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Abstract—Wi-Fi sensing as a side-effect of communications
is opening new opportunities for smart services integrating
communications with environmental properties, first and fore-
most the position of devices and people. At the same time,
this technology represents an unprecedented threat to people’s
privacy, as personal information can be collected directly at the
physical layer without any possibility to hide or protect it. Several
works already discussed the possibility of safeguarding users’
privacy without hampering communication performance. Usually,
some signal pre-processing at the transmitter side is needed
to introduce pseudo-random (artificial) patterns in the channel
response estimated at the receiver, preventing the extraction
of meaningful information from the channel state. However,
there is currently just one implementation of such techniques
in a real system (openwifi), and it has never been tested for
performance. In this work, we present the implementation of
a location obfuscation technique within the openwifi project
that enables fine manipulation of the radio signal at transmitter
side and yields acceptable, if not good, performance. The paper
discusses the implementation of the obfuscation subsystem, its
performance, possible improvements, and further steps to allow
authorized devices to “de-obfuscate” the signal and retrieve the
sensed information.

I. INTRODUCTION AND BACKGROUND

Wi-Fi sensing is attracting interest for many reasons: It
is cheap; Wi-Fi is ubiquitous, thus it is easy to deploy;
and it can be adapted to sense many different parameters.
However, the review [1] highlights how the subjects of
Wi-Fi sensing are most often human beings, their position,
activity, state, even speech or mood! This concern is not
limited to Wi-Fi systems, as also for wireless communications
beyond 5G it is believed that the information derived from
advanced Channel State Information (CSI) analysis will be
fundamental for both improving communication performance
and developing innovative systems [2], [3]. In conclusion, joint
communication and sensing fundamentally means tracking
people, understanding their behavior, and collecting personal
and sensitive information, threatening people’s privacy and
even their security. For instance, Wi-Fi sensing might be used
to detect when an apartment is empty and can be robbed.

This observation pushed other research groups and us to
study whether there is a way to counter Wi-Fi sensing without
hampering communication performance. Countering Wi-Fi
sensing means concealing the information on the environment
carried by the electromagnetic signals and retrieved via
CSI analysis. Protecting communication performance means
guaranteeing that the concealment process does not destroy
the information carried by the signal. More specifically, the
equalizer of a receiver should remain able to compensate
for the additional channel distortion introduced by the
concealment process.

With reference to Fig. 1, which presents a schematic
block of integrated Wi-Fi sensing and reception, our research
aims to understand if and how it is possible to “break” the
sensing chain without damaging the receiving chain. We
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Figure 1: High-level view of the Wi-Fi sensing process.

call obfuscation the act of hiding non-communication-related
information, distinguishing it from the more common jamming,
whose goal is simply destroying the entire communication
capability of the system.

The works presented in [4]–[7] are feasibility studies
presenting proof-of-concept architectures that can achieve
obfuscation. These studies present methodologies and ex-
periments based on offline signal processing; however, they
lack an actual implementation that analyzes if and how it
is possible to implement a privacy-preserving Wi-Fi system
and if this system can ultimately enable legitimate sensing
(e.g., gesture recognition for remote e-health systems) while
preventing illegitimate one.

The contribution of this paper is precisely in the direction of
filling the gap just described. We present an implementation of
the technique presented in [5], [6] extending openwifi, and we
discuss limitations imposed by the implementation framework.
Next, we introduce directions for possible integration of
our proposal in future standards, also discussing a possible
protocol that can make the obfuscation invertible, thus
allowing authorized devices to perform the desired sensing.

A. openwifi

The openwifi project is an open-source implementation of
a fully functional 802.11 stack for Software-Defined Radio
(SDR) platforms whose simplified architecture is represented
in Fig. 2. At the moment, it can be bootstrapped on a
few System-on-Chip (SoC) boards manufactured by Xilinx
connected to radio front-ends designed by Analog Devices
(AD). Common to all the compatible SoC boards is the
presence of an ARM CPU and a Zynq Field Programmable
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Figure 2: Simplified structure of an openwifi station, in red the
components that are developed within the openwifi project.

Gate Array (FPGA), connected to the AD radio via a high-
speed interface. Hence, openwifi is a SoftMAC stack whose
functions are split between the main ARM CPU and the
FPGA. The ARM CPU runs a Linux Kernel and user-space
tools: Here the openwifi 802.11 driver implements the high
part of the Medium Access Control (MAC), which includes
functions for preparing outgoing frames and pushing them
to the FPGA via Direct Memory Access (DMA), processing
incoming frames received from the FPGA, and many other
tasks like management and rate control. The Zynq FPGA
implements the low part of the MAC and the PHY. The MAC
executes all time critical operations like carrier sensing, frame
scheduling, and ACK replying; the PHY, instead, transforms
outgoing frames into I/Q samples and delivers them to the
Digital-to-Analog Converter (DAC) circuit on the radio front-
end or, vice versa, it reconstructs incoming frames decoding
the I/Q samples received from the Analog-to-Digital Converter
(ADC).

