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for Computing Non-Linear
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of Passenger Car Suspension
Systems: Double Wishbone Case
Study
Suspension and steering design play a major role in ensuring the correct dynamic behavior
of road vehicles. Passenger cars are especially demanding from this point of view: NVH and
ride comfort requirements often collide with active safety-related requirements such as road
holding in steady-state conditions and stability in transients. Driving pleasure is also
important for market success, therefore accurate steering feedback and predictable
handling properties are additional priorities. Since flexible bushings are used as interface
between the suspension arms and the chassis, extra degrees-of-freedom make the design
process a complex task. While the use of a multibody software is common practice in the
industry, a dedicated computational tool can be more practical and straightforward,
especially when undertaking the design of a new suspension concept ground-up. The paper
presents a computational methodology for the design of an independent suspension with the
associated kinematic and compliance attributes. Typical elastokinematic properties like toe,
camber, wheelbase, and track variations versus tyre forces andmoments can be computed by
means of a dedicated software tool. A sort of validation was performed either by means of a
comparison with a MathWorks SimscapeV

R

Multibody based model. Finally, a sensitivity
analysis is given as an example. Computationally, the method proposed is intuitively based
on the equilibrium equations. The nonlinear equations are then solved with
Newton–Raphson algorithm. Themethod can be also optimized for computational efficiency
and is thoroughly described so that the reader can easily replicate it in the desired
programing environment. [DOI: 10.1115/1.4066092]

Keywords: computational kinematics and dynamics, computational mechanics, nonlinear
phenomena, vehicular dynamics, vehicle suspension, elasto-kinematics

1 Introduction

Modern passenger cars require an intensive effort for the design of
suspension elastokinematic properties because of their relevant
impact on ride and handling. This is reflected in a vast engineering
literature on the subject. The use of multibody models, for instance,
although being the industry standard, is often considered demanding
because of the high level of details required. The development and
application of relatively simple, dedicated design and simulation
tools instead is often considered more practical, especially when
designing a new suspension concept ground up. This tendency is
clearly visible in the related literature as many publications describe
self-developed, peculiar methodologies, often responding to a
varied level of complexity as well as to a different computational

approach. A multibody model is often used as validation in these
cases.
The so-called multilink rear suspension concept was introduced

in the early eighties byMercedes with theW201 (190)model, which
represented a leap forward in terms of elastokinematics. The design
requirements aimed at decoupling longitudinal compliance and
wheel guidance, as well as the innovative way they were achieved
are accurately described in Ref. [1], which is considered a milestone
in the related literature. FEM analysis on suspension link deflection
was used in order to simulate the deflection of rubber bushings.
Among other efforts, significant contributions on design require-

ments for suspension kinematics and elastokinematics have been
released by Volvo [2], Nissan [3,4], Hyundai-Kia [5], and Ford [6],
with the latter focused on the so-called integral link geometry.
Analyzing the literature in the automotive field, pure kinematics is
dealt by Gerrard in Ref. [7]. Another effort from the same author
regarding kinematics synthesis is given in Ref. [8], where significant
limitations also occur, small displacements around the design
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configuration apply, and the interposition of elements between
suspension linkages is not considered, that is to say a layout like the
integral link cannot be modeled. Kinematics is also on focus in Ref.
[9], while the synthesis of five-link kinematics is discussed in Refs.
[10] and [11]. This is a relevant subject, even when neglecting
elastokinematics, due to the optimization complexity with so many
design variables available to play with.
Pure kinematics computation is also used for applications related

tomotorsport [12–14] and for educational purposes aswell [15]. The
integration of a dedicated software with a toolchain for vehicle
dynamics simulation is presented in Ref. [16]. It features a built-in
graphical user interface conceived to facilitate the kinematics design
process.
Papers from well-known authors Knapczyk et al. are cited quite

often. Among many, Ref. [17] still refers to Ref. [1] as a case study
and reports a method for computing the force/displacement
relationship of a five-rod multilink suspension based on the vector
algebraic method. Rubber bushings are described in detail, although
their stiffness is considered in the radial and axial directions only.
While Ref. [18] mainly deals with vertical dynamics, an approach
similar to Ref. [17] is found in Ref. [19], where the role of the
subframe (also referred to as “bogie” in its typical arrangement, i.e.,
connected to the chassis by four, vertical-axis, large rubber
bushings) is also taken into account in order to simulate the
elastokinematic behavior of the rear axle as awhole. Again, from the
same authors comes [20], dealing once again with a rear, five-link
suspension, although with attention to vertical dynamics as well.
The contribution of rubber bushings is considered in Ref. [21],

where a comprehensive model of a double-wishbone front
suspension is used for durability simulations, with specific focus
on the angular travel of ball joints fitted at the outer end of both the
lower and upper control arms as well as at both ends of the steering
rod. Bushings feature nonlinear characteristics in the axial, radial,
torsional, and conical directions.
Various authors adopted the equivalent stiffness approach in

order to correlate suspension geometry and rubber bushing
characteristics to the stiffness at the wheel center. This method is
strongly focused on the design of kinematics and compliance
properties of the suspension as a whole. Compliance properties are
computed at the wheel center as a function of linear bushing
characteristics in Ref. [22]. Kinematics is neglected in this case, as it
is in Ref. [23]. In this case the same authors take link flexibility into
account as well.
Another interesting effort based on the stiffness matrix is Ref.

[24], from the same author ofRefs. [7] and [8]. Once again, however,
the paper deals with small displacements and linear bushings, which
should be seen as an important limitation given their typically
nonlinear behavior [21].
Elastokinematics is the subject of papers focusing on the

MacPherson layout as well. Examples are given in Refs. [25] and
[26], where the bushing stiffness is considered in the radial and axial
directions and fully linear.
An extensive sensitivity analysis is carried out in Ref. [27],

focusing on the interactions between steering kinematics, antiroll
bar rate, elastokinematics, and handling response of a front-wheel-
drive passenger car by means of multibody modeling. The
correlation between elastokinematic modeling and experimental
testing onMichelin’s well-known K&C (kinematics & compliance)
test rig is the subject of Ref. [28]. Rubber bushings aremodeled quite

accurately, while according to the authors ball joint friction and the

visco-elastic properties of rubber also play an important role in the

overall suspension behavior.
Starting again from experimental data, reverse engineering of the

three translational bushing characteristics is the aim of Ref. [29]. In
this case, rubber joints can be placed either side of each suspension
link. All bushing characteristics however are de-emed as linear: this
is a typical case study of an identification process. It also seems that
the assumption of variable length suspension links might require
further assessment. Nonlinear stiffness of bushings along all six
degrees-of-freedom is instead adopted in Ref. [30], aimed at the

computation of joint forces on the chassis side of a double-wishbone
suspension. In this work, which in the author’s opinion seems to be
one of the most complete, the wheel-side bushings are not
considered, and all elements except the spring are rigid. However,
the spring is considered as a simple elastic element without
considering that it is often mounted on the frame and suspension
by means of rubber bushings. The nonlinearity of stiffnesses is
considered by means of force–displacement curves composed of
several linear segments.
Finally, the methodology behind an earlier version of the well-

