), then there is a k-sun system of Ky, + n, except

possibly when (k, n) € {(11, 112), (11, 113)}.

Proof. Letn =2(qf +r)+vwithl <r<¢andv € {2, 3}. Clearly,q = [ J hence q
is even. Since k > 11, 2k < n < 10k, and n = 2, 3 (mod 2¢), we have that

q isevenwith 2 < g <10 and r=¢>5 isodd.

As before, let V (Ky + 1) = (Zg X [0, 3]) U {ooplh € Zy,—,} U {007, 005, 007}
We start decomposing K into the following two graphs:

L=([3,¢],[k—3,k],[4,¢]), L,={{1,2},[1,k—4],{1,2,3}).

If ¢ = 2,4, T can be further decomposed into

1-‘1,1 = <®’ [k - 3! k -4 + Q], ®>5 1-‘1,2 = <®5 [k -3 + q’ k]’ {€}>a
L3=([3,¢],2,[4,¢ - 1]).
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The graph I3 ; decomposes into g 1-factors, say Jj, ..., J;. Letting w; = g€, by Lemma 4.2
we have that

O4+wi=@1+w)@h,®h;=@L U+ DL,d N5

Lemmas 3.4, 3.2, and 3.1 guarantee that each J; + ¢, T 5, and [} ; decompose into k-cycles,
hence I + w; has a k-cycle system. Suppose now q > 6. By (k, n) ¢ {(11, 112), (11, 113)},
we have (¢, q) # (5, 10). In this case 7 can be further decomposed into

La=(@, [k —3,k—1],@), T,= <[€+3—%,e],{O},[em—%,eD,

113=<[3,€+2—1],@,[4,€+2—1]>.
2 2

The graph I ; can be decomposed into three 1-factors say J;, J,, J;, also by Lemma 3.5 the
graph I , can be decomposed into (q — 3) 1-factors say Jj, ..., J;_3. Set again w; = g¢, by
Lemma 4.2 we have that

L+w=@1+30)@ @2+ @-3)0)@0;=0,0+0) &[0 + 0)] & L.

By Lemmas 3.4 and 3.1 we have that each J; + ¢, each J j’ + ¢, and I ; decompose into k-
cycles, hence I7 + w; has a k-cycle system. Therefore for any value of ¢ we have proved
that 7 + w; has a k-cycle system.

Now, setting w, = n — 2w; = 2€ + v and recalling that Ky = I} @ I, by Lemma 4.6 it
is left to show that I';[2] + w; has a k-sun system. Let r and , > 2 be an odd and an even
integer, respectively, such that n+rn=r=2¢. Note that I> can be further
decomposed into

FZ,l = ({1}9 [15 k — 2r1 - 2]’ {1}>9 1-‘2,2 = ({2}9 [k - 2'Vl - 19 k — 4]’ {25 3}>

Recalling that T'3[2] = I[2] @ I, where I denotes the 1-factor {{z, Z}|1z € Z; X {0, 1}} of
K4, by Lemma 4.2 we have that

T32] + wy = ®L (I + W[2] & U + ).

By Lemma 3.3 there are a k-cycle A = (3, ¥,, X3, X4, G5, ..., ag) of I, ; + 1 and a k-cycle
B = (x4, %, Y5, ), bs, ..., by) of I 5 + 1, such that

Orb(A) U Orb(B) isa k-cycle system of I + ¢,
Dev({x,%}) and Dev({x;,x4}) are k-cycleswith verticesin Z; x {0}, (7
Dev({y;,y,}) and Dev({y;,)}) are k-cycleswith verticesin Z; x {1}.

Set A'=0,,),,%,X4,05,...,ar) and B =(4,%,¥;,0%,bs ...br). Let S=
{0(A"),0(A"),c(B’),c(B')}, by Lemma 4.5, we have that | Jses Orb(S) is a k-sun system
of (b + &)[2] = (2] + 2¢ = (T3[2] + w)\I + v). To construct a k-sun system of
I'3[2] + w,, we build a family 7 = {T, T, T, T4} of k-suns by modifying the graphs in S so
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that | Jrer Orb(T) covers all the edges incident with oof, 004, and possibly ooy when v = 3.
We then construct further (2v + 1) k-suns Gy, Gy, ..., G241 Which cover the remaining
edges exactly once. Hence, |Jrer Orb(T) U {Gy, G, ..., Gop41} is a k-sun system
of T3[2] + w,.

The graphs T, ..., T; and Gy, ..., Gy,41 are the following, where as before the elements
in bold are the replaced vertices.