The bitstream flashed on the FPGA is synthesized using a
modified version of the Verilog project that AD releases for
controlling the AD radio board from the Xilinx Zynq SoC. The
original project is designed to transform the whole device
into an SDR: The radio can both transmit batches of I/Q
samples stored in the memory of the Linux host (running on
the SoC), and store received samples in the host memory for
later analysis. Our openwifi modifications add to the real-time
MAC the obfuscation capabilities discussed above. Modifying
the PHY part of the Verilog design makes it possible to
implement the obfuscation of transmitted signals as described
in [5], [6], and in Sect. IV. The behavior of the obfuscator can
be customized from the kernel space, i.e., by adding proper
code to the openwifi Linux driver.

II. RELATED WORK

The interest in CSI obfuscation is high because of the
privacy concerns raised by the ever-increasing accuracy of
novel Wi-Fi sensing algorithms. However, the topic has been
tackled only by a few works from our and other research
groups [4]–[6], [8]–[12]. Furthermore, as of today, obfuscation
techniques do not exist in real systems able to set up a Basic
Service Set (BSS) because almost every implementation of
the Wi-Fi standard in commercial chipsets is proprietary and

cannot be modified to test and develop new functionalities.
For this reason, to the best of our knowledge, works on the
field of CSI obfuscation used either SDR platforms emulating
the behavior of Wi-Fi chipsets, as we did in the feasibility
studies mentioned in Sect. I, or open platforms as openwifi
described in Sect. I-A.

We limit the discussion in this paper to actual implemen-
tations of obfuscating techniques, i.e., to those works that
preserve the full functioning of Wi-Fi communication. At
the same time, we refer the reader interested in the topic of
Wi-Fi sensing to seminal works like [13]–[16] or to recent
reviews [1], [17]. For what sensing obfuscation is concerned,
instead, we rely on and refer to the discussion in [5], [6].

The first implementation of a CSI obfuscator has been
presented by the developers of openwifi [18]. The idea behind
this implementation is to manipulate the transmitted signal
in the time domain with a pre-filtering operation, creating a
“fake” channel response that can change over time. The filter
emulating the channel response is a Finite Impulse Response
(FIR) filter limited to three taps and with the first tap equal to
1, which means that the most recent symbol in transmission
is never altered. The limitation of this approach is that it
does not enable arbitrary manipulation of the spectrum of the
transmitted signal, as it mimics the behavior of a channel that
introduces additional reflections (the number of taps minus
1) with delays that are exact multiples of the sample time.
The approach is indeed very interesting, and exploration can
be extended to delays which are not multiples of the symbol
time is intriguing. The work presented in [18], a short paper,
discusses its implementation and shows the effect on the CSI,
but does not attempt to measure its impact on sensing or
communications.

A mildly related work is also [19], where the authors goal
is to identify attacks against the Wi-Fi sensing infrastructure
using CSI-based analysis. The goal of the paper is clearly
different from sensing obfuscation; however, they introduce
and discuss techniques to monitor and protect Wi-Fi infras-
tructures, which is an important topic also to move further on
to systems that allow legitimate Wi-Fi sensing and prevent
illegitimate use.

III. TRANSMITTER SIDE CSI DISTORTION

The concealment of the CSI to prevent sensing can be
obtained by proper pre-processing the transmitted signals, as
already introduced in Sect. I and II. The initial theoretical
modeling plus a proof-of-concept for testing the feasibility
of this concealment process have been tackled in [4]–[6]:
We refer the interested reader to those works for the details,
reporting here only the fundamentals to make the paper self-
contained.

The sensing/localization information retrieved by the CSI
analyzer is embedded in the signal by the physical environ-
ment itself, generally in the form of frequency-dependent
attenuation and phase rotation. However, modeling in an
efficient way the actual channel response measured by the re-
ceiver remains beyond the current state-of-the-art capabilities.
Nevertheless, the information is there and can be extracted
thanks to Machine Learning (ML) and Artificial Intelligence
(AI) techniques to fingerprint some details of the environment,
e.g., the position of a person in a room. Later on the extracted
fingerprint can be used also to classify –and hence recognize–
the environment, which means localizing the person in the



room. The only requirement to enable this attack is that the
transmitter and localization device positions are fixed; it is
not important that the positions are known, but only that they
are fixed, which is normally the case for any Access Point
(AP).

