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Abstract 

Agriculture is a vital component of human civilization, providing food, fiber, and fuel for billions of people worldwide. However, the 

agricultural sector has also been identified as a significant contributor to air pollution. This study investigates and analyses the impact 

of agrofarming activities on air pollution in very productive areas such as Northern Italy. It explores the various sources and 

mechanisms through which agriculture affects air quality compared to all the other emission sectors and the types of pollutants 

involved, and quantifies the consequences for human health of agricultural emissions. As a further and novel step, it highlights the 

technologies that can mitigate these negative impacts and promote sustainable agriculture by adopting an integrated assessment 

modeling approach. This study defines policy recommendations for the area at hand, determining the optimal compromises between 

air quality improvement and pollution abatement costs. For instance, it shows that it is possible to reduce the average PM2.5 

concentration by 17% with an annual expenditure of 300 M€. Four percent of this improvement is due to end-of-pipe abatement 

measures in the agricultural sector. Such an improvement in air quality would translate into a reduction of tens of thousands of years 

of life lost by the resident population. This study concludes with an outlook of additional options for addressing the air pollution 

challenges associated with agro-farming activities that constitute a limit of the current study, but could open new research lines. 
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1. Introduction 

Agriculture is the backbone of global food production and a 

fundamental component of human society. It provides billions of 

people worldwide sustenance, livelihoods, and economic stabil-

ity. However, as agriculture has evolved and intensified to meet 

the demands of growing global population, it has also generated 

a number of detrimental effects, as recently reported by the FAO 

[1], and in particular, it has become a significant contributor to 

air pollution [2, 3]. Air pollution, on the other side, is a pressing 

global environmental issue with adverse consequences for 

human health, ecosystems, and climate [4–6]. It encompasses a 

wide array of pollutants, including particulate matter (PM), 

volatile organic compounds (VOCs), ammonia (NH3), and nitro-

gen oxides (NOx). The origins of air pollution are multifaceted, 

with agriculture constituting one of the principal sectors 

responsible for these emissions [7]. The various activities asso-

ciated with agrofarming, including crop cultivation, livestock 

farming, and the use of machinery, fertilizers, and pesticides, 

lead to the release of a range of pollutants into the atmosphere 

[8–10]. Agriculture, in particular, emerges as the primary 

contributor to ammonia emissions [11], a gaseous compound that 

plays a significant role in the genesis of fine particulate matter 

PM2.5 [12]. Within the atmosphere, gaseous NH3 interacts with 

aerosols with sulfuric and nitric acids, culminating in the 

production of particles such as ammonium nitrate and ammo-

nium sulfate [3]. A chain thus exists linking NH3 emissions, the 

formation of PM2.5, and the subsequent repercussions of PM2.5 

on human health. To disrupt this chain, or at the very least 

substantially mitigate the associated impacts, a primary ap-

proach is the reduction of potential NH3 emissions. 

This problem is particularly relevant in countries with intense 

and widespread agricultural activities [13]. One example is the 

Netherlands, which has a highly intensive agricultural sector 

focused on livestock farming. The Ministry of Agriculture has 

recently implemented a comprehensive approach to address 

ammonia-related environmental damage, such as the formation 

of fine particulate matter and acid deposition. This includes 

implementing strict regulations on livestock housing and ma-

nure management to reduce ammonia emissions, encouraging 

the use of low-emission barn systems and manure processing 
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technologies, promoting precision agriculture to reduce fertilizer 

use and ammonia emissions, and collaborating with farmers to 

adopt emission-reducing practices while maintaining agricul-

tural productivity. These efforts have significantly reduced 

ammonia emissions in the Netherlands, improving air quality 

and environmental conditions [14]. 

This study analyses the situation of an area, Northern Italy, that 

resembles the Netherlands for the intensity and importance of 

agrofarming activities. It aims to quantify the trade-offs between 

air quality and the cost of emission abatement. This will allow us 

to understand how much the agricultural sector can contribute to 

improving air quality and which are the most effective measures 

to adopt. To solve this problem, an integrated air quality 

assessment model [15] is used to estimate the variation in PM2.5 

and NO2 concentrations and, consequently, the health effects as 

a function of the emission reduction measures applied. 