T N Y, X3 X4 Qs -+ Q-1 Gk
1= [ —_— N —
@, X3 X4 Qs Qg =+ A )
—_— ’ —_— R [ PR—
Vi % X3 X4 As -cr Q-1 Qg |
1, - | ifv=2,
@, X3 X4 QAs Qg - QA )
TZ =<
Vi %® X3 X4 Qs v Q-1 A | .
, , | ifv=3,
©, X3 @ 45 Qg -+ QA N

- XN % Y3 % bs - by by
T\, 75 e bs be - by W)

(x_l % Vi3 % bs -+ b E] ity =2,

®, y; I bs bg -+ b x
= _ -
= ! b- --- b, b
xlr Do) °:3Y4 5 k-1 Dk Fy=3
©, Y3 ¥ bs bg - b x

Gi=Dev(y, ~y, ~x3), Gy=Dev(y, ~y ~¥,),

Gs = Dev(y3 ~ W ﬁ), Gy =Dev({x1,%} & {EJ’z}),
{Dev()q ~x~X) ifv=2,

G5 =

G:e = Dev(Xz ~ X5 ~ ,
Dev(xyg ~x% ~y;) ifv=3, 6 v (5 ~ X ~ Xa})

G7=Dev(yy ~¥; ~ ).
By recalling (7), it is not difficult to check that the graphs Gj, are k-suns. O

Theorem 4.11. Let k=3 (mod4) > 7 and n=0,1 (mod 4) with 2k <n < 10k. If

Z:;‘J is odd and n # 0,1 (mod k — 1), then there is a k-sun system of Ky + n.

Proof. Letn=2(qf +r)+v withl <r < ¢ and v € {2, 3}. Clearly, g = [Z—:;‘J Also,
we have that g and ¢ > 3 are odd, and n = 0, 1 (mod 4); hence r is even. Furthermore, we
have that 2 < g <10, since by assumption 2k < n < 10k. Considering now the
hypothesis that n # 0, 1 (mod 2¢), it follows that r # ¢ — 1. To sum up,

q isoddwith 3<qg <9, and r isevenwith 2<r<¢ — 3. ®)

As before, let V (Ky + n) = (Zy X [0, 3]) U {ooylh € Z,_,} U {007, 005, 0.}
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We start decomposing K5 into the following two graphs:
Fl = <[49 €]’ [k_zr_ ]-’ k]s [39 €]> and F2= ([1’ 3]9 [19k_ 2r — 2]9 [1’2]>

Considering that 3 < g <9 < 2r + 5, the graph I3 can be further decomposed into the
following graphs:

1-‘1,1 = <[4s €]’ o, [3’ € — 1])9 FI,Z = <®9 [k —2r—4+ q, k]’ {€}>’ and
L;=(@,[k—2r—1,k—2r—5+ql, @).

The first two have a k-cycle system by Lemmas 3.1 and 3.2, while I} ; decomposes into
(q — 3) 1-factors, say Ji, b, ..., J;—3. Letting w; = (¢ — 3)¢, by Lemma 4.2 we have that

O+w =00+ 6) @ N @ 0.

Therefore, I} + w; has a k-cycle system, since each J; + ¢ decomposes into k-cycles by
Lemma 3.4. Setting w, = n — 2wy = 2(3¢ + r) + v and recalling that K3 = [} @ I3, by
Lemma 4.6 it is left to show that T'5[2] + w, has a k-sun system.

We start decomposing I into the following graphs:

r2,0:<[1a3]s [lﬁk_ 2r — 5]5 [17 2]> and
D,=(@,(k—2r—5+i},@) for1<i<3.

Recalling that T3[2] = I[;[2] @ I, where I denotes the 1-factor {{z, Z}|1z € Zx % {0, 1}} of
K4, by Lemma 4.2 we have that

Ti2] + wy = &1 (D + O)[2] & (Do + N[2] & U + v).

By Lemmas 3.3 and 3.4 there exist a k-cycle A = (X, X, X3, Yy, V55 V5o @7, -y Q) Of Do + 7, @
k_CyCIe Bl = (x1,09 y1,19 bl,29 eeey bl,k—l) of FZ,I + €5 and a k_CyCIe Bi = (yi,()’ Xi,1, bi,29 ey bi,k—l)
of I; + ¢, for 2 < i < 3, satisfying the following properties:

Dev({x,%}) and Dev({x,xs}) are k-cycleswith verticesin Z; x {0}, 9)
Dev({y,,ys}) and Dev({y;,y,}) are k-cycles with verticesin Z; X {1},
xl,O’ x2,1’ x3,l € Zk X {0}’ y1,1,.)’2,0, Y3,0 € Zk X {1}’ (10)
3
(JOrb(B;) U Orb(A) isa k-cycle system of I, + (3¢ + r). 1y

i=1
Set A= (%,%,%, Y5 Ve» Q7> gy - G—1,ax) and  let S ={c(A"),c(A)} U
{o(B)),o(B;)I1 <i < 3}. By Lemma 4.5, we have that Uses Orb(S) is a k-sun system of
@O+ (3¢ + r)[2] = L[2] + 2(3¢ + r) = (T3[2] + w)\U + v).
To construct a k-sun system of I';[2] + w,, we build a family 7 = {Ty, T, ..., T;} of k-suns
by modifying the graphs in S so that | Jre7 Orb(T') covers all the edges incident with oo}, 005,
and possibly ooy when v = 3. We then construct further (2v + 1) k-suns Gy, G, ..., Gayi1
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which cover the remaining edges exactly once. Hence, | Jre7 Orb(T) U {Gy, Gy, ..., Gayi1} is @

k-sun system of T3[2] + w,.

The graphs Ty, ..., T; and Gy, ...
in bold are the replaced vertices.