In this scenario, one possibility to prevent Wi-Fi sensing is
to pre-distort the transmitted signal adding a random pattern.
The pattern should conceal the information sufficient for
fingerprinting the environment, at the same time should not
jeopardize the communication. Summarizing the content of [6]
Sect. 3 and [5] Sect. V, a proper pre-distortion can be obtained
with the random process described by Equations (1) and (2),
where R is a vector of Nsc uniform and independent random
variables with support (ρmin, ρmax), Nsc is the number of
subcarriers in the Orthogonal Frequency Division Multiplexing
(OFDM) modulation, α is the memory of the Uniform-Markov
process driving the pre-distortion, ∆t(k) is the inter-frame
time between frames k and k − 1, ΘC is a 5-tap FIR filter
to introduce correlation between adjacent frequencies as the
propagation channel normally does, we use a simple moving
average; max = 1.9 and min = 0.1 are bounds to guarantee
that the pre-distortion multiplication never leads to unrealistic
high values, but most of all never completely suppress a
carrier, as this would obviously hamper communications.

R(k) = e−α∆t(k)R(k − 1) + R (1)

AO(k) = [1 +R(k)]max
min ∗ΘC (2)

The rationale of this pre-processing is simple: the trans-
mitted signal is distorted in such a way that the receiver’s
equalizer (see Fig. 1) can still compensate for the distortion,
but at the same time the localization system is “fooled” by the
fake channel features intentionally crafted by the transmitter.
The remaining parameters are ρmin = −0.3, ρmax = 0.3,
suitable values empirically found in previous works, and
α = 0.2, which means that if ∆t(k) ≥ 15 s, then AO (k) and
AO (k-1) are almost completely uncorrelated –the correlation
coefficient is below 5%, coherent with the fact that a person
moving in a room can completely change its position within
15 seconds, thus there is no reason to maintain memory or
coherence if the inter-frame time is larger. All parameters are
configurable in the implementation, but we maintain the same
configuration of previous works for the sake of comparison.

IV. IMPLEMENTATION

With reference to Fig. 2, the implementation of an ob-
fuscation layer in openwifi at the transmitter —a layer that
we call P2SL (Privacy-Preserving Sub-Layer) following the
project that supported this work— requires the enhancement
of both i) the Network Interface Card (NIC) driver in the
Linux kernel, as detailed in Sect. IV-B, and ii) the FPGA,
described in Sect. IV-C. Before delving into the details, we
start from an high-level description of the modifications to
openwifi.

A. High Level Design

Fig. 3 illustrates the FPGA and Linux kernel components
modified to develop the P2SL, highlighting how our modifi-
cations focus on the NIC driver and on the PHY layer, while
the MAC remains essentially untouched. The implemented
obfuscator follows the design described in Sect. III, with
an Obfuscator block, written in C, responsible for updating

Linux Kernel

FPGA

MAC

Obfuscator

SDR Driver

frames

IFFT

Preambles 
& Pilots

to DAC and RF

random
coefficients

//

• Generate Random Vector R
• Add Markov Memory
• Clip
• Filter 
• Quantize over N bits 

Figure 3: Overview of P2SL design with kernel and FPGA modifi-
cations.
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Figure 4: Detailed structure of the openwifi as modified by P2SL
with focus on the transmitter side of the FPGA.

R(k), R, and AO(k), every time a new frame k is pushed
from the operating system to the driver for transmission.

In our implementation the R size Nsc is equal to 64, re-
flecting the fact that openwifi currently supports only 20 MHz
channel bandwidth with 64 OFDM subcarriers. We used the
Fixed Point Math library for C [20] to implement the clipping
and filtering operation within the kernel, which notoriously
does not support floating point algebra. The coefficients of
AO(k) are thus 4-Bytes (32-bits) Fixed Point variables, where
the first 14 bits and the remaining 32−14 = 18 bits represent
the signed integer part and the decimal part of each number,
respectively. This means we can manipulate numbers with up
to 4 integer digits, and retain a good accuracy when doing
operations with 5 decimal digits. Space constraints and the
choice of not implementing an Arithmetic Logic Unit (ALU)
in the FPGA imply that further approximations need to be
introduced and controlled at the PHY layer.

In summary, we have customized the openwifi driver to:
1) Update the AO(k) mask for every frame to be trans-

mitted;
2) Quantize the Nsc multipliers ∈ AO(k);
3) Write the Nsc quantized multipliers in dedicated FPGA

registers for each frame transferred from MAC to PHY.
With reference to Fig. 4, our modifications to the openwifi

on the FPGA side can be summarized in three main key
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Figure 5: Realizations of Equations (1) and (2) for 2000 frames
equally spaced by 1 ms: With Matlab (red) and implemented in the
kernel driver (blue).

points:
1) Introduction of new FPGA registers writable from the

driver to receive the vector of Nsc quantized multipliers;
2) Generation of Preambles and Pilots in the frequency

domain to apply the obfuscation also on them;
3) Multiplication of all the symbols in every frame with

the pre-distortion Nsc multipliers.
Fig. 5 to 7 discuss the impact of implementation impair-

ments before describing the implementation details.
Fig. 5 compares three realizations of the Equations (1)

and (2) generated with Matlab (red) with those generated
by the implementation in the kernel driver. These are the
processes that multiply the carriers, we selected the carriers
10, 30 and 60. The quantization of the kernel implementation
is evident and it leads to piecewise constant values for a few
frames, while the Matlab implementation has a behavior which
is more in-line with the intuition of a Uniform-Markov process,
albeit clipping and filtering (Equation (2)) significantly modify
the behavior.

