Nanocatalysts from Ionic Liquid Precursors for the Direct Conversion of CO₂ to Hydrocarbons

Callum Jeffrey¹, <u>Peter Nockemann¹</u>, Nancy Artioli^{1*} ¹ School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK

*corresponding author:n.artioli@qub.ac.uk

Introduction

The direct conversion of carbon dioxide (CO₂) into lower olefins (C₂-C₄) is a highly desirable process as a sustainable production route. Lower olefins, i.e., ethylene, propylene and butenes (C₂-C₄), are key building blocks in the current chemical industry. The reaction proceeds *via* two main consecutive reactions: Reverse Water Gas Shift (RWGS) to produce CO followed by the further conversion of CO to hydrocarbons *via* the Fischer–Tropsch reaction². This process is achieved by a multifunctional iron-based catalyst supported on zeolites providing three types of active sites (Fe₃O₄, Fe₅C₂ and acid sites), which cooperatively catalyse a tandem reaction¹.

To date, attempts at synthesising a suitable catalyst for the direct hydrogenation reaction follow a conventional precipitation procedure, whereby Iron Oxide Nanoparticles (*IONs*) are produced and then embedded within a zeolite structure by granule mixing. This method provides no control over the size and shape of the IONs formed; a characteristic of imperative importance due to its significant effect on the hydrocarbon product distribution obtained. In our novel approach, ionic liquids are utilised for the synthesis of the *IONs* resulting in better control over size and morphology of the nanostructured material, and as a consequence, better conversion and selectivity towards the olefins.

Materials and Methods

Na–Fe₃O₄ nanocatalysts obtained by a one-pot synthesis method employing a precipitation method involving a mixture of iron (II) and iron (III) chloride hydrate, deionised water and HCl to result in a clear solution. Subsequently, NaOH has been added as a precipitating agent, which resulted in the formation of a black precipitate, which consisted of magnetite, Fe₃O₄. The compound was then characterised using IR, PXRD (see Fig. 1), SEM / EDX and TPR (Fig. 2). Depending on the amount of washing water, the catalyst contained varying amounts of residual sodium content of up to 7-10⁻² %.

The ionic liquid-assisted synthesis involved heating the reaction medium consisting of the ionic liquid 1-butyl-3-methyl imidazolium bistriflimide, $[C_4mim][Tf_2N]$, oleic acid and iron pentacarbonyl under reflux. The precursor iron pentacarbonyl decomposed in a controlled manner by heating the sample up; CO is produced and the iron reacts with residual H₂O in the ionic liquid mixture to result in Fe₃O₄. Following decomposition, the produced magnetite nanoparticles are separated from the reaction medium through application of a neodymium magnet. The Na–Fe₃O₄/Zeolite catalyst was typically prepared by granule mixing Na–Fe₃O₄ catalysts prepared with the methods above with zeolites (HZSM(SiO₂/Al₂O₃ = 80 and 300) in a ball mill at a mass ratio of the two components of 1:1.

 CO_2 hydrogenation reactions were performed at 320 °C, 3 MPa H /CO 3,3 in a stainless steel fixed-bed reactor with an inner diameter of 15 mm. Typically,1 g of composite catalyst (20–40 meshes) with Na–Fe₃O₄/Zeolite 1/4 1/1 (mass ratio) was used. Prior to reaction, the catalyst was in-situ reduced at 350 °C for 8 h in a pure H₂ flow at atmospheric pressure.

All of the products from the reactor were introduced in a gaseous state and analysed with a online gas chromatograph (GC).

Results and Discussion

The ionic-liquid assisted synthesis of a nanocrystalline magnetite precursor showed that ionic liquids provide a controlled precipitation method thanks to their dual functionality as solvent and templating agent. This level of control over the morphology of the produced IONs allows for the selectivity of the hydrocarbon distribution to be directly tailored to light olefin production. Characterization of the prepared catalysts by PXRD (Figure 1) shows phase purity for the magnetite obtained from the conventional precipitation method, and shows no alteration after granulation with the zeolite, showing the presence of high purity in Fe₃O₄, small particle size and good dispersion with the zeolite component. The compounds obtained by the ionic liquid methods result in much broader XRD patters, pointing at less crystallinity and smaller particle size. This has also been confirmed by SEM and TEM. Hydrogen temperatureprogrammed reduction (H2-TPR) was used to determine the interaction between Fe species and the support. As shown in Figure 2 for the HZSM 80, all the catalysts present two peaks with increasing reduction temperature, which are assigned to the conversions Fe₃O₄—FeO and FeO—Fe, respectively. It is observed that Fe₃O₄/HZSM80 start to be reduced at lower temperature compared to the catalyst with low (1) and high (H) Na content. This indicates the interaction between iron oxides and the support is weaker if Na is completely removed .

Figure 1. XRD patterns of Na–Fe₃O₄ sample with high Na content (H) and Na–Fe₃O₄ mixed with HZSM with $SiO_2/Al_2O_3 = 80$ and 300.