X1 % X3

’

X % Y

X1 X X3

A !
003 ool y4

T =1

X X X3
X ® Y
X % X3

A !
003 ool y4

T =+

r0'(33)

\

o(B3)

o b3,

\

G, = Dev (% ~x3~X3),

G; = Dev({y, ys} @ {yz,()s %11

, G4 are the following, where as before the elements

A
!
%)

W
)
Wy

A
%0

N/

A
ot}

X0 N1 by,

2 b1,2 b1,3

X1,0 V11 by,

o) b1y bis
Yoo 21 b,
©f by, by

Y20 %1 bap

i byy bys

Te =< [)’3,0 X31 bsp

o} b3, b3

T =1 [y3,0 X1 bsp

b3,3

Ys Vs Q7 v Qp-1 O
o | ifv=2
Yo @7 @3 -+ @G X[ ’
s Vo a7 ak—1 A fy=3
Yo @7 Qg - T\ X ’
Y5 Yo @ -1 =2
Ys a7 ag -+ ax X v
Vs Vs 7 A1 T fv=3
Ys a7 ag -+ Q. X ’
bik—2 b1
 — 9’
b1,k—1 X1,0
bir-2 bir—
b
bir-1 X0
byk—2 bai—1
[ 9
byk—1 Y20
byk—2 by
9
by k-1 Y20
if v=2,
bsx—z b3x_1) |
if v = 3,
b3 -1 Va0
if v=2,
bsk—2 bsr1
if v = 3,
b3 k1 Va0

G, =Dev({%, %} @ {X0,.}),
Gy =Dev({,, %1 @ 20, %.11),

Gs = Dev({35,3s} ® 11-x.0}), Gs = Dev({xi, %} @ {x31,¥50})s
G7=Dev({X, %} ® {X31,Y30})-

By recalling (9)—(11), it is not difficult to check that the graphs Gj are k-suns.

O
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Theorem 4.12. Let k=3 (mod 4) >7 and n=0,1(mod 4) with 2k < n < 10k. If

[Z:TJ is odd, and n = 0,1 (mod k — 1), then there is a k-sun system of Ky + n except

possibly when (k, n) € {(11, 100), (11, 101)}.

Proof. Letn = 2(q€ + r) + vwithl < r < ¢ and v € {2, 3}. Reasoning as in the proof of
Theorem 4.11 and considering that n = 0, 1 (mod 2¢) and (k, n) ¢ {(11, 100), (11, 101)},
we have that

q isoddwith 3<q¢g<9, r=¢-1>2, riseven, and (¢,q) # (5,9). (12)

As before, let V (Ky + 1) = (Zi X [0, 3]) U {ooplh € Zy—,} U {007,005, 00}
We start decomposing K into the following two graphs

L =([3¢],{0},[3,¢]) and ©L,=({1,2},[1,k— 1],{1,2}).

Considering (12), we can further decompose [ into the following two graphs:

e (b0 p ). nom([22 ofm2)

By Lemma 3.5, the graph I} ; decomposes into g 1-factors, say Jj,.J, ..., J;. Letting
w; = g€, by Lemma 4.2 we have that

L4+w=1+w)®h,=0L,0 +¢) & Lo

Lemmas 3.4 and 3.1 guarantee that each J; + ¢ and I}, decompose into k-cycles,
hence I3 + w; has a k-cycle system. Let rn and », be odd positive integers such
that r=¢ —1=n + r,. Then, setting w,=n —2w; = 2(1 + ) + v and recalling
that Ky =1, @& I, by Lemma 4.6 it is left to show that I'j[2] + w, has a k-sun
system.

We start decomposing I} into the following graphs:

Ga=({1}L 1, k—-2n-2,{1}) and T =({2}[k—2n—-1k—1],{2}).

Recalling that T'3[2] = I[2] @ I, where I denotes the 1-factor {{z, Z}|z € Zi X {0, 1}} of
K4k, by Lemma 4.2 we have that

I32] + wy = (M + 1)[2] @ (D, + R)[2] & (I + v). 13)

By Lemma 3.3 there are a k-cycle A = (3, ¥,, X3, X4, Qs, ..., ax) of I, ; + 1, and a k-cycle
B = (x4, %, Y5, ), bs, ..., by) of I, + 1, such that

Orb(A) U Orb(B) isa k-cyclesystem of I, + r,
Dev({x3,x4}) and Dev({x,x}) are k-cycleswith verticesin Z; x {0},
Dev({y;,y,}) and Dev({y;,)}) are k-cycleswith verticesin Z; x {1}.
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Set A’ = (75, X3, Xz, Qs, - A1), B’ = (4, %5, T3, Yy bs, -, by) and let S = {o (4"), 0 (A"), o (B"), o (B)}.
By Lemma 4.5, we have that | Jses Orb(S) is a k-sun system of (T'3[2] + w)\(I + v).

