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Abstract 

Legged robotic technologies have moved out of the lab to operate 
in real environments, characterized by a wide variety of 
unpredictable irregularities and disturbances, all this in close 
proximity with humans. Demonstrating the ability of current robots 
to move robustly and reliably in these conditions is becoming 
essential to prove their safe operation. Here, we report an in-depth 

literature review aimed at verifying the existence of common or 
agreed protocols and metrics to test the performance of legged 
system in realistic environments. We primarily focused on three 
types of robotic technologies, i.e., hexapods, quadrupeds and 
bipeds. We also included a comprehensive overview on human 
locomotion studies, being it often considered the gold standard for 
performance, and one of the most important sources of 
bioinspiration for legged machines. We discovered that very few 
papers have rigorously studied robotic locomotion under irregular 

terrain conditions. On the contrary, numerous studies have 
addressed this problem on human gait, being nonetheless of highly 
heterogeneous nature in terms of experimental design. This lack of 
agreed methodology makes it challenging for the community to 
properly assess, compare and predict the performance of existing 
legged systems in real environments. On the one hand, this work 
provides a library of methods, metrics and experimental protocols, 
with a critical analysis on the limitations of the current approaches 

and future promising directions. On the other hand, it demonstrates 
the existence of an important lack of benchmarks in the literature, 
and the possibility of bridging different disciplines, e.g., the human 
and robotic, towards the definition of standardized procedure that 
will boost not only the scientific development of better bioinspired 
solutions, but also their market uptake. 

Keywords: Irregular terrain, uneven terrain, performance, 
benchmarking, human, legged systems, robot. 

1. Introduction 

In the last decade, the robotics community has put 

unprecedented efforts in expanding robots’ capabilities to 

meet the increasingly needs of emerging application 

domains. Robots started to work in shared spaces with 

human users, accessing environments previously restricted 

to humans, like public places, collaborative industrial 
settings, and homes. To achieve high levels of reliability, 

safety and versatility in such conditions, this new generation 

of collaborative robots needs to demonstrate their interaction 

capabilities with humans and with the environment. 

Performance evaluation has therefore become particularly 

relevant in many sectors of robotics. In the field of 

locomotion, last years have been characterised by the advent 

of highly performant generations of legged robots with 

impressive biomimetic abilities in unstructured natural 

environments. However, while robotic locomotion over flat 
surfaces has been extensively covered in the scientific 

literature, few efforts have been devoted to rigorously test 

locomotion abilities in non-ideal conditions (1). 

Environments in which humans operate are characterized by 

an immense variety of irregular terrains, which pose many 

risks for the stability of legged systems. Exposure to these 

conditions can be either voluntary/predictable, as in the case 

of avoiding obstacles, or involuntary/unpredictable, e.g., 

when dealing with small surface irregularities (2–4). 

In this paper, we performed an extensive literature review of 

scientific studies related to legged locomotion over irregular 
terrains. We reported the technical characteristics of the 

ecological terrains, the experimental platforms used in these 

studies, as well as the experimental protocols and 

performance indicators (PIs) used to evaluate robot abilities. 

We also included a revision of prior studies on human 

locomotion over irregular terrain, being human performance 

often considered the “gold standard” for robotic legged 

locomotion, and a major source of inspiration for 

morphological, actuation and control principles (5). With 

this review, we intend to provide the basic knowledge 

necessary to move the first steps towards a benchmarking 

methodology able to test and demonstrate robotic 
performance in out-of-the-lab environments, a topic that, 

beside its increasing relevance in the community (6), remains 

still largely unexplored. 

2. Materials and methods 

This review was aimed to answer three main questions: 

- which testbeds have been used to replicate ecological 
irregular terrain environments? 

- which experimental protocols and measurements systems 

have been used to test robotic systems under irregular 

terrain conditions? 

- which metrics and performance indicators have been used 

to evaluate robotic abilities? 