Sect. V analyzes if and how these approximations impact
performance, but we think that quantization and the short-time
piecewise constant behavior do not affect the pre-distortion
process significantly, as the key feature of pre-distortion is
the continuous change of the overall signal amplitude. This
is shown in Fig. 6, which compares the CSI at a receiver
for a short burst of frames with (in blue) and without (in
red) the obfuscator. Without the obfuscator, the amplitude is
remarkably constant, thus allowing fingerprinting; with the
obfuscator, the behavior is clearly random.

Also Fig. 7 qualitatively shows the effect of obfuscation
with a heatmap of the CSI amplitude for 1000 frames. Without
obfuscation, the channel response remains fairly constant,
shown by the blue and yellow bands remaining constant over
time; when the obfuscation is activated, the pattern is blurred
as intended. Two effects emerge from this picture. First, the
obfuscated frames are (on average) less energetic, and this is
because the FPGA implementation forced us to apply only
attenuations, which should be compensated by the Automatic
Gain Control (AGC) in the DAC board, but they are evidently
not, or at least not completely. Second, in both the obfuscated
and the clean realizations it seems there are frames which
are much less energetic (the blue-greenish vertical lines). We
do not have a certain explanation for this, but it is most
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probably due to the AGC behavior at the receiver (a standard,
off-the-shelf ASUS AP), and it seems to have little influence
on functionality and performance.

B. Kernel Driver

As already anticipated, the code we have introduced in
the openwifi driver is mainly responsible for the generation
of the Nsc-long vectors of obfuscation coefficients and their
transfer to the FPGA. These two main features have been
implemented as the following sequence of steps:

Step 1 Compute the interframe time (∆t(k) of Equation (1))
despite the lack of a kernel clock, relying instead
on jiffies [21];

Step 2 The computation of the AO(k) coefficients including
the evaluation of the exp function without support
for floating point algebra;

Step 3 Quantization of AO(k) coefficients;
Step 4 Ovveride of the FPGA dedicated registers with

updated AO(k) values.
The memory of the Markov process was originally designed

to fall below a meaningful value in about 15 s. However, in
the kernel implementation it loses precision after 10 s because
of the simple 6-th order Taylor-McLaurin expansion we used
to approximate exp (see Fig. 8). Thus we decided to truncate
the exponential at ∆t = 7.5 s and simply de-correlate frames
with a larger inter-arrival time rather than using higher order
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or more complex approximations would slow down too much
the obfuscation process.

Fig. 9 compares the sample Autocorrelation Function (ACF)
exhibited by some realizations of the AO(k) random process
generated by our driver with similar ones computed with
Matlab. The kernel curves (in blue) are obtained querying
the development board every millisecond, synchronized with
frame generation to obtain proper values of the ACF. The
difference between the Matlab and the kernel curves suggests
that the ACF achieved with our implementation is slightly
smaller than the theoretic one, indicating a modestly weaker
memory. This can be justified by the truncation of the
exponential explained with Fig. 8.

C. FPGA Design

The FPGA side of openwifi, written in Verilog [22], has
been modified to implement the obfuscation of the IQ samples
of each frame, as schematically illustrated in Fig. 10. Though
conceptually simple, this requires to modify the state machine
that implements the 802.11 Transmission Chain, and to design
an approximated multiplication stage. The implementation of
a complete ALU running in parallel on 2×Nsc IQ samples is
a considerable effort and will not be feasible in small FPGAs,

SDR DRIVER (new sdr.ko)
- Generates the obfuscation mask
- Passes the mask down to the openofdm_tx Verilog module

OPENOFDM_TX

OBFUSCATION MASK: 
<64 coefficients, each encoded in 2 bits>
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● Frequency LTF terms loaded from 
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IF
FT

A
R

M

Figure 10: Overview FPGA modifications.

thus is left for future work. The main FPGA modifications
can be summarized as follows:

1) Addition & wiring of FPGA registers. With reference
to Fig. 4, a set of FPGA registers configurable at
runtime by the driver have been allocated and pinned, in
cascade, to all modules involved in a frame transmission,
starting from the XILINX AXIS DMA downto the
internal blocks of the OPENOFDM_TX module, where
IQ samples are actually manipulated. From an hardware
point of view this operation coincide with the wiring of
different input/output pins. The obfuscation coefficients
are thus made available to the FPGA through these
registers. In particular, these registers can store up to
128 bits, which implies that each of the Nsc = 64
obfuscation coefficients must be quantized by the driver
over 2 bits only, we call these coefficients ocs, and
they are properly assigned by the kernel driver based
on AO(k) thresholds. Extending the registers capacity
is easy, and its implementation would require only a
new FPGA synthesis; however, the manipulation of IQ
samples with more accurately quantized coefficients
would remarkably increase the complexity of algebraic
operations.