To construct a k-sun system of I'3[2] + w,, we build a family 7 = {13, T, T3, Ty} of four
k-suns, each of which is obtained from a graph in S by replacing some of their vertices
with oof, 004, and possibly c04 when v = 3. Then we construct further (2v + 1) k-suns
Gi, Gy, ..., Gayyq so thatJrer Orb(T) U {Gy, Gy, ..., Gayi1} is @ k-sun system of T'5[2] + wy.

n Y, X3 Xg Qs v Qg1 Qi)
, | ifv=2,
1 wz X4 Cl5 a6 i ak 1

Vi Y, 3 Xp as o Ggoq Gk .
, - - ] ifv=3,
1 ® X4 Qs Qg -+ A Y

M Y, X3 X4 Q5 ccr Qg1 Qi
B: ’ 9

0, °°12 X; as ag - A N
T — X % Y3 % bs - by by
3= ’ ’ T T T — P
@ @, y; bs bg -+ b X
o v be -+ b, by
xll XZ, y3 W 5 k—1 k if = 2,
®, 0, Y bs bg -+ by x
T, = — -
X Y bs -~ b1 b
1, le y% Yy Ds k-1 Dk ify =3,
@) 0, 03 by bg -+ by X
G1:Dev(y1 ~ Y ~ X3), G2:D3V(Y_1NE ~X3),
Gs=Dev(y ~J; ~ X%), Gy = Dev(xy ~ % ~ %),
Dev(Xy ~% ~¥;) if v=2, .
GS = DeV({x_l,E} ® {E,Xg}) ify= 3, G6 = DeV(y4 ~ Yy~ X2),

G7 = DeU(X4 ~ X3~ y_Z)

By (13), it is not difficult to check that the graphs Gy are k-suns. |

5 | IT IS SUFFICIENT TO SOLVE 2k <v < 6k

In this section we show that if the necessary conditions in (*), for the existence of a k-sun
system of K, are sufficient for all v satisfying 2k < v < 6k, then they are sufficient for all v. In
other words, we prove Theorem 1.1.

We start by showing how to construct k-sun systems of K,y (i.e., the complete multipartite
graph with g parts each of size h) when h = 4k.

Theorem 5.1. For any odd integer k > 3 and any integer g > 3, there exists a k-sun
system of Kgxa.
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Proof. Set V (Kgxak) = Zgk X [0, 1] and let Kgyax = Kgxok[2]. In [11, Theorem 2] the
authors proved the existence of a k-cycle system of Kgyor. By applying Lemma 4.5 (with
I' = Kook and u = 0) we obtain the existence of a k-sun system of Kgy 4. O

The following result exploits Theorem 5.1 and shows how to construct k-sun systems of
Kykgn, for g # 2, starting from a k-sun system of K4 + n and a k-sun system of either K,
or K4k+n-

Theorem 5.2. Let k>3 be an odd integer and assume that both the following
conditions hold:

1. there exists a k-sun system of either K, or Kypyp;
2. there exists a k-sun system of K4 + n.

Then there is a k-sun system of Kugy for all positive g # 2.

Proof. Suppose there exists a k-sun system S; of K, also, by (2), there exists a k-sun
system S, of K4 + n. Clearly, S; U S, is a k-sun system of K, 4 = K, ® (K4 + n).
Hence we can suppose g > 3. Let V, H, and G be sets of size n, 4k, and g, respectively,
such that V N (H X G) = @. Let S be a k-sun system of K,, (resp., K, ;4 ) With vertex-set V
(resp., V U (H X {x,}) for some x, € G). By assumption, for each x € G, there is a k-sun
system, say By, of Ky + n with vertex-set V U (H X {x}), where V (K4) = H X {x}. Also,
by Theorem 5.1 there is a k-sun system C of Kgy4 Whose parts are H X {x} with x € G.
Hence the k-suns of B, with x € G (resp., x € G\ {X(}), S and C form a k-sun system of
Ky +akg With vertex-set V.U (H X G). O

We are now ready to prove Theorem 1.1 whose statement is recalled below.

Theorem 1.1. Let k > 3 be an odd integer and v > 1. Conjecture 1 is true if and only if
there exists a k-sun system of K, for all v satisfying the necessary conditions in (*)
with 2k < v < 6k.

Proof. The existence of 3-sun systems and 5-sun systems has been solved in [10] and in
[8], respectively. Hence we can suppose k > 7 and 2k < v < 6k.

We first deal with the case where (k, v) # (7, 21). By assumption there exists a k-sun
system of K,, which implies v(v — 1) = 0 (mod 4), hence Theorem 4.1 guarantees the
existence of a k-sun system of K4 + v. Therefore, by Theorem 5.2 there is a k-sun
decomposition of Ky wWhenever g # 2. To decompose Kgi,, into k-suns, we first
decompose Kgi,y, into Kgryy, and Ky + (4k + v). By Theorem 5.2 (with g = 1), there is a
k-sun system of K,,,. Furthermore, Theorem 4.1 guarantees the existence of a k-sun system
of K4 + (4k + v), except possibly when (k, 4k + v) €{(7, 56), (7, 57), (7, 64), (11, 100)}.
Therefore, by Theorem 5.2, there is a k-sun decomposition of Kgr,, Whenever
(k, 4k + v) & {(7, 56), (7, 57), (7, 64), (11, 100)}. For each of these four cases we construct
k-sun systems of Kgy., as follows.

If k = 7 and 4k + v = 56, set V (Kg4) = Zg3 U {oo}. We consider the following 7-suns:
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r—(0 -1 3 -4 6 =716

17\31 27 37 18 43 12 56)°

-0 -2 3 -56 —817

27\32 27 38 19 44 12 58)

(0 -3 3 -6 6 —9 18

37\33 27 39 20 45 12 o)

One can easily check that Ui3:1 Orbz,,(T;) is a 7-sun system of Kg,.