known commercial tool Shark
VR
byLotusEngineering is described in

Ref. [31]. In this tool, both wheel-side and frame-side bushings can
be inserted, but limitations remain: stiffnesses can only be linear.
Also, the kinematics of the system is not taken into account; the tool
calculates the stiffness matrix of the suspension, linearizing it, but
this is only good for small deformations.
As a general rule, most of the papers in the literature tend to

neglect one or more factors of the real-world design. Either the
bushings are represented with linear characteristics or with
nonlinear curves but only for translational displacements, i.e., in
the axial and radial directions only,while the angular deflection rates
are not considered. Another limitation that is often found is the fact
that rubber bushings are featured on the chassis side of suspension
arms only, while in current suspension systems they are sometimes
located between the suspension arms and the wheel carrier as well,
or even in the middle of the trackrod. Some papers also tend to
linearize suspension behavior in a small displacement range around
the static or design configuration with a single stiffness matrix.
This paper proposes an algorithm that can overcome all the above-

mentioned related problems, attempting to create a comprehensive
methodology. Above all, this paper can be able to fully handle the
nonlinear stiffness characteristics typical of bushings. Purpose of
this work is to provide a method for the solution of the suspension
elastokinematic problem, bymeans of a generalmethod enabling the
design ofmost of themodern layouts, from simple semitrailing arms
to all kinds of suspensions with a virtual instantaneous axis of
rotation in steering or under load, including the so-called integral
link geometry. Bushings can be described with their stiffness
properties for all six degrees-of-freedom and with real-world,
nonlinear curves. They can be located either side of each suspension
arm, i.e., on the chassis side and/or on the wheel side. The flexibility
of trackrod can also be represented by means of equivalent,
nonlinear bushings. Thewheel bearing stiffness can be considered as
well. Wheel movement hence variations of vehicle dynamics-
relevant parameters like camber, side view angle, toe, track,
wheelbase and vertical displacement can be computed under any
combination of road loads: braking, traction, cornering and bump
impacts. Any combination of jounce and steer motion can be
simulated within the whole range allowed by bump and rebound
stop. Suspension’s joints and chassis loads can also be computed.
The proposed algorithm has been presented in a general

mathematical formulation; however, it has been implemented in
the Matlab environment. This environment was chosen as it
specializes in matrix calculation and allows the programmer to
write vectors, matrices, and operations between them in an intuitive
way, and is characterized by good computational speed despite
being a high-level language. The Matlab environment also allows
interfacing with Simulink, enabling the user to implement other
functions, e.g., implementing optimization logic or sensitivity
analysis. However, Matlab is not freely accessible, and this may be
the main limitation. An excellent alternative could be Python, using
existing mathematical libraries. Another alternative, which would
guarantee higher computation speeds than Matlab, could be to
implement the code in Cþþ, although this is less intuitive to code.

2 Suspension Model Description

In this model, two types of elements are considered. The first type
of element is called “spring rod” and it is composed by two bushings
at the ends and a rod with an axial stiffness. The second element is

101006-2 / Vol. 19, OCTOBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/19/10/101006/7368090/cnd_019_10_101006.pdf by guest on 07 D
ecem

ber 2024



called “rigid element” and it is composed by a rigid body with any
number of bushings. The two elements are shown in the Fig. 1.
Any element can be attached to each other element or to the

ground. The elements connected to each other share a bushing.
Otherwise, the element is attached to the ground by linking its
bushing to the global reference system (GRS) which represents the
body chassis of the vehicle.
By combining these elements, it is possible to create any type of

independent suspension. For example, in a doublewishbone, the two
wishbones will consist of a rigid element connected to the chassis by
two bushings and to the upright by one bushing. The uprightwill also
be a rigid element with three bushings, two connected to the
wishbones and one to the steering tie rod; this one will instead be
modeled using a spring rod element. A Multilink suspension can be
easily modeled using five spring rods for the arms and a rigid
element with five bushings for the hub carrier. A MacPherson strut
can also bemodeled by constraining a spring rod between the chassis
and the hub carrier and making the bushing that connects them
infinitely rigid. It is also possible to create an integral link suspension
attaching a spring rod between the wishbone and the upright.
Finally, to calculate the elastokinematics configuration under

lateral loadmore realistically, it is possible to steer the suspension by
moving the attachment point on the chassis side of the steering rod.

2.1 Bushings Definition. By playing with bushing stiffnesses,
it is also possible to exclude the elastic component. For example, by
increasing the translation stiffness by a few orders of magnitude and
decreasing the rotation stiffness, it is possible to turn the bushing into
ball joints. Figure 2 represents the bushing model described in this
work.
Each bushing must be defined with its position Xb ¼ xb yb zb½ � in

the GRS and with three angles hb ¼ hbx hby hbz
� �

, with which it is
therefore possible to define a rotation matrix R½ � to identify the
orientation of the bushing in the GRS. The bushing is defined by a
function “Reaction Forces Vector” (1) that contains six functions
that correspond to the three reaction forces and the three reaction
moments generated by the bushing as a function of the six
deformations ubLRS of the bushing itself

Fb bLRSð ÞLRS ¼

Fbx ubxð Þ
Fby ubyð Þ
Fbz ubzð Þ
Fbrx ubrxð Þ
Fbry ubryð Þ
Fbrz ubrzð Þ

266666664

377777775 (1)

where “LRS” stays for local reference system. Both the deforma-
tions and the reaction forces vector are defined in the LRS in this
case. Knowing the rotation matrix Rb hbð Þ that identifies the
orientation of the bushing, it is possible to calculate the reaction
force in the GRS (2).

Fb ubð ÞGRS ¼ Rbexp½ � � Fb Rbexp½ �T � ubGRSð Þ
� �LRS

(2)

where Rbexp½ � is the expanded rotation matrix (3) that is defined as
follows:

Rbexp hbð Þ� � ¼ Rb hbð Þ½ � 0

0 Rb hbð Þ½ �

" #
(3)

The rotation matric Rb is calculated with a Tait-Bryan transforma-
tion (4) X1Z2Y3.

Rb hbð Þ ¼ rotx hbxð Þ½ � � rotz hbzð Þ½ � � roty hby
� �� �

(4)

where

rotx að Þ½ � ¼
1 0 0

0 cos a �sin a
0 sin a cos a

264
375 (5)

roty að Þ½ � ¼
cos a �sin a 0

sin a cos a 0

0 0 1

264
375 (6)

rotz að Þ½ � ¼
cos a 0 sin a
0 1 0

�sin a 0 cos a

264
375 (7)

Each function of Fb can be any function of the deformation ub, even
nonlinear.

