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Abstract
Given a set T ⊆ R

n and a nonnegative function r defined on T , we consider the
power of x ∈ R

n with respect to the sphere with center t ∈ T and radius r (t) ,

that is, pr (x, t) := ‖x − t‖2 − r2 (t) , with ‖·‖ denoting the Euclidean distance. The
corresponding power cell of s ∈ T is the set

Cr
T (s) := {x ∈ R

n : pr (x, s) ≤ pr (x, t), for all t ∈ T }.

We study the structure of such cells and investigate the assumptions on r that allow
for generalizing known results on classical Voronoi cells.

Keywords Power cell · Voronoi diagram · Structure of power cells

Mathematics Subject Classification 52A20 · 52C22 · 52B11 · 51M20

1 Introduction and Preliminaries

This paper presents a systematic study of the fundamental properties of power cells.
Power cells have been extensively studied in the literature, the main reference being
the seminal paper [2], which contains a detailed theoretical and algorithmic study of
power diagrams and reviews some of its practical applications. Some more recent
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developments can be found in [3, 7, 8, 12–14]. Power cells and power diagrams are
used in several applications. In [4], for example, power diagrams are used to design
contracts to incentivize self-minded agents to providehonest information.Applications
to harvest planning can be found in [15], while in [1, 5, 18] algorithms for assignment
problems are developed based on the concept of power cells.

In this paper we mainly investigate the conditions on the weight function r under
which the basic properties of classical Voronoi cells extend to power cells. Among
other results, we give conditions for power cells to have a nonempty interior and to
be bounded. One of the main results gives sufficient conditions for a closed convex
set to be a power cell with respect to a given weight function. Another main result
states sufficient conditions on a given set of sites and a given weight function, for the
corresponding collection of power cells to make a tesselation of the space.

We will use standard convex analytic terminology and notation, following the clas-
sical reference [17]. We will denote R+, R++ and R−− the sets of nonnegative,
strictly positive and strictly negative real numbers, respectively. The zero vector, the
open unit ball and the unit sphere in R

n are denoted by 0, B and S, respectively.
The Euclidean inner product of x, y ∈ R

n and the Euclidean norm of x will be
denoted by 〈x, y〉 and ‖x‖ , respectively. Given C ⊆ R

n , with intC and clC we
denote the interior and the closure of C , respectively. The convex hull of C , denoted
convC , is the smallest convex set containing C . We denote coneC the convex con-
ical hull of C, that is, coneC := R+convC . The dimension of C, denoted dimC,

is the one of the affine variety generated by C; if C = ∅, we set dimC := 0. The
linearity space of a convex cone K ⊆ R

n is the largest linear subspace contained
in K, that is, linK := K∩(−K ). The orthogonal of a linear subspace L ⊆ R

n is
L⊥ := {x∗ ∈ R

n : 〈x, x∗〉 = 0, for all x ∈ L} .

Let T ⊆ R
n , with n ≥ 1, be a set whose elements are called sites. We consider a

weight function r : T → R+ on the set of sites. One can interpret r (t) as the radius
of a sphere centered at t; under such an interpretation, the function pr : R

n × T → R

defined by pr (x, t) := ||x − t ||2 − r2(t) assigns to every pair consisting of a point x
and a site t the power of x with respect to the sphere associated to t . We recall that
the power of a point with respect to a sphere is the product of the distances from that
point to the two intersections with the sphere of an arbitrary line through the point
that intersects the sphere; a remarkable property, which is nevertheless easy to prove,
says that such a product is independent of the chosen line. In particular, the power
equals the product of the shortest and farthest distances from the point to the sphere.
Moreover, as a limiting case, considering a line through the point that is tangent to
the sphere, the power equals the square of the distance from the given point to the
tangency point. The cell of s ∈ T , denoted by Cr

T (s), consists of all points for which
the power of x with respect to the sphere centered at t with radius r (t) is minimized
at t = s, i.e.

Cr
T (s) := {x ∈ R

n : pr (x, s) ≤ pr (x, t), for all t ∈ T } (1)

or equivalently,

Cr
T (s) = {x ∈ R

n : 〈t − s, x〉 ≤ br (t, s), for all t ∈ T } (2)
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with

br (t, s) := 1

2

(
||t ||2 − ||s||2 + r2(s) − r2(t)

)
. (3)

In viewof the discussion above, the difference betweenCr
T (s) and the ordinaryVoronoi

cell of s is that, in the latter case, a point x belons to the cell of s when s is the closest
site, whereas, in the former case, the proximity criterion from x to a site t ∈ T
corresponds to the geometric mean of the shortest and the largest distances from x to
a sphere centered at t ∈ T with radius r (t) .