Ifk = 7and 4k + v = 57, set V (Kgs) = Zgs. Let T; and T; be defined as above, and let T3
be the graph obtained from T; replacing oo with 60. It is immediate that
U1 0rbz,,(T) U Orbz, (T3) is a 7-sun system of Kgs.

If k =7 and 4k + v = 64, set V (Kg,) = (Z7 X Z3) U {o0}. We consider the following
7-suns:

r-(0O @D -2 G @D 61 -6
"\ o (-1, 2,7 (=3,5 =3,5 =(5,7) (6,7)

T = 0,00 (1,2) —-(2,2) (3,2) —-4,2) (5,2) —(6,2)
2T (0,100 —(1,8) (2,8 (-3,7) —(3,7) —(5,8) (6,8)

0,00 (1,3 —-(2,3) (3,3 —-4,3) (5,3) -, 3))

E=0.12) =(1.9) 2.9) (=3.9) —=(3.9) —(5.9) (6.9)

= DevZ7><{0}((0a 0) ~ (4a 0) ~ (6’ 8))’ 1s = DevZ7X{O}((0’ O) ~ (6’ 0) ~ (6’ 8))

One can easily check that Ui3:1 Orbz, «7,,(T) U Ui=4 Orbyxz,, (T;) is a 7-sun system of Ko,.
If k=11 and 4k + v =100, set V (Kiu) = (Z11 X Zq3) U {c0}. We consider the
following 11-suns:

o (-1,1) 2,7 -3B,7 &7 (=51 —5,5 —(7,7) 8,77 —09,7) 10,7) )
T = 0,00 1,2 —-(,2) 3,2 —-4,2) (5,2) —=(6,2) (7,2) —-(8,2) (9,2) -(10,2)
2 0,100 —(1,8) (2,8 —-(3,8) (4,8) (=5,6) —(5,7) —(7,8) (8,8) —(9,8) (10,8) )
T 0,00 (1,3 —(2,3) (3,3 —-(4,3) (5,3 —=(6,3) (7,3) —(8,3) (9,3) —(10,3)
70,12 -1,9 2,9 —=(3,9) “9) (=59 —(5,9) —(7,9) (8,9 —(9,9) (10,9) )
Ty = Devz,;x10;((0,0) ~ (4,0) ~ (6,8)), T5 = Devz, x)((0,0) ~ (6,0) ~ (5, 8)),

Tg = Devz, x()((0, 0) ~ (8,0) ~ (8, 8)).

T = 0,00 (1,10 -2, G,1) -41 G,1) —-6,1) (7,1) —-68,1) (©,1) -—Qo, 1))
1=

One can check that [ Ji_; Orbz, xz,,(T) U -y Orbyoyxz,, (T is an 11-sun system of K.

It is left to prove the existence of a k-sun system of K4, when (k, v) = (7, 21) and for
every g > 1. If g = 1, a 7-sun system of K49 can be obtained as a particular case of the
following construction. Let p be a prime, g = p” = 1 (mod 4) and r be a primitive root of
IFq. Setting S = Dev;y (0 ~r ~r+ 1) where (r)={jrl1<j<p}, we have that
Ul OOer (r%S) is a p-sun system of K.

If g > 2, we notice that Kgg, 21 = Kog(g—1)+49- Considering the 7-sun system of K49 just
built, and recalling that by Theorem 4.1 there is a 7-sun system of K + 49, then
Theorem 5.2 guarantees the existence of a 7-sun system of Kjg(g—1y+49 Whenever g # 3.
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When g = 3, a 7-sun system of Kjs is constructed as follows. Set V (Kjgs) = Z7 X Z1s. Let
S;j and T be the 7-suns defined below, where (i, j) € X = ([1, 3] x [1, 7D \{(1, 3), (1, 6)}:

”_( 0,00 (,j/2) Qi) (3i,0) (i) (5,0 (6i,j))
YOG /2 (21,0) (36,2) (41 =) (56,2) (61, =) (0,2))
T:((o, 0) (0,7) (0,2) (0,5) (0,-1) (0,3) (0, 1))

2,0) 3,7 (1,2) (1,8 (1,5 (1,0) (1,10))

One can check that | g jyex Orbjoyxz,s(Sij) U Orbz 7, (T) is a 7-sun system of Kjps. []

6 | CONSTRUCTION OF p-SUN SYSTEMS, p PRIME

In this section we prove Theorem 1.2. Clearly in view of Theorem 1.1 it is sufficient to construct
a p-sun system of K, for any admissible v with 2p < v < 6p. Hence, we are going to prove the
following result.

Theorem 6.1. Let p be an odd prime and let v(v — 1) = 0 (mod 4p) with 2p < v < 6p.
Then there exists a p-sun system of K.

Since the existence of p-sun systems with p = 3,5 has been proved in [10] and in [8],
respectively, here we can assume p > 7.

It is immediate to see that by the necessary conditions for the existence of a p-sun system of
K,, it follows that v lies in one of the following congruence classes modulo 4p:
1. v=0,1 (mod 4p);
2. V=p,3p + 1 (mod 4p) if p =1 (mod 4);
3. v=p + 1,3p (mod 4p) if p = 3 (mod 4).