2.2 Element Definition. For the spring rod element, a function
Fa uað Þ is also defined that represents the axial elastic force as a
function of the axial deformation of the element. It can also be any
function, just like for the bushings. The force–displacement curve
that characterizes the spring element can be generated at will. It is
also possible to insert a preload value as a displacement. Each i-th
element of the suspension is described by a vector uGRSi ¼
ux uy uz urx ury urz½ � containing the displacement of one of its
bushings from its design position and by its axial displacement uai
if it is a spring rod element. The displacement vector of the other
bushings of the element can be easily calculate trough transforma-
tion matrix because the element is a rigid body. To calculate the
deformed configuration of the suspension is necessary to know all
the deformation vector and axial deformation of each element. The
vector (8) containing these vectors is defined as follows:

U ¼ uGRS1 uGRS2 … uGRSn ua1 ua2…uan
� �

(8)

Fig. 1 General “spring rod” and “rigid element” of the suspen-
sion model Fig. 2 Bushing model with linear and rotational stiffnesses
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To know the vector u, it is necessary to solve a system of N
equations, where N depends on the number of elements (9).

N ¼ 6 � Nrigid element þ 7 � Nspring rod (9)

On each rigid element is possible to apply an external force on any
point of the body. It is necessary to define a vector Fexti (10) and its
application point XFexti.

Fexti ¼ Fextx Fexty Fextz Mextx Mexty Mextz½ � (10)

3 Solving Algorithm and Equations

3.1 Newton–Raphson Solving Algorithm. To solve the equa-
tion f Uð Þ ¼ 0 a Newton–Raphson method (11) for multiple
equation has been used to manage the nonlinearity of the equations.
This method is iterative, and the solution is accepted when
max abs f Uð Þ� �� �

is less than e which a small number

Uiterþ1 ¼ Uiter � J Uiterð Þ½ ��1 � f Uiterð Þ (11)

whereU0 ¼ 0 0…0½ � and J Uiterð Þ½ � is the Jacobian matrix (12) of the
function f Uð Þ calculated in UIter.

J½ � ¼

@f1 Uð Þ
@U1

� � � @f1 Uð Þ
@UN

� . .
.

�
@fN Uð Þ
@U1

� � � @fN Uð Þ
@UN

0BBBBBB@

1CCCCCCA (12)

The Newton–Raphson algorithm works well if the solution is
sufficiently close to the initial condition. For this reason, it may
happen that the solver does not converge, particularly in cases where
there are high forces or low stiffnesses. One way to overcome this
problem has been to break the resolution algorithm into multiple
iterations, progressively increasing the vector of external forces. As
an example, the code describing the Newton–Raphson algorithm
used in this work is shown in Fig. 3. The code is given both in the
MATLAB language and in Python. It is particularly noticeable how the
function f is also a function of external forces and how the algorithm
is broken into three iterations (in this example) to ensure that for
each iteration the solution is not too far from the starting point.

3.2 General Equations. The function f Uð Þ is a set of N
functions, same dimensions of the displacement vector U.

3.2.1 External Equilibrium Equation. The first six functions
(13) and (14) represent the equilibrium equation of the systemwhere
the external forces and moments must be equal to the constraint

reaction generated by the bushings which is attached to the ground
and by the axial reaction of the spring rod element which has one of
the bushings attached to the ground.

f ¼
X

Fext 1 : 3½ � �
X

FbChassis 1 : 3½ � ubð Þ (13)

f ¼
X

Fext 4 : 6½ � þ
X

Fext 1 : 3½ � � XFext

�
X

FbChassis 4 : 6½ � �
X

FbChassis 1 : 3½ � ubð Þ � Xb (14)

3.2.2 Internal Equilibrium Equation. The next functions (15)
and (16), on the other hand, describe the also kinematic constraints
of the system, considering the stiffness of the bushings which is not
attached to the ground and the stiffness of the springs.
A set of six functions is written for each bushing that connects two

different elements, so a bushing not constrained to the frame. The
functions calculate the difference between the reaction force of the
internal bushing and the resultant of the forces and moments
calculated around the bushing, of one of the two elements chosen
arbitrarily.

f ¼
X

Fb 1 : 3½ � ubð Þ � FbInt 1 : 3½ � ubð Þ (15)

f ¼
X

Fb 4 : 6½ � ubð Þ þ
X

FbInt 1 : 3½ � ubð Þ � X � XIntð Þ
� Fb 4 : 6½ � ubð Þ (16)

FbInt and XInt represents the reaction forces and position of the
bushing that connects the two elements, Fb represents the forces
vector of the other bushings of the chose element. The deformation
vector ub and the force vector fb are in the local reference system of
the bushing. It is therefore necessary to first calculate the appropriate
relative deformations of the bushings in the GRS and then operate
using the rotation matrices as described in Eq. (2).

3.2.3 Axial Stiffness Equilibrium. Finally, the lasts functions
(17) must be written to consider the axial stiffness of the spring rod
elements. For each spring rod element, the function is written to
calculate the difference between the axial force generated by the
spring and the modulus of the reaction force vector of one of the two
bushings of the element. For convenience, it is best to choose the
bushing whose displacement vector ub also describes the displace-
ment u of the element.

f ¼ kFb ub 1 : 3½ �ð Þk � Fa uað Þ (17)

To consider the steering of the suspension by, for example, moving
the frame side point of an element representing the trackrod, it is
necessary to introduce a displacement vector dRack that is used to

Fig. 3 Code describing the Newton–Raphson algorithm. On the left in MATLAB code, on the right in Python
code.
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translate theX vector that describes the position of the bushing in the
equations.
At this point, having written the equations as a function of the

displacements u that describe the position and rotation of the
elements in space and the axial deformations ua, it is possible to
apply the solving algorithm to find the solution that represents the
deformed configuration of the suspension.

3.3 Double Wishbone Suspension Example. The equations
described earlier were written in a very general way on purpose. For
a better understanding of the method, it was therefore decided to
build an example suspension and the equations for solving the
elastokinematics of this configuration will be described below.
A double wishbone front suspension was chosen. The two

wishbones weremodeledwith rigid elements, as was the hub carrier.
The trackrod was modeled with a spring rod element to also provide
axial compliance. The spring was also modeled with a spring rod
that connects the frame to the lower arm. The suspension scheme can
be seen in Fig. 4.
The elements are connected to each other and to the frame through

deformable bushings. For compactness, wewill call the names of the
bushings that make up the suspension with acronyms: The front and
rear bushings on chassis side of the upper arm are UAFc and UARc,
respectively. UAw is the bushing of the upper armonwheel side. For
the lower arm, the bushing’s names are LAFc, LARc, and LAw. For
the trackrod, the names are TRc and TRw chassis side and wheel
side, respectively, and for the spring bushing the names are Sc and
Sw. The external forces and moments are applied only in xFext
which is a point belonging to the rigid element that describes the
upright. For the elements, the upper and lower arm is called UA and
LA , respectively, TR, S, and UP for trackrod, spring and upright.
WC is the wheel center.
This suspension is modeled with three rigid elements and two

spring rods for a total of 3 � 6þ 2 � 7 ¼ 32 degrees-of-freedom.U is
a 32� 1 vector and the number of equations to solve is 32. These
equations are reported below creating the function f Uð Þ which will
subsequently be set equal to zero to find the solution of the system.
For simplicity of writing, we will establish that in the subsequent

equations each ub and Fb vector is referred to in the GRS. However,
we know that the Fb function is defined in its local reference system

as a function of the displacement vector ub, also defined in LRS. So,
only in the writing of the equations below, the change of reference
system described in Eq. (2) is omitted to make them more readable.