We performed various searches on Scopus scientific 

database between June, 2019 and June, 2022. The search 

strategy was determined using the AND/OR/NOT boolean 

operators with different combinations of the following 

keywords:  

Page 1 of 14 AUTHOR SUBMITTED MANUSCRIPT - BB-103022.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



2 

“rough, uneven, unstable, soft, irregular*, terrain*, 

ground*, surface*, walk*, locomot*, stand*, balanc*, gait, 

robot*, exoskeleton*, prosth*” 

The search returned 313 articles, 194 of them including 

robots, and 119 related to human locomotion. Ten additional 

articles were added from Google Scholar and PubMed 

databases. Five more papers were found from the reference 

list of relevant articles. A total of 328 articles were reviewed. 

We first filtered the papers by titles and abstracts, including 

those with any relation with activities performed on irregular 

terrains. We entirely read the resulting 116 studies, and 

excluded those matching any of the following criteria: 

- Insufficiently detailed description of the irregular 

terrain(s) employed in the experimental setup.  

- Missing evaluation protocol or performance indicators. 

- Not related to legged locomotion. 

This process resulted in a total of 120 papers, 20 of them 

related to humans and 100 to robots. The results of our 

review are organised in two sections, focused on human and 

robotic locomotion respectively. 

3. Human locomotion over irregular terrains 

Research on human walking over irregular terrains has been 

active during the last two decades, (7)with a significant 

increase in the number of scientific studies in the last five 

years. The reviewed studies cover a wide range of objectives, 

ranging from more general aspects like biomechanics and 
energetics in healthy populations (7–9) to specific studies 

focused on patients (10,11) and elderlies (12–15). More 

recently, the effects of additional constraints, such as the type 

of shoes (16,17), loads (18) and varying speed (2) have 

started to be investigated. 

All the studies considered in this review focused on walking, 

except three, which also considered running (17,19,20).  

3.1. Methodological aspects 

Regarding the subjects involved in the experiments, we 

observed that: 

- The number of subjects involved in these studies 

fluctuates between 8 and 35. 
- Subjects were, in general, healthy people (2,12–14,16–

22). Some experiments involved patients with different 

diseases, such as Parkinson’s disease (PD) (23), diabetic 

peripheral neuropathy (DPN) (15), cerebral palsy (CP) 

(10,11), or stroke survivors (24).  

- Male and female participants were both present in most 

of the papers, except for very few (2,8,17,25) which 

only included male subjects.  

- Most of the studies included subjects ranging from 20 to 

50 years old. Six papers presented results on elderly 

subjects (12–15,20,23) and two focused on children 
(10,11). 

- All the subjects were within the height average 

associated to their age, except CP patients (15) which 

were less than 130cm tall. 

- The weight of the subjects ranged between 40 and 100 

kilograms. 

Each study was written from a different research perspective 

and with different aims. Protocols were slightly different to 

each other, but almost all shared a common structure that can 

be summarized in the resulting four stages: 

Stage 1. The subject is instrumented with the chosen 

measurement system.  

Stage 2. If needed, a static capture is taken. This stage was 

particularly needed when optical motion capture systems 

were used (2,8–17,21,23,25). 

Stage 3. The subject is asked to perform a sequence of 

locomotion trials. Some studies let the participant get 

familiarized with the instrumentation and the terrain before 

recording (2,10,15,24). Others directly ask the user to walk 

several times across the testbed for each of the terrain 

conditions. The order in which the subject goes through the 

different terrain setups was randomized in some studies 

(9,10,13,22). Some researchers gave the subject some rest 

time between the trials (2,8,9,22) while the others did not.  

Stage 4. The instrumentation is removed from the 

participant, and the experiment finalises. 

Regarding the variables calculated from the experiments, the 

most represented are kinematics (2,8–11,13,15–17,21,23,24) 

and spatiotemporal parameters (2,7–10,12–18,20,23,25). 

Some papers also assessed electromyographic signals 

(EMG) (2,9,10,17,20),  kinetics (9,11), number of falls (15), 

joint ranges of motion (24) and metabolic rates (9) (see 

Figure 1).  

 Figure 2. Overview of the Performance Indicators (PI) 

found in human studies. CoM: Centre of Mass, CoP: Centre 

of Pressures.  
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Figure 1. Overview of the metrics found in human studies. 