Ifv = 0, 1 (mod 4p) we present a direct construction which holds more in general for p = k,
where k is an odd integer and not necessarily a prime.

Theorem 6.2. For any k = 2t + 1 > 7 there exists a k-sun system of Ku,1 and a k-sun
system of K 4.

Proof. Let C be the k-cycle with vertices in Z so defined:
c=(0,-1,1,-2,2,-3,3,..,1 —t, t — 1, —t, 2t).

Note that the list D; of the positive differences in Z of C is D; = [1, 2t] U {3t}. Consider
now the ordered k-set D, = {d;, ds, ..., di} so defined:

D,=1[2t+ 1,3t —1] U [3t + 1, 4t + 2].

Obviously D; U D, = [1, 2k]. Let {cy, ¢y, ..., ck} be the increasing order of the vertices of
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the cycle C and set ¢, = ¢, + d, for every r € [1, k], with r # %, and Ol = Cis1 — d%
when ¢ is odd. It is not hard to see that V = {cy, ¢, ..., Ck, &1, &>, ..., &} is a set. Note also
that V C {—3t — 1} U [—t, 5t] U {6t + 2}.

Let S be the sun obtainable from C by adding the pendant edges {c;, ¢} fori € [1, k].
Clearly, AS = +(D; U D;) = %[1, 2k]. So we can conclude that if we consider the vertices
of S as elements of Zg,, the vertices are still pairwise distinct and AS = Zg11\{0}.
Then, by applying Corollary 2.2 (with G = Zui41, m = 1, w = 0), it follows that Orbz,,,, S
is a k-sun system of Ky 1.

Now we construct a k-sun system of Ky. Let S be defined as above and note that
dy = 2k. Let S* be the sun obtained by S setting €, = oo. It is immediate that if we
consider the vertices of S* as elements of Zs—_; U {oo}, then Corollary 2.2 (with
G = Zg-1, m = 1,w = 1) guarantees that Orbz,_,S* is a k-sun system of Ky. O

Example 6.3. Letk = 2t + 1 = 9, hence t = 4. By following the proof of Theorem 6.2, we
construct a 9-sun system of Kz;. Taking C = (0, —1, 1, —2, 2, —3, 3, —4, 8), we have that

{dla d2’ () d9} = [9’ 11] V) [13’ 18]a
{cl’ C25 eey C9} = {_4a _3’ _2, _la 0’ la 2a 3a 8}

Hence {4, &, ..., 6} = {5, 7,9, 12, 14, 16, 18, 20, 26} and we obtain the following 9-sun S
with vertices in Zs;:

S:0—11—22—33—48
14 12 16 9 18 7 20 5 26)

such that AS = Zj3;\ {0}. Therefore, Orbz,,S is a 9-sun system of Kz;.
From now on, we assume that p is an odd prime number and denote by X the following p-sun:
5 (co €1+t Cp2 cp_l)
b O - Gy Gy )
Lemma 6.4. Let p be an odd prime. For any X,y € Z, with x # 0 and any i, j € Z,, with

[ # ] there exists a p-sun S such that A;S = +x, AyS =y, AyS = —y, and AyS = @ for
any (h’ k) € (Zm X Zm)\{(l’ l)5 (li,])’ (i9 l)}

Proof. 1t is easy to see that S = Devz x}((0,1)~(x, )~y + x,j)) is the required
p-sun. |

We will call such a p-sun a sun of type (i, j). For the following it is important to note that if S
is a p-sun of type (i, j), then |A;S| = 2,1A;S1 =0, and |A;S| = 1A;S1 = 1.

The following two propositions provide us p-sun systems of K,,,+; whenever m € {3, 5}
and p = m — 2 (mod 4).

Proposition 6.5. Let p = 1 (mod 4) > 13 be a prime. Then there exists a p-sun system
of Ksp1.
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Proof. We have to distinguish two cases according to the congruence of p modulo 12.
Case 1. Let p = 1 (mod 12).
If p = 13, we construct a 13-sun system of Ky as follows. Let S be the following 13-sun
whose vertices are labeled with elements of (Z;3 X Z3) U {co}:

_ o (2,1) 4,2) (8,00 3,1 (6,2) (12,0) (11,1) (9,2) (5,0) (10,1) (7,2) (1,0)
0,2 4,1 8,1 3,2) (6,00 12,1) (11,2) (9,0) (5,1) (10,2) (7,0) (1,1) (2,2))

We have

A12S = A21S = i{z, 3, 4, 6}, A02S = AzoS = i{l, 4, 5, 6},
ApS =—A1pS = {-1,2, 43, %5}, AwS =AnS=0@, A;S==+{2}.