2. Materials and methods 

2.1. The study area 

Northern Italy, including regions such as Lombardy, Veneto, 

Emilia-Romagna, and Piedmont, almost coincides with the 

catchment of the Po River, a 71,000 km2 area known as Po Valley. 

It is known for its picturesque landscapes, industrial centers, and 

cultural heritage. It also hosts most of the national farming 

activities and is renowned for its intense and qualitatively high 

agricultural production. This area also faces significant air 

pollution challenges that impact the environment, public health, 

and overall quality of life. Several factors contribute to air 

pollution problems in Northern Italy. It is an industrial hub, 

hosting numerous manufacturing facilities, including those in 

the automotive, chemical, and metallurgical sectors. These 

industries are a major source of emissions, releasing pollutants 

such as particulate matter, sulfur dioxide (SO2), nitrogen oxides 

(NOx), and VOCs. 

The region’s dense population and urban centers, including 

Milan and Turin, also experience high traffic congestion [16]. 

This results in relevant emissions of pollutants from vehicles, 

including PM, NOx, carbon monoxide (CO), and VOCs. The 

prevalence of diesel vehicles has been a particular concern due to 

their NOx emissions [17]. 

During the colder months, many residents rely on wood-burning 

stoves and fireplaces for heating. This practice contributes to the 

elevated levels of PM emissions, especially in rural areas. 

Finally, Northern Italy’s geographical features, including valleys 

and basins, can trap air pollutants, exacerbating pollution 

episodes. Stagnant weather conditions during the winter are well 

known to further worsen air quality by limiting the dispersion of 

pollutants. 

Agriculture and farming are significant economic activities in 

Northern Italy, with the region being known for its fertile plains, 

vineyards, orchards, and diverse agricultural production. While 

the specific agricultural activities can vary by province and 

microclimate, some agricultural and farming activities are 

common to most of the Po Valleys. 

This area is one of the leading rice-producing regions in Europe. 

Varieties like Arborio and Carnaroli are famous for their use in 

Italian cuisine. Lombardy and Piedmont alone produced 

approximately 98% of the total Italian yield of 1.5 million metric 

tons in 2020. 

Wheat and corn are staple crops in the area, which produced 

around 4 million metric tons of wheat and 4.7 million metric tons 

of corn in 2023. 

This territory is also known for the cultivation of fruits such as 

apples, pears, and peaches and vegetables such as tomatoes, 

lettuce, and radicchio. Lombardy, Emilia-Romagna, and Veneto 

are prominent fruit and vegetable producers, and are also 

important for their well-known viticulture. 

Additionally, dairy farming is a significant activity, producing 

cheese, milk, and other dairy products. Regions like Lombardy 

and Piedmont are known for their dairy production. In 2021, they 

produced around 11.7 million metric tons of milk. Northern Italy 

also has a substantial livestock sector, including cattle (about 4M 

in 2022), pigs (7.6M), and poultry (more than 110M). Milan and 

Bologna are major centers for meat processing. 

It is important to note that Northern Italy’s agricultural 

landscape is diverse, and the specific crops and activities can vary 

in terms of region and local climate conditions. Additionally, 

agricultural practices and production figures can change from 

year to year based on factors such as weather patterns, market 

demand, and agricultural policies. Some old farming practices 

still in use, such as the open burning of crop residues, release 

relevant quantities of ammonia and other pollutants into the 

atmosphere. 

Despite many technological and institutional efforts, air pollu-

tion remains a pressing issue in Northern Italy, necessitating 

continued vigilance, technological innovation, and public 

engagement to achieve cleaner air, protect public health, and 

preserve the region’s natural beauty and cultural heritage [18]. 

2.2. The integrated assessment model 

An integrated assessment model is formulated and solved to 

assess the tradeoff between agricultural emissions and abate-

ment costs.  

The model minimizes two objectives: on the one side, an air 

quality indicator (AQI) that is a single value summarizing the air 

quality conditions over the entire domain under study; on the 

other side, the cost (C) of implementing additional pollution 

abatement measures in addition to those already mandated by 

the law (CLE, Current Legislation). The implementation of 

mandatory measures in 2020 is referred to as the CLE2020 

scenario and constitutes the reference situation. 