EMG: Electromyography.  
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Figure 3. Summary of the irregular terrains considered in the papers reviewed. Figures are adapted from the references shown 

in the first column. 
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Only half of reviewed papers reported the calculation of 

Performance Indicators (PIs, see Figure 2), defined as 

standardized metrics describing the ability of the system to 

perform a given task. The most represented PIs are the 

margin of stability (MoS) (14,21), centre of mass (CoM) 

excursion  (11,13) and centre of pressure (CoP) displacement 

(11,18). We also found papers that calculated other PIs such 

as the gait profile score (11), movement smoothness (14), 
stability variables (20,23), amplitude variability (7) and 

harmonic ratio (7).  

As reported in Figure 3, the different studies did not follow 

a standard methodology or principle to build the 

irregularities. However, we observed some similarities in the 

patterns of irregularities across the studies, such as rocky 

terrain replica (8,23,24), a carpet with irregular bricks 

underneath (7,15,25), a treadmill with bricks on it (9,18) and 

a walkway entirely built with irregular bricks (13,14,16). 

Despite these similarities, the materials and dimensions 

proposed vary considerably.  

Regarding the measurement systems employed in these 
studies, the majority of the authors captured the subject’s 

kinematics with photogrammetric systems (2,8–17,21,23–

25) and kinetics with force platforms (8,9,11,21,23).  Some 

others also included EMG (9,10), open-circuit respirometry 

(9) and inertial measuring systems (IMUs) (14). Two studies 

used alternative systems, such as pressure insoles (18) and 

tri-axial piezo-resistant accelerometers (7,20). 

3.2. Scientific evidence 

Performing gait over uneven terrain challenges the human 

bipedal motor control system to modify the kinematic and 

dynamic behaviour of the whole body to maintain balance. 
The most common changes observed in the different groups 

of subjects addressed so far (i.e., healthy, elderly, young, CP 

and PD patients) are an increase of thigh and lower leg 

muscles activation (2,9,17), knee and hip flexion 

(8,10,14,23), gait variability (2,17), gait kinematics (e.g. 

joint angles) (17) and centre of mass acceleration (13,23) as 

well as a decrease of stride length, cadence, speed, step 

length (7,9,10,15,16,23,25) and gait smoothness (13,14).  

Santuz et al. (20) studied muscle coordination in overground, 

treadmill and uneven terrain during walking and running, in 

young and old adults. Their results showed that, both in 
young adults and elderlies, motor primitives are less complex 

in i) running compared with walking, ii) walking on a 

treadmill compared with overground walking, iii) 

overground walking compared with treadmill running, and 

iv) when perturbations exist compared with unperturbed 

locomotion.   

Other evidence showed how older adults presented a 

decrease in balance correlated with gait adaptations (13). 

Children with CP presented an impaired trunk and pelvic 

control and a worsening in dynamic balance when walking 

over uneven terrains (11). Stroke survivors experienced an 

increase of ankle plantar flexion range of motion when 
walking through pebbled surfaces and a change in the 

direction of motion at the ankle joint when walking through 

sand (24). Another study observed that gait parameters 

variance increases when walking over rough terrain with 

minimal shoes, but it is maintained when wearing boots (16). 

4. Robotic locomotion over irregular terrains 

We classified the different studies involving robots 

according to the number of robotic legs: 18 studies focused 

on hexapods (26–43); 32 studies focused on quadrupeds (44–

75); 34 studies focused on bipeds (4,76–107). We also 

included five studies involving robotic prostheses (108–

112). Nine studies were grouped together and classified as 

“other”, such as those including salamander-like (113,114), 

modular (115), multi-legged (116,117), snake-like (118–

120) and tread robots (121). We did not find any work 

including robotic exoskeletons. 

4.1. Methodological aspects 

Figure 4 presents an overview of the number of physical and 
simulated experiments conducted per group of robots and 

type of terrain setup. 

Hexapods. Most of the studies with hexapods used a surface 

with several blocks of different heights and slopes placed 

separated and randomly on the floor (26,29,31,33,34,38).  

Other common setups are steps (27,28,30,42), stairs 

(29,30,36), ramps (27,42,43), rocky terrains replicas 

(35,37,39–41),  sand (32) or soft terrains obtained by placing 

rubber pads below the randomly distributed blocks (32).  