Now it remains to construct a set 7 of edge-disjoint 13-suns such that

AT =AnT=1{0,+1, +5}, Ap7 = 237 ={0,+2,+3},
AT =—=A00T=1{0,1, =2, %4, 46}, ApT=AT=17% AT=7Z3\{£2}

To do this it is sufficient to take, 7 ={T}|i€ [1,4]}u {T,li€ [1,2]}
U{T,li € (1,313 U {TL i € [1,2]} U {TSli € [1, 3]} U {T i € [1, 3]}, where

T4, = Devz, x0,((0, 0) ~ (x;, 0) ~(; + x;, 1)), where x; € [1,4],) € + {4, 6},
Tg, = Devz, oy ((0, 0) ~ (x;, 0) ~ (v + x;,2)), where x; € [5, 6], € + {2},
T}y = Devy, xi0,((0, 1)~ (x;, 1)~ + x;,0)), where x; € {1, 3,4}, y, € {0, -1, 2},
T}, = Devz, x0,((0, 1)~ (x;, )~ + x;,2)), where x; € [5, 6],y € + {1},
Tio = Devz, 0y ((0, 2) ~ (x;, 2) ~(; + x;,0)), where x; € [1, 3], € {0, +3},
T3, = Devz, 0, ((0, 2) ~ (x;, 2) ~( + x;, 1)), where x; € [4, 6],); € {0, +5}.
We have that 7U Orbz xS is a 13-sun system of Kyo.

Suppose now that p > 37. We proceed in a very similar way to the previous case. Let r
be a primitive root of Z,. Consider the ((Z, X Zs3) U {co})-labeling B of X so defined:

B(cp) =0, B(c)=(hi) for1<i<p-—-1,
B(€0) = (0’ 2)’ B(gl) = (ri+1’i + 2)

except for PT_g values of i = 1 (mod 3) for which we set B(¢) = (ri*1,i). Letting S = B(Z),
it is immediate that the labels of the vertices of S are pairwise distinct. Note that

-9 5p + 7
100S1=1A0S1 =0, 1ALS| = pT, 1ApS| = 1ApS| = p12 ,

2p — 2
1A;S1=2P

for (i, j) € {(0, 2), (1, 2),(2,0), (2, 1)}.

Hence, reasoning as in the previous case, we have to construct a set 7 of p-suns such that if
i # j, then AyT = Z,\ AyS is a set and also A;7 = ZZ\AH-S is a set. In particular, this implies
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that for any T, T’ € T we have A;T N A;T' =@ and that 1Ag7] = ATl =p —1,
lanTl = 2270 A, = 222 for (4,)) €1(0,2), (1, 2), (2,0), (2, 1)} and 1A 71 =

2 ’ 3
[A7] = P 5 7 To do this it is sufficient to take 7 as a set consisting of 222 ! suns of type (0, 1),

p— suns of type (1, 0), p *11 suns of type (1, 2), p *2 suns of type (2, 0), and 7 suns of type

(2, 1), which exist in view of Lemma 6.4. We have that Orbz xi;S U 7 is a p-sun system of

Kspi1.
Case 2. let p=5(mod12). Let r be a primitive root of Z, Consider the
((Zp % Z3) U {oo})-labeling B of X so defined:

B(co)) =00, B(c)=(r,i) for1<i<p-2, B(cp-1)=(@1,0),

(r=Li+1) forie [2, pT—l]’
B(éo) = (0’ 2)’ B(gl) = (V, 2)7 B(gl) = +1
(rtli+2) forie [pr - 3],

B(6y-2)=(1,1), B(€-1)=(@1,2)

p—17
6

except for values of i=0(mod3) with ie [3 pT_l] for which we set
B(6) = (r'",i) and 222 p > values of i = 0 (mod 3) withi € [p+1,p ] for which we set
B(¢) = (r’“, ) Lettlng S = B(X), it is easy to see that the labels of the vertices of S are

pairwise distinct. Note that

-9 +1
IAOOSI:pT, IALS| = 1881 =0, 1AgS| = 1281 = £ —
p+1 2p — 4
1ApsS | =1AxS| = pu ARSI = 1,81 = 2
Hence, we have to construct a set 7 of p-suns such that
+7 -1
|A11ﬂ = |A227—] =p - 1, |A00,I| = P 5 s |A01ﬂ = |A10ﬂ = pT’
p+4

5p—1
|A02,I| = |A207—| = P ,and |A12ﬂ = |A21,I| =

To do this it is sufficient to take 7 as a set consisting of 27 " 7 suns of type (0, 1), 2 T suns
of type (1, 0), p—” suns of type (1, 2), Sp ! suns of type (2, 0), and p— suns of type (2, 1)
which exist 1n view of Lemma 6.4. We have that Orbz,S U T is a p-sun system
of Kzpy1. O

Proposition 6.6. For any prime p = 3 (mod 4) there exists a p-sun system of Ksp1.

Proof. Set p=4n+ 3, and let Y=[1,n] and X =[n+ 1,2n + 1]. Consider the
following (Z, X Zs) U {co}-labeling B of X defined as follows:
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B(co) =(0,0), B(c) = (—1)*(i,1) forevery i € [1,p — 1];
B(6y) =0, B(4)=(-1)"(,—1) foreveryyeY;

B(€ns1) =(=2n —1,3), B(fm42) = (=2n -1, -3);
B(4)=(-1)'(i,3) forevery i€ [1,p —1]\(Y U {2n + 1,2n + 2}).

One can directly check that the vertices of S = B(Z) are pairwise distinct. Also, it is not
hard to verify that AS does not have repetitions and that its complement in
(Zp x Zs)\{(0, 0)} is the set

D = {+(2x,0)Ix € X} U {+(2y, 4|y € Y} U {(0, 1)}.