From a formal point of view, the model can be written as follows: 

  min ( ) min AQI( ) ( )
z z

J z z C z=  (1) 

where the vector z of decision variables represents the “appli-
cation rates (AR)” of the abatement technologies (also called 

“end-of-pipe”) that can be applied to each of the activities present 

in the area and categorized in the 11 macrosectors of the 

CORINAIR European emission inventory [19]. Agriculture is 

coded as macrosector 10 in such a classification. Equation (1) 

means that we want to determine the type and extent of the 

abatement measures to adopt to minimize air pollution and 

measure implementation costs at the same time. It can also be 

interpreted as minimizing implementation costs to achieve a 
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given air quality or, on the reverse side, searching for the best air 

quality achievable with a given budget. 

Both the objectives of the above problem can be computed as a 

function of the emissions, which in turn depend on the problem 

decision-variables as follows: 

 , 1  c p c p p t
k k t k

k K t T

E A ef eff z

 

  
  = −
 







 
   (2) 

where c represents the spatial coordinates of an emission source 

k, p is the specific pollutant, A is the activity level (usually 

measured in terms of energy used), and ef is the so-called 

unabated emission factor, i.e., the amount of the pollutant 

emitted for each unit of activity in the base case, eff is the 

abatement efficiency of technology t, and t
k

z  is the fraction of 

activity k that adopts the technology t. In summary, the emission 

of a certain pollutant in a certain geographical position is the sum 

of the products of the activities present at that site times the 

emission factor, which translates each unit of activity into the 

corresponding emission. This amount can be decreased if a 

fraction of the activity (the decision variable) adopts a certain 

technology characterized by a known abatement efficiency. 

The above formulation shows that we assume not to change the 

current activities and sources (i.e., not to change any current 

production or traffic patterns), but only to introduce abatement 

techniques to reduce the emissions. 

The cost (C) is computed as follows: 

  t
k t k

k K t T

C A uc z

 

 
 =  
  

   (3) 

where Ak represents the total k-th activity in the area (i.e., 

c
k k

c

A A= ), and 
t

uc  is the unit cost of the technology t. Thus, 

the total cost is computed as a linear function of the diffusion 

(application rate) of each technology, the unit cost of which is 

known. 

To solve the two-objective problem, first we must define the AQI 

formulation. This study will assume the yearly spatial average of 

PM2.5 concentration as an AQI. It is strongly connected to the 

health conditions of the resident populations [20]. It is also 

representative of the PM10 situation, since PM2.5 is about 70% 

of the mass of PM10 [21]. 

Then, a chemical-transport model (CTM) is used to determine 

the pollutant concentration as a function of a given emission 

field. The CAMx model [22] has been selected in the case at hand. 

CAMx is a powerful tool for studying air quality and 

understanding the complex interactions between emissions, 

meteorology, and atmospheric chemistry. It is particularly suited 

for the study of PM2.5 in Northern Italy because a large portion 

of this pollutant is of secondary origin, meaning that PM2.5 

concentration (sometimes exceeding 50%) is not due to emitted 

PM2.5 (i.e., the primary PM), but forms in the atmosphere 

through the chemical and physical reactions of precursor gases. 

Based on the CTM results, we develop a surrogate model to 

directly link the AQI to the emission field. This step is necessary 

to allow a workable solution to the two-objective problem, since 

using the original CTM requires unacceptable computer times. 

Thus, it can be used only for the surrogate’s training phase. 

Finally, the problem of determining the Pareto frontiers is solved 

by a classical constraint algorithm [23] with two different 

assumptions: in the first case, the set of variables z includes the 

abatement measures that can be applied in all macrosectors 

except agriculture; in the second case, it comprises all the 

possible measures. The difference between the two cases 

quantifies the advantage of acting also in the agricultural sector. 

It can be noted that acting on agricultural emissions alone does 

not provide the same results, given the non-linearity of the PM 

formation process. The full implementation of such a procedure 

was made possible by using the Multi-dimensional Air Quality 

(MAQ)-integrated modeling software [15, 24] developed by the 

authors in previous studies. 