Quadrupeds. The terrains used in quadrupeds’ studies are 

mostly composed of randomly placed blocks with different 
heights separated from each other according to variable 

patterns (46,51–54,56–59,61–68,70) and slopes (44–46,48–

50,54,58,60,65,66,69,70,75). Other works placed steps in 

different combinations (45–47,51–53,70), or used stairs 

(44,47,52,54,56,61,62,65,66,68,72). Five papers 

(51,55,58,65,68) used a rocky terrain replica. Ditch, (45–

47,51) soft and slippery grounds (52,71) have also been 

considered. Walking over artificial or real ice have been 

tested in (48,60,69,71). One study, (52) addressed several 

different challenging environments together: snow, rocks, 

stream, wet moss, mud, vegetation, grass, ice, mud, sand, and 

stairs.  

Bipeds. The majority of the studies on bipedal robots 

employed slopes (76–78,80,89,93–97,101,102,107), steps 

(3,4,80,81,88,93,95,98–100,104), and blocks placed 

randomly and separated from each other (77,79,83–

87,91,93). Five (77,80,89,93,107) of the reviewed papers 

proposed a combination of, at least, two of them. However, 

the majority only used either slopes, steps or random bricks 

(3,4,76–81,83–89,91,93–102,104,107).  Only six more 

terrains where found: stairs (80,89,92), rocky terrain replica 

(105), ditch (89), soft terrain (103,106) and grassland 

(93,107). The most complete approach considering several 
terrains was the DARPA challenge (93), in which humanoid 

robots were challenged to go through level, rough and sloped 
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terrains, loose soil, rocks, and natural-like obstacles such as 

bushes, trees and ditches. 

Robotic prostheses. Five of the reviewed studies focused on 

powered prostheses. Two of them (108,109), from the same 

authors and focusing on ankle prostheses, proposed a 2x2 

(inches) sections of plywood with 10x15x1cm (length, 

width, height) plywood blocks stacked 0, 1, or 2 cm high in 

a repeating pattern. Blocks were rotated between trials to 
avoid repeating the pattern. In one study (110), authors tested 

a transtibial prosthesis using a 3 mm thick carpet with 

randomly arranged triangular wooden prisms between 60 

and 160 mm in length, having 26 prisms per square meter. 

The dimensions of the triangles in those prisms were 30 mm 

of base length and 15 mm of triangle height. The total surface 

was 8 m long and 1.5 m wide. Chiu et al (111) used a 

prosthesis emulator system to try a new controller whose aim 

was to reduce the effect of the disturbances caused by uneven 

terrains. The uneven terrain they proposed to validate this 

new controller consisted of a treadmill with wooden 

rectangles placed at three different heights on it. These 
rectangles were 18cm long with a width varying between 7.6 

and 15cm. Jang et al. (112)also focused on developing a gait 

algorithm to walk through irregular terrain using impedance 

control as well as on designing a prosthesis that is fully 

prepared for this task. For this issue, a metal disk of 20mm 

height was used as an obstacle to simulate uneven terrain. 

Exoskeletons. No studies involving exoskeletons over 

irregular terrains were found. 

Others. The investigations with salamander-like (113,114), 

modular (115), multi-legged (116,117), snake (118–120) and 

tread robots (121) used steps (114,115,119), stairs (114,117), 

random bricks (113–116,121),   slopes (116,118) and sandy 

slopes (120).  

Simulations. Simulations are a fundamental tool to safely 

test the robot performance prior to real-life deployment. 

Most of the authors relied on them 

(26,31,33,35,36,38,48,51–

53,55,57,59,61,62,65,67,68,72,74,75,79,82,84–86,88–

92,94–103,114,115,117,121). Most authors carried out 

experimental tests to validate robot capabilities through 

realistic, physically simulated scenarios (4,26–32,34–37,39–
47,49–52,54,56–58,60,63–66,68–71,73,76–

78,80,81,83,85,87,88,90,93,94,98–100,103–110,112–

116,118–120), whereas just a few did it directly in the real 

world (39,52,58,63,71).  Most of these simulation 

approaches were aimed to improve control and/or perception 

abilities rather than directly quantifying locomotion 

performance. An exception was found in the case of papers 

focusing on robotic prosthesis, in which the experimental 

approach and metrics were quite similar to those considered 

in human studies. 