2) Obfuscation of Preambles. In the original openwifi de-
sign, the preamble samples—constant for each 802.11g
frame—were stored in the time domain in a dedicated
ROM memory, and then pre-pended to the frame after
the IFFT block on the FPGA. This pre-tabling and on-
the-fly operations reduced the requirements of the FPGA
in terms of both memory and computing resources,
but it is not compatible with our obfuscation scheme,
which requires to store the preambles in the frequency
domain, so that they can be multiplied by the same
AO(k) coefficients as all the other symbols of the
frame k. We therefore need to change the sequence of
operations defined by openwifi for transmitting a frame.
To this end, we introduce a new (Verilog-defined) Finite
State Machine (FSM) obfuscating the Long Training
Field (LTF) in the preamble of 802.11g frames, and
we integrate this FSM within the pipelined workflow
previously defined in the openwifi FPGA. This way,
we ensure that preambles are obfuscated before being
pre-pended to the IQ flow sent to the Inverse Fast
Fourier Transform (IFFT) module for modulation and
transmission.

3) Signal pre-distortion. The IQ samples should be mul-
tiplied by the AO(k) coefficients before the IFFT.
Unfortunately, the space availability and speed of



operation of the FPGA forced us to approximate the mul-
tiplication as a simple right-shifts operation, resulting in
attenuation only. This should be a minor impairments
since the Analog-Digital-Analog Converter (ADAC)
board normalizes the power output. In particular, the
right-shift operation to be applied is chosen for each
subcarrier according to the quantization thresholds
described by Equation (3):

if(ocs = 00) ⇒ IQobf = IQin � 3

else if(ocs = 01) ⇒ IQobf = IQin � 2

else if(ocs = 10) ⇒ IQobf = IQin � 1

else(ocs = 11) ⇒ IQobf = IQin

(3)

where:
• ocs is the quantized obfuscation coefficient belong-

ing to AO(k) associated to subcarrier s;
• IQin is the IQ sample before obfuscation;
• IQobf is the same IQ sample after the desired

right-shift operation has been applied, thus, the
obfuscated version of the IQ sample.

According to this implementation of the obfuscation
technique in FPGA, the amplitude of each subcarrier
is attenuated (or left unchanged) when the obfuscation
is turned on.

V. PERFORMANCE

The goals of the experimental performance evaluation are
two:

1) Quantify the effectiveness of the implemented obfusca-
tion in preventing localization (Sect. V-A);

2) Determine if and how much the obfuscation deteriorates
communication performance (Sect. V-B).

A. Localization Obfuscation

To address our first goal we use IPERF sessions transmitting
packets with the obfuscation on or off. During each session
a person stands in one of the eight positions indicated by a
capital P in Fig. 11.

In general, to interpret our experimental results the reader
should always make reference to Fig. 11, which shows the
schematic layout of the Wi-Fi devices used to run experiments.
Four localizing devices labeled with capital L capture traffic,
and the CSI extracted from the captured traffic feeds the
Convolutional Neural Network (CNN) described in [5], [6]
that learns the sensed environment and classify the the person
position in the room.

In all the experiments the transmitter is a Xilinx ZC706-G
development board running the modified version of openwifi
and operating as AP, the Rx device acts as a STAtion (STA)
associated to the AP. The receiver can be any 802.11 capable
device, as a normal PC or a smartphone, but in the present
case it is an Asus RT-AC86U device like the localizing devices
L1–L4. The CSIs are extracted using the methodology and
software described in [23].

An attacker must train the system before attempting a
localization attack, thus we run each IPERF session twice
to build both a training and a testing dataset. We capture
both datasets during the same day, leaving between each data
collection session a reasonable time gap of at least 10 minutes
to make localization results credible. The classification task
can output 8 values (corresponding to the 8 positions of

Figure 11: Placement of Transmitter (TX), Receiver (RX) and
Localizing devices in our Lab at the University of Brescia.
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Fig. 11), so the accuracy of the localization compares with a
random guess that yields a baseline value of 1/8 = 12, 5%.
Fig. 12 shows how the localization accuracy drops, for all 4
localizing devices, when the obfuscation is active. Compared
to the theoretical results in [5], [6] the CLEAN (i.e., not
obfuscated) localization is less accurate. We think that this is
due to the use of a 20 MHz 802.11g system as allowed by
openwifi instead of a 80 MHz 802.11ac system, which stress
how it is important to study and design anti-sensing systems as
sensing will become extremely accurate as technology evolves.
The OBFUSCATED results are just above the random choice,
indicating that the obfuscation process can still be improved.
Furthermore, as already noted in previous works, the position
of the localization device has a significant influence on the
localization performance, but this cannot be predicted, and
this dependence is stronger for the CLEAN results than for
the OBFUSCATED ones.