Clearly, D can be partitioned into n+ 1 quadruples of the form
D, = {£(2x, 0), (ry, ,)} with x € X and s, # 0. Letting

Sy = Devax{O}((O’ O) ~ (Zxa 0) ~ (rx + 2x, Sx))

for x € X, it is clear that AS, = Dy, hence A{S|x € X} = D. Therefore, Corollary 2.2
guarantees that | Jxex Orbjojxz,(Sx) U Orbz,x7,(S) is a p-sun system of Ks 1. O

Example 6.7. Here, we construct a 7-sun system of Kjs following the proof of

Proposition 6.6. In this case, Y = {1} and X = {2, 3}. Now consider the 7-sun S defined
below, whose vertices lie in (Z; X Zs) U {oco}:

6 0,00 (1,1) -2,1) 3,1) —-4,1) (5,1 —=(6,1)
o —(1,-1) (2,3) (=3,3) —(3,3) —=(5,3) (6,3) )

We have
AS = +{(1,1), (3, 2), (5, 2),(0, 2), (2, 2), (4, 2), (6, 1), (2,0), (4, 4), (6, —2), (1, —2), (3, 4), (5, H)}.
Hence AS does not have repetitions and its complement in (Z; X Zs)\{(0, 0)} is the set
D = +{(4,0),(6,0),(2,4), (0, D}

Now it is sufficient to take

S = Devz,x(}((0,0) ~ (4,0) ~ (6,4)), S3= Devz,x3((0,0) ~ (6,0) ~ (6, 1)).
One can check that | yex Orbyojxz, (Sx) U Orbz,«z.S is a 7-sun system of Ks.
We finally construct p-sun systems of K,,, whenever p = m (mod 4).

Proposition 6.8. Let m and p be odd prime numbers with m < p and m = p (mod 4).
Then there exists a p-sun system of K.
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Proof. For each pair (r, s) € Z; X ZLim, let B,s: V() = Zp X Zy, be the labeling of the
vertices of X defined as follows:

Br,s (CO) = (0, 0),
(r,s) ifiell,m+1lu{m+3,m+5,..,p— 1},
B )=B i
rs(€) = Brs(cia) + {(r, —s) ifie{m+2,m+4,.,p—2}
(r,—s) ifielo,mlufm+2,m+4,...p— 2},

Brsei:Brs i P
5 (@) ’(c)+{(r,s) ifiem+1,m+3,..,p— 1}

Since B, is injective, for every h € Z,, the graph Sffs = 10,n)(Brs(X)) is a p-sun. For
i,j € Z,,, we also notice that AU{SZ"S lh € Z,,} = {£ r} whenever i — j = +s, otherwise it

is empty.
Letting S be the union of the following two sets of p-suns:

(St € Zyp,r € [1,(p + m — 2)/4]},
{SYIh € Zm, r € [1, (p — 1)/2], 5 € [2,(m — 1)/2]},

it is not difficult to see that for every i,j € Z,,

1} ifi =j,
p+m-2] .. .
£yS = i[l, ?] ifi—j==1,
Z; otherwise.

It is left to construct a set 7 of p-suns such that A;7 = Z,\A;S whenever i # j, and

AyT = Z3\AyS = Zj,. Therefore,

p—-1 ifi=j,

1Ay = p;m+1 ifi—j =1,

1 otherwise.

It is enough to take 7 as a set consisting of one sun of type (h, h + x) and % suns of
type (h, h + 1), for every h € Z,, and x € [1, mT_l] These p-suns exist by Lemma 6.4,
therefore S U 7 is the desired p-sun system of Ky,. O

Example 6.9. Let (m, p) = (3, 11). Following the proof of Proposition 6.8, we construct an
11-sun system of K33. For every h € Z; and r € [1, 3], let Sffl be the 11-sun defined below:

St
_( ©h) (r,h+1) @r,h+2) @r,h) (@r,h+1) (5r,h) (6r,h+1) (7r,h)  @r,h+1)  (9r,h) 10r, h + 1)
“\rh+2 (@rh) @Gr,h+1) @4r,h+2) (5r,h+2) (6r,h+2) (7r,h+2) 8r,h+2) Or,h+2) (10r,h+2) O,h+2) )

One can check that Ag{S?, S}y, S3} = {+r} if i # j, otherwise it is empty. Therefore,
letting S = {Sffl lh € Zs, r € [1, 3]}, we have that A;S is nonempty only when i # j, in
which case we have A;S = +[1, 3].
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Now let 7= {Tjy|h € Z3, g € [1, 5]} where Tj, is the 11-sun defined as follows:

’1;11 = DevZnX{O}((Oa h)"'(la h) ~(1’ h + 1)),
Thg = Devy, x(0)((0, h) ~(g, h)~(9,h + 1)) forevery g € [2, 5].

Note that each Tj, is an 11-sun of type (h, h + 1). Therefore we have that

T— +[1, 5] ifo<i=j<2,
77 1{0} U [4, 7] otherwise.

By Corollary 2.2, it follows that S U 7 is an 11-sun system of Kz;.

We are now ready to show that the necessary conditions for the existence of a p-sun system
of K, are also sufficient whenever p is an odd prime. In other words, we end this section by
proving Theorem 6.1.

Proof of Theorem 6.1. 1If p = 3, 5 the result can be found in [10] and in [8], respectively.
For p > 7, the result follows from Propositions 6.5, 6.6, and 6.8. O
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