4.2 Scientific evidence 

Hexapods. When the robotic hexapods community started to 

address the challenge of locomotion in unstructured 
environments and irregular terrains (38), most results only 

considered two-dimensional rough terrains and were only 

validated in simulated environments. In 2011, Irawan et al. 

(32) presented the first experimental tests of an hexapod 

robot walking on uneven terrain by using impedance control 

to guarantee stability of the robot. More recently, other 

authors focused on improving ground force-control based 

navigation in these environments (33,34), while others have 

focused on providing these capabilities by estimating 

interaction forces at the robot’s feet (28,30). Some authors 

have also addressed the challenge of navigating in rough 

terrains using computer vision (37,40) and perception 
techniques (41,43). Other researchers developed motion 

planners and foot trajectory generators to walk 

autonomously in unstructured environments (26,29,39,42), 

Figure 4. Taxonomic overview of the reviewed irregular terrains using robots. The size of each circle and the number inside it 

indicates the number of reviewed works covering each type of irregularity (column) and robot (row). Bars on the right indicate 

the number of publications that performed the experiment in real life (green) and in simulation (yellow). 
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and developed predictive controllers to stabilize the robot 

while walking on uneven surfaces (31,35). Some works also 

focused on allowing self-location of the hexapod robot while 

walking outdoors (27,40).  

Most of the reviewed papers only focused on assessing the 

technical performance of their systems using custom-made 

irregular terrains, tailored to the specific characteristics of 

their device or algorithm, without indicating how the 
achieved results could extrapolate to other setups, conditions 

or real-life situations. The majority of the studies used steps 

or placed blocks of different heights in levelled floors, 

whereas only few of them considered slopes or rocky 

terrains.  

Quadrupeds. Until a few years ago, quadrupedal robots 

were at a too early a stage to enable reliable locomotion over 

irregular terrains.  For this reason, defining a benchmark, or 

even standard evaluation metrics, was not the main focus of 

the robotic community. However, in the past five years, 

quadrupedal systems went through huge advancements, 

paving the way to the deployment of robots in the real world. 
A crucial role in this achievement has also been played by 

industries. Novel reliable quadrupedal platforms have been 

developed by various companies such as ANYbotics AG1, 

Boston Dynamics2, Ghost Robotics Corporation3, and 

Unitree Robotics4.   

Nevertheless, in extreme conditions, even these novel 

systems struggle. For example, extremely steep slopes are 

still difficult to overcome. Most of the articles test only 

gentle/mild slopes such as 10°-20° (e.g., (50,54,60,75)). A 

30° slope was tested in one paper (60), and a V-shaped walls 

with 50° slope is considered in another study (49). Time to 
failure was also considered during climbing stairs, with 

failure averagely experienced after 18 steps (66) 

Experimental evidence showed that moving in severely 

harsh terrains often leads to falls. Therefore, recovery 

policies appear very important be taken into account to 

enable reliable locomotion over irregular terrains. Literature 

proposes methods that, starting from a random initial 

configuration, allow the robot to stand up and continue the 

task (72–74). However, these techniques consider only flat 

terrain scenarios. Fall recovery from irregular terrains is still 

highly overlooked. 

Bipeds. When robotic bipeds’ performance on uneven 

grounds began to be evaluated, it was successfully tested 

with the help of a stick (85) or while touching a handrail (95). 

In the following years, other challenging terrains such as 

staircases, slopes, ditches (3,89) or irregular rocky grounds 

(84) were considered, although tests were only performed in 

simulations, where the robot had prior knowledge of the 

irregularities.  