2.3. Surrogate model development 

Using surrogate models to solve air pollution planning problems 

is a valuable approach to efficiently address complex, compu-

tationally expensive, or data-intensive tasks. Surrogate models, 

also known as response surface models, approximate the 

relationships between input variables (e.g., emission sources, 

meteorological conditions, and policy measures) and output 

variables (e.g., air pollutant concentrations and health impacts) 

without representing all the internal factors determining such a 

relation. The correct use of surrogate models for air pollution 

planning requires: 

Clear articulation of the air pollution planning problem to 

address. This could involve optimizing emission reduction 

strategies, assessing the impact of policy measures, or 

predicting pollutant concentrations in various scenarios. 

Identify the specific objectives and performance metrics one 

wants to optimize. In this particular case, the selected metric 

is the least squared difference between the CAMx and the 

surrogate model’s average PM2.5 concentration. 

Collect sufficient emission inventories, meteorological data, 

and air quality values computed by the selected CTM. In the 

case at hand, CAMx was run 16 times for one year at an 

hourly time step, designing these experiments to show the 

consequences of substantial variations of the main emitted 

gases, namely SO2, NOx, primary PM10 and PM2.5, NH3, 

and VOC. Emissions of these gases varied between a 

maximum equal to 110% of those corresponding to CLE2020 

and a minimum equal to 90% of the Maximum Feasible 

Reduction (MFR), which implies the full implementation of 

the best abatement technologies to all the emission sources. 

Select and train a sufficiently general model structure. Feed-

Forward artificial neural networks were trained to provide 

an almost instantaneous link between the emissions of 

precursor gases and the average PM2.5 concentration over 

the domain. More in detail, the network input was made by 

the precursor emissions in the surroundings of each cell of 

the domain (a radius of 24 km was considered) and the 

spatial coordinates of each cell [25]. The output was the 

average yearly concentration value in each cell, and then 

averaged over the entire domain to determine the selected 

AQI. It must be noted that despite the CAMx model and any 

other CTM using hourly emission values as input, these 

hourly values are obtained starting from the yearly values 
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available in the emission inventories and distributing them 

in time through known daily and hourly patterns. It is thus 

meaningful to assume that the yearly emission is indeed the 

most significant variable. 

Using surrogate models in air pollution planning can streamline 

decision-making, reduce computational burden, and provide 

valuable insights into the relationships between emissions, air 

quality, and policy measures. However, it is essential to choose 

the most suitable modeling technique, validate the model 

rigorously, and consider the specific characteristics of the 

problem at hand to ensure the model’s reliability and usefulness. 

2.4. The input dataset 

The simulation domain is a rectangular area covering the whole 

of Northern Italy (Figure 1). The reduction policies are applied 

only to the areas of the regions of Piedmont, Lombardy, Veneto, 

and Emilia-Romagna, which are by far the most important ones 

for their intensive agricultural activities. The whole study domain 

is subdivided into 92 × 59 cells of 6 × 6 km2 each. 

The emission sources and total emissions must be identified for 

each cell of the domain. The emission datasets used are the 

regional emission inventory (INEMAR 2017 inventory, carried 

out in the LIFE PREPAIR project: PREPAIR – LIFE15 IPE IT 

013, https://www.lifeprepair.eu), which specifies the emissions 

by source in each municipality, and the 2020 Outlook GAINS 

scenario (https://gains.iiasa.ac.at/models/gains_models4.html), 

which contains the emission factors and possible abatement 

technologies for each emission source. Table 1 summarizes the 

emissions by the macrosector and by precursor summed over the 

four main regions of the domain. 

 

Figure 1• The study domain. 

Agriculture thus contributes only marginally to the emission of 

most pollutants, except for ammonia where it represents 97% of 

the total. 