Clearly, the condition t ∈ T in (1) and (2) can be equivalently replaced with
t ∈ T \ {s} .

The representation (2) shows that Cr
T (s), being the solution set of a (possibly

infinite) linear inequality system, is a closed convex set and, in the case when T is
finite, is a convex polyhedron.

The classical Voronoi cell of s ∈ T with respect to T , defined by

VT (s) := {x ∈ R
n : ‖x − s‖ ≤ ‖x − t‖ , for all t ∈ T },

corresponds to the particular case of Cr
T (s) when r is constant. In such a case, one has

br (t, s) = 1
2

(||t ||2 − ||s||2).
The rest of the paper consists of four sections. In Sect. 2, we establish the basic

properties of power cells; in particular, we give conditions on T and r that guarantee
their nonemptiness. In Sect. 3, we study the interior of power cells and their properties.
In Sect. 4, we give conditions for a point to belong to some power cell and, as a
consequence, conditions on T and r implying that the collection of all the power cells
make a tessellation of the space. Section 5 contains the conclusions.

2 Basic Properties of Power Cells

Unlike in the case of ordinary Voronoi cells, which are always nonempty (since s ∈
VT (s)), power cells may be empty, even for very simple sets of sites T and a very well
behaved function r . Indeed; consider, for instance, the case when T := {0, t,−t} ,

with t ∈ R
n\ {0} , and r := α ‖·‖|T , with α > 1. Then Cr

T (0) = ∅, since, for
x ∈ Cr

T (0), from (2 ) one gets 〈t, x〉 ≤ br (t, 0) and 〈−t, x〉 ≤ br (−t, 0), which
yields the absurd conclusion 0 ≤ br (t, 0) + br (−t, 0) = (

1 − α2
) ||t ||2 < 0.

UsingGale Theorem [9, Propositions 1 and 2 in Table 3.1], one immediately obtains
the characterization of the nonemptiness of power cells provided by the next propo-
sition, in which we make use of the second-moment cone [9] of the linear inequality
system in the representation (2):

Kr
T (s) := cone{(t − s, br (t, s)) : t ∈ T }.

Proposition 2.1 The following statements are equivalent:

i) Cr
T (s) �= ∅.

ii) (0,−1) /∈ clKr
T (s).
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A sufficient condition for the nonemptiness of power cells, which does not involve
second-moment cones, is provided next.

Proposition 2.2 If s /∈ clconv(T \ {s}) and the function br (·, s) is bounded, then
Cr
T (s) �= ∅.

Proof Suppose by contradiction that Cr
T (s) = ∅. By Proposition 2.1, there exist

sequences λkj ≥ 0, tkj ∈ T \{s}, j = 1, . . . , n, such that

0 = lim
k→∞

n∑
j=1

λkj (t
k
j − s),

−1 = lim
k→∞

n∑
j=1

λkj br (t
k
j , s). (4)

Let M > 0 be an upper bound of br (·, s). Then, by the continuity and subadditivity
of |.|, we have

1≤ lim
k→∞

n∑
j=1

λkj

∣∣∣br (tkj , s)
∣∣∣ ≤ M lim inf

k→∞

n∑
j=1

λkj ,

and hence

lim inf
k→∞

n∑
j=1

λkj ≥ 1

M
> 0.

Without loss of generality, we can assume that the sequence
∑n

j=1 λkj converges, so

that limk→∞
∑n

j=1 λkj ≥ 1
M . Dividing both sides of (4) by

∑n
j=1 λkj and defining

μk
j := λkj∑n

j=1 λkj

,

we have
∑n

j=1 μk
j = 1 and

0 = lim
k→∞

n∑
j=1

μk
j (t

k
j − s) = lim

k→∞

n∑
j=1

(μk
j t
k
j ) − s ∈ clconv(T \ {s}) − s,

which contradicts the assumption s /∈ clconv(T \{s}). ��
The following proposition establishes a necessary condition for a power cell to be

nonempty.

Proposition 2.3 If Cr
T (s) �= ∅, then inf t∈T \{s} br (t,s)||t−s|| > −∞.
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Proof Taking x ∈ Cr
T (s) and using (2), we obtain

inf
t∈T \{s}

br (t, s)

||t − s|| ≥ inf
t∈T \{s}

〈t − s, x〉
||t − s|| ≥ −‖x‖ > −∞.