Figure 2. TPR profile of 4000 ppm H_2 in Ar from r.t. to700°C, 5°C/min

Significance

We report here on a novel methodology for the controlled synthesis of a Na–Fe3O4/HZSM-5 multifunctional catalyst for the direct hydrogenation of CO₂ to gasoline. The catalytic testing under industrially relevant conditions resulted in improved selectivity to C5–C11 as well as low CH₄ and CO selectivity. Furthermore, the product composition can be tuned by the choice of zeolite type, and by the choice of ionic liquid in the synthetic method. This study provides a new pathway for the synthesis of nanocatalysts for the production of liquid fuels by utilising CO₂ and H₂, which may in the future lead to alternative approaches to overcome issues with the intermittency of storing and/or utilising energy from renewable sources (photovoltaics, wind energy).

References

¹Y. Yuan, S. Huang, H. Wang, Y. Wang, J. Wang, J. Lv, Z. Li, and X. Ma, ChemCatChem 2017, 9, 3144 – 3152

² J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Nat Comm, DOI: 10.1038/ncomms15174

Thursday, June 27, 2019

Columbus ABCDEF	Columbus GH	Columbus II	Columbus KL
2:30 PM Thu-CHAB-1430 High-En- tropy Alloy Catalysts for Ammonia Decomposition. Pengfei Xie and Chao Wang, <i>Johns Hopkins Uni-</i> <i>versity, USA</i> .	2:30 PM Thu-CHGH-1430 Ion-Ex- change Promoted Hydrothermal Stability of Platinum Catalysts Supported on Layered Protonated Titanate Nanowire Arrays. Xingxu Lu ¹ , Wenxiang Tang ¹ , Shoucheng Du ¹ , Liaoyong Wen ¹ , Junfei Weng ¹ , Yong Ding ² , Steven Suib ¹ and Pu-Xian Gao ¹ , (1)University of Connecticut, USA, (2)Georgia Institute of Technology, USA.	2:30 PM Thu-CHIJ-1430 Selectiv- ity Differences between Ther- mocatalytic and Electrocatalytic Hydrogenation of Biomass-De- rived Oxygenates. Reda Bababrik, Daniel Resasco and Bin Wang , University of Oklahoma, USA.	2:30 PM Thu-CHKL-1430 Captur- ing the Restructuring of Co-Based Catalysts in Oxygenate-Driven Fischer-Tropsch Synthesis from First Principles. Greg Collinge ¹ , Renqin Zhang ¹ , Motahare Athari- boroujeny ¹ , Trevor Wood ¹ , Kirill Shumilov ² , Anastassia Alexandro- va ² , Norbert Kruse ¹ and Jean-Sa- bin McEwen ¹ , (1)Washington State University, USA, (2)Universi- ty of California, Los Angeles, USA.
2:50 PM Thu-CHAB-1450 Bifunc- tional Metal-Acid Catalysis: Op- timizing the Spatial Organization of Functional Components at Na- noscale. Kang Cheng ¹ , Zhaorong Zhang ² , Glenn J. Sunley ³ , Jovana Zečević ¹ and Krijn P. de Jong ¹ , (1) Utrecht University, Netherlands, (2)BP Group Technology, USA, (3) BP Chemicals, United Kingdom.	2:50 PM Thu-CHGH-1450 Selec- tive Removal of CuOx Specta- tor Species By Acid Treatment Minimizes N2O Formation on Cu-SSZ-13. Dylan Trandal , Yadan Tang and Krishna Kama- samudram, <i>Cummins Inc., USA</i> .	2:50 PM Thu-CHIJ-1450 Effect of Metal on the Electrochemical Reduction of Benzaldehyde. Jacob Anibal and Bingjun Xu, <i>University</i> of Delaware, USA.	2:50 PM Thu-CHKL-1450 Synergy Effect of Two Sets of Single-Atom Sites (Ni ₁ and Ru ₁) on Catalyst Sur- face for Reforming CH ₄ . Yu Tang ³ , Ziyun Wang ² and Franklin Tao ¹ , (1)The University of Kansas, USA, (2)The Queen's University, United Kingdom.
3:10 PM – 3:40 PM: Coffee Break			
Columbus ABCDEF Columbus GH Columbus U			
Oxidation and Epoxidation Reactions	Catalysis with Nanoparticles II	H ₂ Production, Biogas Processing, and Gasification	Environmental: Catalytic Oxida- tion IV
Session Chairs: Beata A. Ki- los-Reaume, <i>The Dow Chemical</i> <i>Company, USA</i> and Jae Hyung Kim, <i>SABIC, USA</i> .	Session Chairs: Joshua Willis, Exx- onMobil Chemical Company, USA and Simon G. Podkolzin, Stevens Institute of Technology, USA.	Session Chairs: Hongfei Lin, Washington State University, USA and Michael Griffin, National Re- newable Energy Laboratory, USA.	Session Chairs: Jian Gong, Cum- mins Inc., USA and Josh A. Pihl, Oak Ridge National Laboratory, USA.
3:40 PM Thu-CHAB-1540 Path-	3:40 PM Thu-CHCH 1540 Hy		