3.3.1 External Equilibrium for Double Wishbone. The first six
functions represent the total equilibrium of the system. The first
three (18) functions calculate the difference between the external
forces and the reaction forces of the bushingswhich is attached to the
chassis

f 1 : 3½ � ¼ Fext 1 : 3½ � �
X
j

Fbj 1 : 3½ � ubj 1 : 3½ �� �
(18)

The fourth to sixth function (19) calculate the difference between the
moments generated by the external loads and the moments
generated by the bushings on the chassis side

f 4 : 6½ � ¼Fext 4 : 6½ ��Fext 1 : 3½ ��XFext

�
X
j

Fbj 4 : 6½ � ubj 4 : 6½ �� �þX
j

Fb 1 : 3½ � ubj 1 : 3½ �� ��Xbj

(19)

where j ¼ UAFc, UARc, LAFc, LARc, TRc, Scf g both for Eqs. (18)
and (19).
As mentioned before, f is a function of U which is the vector

which contains displacement of the elements u and not function of
the bushing’s deformation ub. So, it is necessary to redefine ub
vectors in function of u. For each element attached to the chassis we
set that the associated u vector is equal to one of its bushing’s
vectors. The chosen one is called main bushing (20)–(23). If the
element is not constrained to the chassis, this equality cannot be
made, and the displacement of the element will be given by the
deformation of the bushing added to the displacement and rotation in
space of the bushing itself (24) and (25).

uUA ¼ ubUAFc (20)

uLA ¼ ubLAFc (21)

uTR ¼ ubTRc (22)

uS ¼ ubSc (23)

uUP 1 : 3½ � ¼ ubUAw 1 : 3½ � þ XbUAUAw � XbUAw (24)

uUP 4 : 6½ � ¼ ubUAw 4 : 6½ � þ uUA 4 : 6½ � (25)

The upright is not attached to the chassis and XbUAUAw represents the
new point of theXbUAw bushing associatedwith themovement of the
upper triangle. The understanding of this termwill become clearer in
later chapters.
The functions 18 and 19 refer to the vectors in the GRS. It is now

necessary to express the ub vectors of the other bushings of the
element in terms of the u vector of the element. For each element, a
reference system attached to the element is then created, oriented
like theGRS, and centered on themain bushing previously chosen in
Eqs. (20)–(25) to describe the rotation and translation of the element
itself. This reference system is called Element Reference System
ERS. M is therefore the transformation matrix (26) associated with
ERS, attached to the element, and GRS.

M Xb, uð Þ½ � ¼
Xb 1½ � þ u 1½ �

R u 4 : 6½ �ð Þ½ � Xb 2½ � þ u 2½ �
Xb 3½ � þ u 3½ �

0 0 0 1

26664
37775 (26)

whereXb is the position vector of themain bushing andR u 4 : 6½ �ð Þ is
the rotation matrix and describe the rotation of the element (27). In
the design configuration it is an identity matrix. In general, the

Fig. 4 Double Wishbone suspension scheme used in this work.
“Spring rod” for trackrod and spring. “Rigid element” for upper
arm, lower arm, and upright.
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rotation matrix is defined in a similar way to what is described in
Eq. (4) with a Tait-Bryan transformation X1Z2Y3.

R u 4 : 6½ �ð Þ½ � ¼ rotx u 4½ �ð Þ � rotz u 6½ �ð Þ � roty u 5½ �ð Þ (27)

First, it is necessary to calculate the relative coordinates of the
positions of the other bushings of the element in the ERS reference
system. The transformation matrixM0 Xb, 0ð Þ associated with ERS
is then created, centered in Xb but with a null u vector (28)

M0 Xb, 0ð Þ½ � ¼
1 0 0 Xb 1½ �
0 1 0 Xb 2½ �
0 0 1 Xb 3½ �
0 0 0 1

26664
37775 (28)

It is now possible to calculate the relative coordinate XbREL of each
other bushing of the element (29)

Xb 1½ �REL,Element

Xb 2½ �REL,Element

Xb 3½ �REL,Element

1

26664
37775 ¼ M0½ ��1 �

Xb 1½ �
Xb 2½ �
Xb 3½ �
1

26664
37775 (29)

For the rigid element the ub bushing chassis side deformations are
then expressed as a function of u of the element.

ub 1 : 3½ � ¼ XbElement uð Þ � Xb (30)

ub 4 : 6½ � ¼ u 4 : 6½ � (31)

Equations (30) and (31) are true only for chassis side bushings. The
displacement of the part constrained to the element is equal to the
deformation of the bushing since the bushing is fixed to the chassis.
The rotational deformation is equal for each bushing in the

element. The translational deformations are calculated with the
differences with the between the new position of the bushing
XbElement uð Þ attached on the element side and the position of the
bushing Xb on the fixed side where:

XbElement uð Þ 1½ �
XbElement uð Þ 2½ �
XbElement uð Þ 3½ �

1

26664
37775 ¼ M Xb, uð Þ½ � �

Xb 1½ �REL,Element

Xb 2½ �REL,Element

Xb 3½ �REL,Element

1

26664
37775 (32)

It is then now possible to write the equations for linking bushing
deformations on the chassis with element deformations. For the
upper arm

M0UA½ � ¼
1 0 0 XbUAFc 1½ �
0 1 0 XbUAFc 2½ �
0 0 1 XbUAFc 3½ �
0 0 0 1

26664
37775 (33)

XbREL,UAUARc

h i
1

" #
¼ M0UA½ ��1 � XbUARc½ �

1

� 	
(34)

MUA½ � ¼
R uUAð Þ� �

XbUAFc þ uUA½ �

0 0 0 1

264
375 (35)

XbUAUARc
� �

1

" #
¼ MUA½ � � XbREL,UAUARc

h i
1

" #
(36)

It is nowpossible to calculate the bushing deformation on the chassis
side.

ubUARc 1 : 3½ � ¼ XbUAUARc uUAð Þ � XbUARc (37)

ubUARc 4 : 6½ � ¼ uUA 4 : 6½ � ¼ uUAFc 4 : 6½ � (38)

This procedure is better illustrated in Fig. 5.
The same procedure is carried out for the lower arm

XbREL,LALARc

h i
1

" #
¼ M0LA½ ��1 � XbLARc½ �

1

� 	
(39)

XbLALARc
� �

1

" #
¼ MLA½ � � XbREL,LALARc

h i
1

" #
(40)

ubLARc 1 : 3½ � ¼ XbLALARc uLAð Þ � XbLARc (41)

ubLARc 4 : 6½ � ¼ uLA 4 : 6½ � ¼ uLAFc 4 : 6½ � (42)

For spring rod elements, this step is not necessary as you always
have only one bushing constrained to the chassis.