��
As mentioned above, the ordinary Voronoi cell of s always contains s, but this is

not the case of power cells. Our next proposition, which follows easily from (2), gives
a necessary and sufficient condition for Cr

T (s) to contain s.

Proposition 2.4 The following statements are equivalent:

i) s ∈ Cr
T (s).

ii) r2(t) − r2(s) ≤ ||t − s||2, for all t ∈ T .

Classical Voronoi cells satisfy the obvious equality VT (s)∩T = {s} . The situation
for general power sets is quite different, as shown, for instance, by Proposition 2.4.
Our next result provides an upper estimate for Cr

T (s) ∩ T .

Proposition 2.5 One has

Cr
T (s) ∩ T ⊆ {t ∈ T : ||s − t ||2 ≤ r2(s) − r2(t)}.

Proof Let t ∈ Cr
T (s) ∩ T . Then 〈t − s, t〉 ≤ br (t, s), which, using (3), is easily seen

to be equivalent to the inequality ||s − t ||2 ≤ r2(s) − r2(t). ��
Corollary 2.1 Let T ⊆ R

n. If

r2(s) − r2(t) < ||s − t ||2, for all t ∈ T \ {s},

then

Cr
T (s) ∩ T ⊆ {s}.

Combining Corollary 2.1 with Proposition 2.4, we obtain the following corollary.

Corollary 2.2 Let T ⊆ R
n. If

|r2(s) − r2(t)| < ||s − t ||2, for all t ∈ T \ {s},

then

Cr
T (s) ∩ T = {s}.

The recession cone of a nonempty closed convex set X ⊆ R
n is

0+X := {
d ∈ R

n : d + X ⊆ X
}
,
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and the normal cone to X at x ∈ X is

NX (x) := {
x∗ ∈ R

n : 〈
y − x, x∗〉 ≤ 0 for all y ∈ X

}
.

The negative polar cone of X ⊆ R
n is

X0 := {x∗ ∈ R
n : 〈x, x∗〉 ≤ 0, for all x ∈ X}.

From the representation (2) ofCr
T (s) as the solution set of a linear inequality system,

one immediately gets the following result.

Proposition 2.6 If Cr
T (s) �= ∅, then 0+Cr

T (s) = (T − s)0 = NclconvT (s).

In view of Proposition 2.6, the recession cone 0+Cr
T (s) does not depend on r , as

long as Cr
T (s) �= ∅. In particular, one has 0+Cr

T (s) = 0+VT (s) if Cr
T (s) �= ∅.

Corollary 2.3 If Cr
T (s) �= ∅, then Cr

T (s) is bounded if and only if s ∈ int conv T .

The particular case of Corollary 2.3 corresponding to ordinary Voronoi cells was
given in [10, Proposition 5].

As we already observed in the preceding section, Cr
T (s) is a convex polyhedron if

T is finite. More generally, we have the following result.

Proposition 2.7 If clKr
T (s) is polyhedral, then Cr

T (s) is a polyhedron.

Proof It is sufficient to observe that

Cr
T (s) = {x ∈ R

n : 〈x, x∗〉 ≤ β, for all (x�, β) ∈ clKr
T (s)}.

Indeed, if clKr
T (s) is polyhedral, then it is the cone generated by a finite number of

vectors (x�
1, β1), ..., (x�

m, βm), and it is easy to see that

Cr
T (s) = {x ∈ R

n : 〈x, x�
i 〉 ≤ βi , i = 1, ...,m}.

��
The converse implication in Proposition 2.7 does not hold, as the following example

shows.

Example 2.1 Let

S := {(α, β) ∈ R
2 : (α − 1)2 + (β − 1)2 = 1, α ≤ 1, β ≤ 1},

and define

T := {(0, 0)} ∪
{

2

α2 + β2 (α, β) : (α, β) ∈ S

}
.
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It is not difficult to see that

VT ((0, 0)) = {(x, y) ∈ R
2 : αx + β y ≤ 1, for all (α, β) ∈ S}

= {(x, y) ∈ R
2 : (1 − cosφ)x + (1 − sin φ)y ≤ 1, for all φ ∈ [0, π

2
]}

= {(x, y) ∈ R
2 : min

φ∈[0, π
2 ]

{(cosφ)x + (sin φ)y} ≥ x + y − 1}.

