Study of Pt-Ba/Al₂O₃ LNT catalysts for the simultaneous removal of NO_x and soot: new insights on the role of stored NO_x in the soot combustion

Roberto Matarrese, Lidia Castoldi, Nancy Artioli, Luca Lietti, Pio Forzatti

Dipartimento di Energia, Laboratorio di Catalisi e Processi Catalitici, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy. e-mail: roberto.matarrese@polimi.it

Abstract

Soot or particulate matter (PM) and NO_x are the main pollutants in diesel engine emissions and represent health and environmental problems. Therefore the automotive industry is currently facing serious challenges to meet the specific requirements of future regulations concerning both NO_x and particulate emissions. Recently the potential use of lean NO_x Traps (LNT) in the simultaneous removal of soot and NO_x has been proposed [1-3]. These systems accomplish the reduction of soot and NO_x under cyclic conditions by switching between fuel-lean and fuel-rich conditions.

The aim of the present study is to analyze the effects of the presence of soot on the behaviour of LNT catalysts. Besides, we want to provide new insights on the role in the soot combustion of NO_x stored onto the catalytic surface.

A homemade Pt-Ba/Al₂O₃ (1/20/100 w/w) catalyst was prepared by impregnation of γ alumina with Pt and Ba soluble salts. The effect of the presence of soot on the NO_x storage and reduction activity was studied by performing lean-rich cycles over both the pure catalyst sample and soot/catalyst mixture. For this purpose rectangular step feeds of NO (1000 ppm) in He + 3% v/v O₂ and of H₂ (4000 ppm) in He were alternatively fed to the reactor in the presence of CO₂ and H₂O in the feed stream at different temperatures. The interaction between soot and the stored NO_x species has been investigated also by TPD and TPO experiments (heating rate 10 °C/min in He or in O₂ (3%) from 250°C up to 500°C), in the presence and in the absence of soot.