3.3.2 Internal Equilibrium forDoubleWishbone Elements. The
first set of equations is now consistent, and we can move on to the
second set. In these equations wewill instead consider the “internal”
bushing that connects the elements together as described in Eqs. (15)
and (16). Regarding the bushingUAw that connects the upper arm to
the upright the functions (43) are

f 7 : 12½ � ¼ RUA½ � � FbUAwð RUA½ �T � ubUAwÞ � TFUA (43)

Where TFUA is the vector that contains the total forces and moments
calculated in the bushings and generated by one of the elements. In
this specific case, the arm was chosen as the element

TFUA 1 : 3½ � ¼ FbUAFc ubUAFc 1 : 3½ �ð Þ þ FbUARc ubUARc 1 : 3½ �ð Þ
(44)

TFUA 4 : 6½ � ¼ FbUAFc ubUAFc 4 : 6½ �ð Þ þ FbUARc ubUARc 4 : 6½ �ð Þ
þ FbUAFc ubUAFc 1 : 3½ �ð Þ � XbUAFc � XbUAUAw

� �
þ FbUARc ubUARc 1 : 3½ �ð Þ � XbUARc � XbUAUAw

� �
(45)

XbUAUAw is the new position of the bushing due to the deformation of
the upper arm element. It is calculated in the same way of the other
bushing in the rigid element (46) and (47).

Fig. 5 Upper arm, scheme to identify the chassis side bushing
deformations
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XbUAUAw
� �

1

" #
¼ MUA½ � � XbREL,UAUAw

h i
1

" #
(46)

XbREL,UAUAw

h i
1

" #
¼ M0UA½ ��1 � XbUAw½ �

1

� 	
(47)

RUA is the rotation matrix associated with the upper arm (48). Since
the ub vectors are referential to the GRS, it is necessary to return
them to the local reference system since this bushing can rotate in
space since it is constrained to the element and not to the frame.

RUA½ � ¼ rotx uUA 4½ �ð Þ � rotz uUA 6½ �ð Þ � roty uUA 5½ �� �
(48)

The bushing deformation ubUAw, is

ubUAw 1 : 3½ � ¼ uUP 1 : 3½ � � XbUAUAw � XbUAw
� �

(49)

ubUAw 4 : 6½ � ¼ uUP 4 : 6½ � � uUA 4 : 6½ � (50)

Other elements of the function f regarding the lower triangle can be
written in a similar way (51).

f 13 : 18½ � ¼ RLA½ � � FbLAwð RLA½ �T � ubLAwÞ � TFLA (51)

RLA½ � ¼ rotx uLA 4½ �ð Þ � rotz uLA 6½ �ð Þ � roty uLA 5½ �ð Þ (52)

In this case, the lower triangle is also constrained to the spring
through a bushing, so we enter the TFS vector that accounts for
forces and moments generated by the spring.

TFLA 1 : 3½ � ¼ FbLAFc ubLAFc 1 : 3½ �ð Þ þ FbLARc ubLARc 1 : 3½ �ð Þ
þ TFS 1 : 3½ � (53)

TFLA 4 : 6½ � ¼ FbLAFc ubLAFc 4 : 6½ �ð Þ
þ FbLARc ubLARc 4 : 6½ �ð Þ þ TFS 4 : 6½ �
þ FbLAFc ubLAFc 1 : 3½ �ð Þ � XbLAFc � XbLAUAw

� �
þ FbLARc ubLARc 1 : 3½ �ð Þ � XbLARc � XbLAUAw

� �
þ TFS 1 : 3½ � � XbLASw � XbLAUAw

� �
(54)

XbREL,LALAw

h i
1

" #
¼ M0LA½ ��1 � XbLAw½ �

1

� 	
(55)

XbLALAw
� �

1

" #
¼ MLA½ � � XbREL,LALAw

h i
1

" #
(56)

XbREL,LASw

h i
1

" #
¼ M0LA½ ��1 � XbSw½ �

1

� 	
(57)

XbLASw
� �

1

" #
¼ MLA½ � � XbREL,LASw

h i
1

" #
(58)

Everything in Eqs. (53) and (54) is very similar towhat we saw in the
previous set of Eqs. (44) and (45). The only significative difference
is the presence of the term ubLAw representing the deformation of the
bushing connecting hub carrier and lower arm.
Again, as always, it is necessary to relate the bushing deformation

back to the displacement vector of the element. In this case, to
calculate the bushing deformation vector, it will be necessary to
know the new position of the bushing constrained on the arm and

constrained on the upright. The difference of these two vectors is the
translational bushing deformation (59)

ubLAw 1 : 3½ � ¼ XbUPLAw uUPð Þ � XbLALAw uLAð Þ (59)

Regarding rotations, the bushing deformation is given by the
difference between the rotation of the upright and the rotation of the
lower arm (60) because the bushing connects these two elements

ubLAw 4 : 6½ � ¼ uUP 4 : 6½ � � uLA 4 : 6½ � (60)

Since the upright is a rigid element, the procedure is analogous to
that seen for the two wishbones

XbREL,UPLAw

� �
1

" #
¼ M0UP½ ��1 � XbLAw½ �

1

� 	
(61)

XbUPLAw
� �

1

" #
¼ MUP½ � � XbREL,UPLAw

� �
1

" #
(62)

This procedure to identify the bushing deformation is also explained
in the Fig. 6.
For spring rod elements, the axial deformation ua of the element

must also be considered. Once cXbElement
2 has been calculated through

the transformation matrix and the relative coordinates as with what
we have already seen for the rigid element. An additional step is
needed to calculate the new point XbElement

2 while also considering
axial deformation

XbElement
2 ¼ cXbElement

2 þ ua � cosdir (63)

Where � is the element-by-element product and cosdir is the vector
with the cosine directors (64) associated with the axial direction of
the spring rod element.

cosdirelement ¼
XbElement

1 � cXbElement
2

� �
kXbElement

1 � cXbElement
2 k

(64)

XbElement
1 and XbElement

2 are the new position vector associated with
two bushing of the spring rod element. This procedure is well
described in Fig. 7.
After explaining this procedure, we can then proceed to the

calculation of XbSSw (69).

XbSSc ¼ XbSc þ uS (65)

Fig. 6 Lower arm and upright, scheme to identify wheel side
bushing deformations
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XbREL,SSw

h i
1

" #
¼ M0S½ ��1 � XbSw½ �

1

� 	
(66)

cXbSSwh i
1

" #
¼ MS½ � � XbREL,SSw

h i
1

" #
(67)

cosdirS ¼
XbSSc � cXbSSw� �
kXbSSc � cXbSSwk (68)

XbSSw ¼ cXbSSw þ uaS � cosdirS (69)

To complete the equations describing the balance of the lower arm,
we calculate the vector TFS (70) and (71).