To compute minφ∈[0, π
2 ]{(cosφ)x + (sin φ)y}, we distinguish three cases:

– (x, y) ∈ R
2++. In this case,

min
φ∈[0, π

2 ]
{(cosφ)x + (sin φ)y} = min{x, y,

√
x2 + y2} = min{x, y}.

– (x, y) ∈ R
2−−. In this case,

min
φ∈[0, π

2 ]
{(cosφ)x + (sin φ)y} = min{x, y,−

√
x2 + y2} = −

√
x2 + y2.

– (x, y) /∈ R
2++ ∪ R

2−−. In this case,

min
φ∈[0, π

2 ]
{(cosφ)x + (sin φ)y} = min{x, y}.

Using these computations, it is easy to see that (2.1) yields

VT ((0, 0)) = {(x, y) ∈ R
2 : x ≤ 1, y ≤ 1},

so that C0
T ((0, 0)) = VT ((0, 0)) is a polyhedron.

On the other hand, one has

clKr
T (s) = clcone

{
2

α2 + β2 (α, β, 1) : (α, β) ∈ S}
}

= clcone {(α, β, 1) : (α, β, 1) ∈ S × {1}}
= clcone(S × {1}) = clR+conv(S × {1})
= clR+ (conv(S) × {1}) ;

hence
(
clKr

T (s)
) ∩ (

R
2 × {1}) = conv(S) × {1} , which, since

conv (S) = {(α, β) ∈ R
2 : (α − 1)2 + (β − 1)2 ≤ 1, α ≤ 1, β ≤ 1},

shows that the cone clKr
T (s) is not polyhedral.

We have the following generalization of a result on classical Voronoi cells [10,
Proposition 8], establishing a necessary condition for polyhedrality of power cells;
our proof is much simpler than that of [10, Proposition 8].
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Proposition 2.8 If Cr
T (s) is a polyhedron, then clcone(T − s) is polyhedral.

Proof IfCr
T (s) is a polyhedron, then its recession cone is polyhedral; since, by Propo-

sition 2.6, one has clcone(T − s) = (T − s)00 = (
0+Cr

T (s)
)0, and the result follows

from the fact that the negative polar of a polyhedral cone is polyhedral, too. ��
Notice that the converse implication fails. Let n ≥ 2, and consider any non-empty

and non polyhedral closed convex set in R
n with polyhedral recession cone. Then, by

[10, Theorem 2], it can be written as VT (s) for some T ⊆ R
n and some s ∈ T , but

clcone(T − s) = (
0+VT (s)

)0 (see the proof of Proposition 2.8), so that clcone(T − s)
is polyhedral.

For the validity of the converse to Proposition 2.7, one needs extra assumptions on
T and r , as the ones considered in the following proposition.

Proposition 2.9 If T is unbounded and lim inf t∈T , ‖t‖→∞ r(t)
||t || = 0, then clKr

T (s) is
polyhedral if and only if Cr

T (s) is a polyhedron.

Proof By Proposition 2.7, if clKr
T (s) is polyhedral thenCr

T (s) is a polyhedron. For the
converse implication, we will use [9, Theorem 5.13(i)], according to which, if Cr

T (s)
is a polyhedron, then clcone ({(t − s, br (t, s))|t ∈ T } ∪ {(0, 1)}) is polyhedral, so the
thesis will follow from the equality

clKr
T (s) = clcone ({(t − s, br (t, s)) : t ∈ T } ∪ {(0, 1)}) , (5)

which we will now prove. To this aim, take a sequence tk ∈ T such that ||tk || → ∞
and r(tk )||tk || → 0. Since

2

||tk − s||2 br (tk, s) =
1 − ||s||2

||tk ||2 + r2(s)
||tk ||2 − r2(tk )

||tk ||2

1 + ||s||2
||tk ||2 − 2〈tk ,s〉

||tk ||2
,

we have

2

||tk − s||2 (tk − s, br (tk, s)) → (0, 1).

This proves (5), as we needed. ��
Let us recall the definition of the Bouligand tangent cone of a set X ⊆ R

n at
x0 ∈ X :

B(S, x0) := {d ∈ R
n : ∃{xk} ⊂ X , xk → x0, ∃{αk}, αk → +∞ : αk(xk − x0) → d}.

The following results partially extend [10, Proposition 10].