� � �� �� �� �� �� ��

������������������������

��

��

��

��

��

��

��

��

��

���

�
�
�
�
��
�
��
��
�
�

�����������

�����������

������������

������������

���������

���������

����������

����������

Figure 13: PDR as a function of the channel bitrate with obfuscation
off (blue), and on (red). Different curves refer to different frame
lengths (IPERF UDP payload indicated). For each experiment the
curves indicate the mean PDR, while the bars report the confidence
interval with 95% confidence level.

B. Communications

To address our second experimental goal we use again
IPERF over UDP turning on/off the obfuscation and vary-
ing the channel PHY bitrate cr and the UDP payload
length pl to verify for what channel/traffic conditions the
activation of the obfuscation hampers the communication
performance. In particular, we imposed the Tx radio in-
terface to use the 802.11g supported Data Rates, namely:
cr ∈ CR = [6, 9, 12, 18, 24, 36, 48, 54] Mbit/s, and pl ∈
PL = [200, 500, 1000, 1470] bytes.

For this experiment L1–L4 devices are not used, with the
focus only on the communication performance between Tx
and Rx. The communication performance metric is the Packet
Delivery Rate (PDR) computed by the receiver as:

PDR(cr, pl) =
# received packets

max(seqno)−min(seqno)
(4)

where the denominator of Equation (4) is not the number of
transmitted packets per IPERF session, but the difference
between the maximum and minimum sequence number
intercepted by the receiver device to avoid confusing losses
on the channel with frames that are not transmitted for
whatever reason of with IPERF synchronization problems.
If max(seqno)−min(seqno) is too small, the experiment
is discarded. For each element of the experiment space
(cr, pl) ∈ CR×PL we performed at least 10 IPERF sessions,
with more repetitions for high values of cr to gain more
statistical confidence.

Fig. 13 compares the mean PDR achieved when turning
the obfuscation off (blue) and on (red). The PDR without ob-
fuscation is in line with similar measures, very close to 100%
with a small degradation for 48 and 54 Mbit/s. Obfuscation
degrades performance only slightly up to 36 Mbit/s, while for
higher rated the degradation is larger, similarly with what we
observed in previous works with the Matlab implementation
and 802.11ac. The conclusion is that, whatever the Wi-Fi
technology adopted, the highest PHY rates are fragile and it
is difficult to find a pre-distortion algorithm that preserves
the communication un-hampered.

AP STA
beacons

Select BSS 
& Cyphersassociation request

Msg1: ANonce

Msg3: IE, GTK, MIC

Msg2: SNonce, IE, MIC

Msg4: ACK,MIC

PTK

PTK

de-obfuscation signaling

IE: Information Elements
GTK: Group Temporal Key
MIC: Message Integrity Code
PTK: Pairwise Temporal Key

Figure 14: 802.11i Four Way Handshake (4WHS) showing also
beacons, association and the position of additional signaling messages
for de-obfuscation.

VI. A PROTOCOL TO NEGOTIATE OBFUSCATION

So far, we have seen that anti-sensing techniques can
be implemented in standard devices preserving acceptable
communication performance as shown in Sect. V-B. However,
a solution that fully preserves unhampered communications
and allows sensing at selected and legitimate receivers is
preferable to the blind obfuscation we presented. This Section
is devoted to discuss how such a solution can be implemented
in the 802.11 standard and possible different flavors of it, from
the simple solution of de-obfusction only at the receiver, to
more sophisticated techniques enabling multi-point sensing at
legitimate devices. First of all, let us recall that the CSI-based
sensing and localization we try to counter with this work is
fundamentally different from positioning techniques proposed
in 802.11az1 that are based on Time of Flight (ToF) and
Angle-of-Arrival (AoA) and require the active cooperation of
the receiver: They focus on the localization of a cooperating
device, and not to the sensing and tracking of people who
may even not carry a device! Rather, this discussion can be
related to 802.11bf ubiquitous Wi-Fi sensing.2

First of all, consider the 4WHS of the Wi-Fi Protected
Access (WPA) negotiation as defined in the standard [25]
and schematically reported in Fig. 14, which establishes a
cryptographically secure communication channel between
an AP and a STA. This channel is then used to transmit
user data, but it can also be used to transfer signaling and
management information that we represent in the figure with
the bi-directional block arrow at the end of the 4WHS. Even
though the authentication procedure was slightly modified
with the introduction of the Simultaneous Authentication of
Equals (SAE) procedure [26], our considerations still apply
as they only concern the 4WHS that anyways follows the
SAE step.