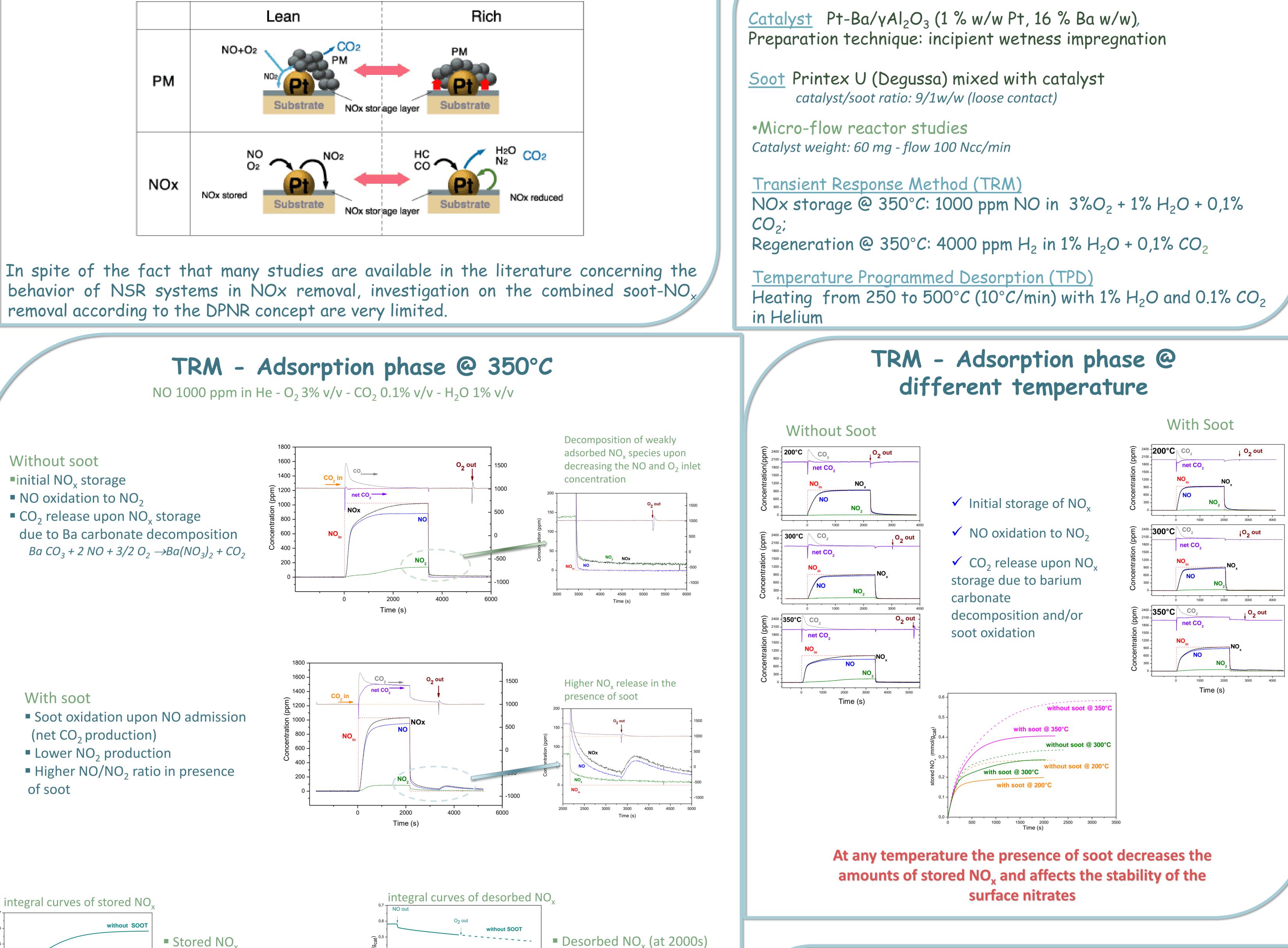
The results obtained during the lean NO_x adsorption over the Pt-Ba/Al₂O₃-soot mixture showed that the presence of soot decreased the NO_x storage capacity of the catalyst; in particular the presence of roughly 10% w/w of soot decreased by nearly 30% the amounts of stored NO_x with respect to the soot-free catalyst. The decrease of the NO_x adsorption capability is possibly related to the decrease of the NO_2 concentration, due to its reaction with soot. However the presence of soot does not appreciably affect the behavior of the PtBa/Al₂O₃ catalyst in the reduction by H₂ of the stored nitrates, being in all cases N_2 the major reaction product.

TPD results pointed out that the thermal stability of the adsorbed nitrates is also decreased in the presence of soot. This indicates an interplay between adsorbed NO_x species and soot: soot affects the NO_x storage but the adsorbed nitrates favor the oxidation of soot. These species actively oxidize soot by direct interaction due to their mobility on the surface and/or participate in the soot oxidation upon release of NO₂ and O₂ during decomposition. The participation of the adsorbed NO_x species in the soot oxidation has also been clearly pointed out by TPO experiments showing that the oxidation of soot is greatly enhanced by the presence of adsorbed NO_x species. Indeed larger amounts of CO₂ are produced upon soot oxidation when the reaction is carried out in the presence of stored NO_x.

^{1.} N. Koichiro, S. Hirota, S. Takeshima, K. Itoh, T. Tanaka, K. Dohmae, SAE paper (2002) N. 01-0957

^{2.} L.Castoldi. R.Matarrese, L.Lietti, P.Forzatti Appl.Catal.B: 64 (2006) 25

^{3.} R.Matarrese, L.Castoldi, L.Lietti, P.Forzatti, Top. Catal. 42-43 (2007) 293


Study of Pt-Ba/Al₂O₃ LNT catalysts for the simultaneous removal of NO_x and soot: new insights on the role of stored NO $_{\rm x}$ in the soot combustion

Roberto Matarrese, Lidia Castoldi, Nancy Artioli, Luca Lietti, Pio Forzatti Laboratory of Catalysis and Catalytic Processes and NEMAS, Centre of Excellence, Dipartimento di Energia, Politecnico di Milano roberto.matarrese@polimi.it

Diesel Particulate NO_x Reduction (DPNR) system

DPNR system is a novel after-treatment technology for the simultaneous removal of NO_x and diesel soot that consists in a catalytic wall-through filter coated with a NSR (NO_x Storage-Reduction) catalyst.