Proposition 2.10 If lim supt∈T ,t→s
r2(s)−r2(t)

||s−t ||2 < +∞, then Cr
T (s) ⊆ s + B(T , s)0.
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Proof Let x ∈ Cr
T (s) and d ∈ B(T , s). Then d = lim λk(tk − s) for sequences tk ∈ T ,

tk → s, and λk → +∞. We have

〈tk − s, x〉 ≤ br (tk, s) = 1

2

(
||tk ||2 − ||s||2 + r2(s) − r2(tk)

)
;

hence

〈tk − s, x − s〉 ≤ 1

2

(
||tk − s||2 + r2(s) − r2(tk)

)
.

Multiplying by λk and passing to the limit for tk → s, λk → +∞, we obtain

〈d, x − s〉 ≤ 1

2
lim λk

(
||tk − s||2 + r2(s) − r2(tk)

)
.

By the hypothesis, there exists M ≥ 0 such that, for k large enough,

r2(s) − r2(tk) ≤ M ||s − t ||2.

Then

〈d, x − s〉 ≤ 1

2
lim λk

(
||tk − s||2 + M ||s − tk ||2

)
= 1 + M

2
lim λk ||tk − s||2 = 0,

which proves that x − s ∈ B(T , s)0 or, equivalently, x ∈ s + B(T , s)0. ��
Corollary 2.4 If lim supt∈T ,t→s

r2(s)−r2(t)
||s−t ||2 < +∞, then

i) dimCr
T (s) ≤ n − dim linB(T , s).

ii) If, in addition, B(T , s) = R
n, then Cr

T (s) ⊆ {s}.
Proof Inequality i) follows from the inclusions

Cr
T (s) ⊆ s + B(T , s)0 ⊆ s + (linB(T , s))⊥.

Statement ii) follows directly from Proposition 2.10 and i). ��
According to [10, Theorem 2], every nonempty closed convex set F ⊆ R

n is a
Voronoi cell; more specifically, for every s ∈ F there exists a (closed) set T ⊆ R

n

such that s ∈ T and VT (s) = F . The situation is quite different for general power sets,
when r is not constant. Observe, for instance, that, using (2 ), it is easy to see that, for

T ⊆ R
n and s ∈ T , one has, C

‖·‖|T
T (s) = (T − s)0 . Consequently, for a nonempty

closed convex set F ⊆ R
n, a necessary and sufficient condition for the existence of

T ⊆ R
n and s ∈ T such that C

‖·‖|T
T (s) = F is that F be a cone. Indeed, if F is a

closed convex cone, one has 0 ∈ F0 and C
‖·‖|F0
F0 (0) = F00 = F . Wewill next address

the problem of finding sufficient conditions for a nonempty closed convex set to be a
power cell. The following translation result will be a useful tool.
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Proposition 2.11 Let q ∈ R
n and Tq := T − q, and define rq : Tq → R+ by

rq(t) := r(t + q). Then

C
rq
Tq

(s − q) = Cr
T (s) − q.

Proof It is a routine exercise, using the identity

brq (t − q, s − q) + 〈t − s, q〉 = br (t, s) .

��
Our next lemma gives a sufficient condition, in terms of support functions, for a

closed convex set to be a power cell. We recall that the support function of F ⊆ R
n is

σF : R
n → R∪{+∞}, defined by σF (x∗) := supx∈F 〈x, x∗〉. The condition provided

by the lemma is very difficult to check in practice, but it will be useful to obtain the
much easier to check sufficient condition given in the subsequent theorem.

Lemma 2.1 Let F � R
n be nonempty, convex and closed, φ : R

n → R+, and s ∈ R
n.

If, for every x� ∈ S ∩ σ−1
F (R) , there exists αx� > 0 such that

αx� (σF (x�) − 〈x�, s〉) = 1

2

(
α2
x� + φ2(s) − φ2(αx�x� + s)

)
, (6)

then there exists T ⊆ R
n such that s ∈ T and Cφ|T

T (s) = F.
If, moreover, F is a polyhedron, then we can take T finite.

Proof We first consider the case when s = 0. Since F is closed and convex, we have

F = {x ∈ R
n : 〈x�, x〉 ≤ σF (x�), for all x� ∈ U }

for someU ⊆ S∩σ−1
F (R) . Multiplying both sides of the inequality 〈x∗, x〉 ≤ σF (x∗)

with the strictly positive number αx∗ defined by (6) and setting tx∗ := αx∗x∗, we see
that that inequality canbe equivalentlywritten 〈tx∗ , x〉 ≤ 1

2

(‖tx∗‖2 + φ2 (0) − φ2 (tx∗)
)
.

Hence, by (2), we have F = Cφ
T (0) for

T := {0} ∪ {tx� : x� ∈ U }.