1See the 802.11az Task Group page for further details
(https://standards.ieee.org/ieee/802.11az/7226/).

2The 802.11bf PAR was approved in Sept. 2020 and has already released
some draft documents (https://standards.ieee.org/ieee/802.11bf/10365/). For
a recent survey of the Task Group activities see [24].
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Figure 15: Modified 802.11 frame (simplified) for the iterative
approach including the position of the DE-OBF field, encrypted
with the same cypher used for the frame but with a dedicated
ephemeral key derived during 4WHS.

In the following two subsections we describe the require-
ments of two different de-obfuscation procedures: The first
one to only improve the communication performance, and
the second one to also enable multi-point sensing. Recall
that transmissions useful for sensing are only those of the
AP, while STAs transmissions are useless because STAs can
move. We consider that beacons are in any case obfuscated,
but since they are always transmitted at the lowest possible
transmission rate, STAs will be able to decode them with
high probability as shown in Fig. 13. Clearly, these protocols
ensure privacy just as long as the AP is trusted: If the attacker
controls the infrastructure, then different solutions should be
sought.

A. Improving Communications Performance

Fig. 13 shows that the communication performance can
suffer at high transmission speeds. This result confirms
the conclusions we draw in early works (specifically [6]
and [5]) and is due to the high sensitivity of higher-order
Quadrature Amplitude Modulation (QAM) modulations to
signal distortion. Albeit we cannot exclude that theoretic work
on the obfuscation function can improve the situation, a simple
and practical solution is letting the legitimate receiver remove
the obfuscation artifacts. In practice the receiver should know
the pre-distortion mask 2 that is applied to each frame for
obfuscating its CSI: this allows to remove the obfuscation
from all OFDM symbols before they are decoded.

The first possibility is an iterative decoding approach:
Including the obfuscation mask in every frame as an additional
field, let’s call it DE-OBF, between the standard 802.11
PLCP header and the data part, as shown in Fig. 15. The
advantage of this approach is its robustness (each frame
remains strictly a datagram completely independent from
others) and the lack of any synchronization requirement. The
overhead is Nsc ×Nbo bits, where here Nsc is the number
of carriers actually used (i.e., pilots excluded) and Nbo is the
number of bits to represent the multiplication factor (2 in
our implementation). Assuming to improve the multiplication
granularity to 8 bits, the overhead ranges from 52 bytes
for simple 20 MHz 802.11a/g systems to 484 bytes for an
advanced 160 MHz 802.11ac system.3 These fields should
be transmitted at basic-rate since they need to be decoded
correctly with high probability and a short Cyclic Redundancy
Code (CRC) code may be needed to protect them. And they
must be encrypted, possibly using the same cipher as the data
part, but using a dedicated ephemeral key derived during the
4WHS. The key disadvantage of this approach, apart from the
overhead, is the need for iterative decoding: first the receiver
needs to decode the frame until DE-OBF without inverting
the obfuscation function, just as we do in this implementation,
next, using the knowledge of the DE-OBF field, the complete
decoding of the frame is carried out.

3Note we have considered a single stream 802.11ac transmission. For more
complex encodings the overheads scale with the number of spatial streams.

A second possibility is a time-based protocol, i.e., the
AP and STA share a common pseudo-random generator,
seed it (synchronize it) appropriately, and then extract a new
value from it every Tobf s. This choice departs slightly from
the implementation we presented, as it entails a time-based
evolution of the process in Equation (1) and not a frame-based
one. As there is always the possibility of de-synchronization
of AP and STA that have to be re-synced as discuss hereinafter,
we assume that the devices time-counting is good enough for
standard operation. A frame-based evolution is difficult to
conceive because of frame losses and re-transmissions, which
would lead to continuous de-synchronization of AP and STA.

The initial synchronization can be obtained at the end of
the 4WHS (see Fig. 14) with two different approaches:

1) Derive the seed from the ephemeral keys;
2) Explicitly transmit the seed in a management frame

that, being protected by the encrypted channel, will be
secure.

The second option introduces a new frame, which may
be a drawback in the standardization procedure, but has the
advantage that re-synchronization during normal operation
comes almost for free. For instance we can imagine that,
after a “long” silence period, the AP (recall that only the
AP→STA traffic is used for sensing) re-starts by transmitting
this management frame with a new seed, which does not
need obfuscation as a single frame does never allow any
meaningful sensing. Similarly, the AP can re-seed the STA if
too many re-transmissions happened, assuming that repeated
losses may be caused by the loss of the obfuscation mask
sync.

With the first option, instead, there is the need for the
receiver to communicate the loss of sync to the transmitter.
This implies the need of a further function to understand
that the sync is lost. Both functions require some form of
signaling communication between the AP and the STA, thus
the advantage of not introducing a novel management frame
is partially lost.