Other types of irregular terrains composed of little steps such 

as wooden boards placed on the ground were also 

considered. These studies included simulations (86) and real 

experiments (88) applying the widely used Zero Moment 

 
1 https://www.anybotics.com/anymal-legged-robot/ 
2 https://www.bostondynamics.com/spot 

Point (ZMP) control method. In other two studies (79,91), 

environments with slopes up to 20 degrees were simulated 

using different strategies such as the Centre of Mass (CoM) 

trajectory computation and ZMP methods. Later, walking on 

slopes was successfully executed through CoM adjustments 

and trajectory planning in real experiments without prior 

knowledge of the terrain characteristics (90,94). Better 

results were recently achieved by planning the CoM height 
variations in irregular terrains (87) and stairs (92), whereas 

more recently, stable walking on inclined surfaces was 

achieved by controlling the biped’s torso angular-pitch 

velocity using IMUs (77) and gyroscopes (78). Real-time 

terrain estimation without prior terrain information was 

furtherly investigated, first in irregularities composed by 

little steps (83) and then with simplified slopes (81), joining 

prediction land time and expected ground reaction forces 

(GRF). Recently, an additional step was achieved using a 

GRF control scheme, which allowed fast traversal of uneven 

terrains without any prior knowledge of the real 

experimental setting (87). Only one study (93) evaluated 
stability performance in a sky-type gait task. For this matter, 

they proposed a stability margin to choose between different 

step sequences. Other authors (105,106) focused on 

identifying and classifying ground materials and surface 

transitions using sensors located at the robot’s feet to 

automatically adjust biped controllers to the specific terrain 

conditions. 

In the revised literature, robotic systems were generally able 

to overcome the proposed terrain irregularities both in 

simulations and real tests. Most of the studies evaluated the 

system performance by looking at the effectiveness of their 
control method to overcome the considered irregularity 

instead of proposing performance metrics.  

Different strategies were applied to determine the motion 

stability in the control loop such as the ZMP method that 

determines whether the robot CoP is inside the region of the 

support leg (76,79,84,88,89,101,102). Other methods 

defined the motion stability with the CoM trajectory 

(85,87,90,92,94,100) or joint angles (83,104,107). Finally, 

control stability was also addressed by the capacity of the 

control system to reduce GRF since high contact forces are 

associated with bouncing, leading to instabilities (81,86).  

Only a few studies focused on describing and comparing the 

quality of the walk across different conditions and systems. 

H. Wang et. Al (93) was claiming to discriminate the best 

step sequence by looking at the stability performance of gait 

using a stability margin. A set of proposed parameters 

affecting stability was also presented. Among them, the foot 

length and width and the step length showed good potential 

to be applicable across robotic systems. Walking speed was 

also taken as a velocity stability criterion (103). In another 

work (76), a stable run was defined and compared between 

controllers by looking at the robot angular acceleration, 

which was the result of reading robot vibration that tends to 
be stable. Concerning slopes, two results included the 

number of robot steps as PI. In one paper (96) the 

3 https://www.ghostrobotics.io/partners 

4 https://www.unitree.com/products/laikago 
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performance was assessed through the number of steps 

required to overcome different slopes. In another work (97) 

the number of continuous steps before failure was considered 

as a PI on stability. Both results relied on simulations. 

Energy efficiency was included in two works (97,98). 

Although the high success rate in overcoming irregularities, 

part of the results was obtained in simulation, where the 

robot had prior information about the terrain characteristics 
or by using control systems designed and evaluated to 

overcome some very specific tasks, raising doubts about 

their effectiveness in even similar but different kinds of 

terrain.  

Robotic prosthesis. We found just a few studies 

characterizing gait on uneven terrain using robotic 

prostheses. Curtze et al. (110) studied how amputees 

managed to control dynamic stability while walking over 

irregular terrain. Authors observed that temporal gait 

parameters when walking through irregular terrains showed 

no significant differences with respect to level ground 

walking. Besides, no change in lateral margin of stability was 
found. These facts led to the conclusion that transtibial 

amputees choose not to increase stability by increasing the 

step width but by means of lateral velocity of arm swing. 

Later, Shultz et al. (109) also focused on dynamic stability 

over irregular terrains. Authors developed a controller aimed 

at improving task performance, which was refined in a 

further study in 2018 (108). These studies showed that ankle 

angles vary more than knee angles when walking on irregular 

terrain, while ankle moments remain quite invariant, leading 

to a decrease of internal quasi-stiffness. 

In 2021, two studies (111) (112) focused their work on 
studying the improvements of their controllers over uneven 

terrains. Chiu et al (111) observed a reduction of ankle torque 

variability in the sagittal and frontal plane but concluded that 

this was not enough to overcome the disturbances produced 

by the terrain irregularity. Jang et al. (112) concluded that 

their prosthesis was able to adapt to the ground in the coronal 

plane, maintaining stability while walking through uneven 

terrain. 