We now consider an arbitrary s ∈ R
n , and define Fs := F − s and φs : R

n → R+ by
φs(t) := r(t + s). Then, (6) yields αx�σFs (x

�) = 1
2

(
α2
x� + φ2

s (0) − φ2
s (αx�x�)

)
,

so we obtain the existence of T ′ ⊆ R
n such that 0 ∈ T ′ and Cφs

T ′ (0) = Fs .
Setting T := T ′ + s, we have T ′ = Ts, so that, by Proposition 2.11, we have
Cφ
T (s) = Cφs

T ′ (0) + s = Fs + s = F .
Notice that if F is a polyhedron and U is minimal in the definition of F, then U is

finite and, as a consequence, T is finite. ��
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Our main sufficient condition for a nonempty closed convex set F to be a power
cell will be expressed in terms of the oriented distance function. The oriented distance
function to a nonempty proper subset F ⊆ R

n is the function ΔF : R
n → R defined

by ΔF (x) := dF (x) − dRn\F (x), with dF : R
n → R denoting the Euclidean distance

function to F , given by dF (x) := infs∈F ‖x − s‖ . It is well known that, if F is a
convex set, then ΔF is a convex function [11, Proposition 4]. Furthermore, as proved
in [6, (10) and Remark 4.2], one has ΔF (x) = maxx�∈S {〈x, x∗〉 − σF (x�)}.
Theorem 2.1 Let F ⊆ R

n be convex and closed, s ∈ R
n, and φ : R

n → R+. If φ is
continuous and satisfies

lim inf
t→s

φ2(t) − φ2(s)

||t − s|| > 2ΔF (s) (7)

and

lim sup
||t ||→∞

φ(t)

||t || < 1,

then there exists T ⊆ R
n such that s ∈ T and Cφ|T

T (s) = F.
If, moreover, F is a polyhedron, then one can take T finite.

Proof We first consider the case when s = 0. According to Lemma 2.1, it will be
enough to prove that, for every x� ∈ S, the equation

f (α) = σF (x�), (8)

with f (α) := 1
2

(
α + φ2(0)−φ2(αx�)

α

)
, has a strictly positive solution α > 0. Because

of (7), we have

lim sup
α→0+

f (α) = 1

2
lim sup
α→0+

φ2(0) − φ2(αx�)

α
≤ 1

2
lim sup
t→0

φ2(0) − φ2(t)

||t ||
< −ΔF (0) = min

y�∈S σF (y�) ≤ σF (x�).

On the other hand, from

lim inf
α→+∞

(
1 − φ2(αx�)

α2

)
= 1 − lim sup

α→+∞
φ2(αx�)

α2 ≥ 1 −
(
lim sup
||t ||→∞

φ(t)

||t ||

)2

> 0

we deduce that, for α large enough, 1− φ2(αx�)

α2 is bounded below by a positive number;
hence

lim inf
α→+∞ f (α) = 1

2
lim inf
α→+∞ α

(
1 − φ2(αx�)

α2

)
= +∞.
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Since φ is continuous, from the inequalities

lim sup
α→0+

f (α) < σF (x�) < +∞ = lim
α→+∞ f (α),

using the imtermediate value theorem we deduce the existence of a solution α > 0 to
equation (8), as we wanted to prove.

For the general case when s ∈ R
n is arbitrary, by replacing s, φ and F with 0,

φs : R
n → R+ defined by φs(t) := φ(t + s) and F − s, respectively, we obtain the

existence of T ′ ⊆ R
n such that 0 ∈ T ′ andCφs

T ′ (0) = F−s.; then, setting T := T ′+s,

by Proposition 2.11 we get Cφ
T (s) = Cφs

T ′ (0) + s = F .
As in the proof of Lemma 2.1, notice that if F is a polyhedron and U is minimal in

the definition of F, then U is finite and, as a consequence, T is finite. ��
Remark 2.1 The assumptions of Theorem 2.1 are satisfied when s ∈ intF and r is
constant; therefore, one obtains the particular case when s ∈ intF of [10, Theorem 2]
as a direct consequence of Theorem 2.1.

3 The Interior of Power Cells

The following expression for the interior of power cells is an easy consequence of (2).

Proposition 3.1 One has

intCr
T (s) =

{
x ∈ R

n : inf
t∈T \{s}

br (t, s) − 〈t − s, x〉
||t − s|| > 0

}
.

As in the case of Theorem 2.1, a straightforward application of Gale Theorem
[9, Propositions 1 and 2 in Table 3.1] yields the following characterization of the
nonemptiness of the interior of power cells.

