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a b s t r a c t

Solutions of the second member of the Riccati chain and of the corresponding
third order linear differential equation are related to solutions of the so-called
Painlevé XXV–Ermakov equation via the Schwarzian derivative. The reduction to
the generalised Ermakov equation is shown to arise naturally from the Painlevé
XXV–Ermakov equation. Specifically, the first order system of ordinary differential
equations, equivalent to the Painlevé XXV–Ermakov equation, is analysed by
resolving points of indeterminacy of the vector field over P1 × P1.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

In [1] the second member of the so-called Riccati chain [2] is considered. It is given by

d2v

dz2 + 3v
dv

dz
+ v3 + p(z)(v′ + v2) + q(z)v + r(z) = 0, (1)

where all the coefficients are assumed to be analytic functions. This equation, as the usual Riccati equation,
is linearisable by the transformation v = y′/y; the corresponding linear equation is

y′′′ + p(z)y′′ + q(z)y′ + r(z)y = 0. (2)

When considering the ratio of two independent solutions of the corresponding linear equation

y1(z) = w(z)y2(z), (3)
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where both y1 and y2 satisfy (2), we define the function ξ(z) to be the Schwarzian derivative of w(z), i.e.

ξ(z) .= {w(z), z} =
(

w′′(z)
w′(z)

)′

− 1
2

(
w′′(z)
w′(z)

)2
. (4)

In [1] it is shown that ξ(z) satisfies the following non-linear second order differential equation

(12ξ(z) + b(z))ξ′′ = 15ξ′2 − h0ξ′ − 8ξ3 − h1ξ2 − h2ξ − h3, (5)

here the functions b, hi, i = 0, . . . , 3, are determined in terms of the functions p, q, r and their derivatives
s

b = 2(p2 − 3q + 3p′), h1 = 4b,

h0 = 2(4pp′ − 3p′′ − 9pq + 2p3 − 6q′ + 27r),
h2 = 2(−4pp′′ − 12qp′ + 2p2p′ + 5p′2 + 6qp′ − 6p2q + p4 + 6q′′ + 9q2 − 18r′),
h3 = −6p′′q′ − 2pqp′′ + 18rp′′ + 6p′q′′ + 2pp′q′ − 2p2qp′ − 2qp′2 + 6q2p′ − 18p′r′+
+ 2p2q′′ + 2p3q′ − 6pqq′ + 18pqr + p2q2 − 6p2r′ − 4p3r − 6qq′′ + 3q′2+
+ 18qr′ − 4q3 − 27r2.

It is shown in [3] that the following change of the dependent variable

12ξ(z) + b(z) = 12y(z), (6)

ombined with the definition of the functions A(z) and B(z):

A(z) = 1
4p′′ + 1

2pp′ − 3
4q′ + 1

9p3 − 1
2pq + 3

2r,

4B(z) = p′ + 1
3p2 − q,

(7)

allows to recast Eq. (5) for ξ(z) to a more concise form as

yy′′ − 5
4y′2 + 2

3y3 + 3Ay′ + 4By2 − 2A′y − A2 = 0. (8)

This equation has many interesting properties [1,3]. It can be reduced to both the Painlevé XXV equation
in the Ince list [4] and to the Ermakov equation, which is widely applied in mathematics and mathematical
physics [5]. Moreover, the Painlevé XXV–Ermakov equation admits two families of Bäcklund transformations
where an important role is played by the Schwarzian derivative. The following statement holds.

Theorem 1 ([3]). Setting
y(z) = g(z)

u(z)4 , with g′ = 2A(z)u(z)4 (9)

n Eq. (8), the following generalised Ermakov equation for u(z) is obtained:

u′′ = B(z)u(z) + g(z)
6u(z)3 . (10)

In the case A = 0, from (9) one gets that g(z) is constant and in this case it follows that (10) is a proper
rmakov equation.

In this paper we would like to present an alternative proof of Theorem 1 by using the method of blowing
p points of indeterminacy of the vector field of a system of first order differential equations equivalent to
8). This method turned out to be very useful in studying second order differential equations [6].
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2. Main results

For completeness, let us present some details on how to blow up points of indeterminacy of the vector
field. Further details and references can be found in [6]. We shall use the same letters p and q but this time
without any reference to the coefficients of the linear equation (2). Let p and q be functions of z. For a
system of first order differential equations

q′ = P1(z, p, q)
Q1(z, p, q) , p′ = P2(z, p, q)