Others. Within this broad category there is a clear lack of 

homogeneity with respect to the ability of the different 

systems to navigate irregular terrains.  

The authors of one study (114) showed the ability of a 

salamander-like robot to climb stairs of up to 10 cm height 

and 70 cm length, and holes of up to 10 cm depth. Later in 

2020, Ishizono M. et al. (113) showed a salamander robot 

could walk over semispheres of 8 mm and 12 mm radius 

lined alternately. Inagaki et al. (117) developed a novel 

locomotion control scheme for centipede-like multi-legged 

robots which allowed locomotion over steps of up to 0.2 m 

in a simulated environment, whereas more recently Ozkan-

Aydin et al. (116) presented a centipede robot able to climb 

over blocks of 10 x 10 cm, slopes up to 40 deg. and steps up 

to 15 cm. In other study (119), experiments showed that a 
modular snake robot could creep over steps of up to 7 cm, 

whereas Badran et al. (118) showed their snake robot could 

climb over slopes up to 30 deg. Marvi et al. (120)showed a 

snake robot was able to ascend sandy slopes close to the 

angle of maximum slope stability. Zhu et al. (115) presented 

a self-reconfigurable robot able to get over obstacles up to its 

own height, both in a simulated and physical environment, 

whereas Arora et. al. (121) showed a simulated tread robot 

could climb over bump-like obstacles up to 1.2 m.  

5. Discussion 

5.1. Human locomotion over irregular terrains 

The reviewed papers on human locomotion showed a great 

variety in the type and number of subjects included, as well 

as in the experimental design. For instance, there is a clear 

lack of studies that include subjects with diseases or injuries. 

These are needed in order to extend the knowledge on the 

consequences of the limitations imposed by the motor or 

cognitive restrictions over complex situations. Such 

evidence can provide useful information for robotic systems, 
e.g., the identification of cause-effect relationships between 

number of degrees of freedom, actuation typology or control 

strategies on the resulting performance. 

Despite the huge number of papers related to human 

locomotion over irregular terrains (118), we only found 19 

papers that were of sufficient interest for this review article, 

i.e., providing sufficient details on the setup or experimental 

protocols. Most authors focused on assessing performance 

under insufficiently described terrain conditions (as 

summarized in Figure 3), showing the low relevance that the 

terrain setup has for the researchers. These results also 
highlight how the current experimental design approaches 

are limiting the replicability and relevance of the 

experiments performed under the presence of irregular 

terrains with humans, therefore hindering a truthful and 

efficient comparison across studies.  

5.2. Robotic locomotion over irregular terrains 

Robotic locomotion on irregular terrain has been less 

investigated when compared to human studies. The 

information on the setup configuration is often lacking or 

incomplete. Relaxing the importance of the terrain setup in 

the first phases of development of a robot may be acceptable. 

However, it is erroneous and misleading to state that a robot 
is prepared to deal with irregular grounds when it has been 

only tested in a set of simplified irregularities that are not 

properly described nor evaluated against real-case scenarios. 

Considering that most robots are designed to work in close 

cooperation with humans, e.g., in everyday life scenarios, 

factories or search & rescue missions, such lack of rigor in 

lab testing could seriously compromise their safety and 

performance when used in real-world conditions. This also 

calls the attention to the lack of a common definition of 

“irregularity” and how it should be replicated in laboratory. 

For instance, some studies consider that even only one step 
consisting of any object with long and thin rectangular shape 

is an irregular terrain (83,86,88,115,119) while others 

consider that there should be more than one step to be 

deemed as an irregular terrain. Despite the apparent 

similarities on the terrain typologies (see Figure 4), all of 

them are quantitatively different in size, height and/or 

distribution over the surface, highlighting the lack of 

standards in this field. Another important aspect to consider 

is that, since robots can be different in size and weight, the 
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testing setups should be normalized to guarantee an objective 

comparison among different systems. Apart from the terrain 

setups, we noticed a clear lack of common protocols and 

performance indicators, which impede to determine how 

well the robot is able to navigate a terrain in comparison to 

other solutions. Most authors still use a YES/NO criterium 

to indicate the level of achievement of a task. This situation 

makes it very difficult to correctly compare the performance 
of the different technologies, and more importantly, to assess 

the readiness level of the prototypes prior to market 

introduction.  