Table 1 • Yearly emission per macrosector in the four main regions of the study domain 

Total emissions (kt/year) 

Macrosector NOx VOC NH3 PM10 PM2.5 SO2 

1. Combustion in energy and transformation industries 20.5  2.0 0.1 0.3 0.2 5.1 

2. Non-industrial combustion plants 29.0 29.9 1.2 30.6 28.8 1.7 

3. Combustion in manufacturing industry 36.1 8.0 0.4 2.8 2.0 13.4 

4. Production processes 7.2 35.3 0.2 1.5 0.8 8.1 

5. Extraction and distribution of fossil fuels and geothermal energy 0.0 17.5 0.0 0.0 0.0 0.0 

6. Solvent and other product use 0.4 165.4 0.0 1.8 1.6 0.0 

7. Road transport 142.2 35.9 2.3 12.1 6.0 0.2 

8. Other mobile sources and machinery 37.6 4.6 0.0 2.0 1.9 0.6 

9. Waste treatment and disposal 0.9 0.6 1.5 0.8 0.7 0.2 

10. Agriculture 1.7 173.2 220.2 2.3 0.5 0.1 

11. Biogenic 1.2 182.7 0.3 3.3 2.7 0.2 

TOTAL 276.8 655.1 226.2 57.5 45.2 29.6 

 

3. Results 
The two lower curves in Figure 2 represent the Pareto frontiers 

of the two-objective problem defined above under the 

assumption of limiting the decision variables to the macrosectors 

1–9 (red) or including macrosector 10. i.e., agriculture (blue). 

The analysis of Figure 2 allows several considerations. First, the 

range of variation of the AQI is quite limited. Even in case all 

feasible measures are adopted, one can simply move from 13.2 to 

10.6 g/m3. This means that the maximum possible variation is 

just about 20% of the initial value. Second, the maximum 

curvature of the Pareto frontiers is around a cost of 200 M€ of 

additional yearly costs above those mandated by law (CLE2020). 

Let’s consider, for instance, a total cost of 300 M€ for the 
abatement measures (see points A and B in Figure 2). The 

inclusion of agriculture in the decision variables means a reduction 

of the AQI of around 0.5 g/m3 (almost 4%) or, alternatively, we 

can reach an AQI of 11.3 g/m3 (18% less than the base case), 

sparing about 100 M€ by also including agricultural measures. 

The relevant role of agriculture can also be appreciated by look-

ing at the upper curve in Figure 2. It represents the Pareto front 

in the unrealistic assumption of reducing only the emissions of 

the agricultural sector. It shows that a reduction of almost 0.8 

g/m3 is possible. This emphasizes the secondary origin of 
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particulate matter in the area since agriculture mainly emits 

ammonia and a minimal amount of PM. Ammonia, however, is a 

precursor of secondary PM2.5, and thus, its reduction produces 

a benefit in terms of the selected AQI. 

Figure 3 shows how the cost of pollution reduction is subdivided 

among the different macrosectors. Besides agriculture, the other 

actions, and consequent costs, involve macrosector 2 (non-

industrial combustion plants), which includes domestic heating, 

and macrosector 8 (other mobile sources and machinery), which 

includes tractors and other operating machines used for agri-

culture operations. 

 

Figure 2 • Pareto curve obtained by optimizing only agricultural measures (green) without agricultural measures (red) and all 

end-of-pipe measures (blue). 

 

Figure 3 • Emission variation (%) of A and B alternatives with respect to the base case 2020 per macrosector (left) and the distribution 

of additional costs (right). 

More specifically, the most important actions foreseen by the 

optimal solutions corresponding to points A and B are reported 

in Tables 2 and 3: the improvement of fireplaces for macrosec-

tors 2, the switch to less polluting diesel standards for macro-

sectors 8, the substitution of urea and the switch from low 

ammonia application to a combination of covered outdoor stor-

age of manure, and low ammonia application for agriculture. 

Correspondingly, one may look at the proposed reductions of the 

precursor gases. Ammonia should be reduced by more than 18% 

in alternative B; NOx by 16% in A and 10% in B (mainly for the 

improvement of diesel engines), and primary PM by some 40%, 

mainly due to the combustion of wood for domestic heating. Even 

when considering all emission macrosectors, 20% of the total 

cost is allocated to the reduction of ammonia in agrofarming 

activities. 