Q2(z, p, q) , (11)

here Pi and Qi, i = 1, 2, are polynomials in p and q with coefficients rational in z such that Pi and Qi

ave no common factors, the points where Pi(z, p, q) = Qi(z, p, q) ≡ 0 for i = 1 or i = 2 are called the points
f indeterminacy of the system. Like for algebraic curves in algebraic geometry [7], the aim is to remove
hese indeterminacies by a suitable bi-rational transformation. The blow-up at a point (p, q) = (a, b), where
= a(z) and b = b(z), is defined as follows. One introduces new coordinate charts, p = a + u = a + UV and
= b + uv = b + V and re-writes the system in new coordinates (u, v) and (U, V ). The exceptional line is

hen given by u = 0 or V = 0. The sequence of blowups starting from a given point of indeterminacy can
e infinite for a differential system even if no rigorous proof is available. Indeed, via subsequent iterations of
lowups, one can see that the form of the numerators and denominators in the right-hand sides of equations
n the system does not change much but the expressions for subsequent points of indeterminacy become more
nd more cumbersome. If the cascade is infinite then we cannot extract any further properties for the system
r its solutions. However, whenever the cascade is finite (or all the cascades are finite), it is possible to extract
ome useful information concerning the system or a singularity structure of its solutions [6] depending on
he behaviour of the system on the exceptional line after the final blowup. When the system regularises on
he last exceptional line, this gives rise to either holomorphic or polar expansions of solutions of the original
ystem [6]. When the system does not regularise, the question on the existence of algebraic singularities
hould be examined further [8]. The original system should be considered over P2 or P1 × P1. In this paper
e choose the compactification P1 × P1 to take into account infinite values of q and p.
The easiest way to re-write Eq. (8) in the form (11) is to set y = q, q′ = p which yields

q′ = p, p′ = 12A2 − 36Ap + 15p2 − 8q(6Bq + q2 − 3A′)
12q

. (12)

n case A ̸= 0 we immediately see two points of indeterminacy p1 = (q = 0, p = 2A/5) and p2 = (q =
, p = 2A). These points coalesce if A = 0. After the compactification P1 × P1 one more point appears
3 = (Q = 1/q = 0, P = 1/p = 0). The first cascade starting from p1 is possibly infinite, the expressions for
oints of indeterminacy become more and more cumbersome at each step. The second point p2 gives rise to
he finite cascade which regularises and, remarkably, we can easily deduce the connection to the generalised
rmakov equation. In particular, by setting q = u2 and p = 2A + u2v2 the system (12) becomes

u′
2 = 2A + u2v2, v′

2 = 3v2
2 − 8u2 − 48B

12 . (13)

he third point also gives rise to the finite cascade which finally terminates and regularises, though the
umber of required blowups is higher than in the previous case.

When A = 0 in the system (12), if we choose v2 = −12w′/(3w) (considering the second equation as a
iccati equation for v2), we obtain the linear equation

w′′ = (6B + u2)w (14)
6
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and equation u′
2w = −4u2w′, which can be easily solved giving u2 = C/w4, where C is an arbitrary constant.

hus, we obtain the Ermakov equation
w′′ = Bw + C

6w3 .

or A ̸= 0 we still obtain the linear equation (14) but the equation linking u2 and w is more complicated,

u2 = 2A − 4u2
w′

w
.

evertheless, it can also be solved by quadratures giving

u2 = C

w4 +
2

∫
A(t)w(t)4dt

w4 .

This gives
w′′ = Bw +

C + 2
∫

A(t)w(t)4dt

6w3

nd an alternative proof of Theorem 1.
Finally, we would like to recall connection of Eq. (8) to a particular case of the Painlevé XXV equation,

hich is linearisable [4]. The transformation, leading to the Painlevé XXV equation, is given in the following
roposition.

heorem 2 ([3]). By setting
y(z) = 2A(z)

u(z) (15)

n Eq. (8), the Painlevé XXV equation is obtained for u(z):

u′′ = 3u′2

4u
+

(
A′

2A
− 3u

2

)
u′ − 1

4u3 + A′

2A
u2 +

(
4B − 5A′2

4A2 + A′′

A

)
u + 4

3A. (16)

Here clearly A ̸= 0. By similarly studying Eq. (16) and rewriting in a similar way as the previous equation
in the form of an equivalent system of two first order equations (i.e., setting u = q, q′ = p), we see that the
there are two cascades. The first one arises from the point p1 = (q = 0, p = 0) and the system regularises after
wo more blowups. The second cascade from the point p2 = (Q = 1/q = 0, P = 1/p = 0) is splitting after
ne more blowup into the infinite part and the regularisable finite one. If we study the general Painlevé XXV
quation as in [4], we can spot some difference, in particular we notice that one cascade does not regularise
ut is finite.

. Conclusions

To sum up, as already mentioned in [6], the method of resolving indeterminacies of the vector field
or a system of two differential equations (or, equivalently, for a second order ordinary scalar differential
quation) is very useful and can give or explain some nontrivial results. Therefore, it should be used often
long with other methods. It is an open question to understand what kind of spaces of initial conditions
see [6,8,9] for more information) appear, if any, for linearisable equations and what infinite cascades of
oints of indeterminacy for such systems are associated with.
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