Without soot 0.07 mmol/g_{cat}

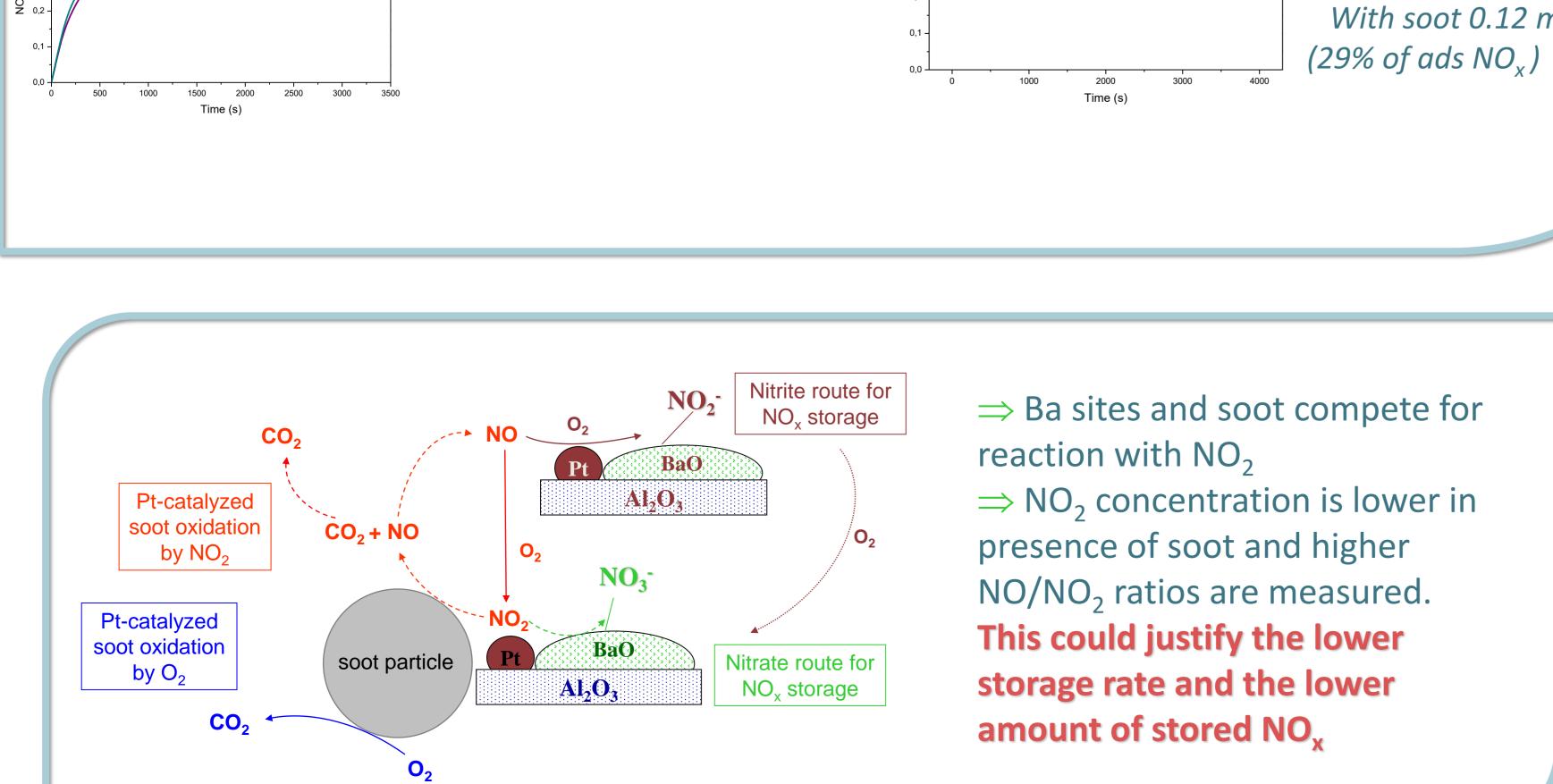
With soot 0.12 mmol/g_{cat}

 $(12.4\% \text{ of ads } NO_x)$

Aim of the work

> analyze the effects of soot on the behaviour of the catalyst \succ provide new insights on the role of NO_x stored onto the catalytic surface in the soot combustion

Materials and Techniques

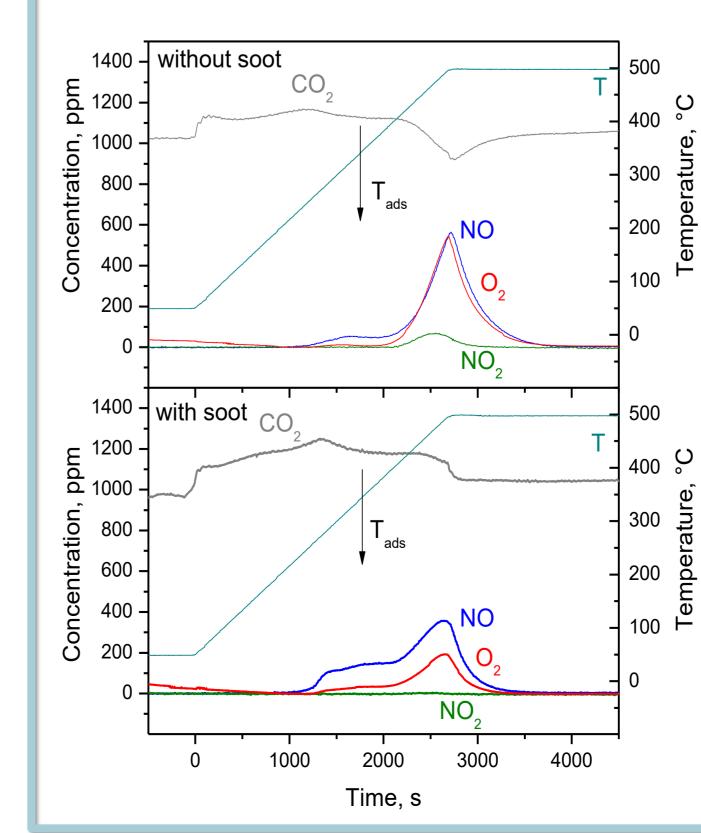


TPD of nitrates

with SOOT

0,4

SO 0,3


Without soot 0.58 mmol/g_{cat}

With soot

0.41 mmol/g_{cat}

O₂ out

with SOOT

T rt-500°C @ 10°C/min in He –CO₂ 0.1% v/v - H₂O 1% v/v (after NO_x adsorption @ 350°C)

✓ Most decomposition of nitrates above adsorption temperature (350°C) C ✓ Decomposition of nitrates not complete at 500°C \checkmark Re-adsorption of CO₂ due to formation of BaCO₃ \checkmark Evolved NO, O₂ and NO₂ are well in line with the stoichiometry of nitrates decomposition:

 $Ba(NO_3)_2 + CO_2 \rightarrow BaCO_3 + 2 NO + 3/2 O_2$ $Ba(NO_3)_2 + CO_2 \rightarrow BaCO_3 + 2 NO_2 + \frac{1}{2}O_2$

✓ Significant release of NO and O_2 below 350°C ✓ Nitrates decomposition concludes at lower T without NO₂ formation

✓ Below 350°C the concentration of the evolved products obeys the stoichiometry of nitrate reduction by soot:

 $C + Ba(NO_3)_2 \rightarrow BaCO_3 + 2 NO + \frac{1}{2}O_2$ Direct reaction between stored nitrates and soot!