TFS 1 : 3½ � ¼ FbSc ubSc 1 : 3½ �ð Þ (70)

TFS 4 : 6½ � ¼ FbSc ubSc 4 : 6½ �ð Þ þ FbSc ubSc 1 : 3½ �ð Þ
� XbSSc � XbSSw
� �

(71)

It is now possible towrite the new set of functions of f to describe the
equilibrium on the bushing connecting the springwith the lower arm
(72).

f 19 : 24½ � ¼ RLA½ � � FbSw RLA½ �T � ubSw
� �

� TFS (72)

Where
ubSw ¼ XbSSw uS, uaSð Þ � XbLASw uLAð Þ (73)

The steering tie rod is nowconsidered. The procedure is quite similar
to what has already been seen. However, the possibility of moving
the chassis-side bushing along the y-axis to simulate the translation
of the rack is considered. So, a new vector dTRc is considered (74)

dTRc ¼

0

dRack

0

0

0

0

266666664

377777775 (74)

Where dRack is the rack displacement. The new set of functions
associatedwith the trackrod attached to the upright is reported below
(75).

f 25 : 30½ � ¼ RTR½ � � FbTRw RTR½ �T � ubTRw
� �

� TFTR (75)

Where RTR is the rotation matrix associated with the trackrod
element displacement uTR. ubTRw is expressed in Eqs. (76) and (77)

ubTRw 1 : 3½ � ¼ XbUPTRw uUPð Þ � XbTRTRw uTR, uaTRð Þ (76)

ubTRw 4 : 6½ � ¼ uUP 4 : 6½ � � uTR 4 : 6½ � (77)

XbREL,UPTRw

� �
1

" #
¼ M0UP½ ��1 � XbTRw½ �

1

� 	
(78)

XbUPTRw
� �

1

" #
¼ MUP½ � � XbREL,UPTRw

� �
1

" #
(79)

like the spring, but also considering the rack displacement:

XbTRTRc ¼ XbTRc þ uTR þ dTRc (80)

XbREL,TRTRw

� �
1

" #
¼ M0TR½ ��1 � XbTRw½ �

1

� 	
(81)

XbTRTRw
� �

1

" #
¼ MTR½ � � XbREL,TRTRw

� �
1

" #
(82)

cosdirTR ¼
XbTRTRc � cXbTRTRw� �
kXbSTRc � cXbSTRwk (83)

XbTRTRw ¼ cXbTRTRw þ uaTR � cosdirTR (84)

M0TR is calculated similarly to all other elements. The matrixMTR,
on the other hand, is calculated by also considering the frame-side
bushing translation given by the steering (85).

MT½ � ¼
R uTRð Þ� �

XbTRc þ uTR þ dTRc½ �

0 0 0 1

264
375 (85)

To conclude this set of equations, we also define the force vector
TFTR (86) and (87).

TFTR 1 : 3½ � ¼ FbTRc ubTRc 1 : 3½ �ð Þ (86)

TFTR 4 : 6½ � ¼ FbTRc ubTRc 4 : 6½ �ð Þ
þ FbTRc ubTRc 1 : 3½ �ð Þ
� XbSTRc þ dTRc 1 : 3½ � � XbSTRw
� �

(87)

3.3.3 Equilibrium for Spring Rod Double Wishbone’s Element.
Finally, to complete the function f we need to define the last two
functions (88) and (89). These take into account the axial stiffness of
the spring and the trackrod.

f 31ð Þ ¼ kFbSc ubSc 1 : 3½ �ð Þk � FaS uaSð Þ (88)

f 32ð Þ ¼ kFbTRc ubTRc 1 : 3½ �ð Þk � FaTR uaTRð Þ (89)

Where ubSc ¼ uS and ubTRc ¼ uTR.
Now that the function f is totally defined, it is possible to calculate

the displacement vectorU describing the deformed configuration of

Fig. 7 Spring rod element, scheme to identify bushing deforma-
tions with axial displacement
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the suspension by means of the Newton–Raphson algorithm
described earlier in Eq. (11).

4 Model Comparison With Multibody

All equations, including the function and solving algorithm were
implemented inMathWorksMatlab

VR
. The suspension pickup points

are reported in Table 1. It is specified that this is not a real suspension
but only a model created for demonstration purposes for this work.
The reference system in question is a right-handed system,

originating in the center of the front axle. The X-axis faces in the
forward direction of the vehicle and the Z-axis faces upward.
For the comparison, the same suspension has been designed using

MathWorks Simscape
VR
Multibody with the same pickup points,

same bushing, and same forces (Fig. 8). It is not the purpose of this
paper to explain how the suspension model was recreated on this
software.
Being amultibody software, the simulation also takes inertial and

damping effects into account. For this reason, only the last values are
taken as useful data for comparison, once the transient is exhausted
and the whole system is at steady-state, equilibrium is given only by
the stiffnesses. For simplicity, in the design configuration all
bushings are oriented the sameway and in particular the local axes of
each bushing are oriented as the axes of the GRS.
Unfortunately, Simscape

VR
does not allow modeling of bushing

with nonlinear stiffnesses. it is only possible to assign six stiffness
values for each bushing and one axial stiffness. Therefore, linear
stiffnesses are used for both bushing and axial compliance for
models comparison purposes.
All frame-side bushings have the same stiffnesses, and their

values are given in Table 2. Same for wheel-side bushing, which are
all the same and have the same translational stiffnesses as frame-side
bushing but one-tenth the rotational stiffness. This is to avoid
making the suspension too stiff during steering. It should be noted
that again the stiffness values do not represent actual bushing,
although an order of magnitude consistent with commercially
available bushing is chosen
Table 3 shows the general characteristics of the vehicle on which

this idealized front suspension is mounted. The vehicle data are used
to calculate the load cases that will be used later for the comparison.
Table 4 shows the load cases used to compare the model with the

reference. Ten cases were chosen, containing braking, acceleration,
lateral, and combined loads. The last two load cases, on the other
hand, want to recreate the suspension hitting a pothole while braking
and the wheel hitting a curb sideways.
The load cases are defined as three forces and three moments

applied on the hub carrier. Loads were calculated by considering
vehicle data and load transfers given by accelerations. It is not the
purpose of this paper to report the equations bywhich the loads were
obtained. The points of load application vary according to the case
and are given in Table 5 with the translation of the rack.
Figure 9 show the schematic of the suspension in the design

configuration and the deformed configuration after applying load
case number 4 and 7, as an example. Twoviews of the suspension are

shown in the figures, and the deformed configuration calculated
through the model and that calculated through Simscape

VR
is shown.

To do the comparison, we chose to compare the values describing
the position is the orientation of the wheel in space in the deformed
configuration. Specifically, Tables 6 and 7 show the changes from
the design configuration of the wheel center coordinates and
rotations about their axes, namely, camber, toe and side view angle
(SWA). Table 6 shows the calculation result of the model, and
Table 7 shows the calculation result of Simscape

VR
.

Table 8 shows the normalized root mean squared error (nRMSE)
and the Pearson correlation coefficient (R) values calculated by the
model compared with those calculated with Simscape

VR
.

The results shown in Table 8 are also shown in the graphs in
Fig. 10 for better visualization.