The advantage of the time-based approach is an almost
zero overhead on the channel but, most of all, it does not
require iterative decoding. On the other hand, the STA has
to continuously update the obfuscation mask in its NIC even
when the mask is not used in order to ensure the alignment
of the sequences.

We can also imagine mixed solutions between the iterative
decoding approach and the time-based protocol. For instance,
in the time-based protocol, the AP can send the obfuscation
mask not as a header field, but as user-data. This way the
receiver does not need to do iterative decoding, but decodes
the frame based on its own obfuscation mask, which is then
compared with the transmitter one, and if they do not match
a re-sync is needed. To reduce the overhead the AP can send
this information only every Nobf frames or send only some
values of the mask in every frame (e.g., the amplification
factor of a fraction of the subcarriers), or a mix of the two.

The selection of the most appropriate solution can be
done only with a formal design of the protocol and also
after appropriate experiments that measure the achievable
performance, but this is outside the scope of this paper.

Per STA obfuscation and de-obfuscation may look an
extreme choice, and quite resource consuming. If the BSS is
fully trusted one may think of using the same masking pattern
for all the STAs to simplify the system. This solution, however,



works properly only with the iterative approach. Conversely,
with the time-based protocol with proactive re-sync by the
AP, long silence period leads to loss sync problems calling for
aggressive transmissions of management re-seeding frames
that should be STA-dependent, as the WPA encryption is
different for every station. Furthermore, the fact that the the
pattern is the same for all stations may be an advantage for an
attacker who wants to invert the obfuscation function. Thus
we do not suggest to take this direction.

B. Enabling Multi-Point Sensing

Wi-Fi sensing is not just an annoying threat to privacy. It
can indeed be a useful function to provide innovative services
such as multi-point sensing, as proposed in [5], [27], which
promises to achieve much better performance than single-
point sensing. The de-obfuscation protocol described above
can help maintain high communication performance, but in
general prevents sensing unless it is done at the STA that
receives the information flow. This, however, will hardly work,
as the CSI-based sensing techniques we are considering are
based on fingerprinting of the environment, hence require that
also the sensing device(s) are in a fixed position.

At this early stage of the analysis, it seems excessively
difficult to design a de-obfuscation protocol that allows
exploiting the standard transmissions from an AP when they
are obfuscated with per-STA pre-processing. Rather, it would
be simpler to exploit a specific sensing channel, which in
some sense is similar to an active attack as we considered
in [7], [12]. Clearly, if sensing is legitimate, we cannot talk
about an ‘attack,’ but obfuscation is welcome in any case to
prevent non-legitimate use of this sensing channel.

We define a sensing channel as a low frame-rate flow.
Beacons themselves can be used for CSI-base sensing, which
is the reason why we assume that a complete privacy-
preserving architecture contemplates also the obfuscation of
beacons, but additional frames can be used to improve sensing
capabilities or precision. Ideally, the problem can be solved
using one (or more) common secure channel(s) to distribute
the obfuscation parameters of beacons and additional frames
devoted specifically to sensing.

It is well known that Wi-Fi traditionally has problems
with multicast [28], thus we only sketch here some possible
paths to explore in the future, without the claim to present
a full, detailed design. A possible solution is to implement
a separate obfuscation pattern for the sensing channel and
exploit a group key (also known as shared key or multicast
keys) to distribute the channel sensing parameters to all STAs
in the BSS. Group keys are generated at the end of the
4WHS together with session keys, and can be used for several
purposes, whose discussion is not due here. Using a group key
and some additional signaling similar to what we discussed in
Sect. VI-A, we can obtain the de-obfuscation of the sensing
channel. This can be done for a subset of fixed STAs devoted
to sensing, or can be done for all STAs also improving the
reception of beacons. Attackers would not be able to access
it because they are not allowed to enter the BSS. An obvious
exception are public BSSs, but this discussion goes beyond
our scope.

VII. CONCLUSIONS AND FUTURE WORK

Wi-Fi sensing is a novel technology that promises a huge
leap in communication services under Wi-Fi coverage. Indeed,

the notion of joint communication and sensing is one of the
pillars of networking beyond 5G, making the scope of channel
sounding and sensing go beyond Wi-Fi. At the same time
these technologies pose unprecedented threats to privacy and
security, as the information leak happens at the physical layer
so it cannot be countered with cryptographic tools.

This paper has presented the implementation in openwifi
of an anti-sensing obfuscation technique and measured its
performance in comparison with those obtained in previous
works with Matlab+SDR emulation, showing that despite the
limitations imposed by a real implementation the proposed
obfuscation still works. Furthermore, possible protocols to
allow legitimate inversion of the obfuscation function have
been discussed. This work therefore shows that the idea of
signal obfuscation is fully implementable without hampering
any functionality of Wi-Fi. Moreover, it indicates how it can
be standardized to achieve a win-win solution able to maintain
high communication performance with all the advantages of
sensing while fully protecting the users.
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