Proposition 3.2 The following statements are equivalent:

i) intCr
T (s) �= ∅.

ii) (0,−1) /∈ ⋂
ε>0 clcone{(t − s, br (t, s) − ε||t − s||) | t ∈ T \{s}}.

A proof almost identical to that of Proposition 2.2, with obvious changes and using
Proposition 3.2, yields the following sufficient condition for the nonemptiness of the
interior of power cells.

Proposition 3.3 If s /∈ clconv(T \ {s}) and there exists ε > 0 such that the function
br (·, s) − ε ‖· − s‖ is bounded, then intCr

T (s) �= ∅.

Corollary 3.1 If T is finite and s is an extreme point of convT , then

intCr
T (s) �= ∅.

123



Journal of Optimization Theory and Applications

Proof Since s is an extreme point of convT and T is finite, we have

s /∈ conv ((convT ) \ {s}) ⊇ conv(T \ {s}) = clconv(T \ {s}),

so that the assumptions of Proposition 3.3 are satisfied. ��
By strengthening the inequalities in Proposition 2.4.ii, one gets a characterization

of the inclusion s ∈ intCr
T (s).

Proposition 3.4 One has s ∈ intCr
T (s) if and only if there exists ε > 0 such that

r2(t) − r2(s) ≤ ||t − s||2 − ε||t − s||, for all t ∈ T (9)

More specifically, the inequalities (9) hold if and only if

s + ε

2
B ⊆ Cr

T (s).

Proof The inclusion s ∈ intCr
T (s) is equivalent to the existence of δ > 0 such that

s + δy ∈ Cr
T (s) for all y ∈ B, which means that

〈t − s, s〉 + δ〈t − s, y〉 ≤ br (t, s), for all t ∈ T \ {s} and y ∈ B,

and this can be easily seen to be equivalent to (9) with ε := 2δ. ��
Condition (9) can be weakened when Kr

T (s) is closed. The following result gener-
alizes [10, Proposition 15(ii)].

Proposition 3.5 If r2(t) − r2(s) < ||t − s||2 for all t ∈ T \ {s} and Kr
T (s) is closed,

then s ∈ intCr
T (s).

Proof It is easy to check that the inequalities r2(t)−r2(s) < ||t−s||2 for all t ∈ T \ {s}
mean that s satisfies with strict inequality all the inequalities in the representation (2 )
except the trivial one corresponding to t = s, that is, s is a Slater point. Hence, since
Kr
T (s) being closed implies that the linear inequality system in the representation (2)

is locally Farkas-Minkowski in the sense of [16], by [16, Corollary 4.1(i)] we conclude
that s ∈ intCr

T (s). ��
The assumption that Kr

T (s) is closed is not superfluous in Proposition 3.5. Consider,
for instance, the case when T := R

n; then, for every s ∈ R
n one has VT (s) = {s} .

Notice that, in this case, Kr
T (0) = (Rn × (0,+∞)) ∪ {(0, 0)}.

4 Conditions for Power Cells to Make a Tessellation of R
n

A covering of R
n is said to be a tesselation if every two members of the covering

have their intersection contained in the intersection of their boundaries. We begin this
section by proving that power cells satisfy this intersection condition.
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Proposition 4.1 If s1, s2 ∈ T with s1 �= s2, then Cr
T (s1) ∩ intCr

T (s2) = ∅.

Proof If x ∈ Cr
T (s1) ∩ intCr

T (s2), then, by (2 ), we have 〈s2 − s1, x〉 ≤ br (s2, s1) and
〈s1 − s2, x〉 < br (s1, s2) , which contradicts the equality

br (s2, s1) + br (s1, s2) = 0.

��
Recalling that intA ∩ intB = int(A ∩ B), one obtains the following corollary.

Corollary 4.1 If s1, s2 ∈ T with s1 �= s2, then int
(
Cr
T (s1) ∩ Cr

T (s2)
) = ∅.

Proof We have

int
(
Cr
T (s1) ∩ Cr

T (s2)
) = intCr

T (s1) ∩ intCr
T (s2) ⊆ Cr

T (s1) ∩ intCr
T (s2) = ∅.

��
Recalling that a real-valued function is upper semi-continuous (u.s.c.) when its

hypograph is closed, the following results give sufficient conditions for a point to
belong to some power cell.

Lemma 4.1 Let T be unbounded and closed, r be u.s.c., and x ∈ R
n . If

||x || <
1

2
lim inf t ∈ T

||t || → ∞

(
||t || − r2(t)

||t ||
)

,

then x ∈ ⋃
s∈T

intCr
T (s).