Table 1 Suspension pickup points coordinates

X mmð Þ Y mmð Þ Z mmð Þ

UAFc 50 400 480
UARc �180 420 470
UAw �30 660 450
LAFc 0 300 210
LARc �300 350 220
LAw 30 700 200
TRc 120 400 460
TRw 100 660 450
Sc 20 400 700
Sw 0 600 180
WC 0 750 320

Fig. 8 Suspension model designed in Simscape
VR
Multibody

Table 2 Bushings translational and rotational stiffness

Kx
N

mm


 �
Ky

N

mm


 �
Kz

N

mm


 �
Krx

Nm

deg


 �
Kry

Nm

deg


 �
Krz

Nm

deg


 �
UAFc 1000 2000 3000 1500 30000 30000
UARc 1000 2000 3000 1500 30000 30000
UAw 1000 2000 3000 150 3000 3000
LAFc 1000 2000 3000 1500 30000 30000
LARc 1000 2000 3000 1500 30000 30000
LAw 1000 2000 3000 150 3000 3000
TRc 1000 2000 3000 1500 30000 30000
TRw 1000 2000 3000 150 3000 3000
Sc 1000 2000 3000 1500 30000 30000
Sw 1000 2000 3000 150 3000 3000

Table 3 Vehicle characteristics used for load cases calculation

Wheelbase (mm) 2750
Front track (mm) 1500
Rear track (mm) 1500
CG height (mm) 500
Traction RWD
Total mass (kg) 1600
Total weight distribution (%) 60
Nonsuspended mass front (kg) 80
Nonsuspended mass rear (kg) 80
Roll stiffness distribution (%) 60
Wheel radius (mm) 320
Braking forces distribution (%) 65
Pneumatic trail (mm) 20
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5 Non-Linear Bushings and Suspension Element
Analysis

This chapter reports the results of elastokinematics computations
using nonlinear bushings, spring and trackrod. The same suspension
scheme seen in the previous chapter is used, with the same pickup
points. However, nonlinear stiffnesses are used to better simulate the
true behavior of bushing. Specifically, each of the six
force–displacement functions that characterize bushing are

described by the function FbNL ubð Þ. Each of these functions is
described by a fifth-degree polynomial with a first-degree term
inside to describe the linear behavior for small displacements. The
shape of the function is graphed in Fig. 11. Displacements and
rotations are defined in millimeters and radians.

FbNL ubð Þ ¼ ub � cxð Þ�5 þ 1000 � cx � ubÞ � cy (90)

Where, for the bushings, the coefficients cx and cy are two 6x1
vectors associated with each of the six bushing stiffnesses. All
bushings are oriented as described in the previous chapter, and the
rotational stiffnesses of the wheel-side bushings are one-tenth of
those on the chassis-side as can be seen from in Eqs. (91)–(93).

cxc ¼ cxW ¼ 1 1 1 180=p 180=p 180=p
� �

(91)

cyc ¼ 1N 2N 3N 1:5Nmm 30Nmm 30Nmm
� �

(92)

cyw ¼ 1N 2N 3N 1:5Nmm 30Nmm 30Nmm
� �

(93)

The axial stiffness of the trackrod (94) is also defined by a similar
function of (90) where cxTR ¼ 1 and cyTR ¼ 5.

FaTR uaTRð Þ ¼ uaTRð Þ5 þ 1000 � uaTRÞ � 5N (94)

Table 4 List of load cases used for the comparison

N Load case Fx (NÞ Fy (NÞ Fz (NÞ Mx Nmð Þ My Nmð Þ Mz Nmð Þ

1 Static weight 0 0 4709 0 0 0
2 Static weight * 1.5 g 0 0 7063.5 0 0 0
3 Braking 0.5 g �2550.6 0 5422 0 0 0
4 Braking 0.8 g �4080.96 0 5850 0 0 0
5 Acceleration 0.4 g 3139.2 0 4138 0 0 0
6 Cornering 0.7 g 0 �4630 6867 0 0 92.6
7 Corn 0.7 gþ Acc 0.4 g 3139.2 �4630 4345 0 1004.544 92.6
8 Corn 0.7 gþ Brk 0.8 g �4080.96 �4630 8009 0 0 92.6
9 Pothole braking �8161.92 0 7563 0 0 0
10 Curb sideways 0 �7500 4709 0 0 0

Note: “*” indicates multiplication

Table 5 Forces application points and rack displacement for
each load cases

N Load case X Y mmð Þ Z mmð Þ dRack mmð Þ

1 Static weight 0 750 0 0
2 Static weight * 1.5 g 0 750 0 0
3 Braking 0.5 g 0 750 0 0
4 Braking 0.8 g 0 750 0 0
5 Acceleration 0.4 g 0 750 320 0
6 Cornering 0.7 g 0 750 0 �20
7 Corn 0.7 gþ Acc 0.4 g 0 750 0 �20
8 Corn 0.7 gþ Brk 0.8 g 0 750 0 �20
9 Pothole braking 0 750 0 0
10 Curb sideways 0 750 200 0

Note: “*” indicates multiplication

Fig. 9 Graphic view of the deformed suspension under load number 7. Design configuration (black), model deformed
configuration (red), Simscape

VR
(blue).
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Instead, the spring is described in Eq. (95) with a linear function and
preload. However, the presence of a bumpstop with a clearance. The
curve force–displacement of the bumpstop is analogous to Eq. (90).

FaS uaSð Þ ¼
ks � uas N, uas < clr

ks � uas þ ðuaS � clrð Þ5 þ 1000 � uas � clrð ÞÞ � 0:2N, uas � clr

�
(95)

where ks ¼ 60N=mm is the spring stiffness and clr ¼ 40mm is the
bumpstop clearance.
These displacement force curves were chosen to make sure that

for small displacements the suspension has stiffnesses quite similar
to the one analyzed in the previous chapter. Next, in fact, a
comparison is made between the model with linear and nonlinear
stiffnesses to understand how much the nonlinearity can affect the
suspension deformation. We chose to compare them using probably
what is the heaviest load case, number 8 expressed in Table 4. The
schematic of the deformed suspension is shown in Fig. 12 and forces
and moments generated by one of the bushings are shown instead in
Fig. 13. The rear bushing of the lower armwas chosen as an example.
Finally, the wheel motion was chosen to be observed to see the

evolution of elastokinematics at various fractions of the load case.
Always using load number 8 defined in Table 4, the calculation is
carried out ten times starting first from 10% of the load, then 20%
and so on until it reaches 100%. In addition to loads, rack
displacement and spring preload are also made to vary progres-
sively. The translations and rotations of the wheel center are shown
in Fig. 14. Comparing the suspension with linear and nonlinear
stiffnesses.