Thanks to the type of surrogate model adopted, which allows a 

local calculation on a single cell, one can visualize the impact of 

the suggested policies on the entire territory. Figure 4 shows the 

spatial distribution of the PM2.5 concentration in the original 

condition (i.e., 2020 emission field) (Figure 4a), the concen-

tration map when adopting only measures in other sectors 

(Figure 4b) and when including also measures in the agriculture 

macrosector (Figure 4c). The highest concentrations are found 

in the central flat part of the domain where the main cities are 

located (like Turin, Milan, and Venice). Peak values exceed 22 

g/m3, whereas the concentrations decrease moving toward the 

border of the domain, i.e., toward the mountainous areas. In this 

part, the values may be even lower than 5 g/m3. Indeed, in the 

city of Milan, the PM10 concentration exceeded the limit of 50 

g/m3 for 90 days in 2020 instead of the 35 days mandated by 

European regulation. With the improvement that can be achieved 

when implementing the suggested policy, again for the yearly 

cost of 300 M€, the area with concentrations above 20 g/m3 is 

reduced (−24% with the set measures of A and −30% with B). 
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Table 2 • Main technical measures of Alternative A, their corresponding costs, variation in application (AR), and consequent 

variation of pollutant emissions 

Macrosector Sector Activity Technology 
Cost over 

CLE [M€]  
AR 

[%]  

Emission 

reduction 

[kt/year] 

Non-industrial 

combustion plants 
Fireplaces Fuelwood New fireplace 106.9 57 VOC: 3.8 

Other mobile sources and 

machinery 
Agriculture Diesel Switch from Stage 2/3 to Stage 5 61.3 60 

NOx: 24.6 VOC: 1.9 

PM10: 1.3 PM2.5: 1.2 

Non-industrial 

combustion plants 
Heating stoves Fuelwood New stove – biomass 32.9 48 

VOC: 10.1 PM10: 1.1 

PM2.5: 0.4  

Combustion in energy 

and transformation 

industries 

Power & district heat 

plants – new (excl. coal) 

Other biomass 

and waste fuels 

Selective catalytic reduction on 

new hard coal power plants 
7.2 50 NOx: 1.5 

Combustion in the 

manufacturing industry 

Agglomeration plant – 

sinter 
No fuel use 

Switch from Stage1/2 to Stage 3 

– Process NOx control 
6.5 77 

NOx: 0.9 PM10: 0.02 

PM2.5: 0.01 

Table 3 • Main technical measures of Alternative B, their corresponding costs, variation in application (AR), and consequent 

variation of pollutant emissions 

Macrosector Sector Activity Technology 
Cost over 

CLE [M€]  
AR 

[%] 

Emission 

reduction 

[kt/year] 

Non-industrial 

combustion plants 
Fireplaces Fuelwood New fireplace 107 57 VOC: 3.8 

Other mobile sources and 

machinery 
Agriculture Diesel Switch from Stage 1/3 to Stage 5 43.6 42.6 

NOx: 21.6 VOC: 1.6 

PM10: 1.2 PM2.5: 1.1 

Agriculture Pigs 
Pigs–liquid 

systems 

Combination of low nitrogen feed. 

Air scrubber. 

Covered outdoor storage of manure. 

Low ammonia application 

19 20 NH3: 16.4 

Agriculture 
Urea application (incl. 

ABC) 
No fuel use Urea substitution 17.7 50 NH3: 14.1 

Agriculture Other cattle 
Other cattle–liquid 

systems 

Combination of covered outdoor 

storage of manure & low ammonia 

application 

15.7 80 NH3: 13.3 

 

Figure 4 • Yearly average PM2.5 concentration (µg/m3) in the base case 2020 (a), scenario A (b), and scenario B (c). 
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The spatial distribution of the average PM2.5 concentration 

allows us to compute the expected effects on the health of the 

resident population. This is done by considering the population 

structure such as children, asthmatic, and elderly, because each 

class of citizens reacts differently to a decrease (or an increase) in 

the pollutant concentration. 

The three maps in Figure 5 represent the distribution of the 

months of life lost (a fraction of the classical YOLL) in each cell 

by the resident population. Again, the worse conditions occur in 

the central plain area, where most of the population lives, and 

where, in 2020, the PM2.5 pollution reduced the expected life 

length of more than one year. 