Proof Notice that, for s ∈ T , we have x ∈ Cr
T (s) if and only if s is a global minimum

of pr (x, ·) over T , and that, if x satisfies the inequality in the statement, so does every
point sufficiently close to x . Thus, it will suffice to prove that, if the limit condition in
the statement holds, then pr (x, ·) is coercive. This coercivity condition is proved as
follows.
Take α ∈

(
||x ||, 1

2 lim inf t∈T , ||t ||→∞
(
||t || − r2(t)

||t ||
))

. We have pr (x, t) = ‖x‖2 +
‖t‖

(
−2

〈
x, t

‖t‖
〉
+ ‖t‖ − r2(t)

||t ||
)

; hence, if ||t || is large enough,

pr (x, t) > ‖x‖2 + ‖t‖
(

−2

〈
x,

t

‖t‖
〉
+ 2α

)
≥ ‖x‖2 − 2 ‖x‖ ‖t‖ + 2α ‖t‖

= ‖x‖2 + 2 (α − ‖x‖) ‖t‖ .

Therefore, if x �= 0, we have limt∈T , ||t ||→∞ pr (x, t) = +∞, as we had to prove. On

the other hand, pr (0, t) = ||t ||
(
||t || − r2(t)

||t ||
)

; hence, since for ||t || large enough we
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have ||t || − r2(t)
||t || > β for some β > 0, we deduce that

lim
t∈T , ||t ||→∞ pr (0, t) = +∞,

that is, pr (0, ·) is coercive. This ends the proof. ��
Proposition 4.2 Let T be unbounded and closed, r be u.s.c., and q ∈ R

n . If x ∈ R
n

satisfies

||x − q|| <
1

2
lim inf t∈T−q, ||t ||→∞

(
||t + q|| − r2(t + q)

||t + q||
)

, (10)

then
x ∈

⋃
s∈T

intCr
T (s). (11)

Proof Set T ′ := T + q, and define r ′ : R
n → R+ by r ′ (t) := r (t + q) . Then,

making the change of variable t ′ := t + q in (10), we obtain

||x − q|| <
1

2
lim inf t ′∈T , ||t ′||→∞

(
||t ′|| − r ′2(t ′)

||t ′||
)

;

hence, by Lemma 4.1, we have x −q ∈ ⋃
s∈T

intCr ′
T ′(s′ −q) = ⋃

s∈T
intCr

T (s)−q,which

proves (11). ��
Corollary 4.2 Let T be unbounded and closed, r be u.s.c., and q ∈ R

n . If

lim inf t∈T−q, ||t ||→∞
(

||t + q|| − r2(t + q)

||t + q||
)

> 0,

then q ∈ ⋃
s∈T

intCr
T (s).

Our last results generalize [10, Proposition 1] .

Theorem 4.1 Let T be closed and r be u.s.c. If either T is bounded or

lim
t∈T , ||t ||→∞

(
||t || − r2(t)

||t ||
)

= +∞,

then {Cr
T (s)}s∈T is a tesselation of R

n.

Proof This is an immediate consequence of Lemma 4.1 and Proposition 4.1. ��
Corollary 4.3 Let T be closed and r be u.s.c. If T is unbounded and

lim sup
t∈T , ||t ||→∞

r(t)

||t || < 1,

then {Cr
T (s)}s∈T is a tesselation of R

n.
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Proof It follows directly from Theorem 4.1, noticing that

||t || − r2(t)

||t || = ||t ||
(
1 − r2(t)

||t ||2
)

.

��

5 Conclusions

There is an extensive literature on power cells (see, e.g. [2]), but, to the best of our
knowledge, a systematic study of their fundamental properties has not been carried
out so far. In the current paper, we have undertaken such a study, focusing mainly
on obtaining conditions on the weight function r under which power cells preserve
the main properties that classical Voronoi cells have. As is the case of Voronoi cells
induced by the Euclidean distance, power cells corresponding to the Euclidean norm
are closed convex sets. We have obtained conditions for their nonemptiness as well as
for that of their interiors, and we have studied other properties, including boundedness
and polyhedrality. We have also proved that, under simple assumptions (for instance,
when the set of sites is finite), the power cells make a tessellation of the space.We have
illustrated the fact that power cells may behave quite differently from their classical
counterparts; for example, even when they are nonempty, they do not necessarily
contain the site they are associated with.
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