Table 6 Calculation results of the model for each load case

N dCamber degð Þ dSWA degð Þ dToe degð Þ dX mmð Þ dY mmð Þ dZ mmð Þ

1 �0.75 �1.33 0.28 �1.28 1.57 4.69
2 �1.21 �1.16 1.82 �0.52 �0.95 69.41
3 �1.49 �5.72 0.15 �6.42 3.54 22.07
4 �1.98 �8.33 �0.05 �9.73 4.23 33.04
5 �0.63 �1.26 1.26 4.02 0.40 �9.18
6 �0.91 �1.04 9.00 11.76 �6.71 70.52
7 �0.17 �0.77 8.16 16.10 �5.11 �9.38
8 �2.14 �8.50 6.33 �1.16 �11.86 109.51
9 �3.80 �15.32 �1.39 �20.33 1.84 80.44
10 0.99 0.00 �1.68 �0.57 �5.27 �17.45

Table 7 Calculation result of SimscapeV
R

model for each load
case

N dCamber degð Þ dSWA degð Þ dToe degð Þ dX mmð Þ dY mmð Þ dZ mmð Þ

1 �0.75 �1.32 0.28 �1.27 1.59 4.97
2 �1.22 �1.14 1.83 �0.57 �1.00 69.84
3 �1.48 �5.62 0.11 �6.43 3.50 22.27
4 �1.96 �8.17 �0.12 �9.75 4.16 33.09
5 �0.63 �1.27 1.27 4.04 0.44 �8.90
6 �0.80 �0.95 8.49 11.05 �6.57 70.27
7 �0.11 �0.75 7.84 15.68 �5.10 �9.88
8 �2.02 �8.17 5.90 �1.70 �11.25 107.61
9 �3.74 �14.91 �1.52 �20.27 1.98 78.52
10 1.02 0.03 �1.89 �0.85 �5.36 �18.23

Table 8 Normalized root mean squared error and R between model and Simscape
VR
results

dCamber degð Þ dSWA degð Þ dToe degð Þ dX mmð Þ dY mmð Þ dZ mmð Þ

nRMSE (%) 3.7% 2.9% 5.9% 3.3% 4.0% 1.7%
R 0.999 1.000 0.999 1.000 1.000 1.000

Fig. 10 Model results versusSimscape
VR
results.Wheel orientation (dCamber, dSWA, dToe) on the left side and position

(dX, dX, dZ) on the right side
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6 Sensitivity Analysis

In this chapter, a sensitivity analysis is given as an example. The
first objective is to show how modeling bushing nonlinearities can
affect the parameters of the suspension and thus its performance.
The second objective is to explore the ease with which a sensitivity
analysis can be performed, thanks to the parameterization of the
code. The usual double wihsbone suspension described in the
previous chapters is taken, the spring is placed of infinite stiffness so
that only the contribution of the bushing on the elastokinematics can
be isolated and movements due to the suspension kinematics can be
excluded. Force-displacement curves are described as Eq. (90). A
number K that multiplies only the chassis-side bushing stiffness
curve has been chosen as a parameter for the sensitivity analysis (96)

FbChassis ubð Þ ¼ K � ub � cxð Þ�5 þ 1000 � cx � ubÞ � cy (96)

The parameterK, which then scales the force–displacement curve, is
varied with values ranging from 0.4 to 2, with a step of 0.2. The
different force–displacement curves obtained as K changes are then
shown in Fig. 15.
As an example, it is chosen to show how the Camber and Track

values vary when the parameter K is varied and when a force Fx is
varied from �7000N to þ7000N.
Some results of the sensitivity analysis are depicted in Fig. 16

showing the surfaces representing the variations of Camber and
Track as a function of force Fx and parameter K.
In this straightforward example, the different modeling of the

bushing characteristic curve influences the elasto-kinematic char-
acteristics of the suspension. In it can be even seen an inversion of
the sign of the track compliance in Fig. 16.

7 Conclusion

Amodel for computing the elastokinematics of a suspension was
developed. Reviewing the literature, it was found to be one of the
most comprehensive, due to the fact that it takes into accountmainly
nonlinear stiffnesses and the possibility of using wheel-side
bushings as well. In addition, the calculation is done iteratively
and takes into account the kinematics of the suspension, unlikemany
works that simply calculate the stiffness matrix of the system, which
is practically useless when large deformations occur. As seen in the
last chapter, considering stiffnesses as linear can only be a sensible
approximation for small loads and small displacements. The
mathematical model is capable not only of calculating the deformed
configuration of the suspension, but also of returning the constrained
reactions on each bushing of the suspension. This is useful for
suspension design process as an input to FEM models.

Fig. 11 Shape of the function (90), on X-axis the bushing
deformation, on Y-axis per bushing reaction

Fig. 12 Graphic viewof the deformed suspension both for linear
and nonlinear model under the load N8. Design configuration
(black), linear (red), and nonlinear (blue)

Fig. 13 Forces (left) and moments (right) of the lower arm rear bushing under the load case N8
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Compared with a model created using multibody software, the
computation time is essentially negligible; code written in Matlab

VR

takes one or two tenths of a second to converge to the solution. The
model has also proven to be particularly useful just to perform
kinematic analysis of the suspension by appropriatelymodifying the
stiffness of the bushings and elements. Once it is understood how to
write the equations depending on how the various elements are
linked together, any type of independent-wheel suspension can be
created. This makes this model particularly powerful in developing
the elastokinematics of suspension quickly. In fact, the
force–displacement curves that characterize bushings and elements
can also be changed easily as a key feature in the design phase. The
presented methodology proved to be particularly effective,
especially for the possibility of handling the nonlinear force-
deformation curves of the joints.Mostmodels in the literature do not
consider these effects, but they make a substantial difference, as can

be seen from Figs. 14 and 15. Designing suspension compliance
correctly can have macroscopic effects, both on driving feel and
vehicle balance, with implications for safety and performance as
well.
It can be stated that this algorithm represents a kind of virtual

K&C. Having a validated model can lead, at an early stage of
the design, to saving time and money spent at a test bench. In
addition, several combinations of forces and moments can be tested
through simulations that are difficult to achieve with a K&C test rig.
As this method has a high computing speed, it can be combined with
optimization or sensitivity analysis algorithms to speed up the
design process as much as possible. For example, having a function
written in Matlab

VR
, it is possible to use the proprietary

“Optimization Toolbox” with relative ease. Having a fully para-
meterized algorithmmakes it easy to perform sensitivity analyses as
in Chapter 6. Another application the author is working on is the use

Fig. 14 Variation of wheel orientation (dCamber, dSWA, dToe) and position (dX, dY, dZ) at various% of the loadcase N8
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of this algorithm in a driver-in-the-loop simulation. In this way, the
effects of suspension compliance on the driving feeling can also be
subjectively assessed via a driving simulator.
Looking at the comparison with the multibody software, the

model seems to compute the solution correctly with low errors. The
correlation coefficients appear to be essentially unitary. Qualita-
tively, by graphing the deformed configuration for different loads
these are always practically overlapping, as can be seen in Figs. 9
and 10. The algorithm is intended to be a substitute for a multibody
solver, but only in an initial design phase. In fact, this method is
based on the search for the equilibrium position, it is therefore a
quasi-static solver where dynamic effects such as inertia of the
suspension elements or damping of the joints are not considered.
Thus, a limitation of this algorithm is precisely the dynamic
analyses, such as the evaluation of eigenfrequencies. The inclusion
of these effects can be a future development, for example, by
including forces dependent on the time derivatives of the element’s
deformations.
The method is designed to solve any type of independent wheel

suspension. However, there are no elements connecting the wheels

of the same axle together, such as antiroll bars, which would in any
case influence the compliance of the suspension during cornering. It
is not possible to model suspensions with linkage and rockers, such
as pushrods and pullrods, even though they are rather rare
architectures in passenger cars.
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