 

Figure 5 • Years of life lost (months/person) in the base case 2020 (a), scenario A (b), and scenario B (c). 

Overall, the years of life lost by the almost 20M people living in 

the study domain can be reduced by 47,000 years in case A and 

54,000 years in case B compared to the 2020 situation, if the 

optimal policies at 300 M€ yearly cost are adopted. 

Assuming the low standard value of 50,000 € per YOLL, this 

means that the suggested policy would generate a benefit of about 

2.4 B€ in case A and 2.7 B€ in case B even without considering 

the decrease in morbidity, usually measured in terms of DALYs 

or disability-adjusted life years. Despite all the uncertainties, this 

means that the external benefits of air pollution reduction are 

almost one order of magnitude higher than the implementation 

costs of abatement measures. 

4. Discussion and conclusion 

The above results highlight the significant impact of the 

agricultural and livestock sectors on the Po Valley area and the 

importance of including agricultural policies in developing air 

quality and carbon emission reduction plans. Interestingly, the 

suggested policies act mostly on the farming sector (specifically, 

cattle and pigs), while urea substitution is the only action directly 

related to agricultural practices. Another action that turns out to 

be relevant is the modernization of the agricultural machinery to 

reduce primary PM emissions, besides NOx and VOC. 

The surrogate modeling approach adopted in this study seems 

quite useful for air quality planning studies in different 

environmental contexts. Once a surrogate model has been 

developed, it is possible to rapidly test many alternative courses 

of action thanks to the decoupling of the problems of air pollution 

evaluation and cost quantification. The surrogate model 

computes the air quality index given a certain emission field, but 

the same emission values can be obtained in many different ways 

and at different costs. 

The application of this approach to the highly productive and 

populated area of Northern Italy shows that a reasonable and 

efficient compromise solution would require a yearly investment 

of about 200–300 M€, which would decrease the average PM2.5 

concentration of about 15–17% in comparison with the base year 

2020. Additional investment, even if decided in the most efficient 

way, would not provide a significant further improvement of air 

conditions. 

Given the well-known detrimental effect of PM2.5 on the human 

respiratory system, this improvement would significantly decrease 

the mortality and morbidity within the resident population. If 

translated into economic terms, this represents a benefit at least 

one order of magnitude larger than the corresponding abatement 

costs. Thus, the suggested solutions also have a considerable 

economic return. 

To further mitigate the negative impact of agrofarming activities 

on air pollution, various other practices and technologies have 

been developed and are slowly diffusing in the domain under 

consideration. They go beyond those considered in this study. For 

instance, one can consider livestock housing systems that capture 

and treat manure emissions. Innovative farming techniques, 

such as controlled-release fertilizers and nitrification inhibitors, 

can reduce ammonia emissions from fertilizer application. 

Additionally, cover cropping and reduced tillage can reduce dust 

emissions and improve soil quality. The impact of these and other 

very promising techniques, like precision agriculture, was not 

considered in this study. Precision agriculture, for instance, 

requires the use of advanced technology to optimize farming 

practices, including the application of fertilizers and pesticides. 

By using sensors, drones, and GPS technology, farmers can apply 
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these inputs more efficiently, reducing overuse and the associ-

ated emissions of ammonia, VOCs, and greenhouse gases. Its 

consideration requires a large amount of new data not available 

at the time of this study. 

Organic farming is another important option that is expanding in 

the area under consideration. These practices emphasize using 

natural fertilizers, reduced pesticide use, and improved soil 

health. Organic farming, too, can lead to lower emissions of 

ammonia, VOCs, and synthetic pesticide compounds. It was not 

considered because it represents a change of activity with respect 

to the current situation. 

Despite these limitations, the approach presented above proved 

to help identify the best actions to decrease the impact of 

agriculture on air pollution and can be equally transferred to 

other contexts. In the case of the Po Valley, it showed that the 

contribution of the agrofarming sector to air pollution is substan-

tial, but can be reduced by combining sustainable practices and 

policy measures and that this reduction is efficient from both the 

environmental and economic viewpoints. 
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