We also observed that most studies using robots are centred 

on software development and perception techniques – indeed 

necessary to detect and overcome the irregularities – but not 

on evaluating the actual resulting locomotion performance 

on such terrains. As such, most of these experiments are 

carried out in simulation environments. However, modelling 

contacts occurring during locomotion over irregular terrains 

introduces significant inaccuracies, leading to the notorious 

“reality gap” (122). Specialized techniques (123,124) are 
typically required to reduce this gap. Only very recently we 

could witness examples of legged, mostly quadruped, robots 

able to overcome complex ecological terrains in real world 

conditions, most of them resulting in commercially available 

solutions. 

Remarkably, in the field of robotic exoskeletons, we could 

not find any study on complex irregular terrains. This is 

possibly due to the fact that so far, the great majority of lower 

limb exoskeletal solutions are still confined to controlled 

(e.g., flat) terrains (1).  

In conclusion, the benchmarking of robotic performance in 
complex environments is currently at a very early stage, with 

some valuable exceptions in the quadrupedal robotic field. 

Now that robots are operating out of the lab, there is a clear 

need of a common methodology to test and compare robotic 

systems on high-fidelity replications of complex real-like 

terrains, together with methods to predict performance of 

these systems when used in real-world scenarios 

This review shows an increasing interest of the community 

in understanding how the presence of an irregular terrain 

affects the performance of overground legged systems, both 

in the case of biologic systems, such as humans, and artificial 
devices. However, the formal definition of irregular terrain 

appears as an unsolved research question so far. There is no 

clear standard regulating the characteristics of such types of 

conditions, which leads to several problems when evaluating 

human or robotic locomotion performance over these 

terrains. A first step in this direction has been taken by 

Torres-Pardo et al. (125), who proposed a standardized test 

method able to reproduce a variety of irregularities, by using 

a modular and replicable “Lego-like” approach. This work 

has led to the first formal pre-standard published by CEN 

CENELEC (126). The lack of prior work on standardizable 

experimental methodologies, protocols and setups to assess 
locomotion capabilities should be urgently addressed to 

ensure the comparability of the experiments by different 

teams and systems worldwide. We identified some common 

procedures across the reviewed papers, mostly in the human 

field. However, further research on reproducible protocols, 

metrics, testbeds and measurement setups is needed in order 

to reach an agreement in the community, following the 

example of other international consortia, e.g., the European 

Project EUROBENCH (127).  

It is worth mentioning the fact that the great majority of 

works have realized experiments in the lab to demonstrate 

real-world performance. Although lab-based tests are 

necessary to evaluate system’s performance under the 

presence of irregular terrains in a controlled and standardized 
way, they could still not be representative of the conditions 

found in real-world scenarios, which should be the ultimate 

goal of this research field. In our opinion, a promising 

research direction is addressing the question of how, and to 

what extent, lab experiments are able to predict real-life 

performance. 

6. Conclusions 

An increasing number of legged systems have begun to 

operate in out-of-the-lab environments, sharing spaces with 

humans. In the present systematic review, we explored and 

analysed the methods employed in the literature to evaluate 

legged locomotion over irregular terrains, as well as the main 

scientific evidence resulting from these studies. We 

summarized the protocols, scenarios and performance 

indicators used by the community to characterize human and 

robotic gait performance. Our aim was to help those 

researchers interested in the development of standardized 

testbeds, protocols, and metrics to study, assess and compare 
legged locomotion in complex and realistic ground 

conditions.  

This systematic review proves a lack of agreement, details, 

and specifications when conducting experiments involving 

irregular terrains. There are poorly or non-explored areas, 

such as powered prostheses and exoskeletons. In addition, 

many researchers tried their systems via simulations instead 

of in real-life scenarios. 

Being able to benchmark the ability and safety of these 

assistive devices over real-world scenarios is in our opinion 

a keystone in the decision-making process, not only during 

the technical development, e.g., testing specific bioinspired 
designs, but also to verify how these solutions can meet real 

users’ needs.  
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