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Abstract: Background: This study evaluates the repeatability and reproducibility of fat-fraction
percentage (FF%) in whole-body magnetic resonance imaging (WB-MRI) of prostate cancer patients
with bone metastatic hormone naive disease. Methods: Patients were selected from the database of
a prospective phase-II trial. The treatment response was assessed using the METastasis Reporting
and Data System for Prostate (MET-RADS-P). Two operators identified a Small Active Lesion (SAL,
<10 mm) and a Large Active Lesion (LAL, ≥10 mm) per patient, performing manual segmentation of
lesion volume and the largest cross-sectional area. Measurements were repeated by one operator after
two weeks. Intra- and inter-reader agreements were assessed via Interclass Correlation Coefficient
(ICC) on first-order radiomics features. Results: Intra-reader ICC showed high repeatability for both
SAL and LAL in a single slice (SS) and volumetric (VS) measurements with values ranging from 0.897
to 0.971. Inter-reader ICC ranged from 0.641 to 0.883, indicating moderate to good reproducibility.
Spearman’s rho analysis confirmed a strong correlation between SS and VS measurements for SAL
(0.817) and a moderate correlation for LAL (0.649). Both intra- and inter-rater agreement exceeded
0.75 for multiple first-order features across lesion sizes. Conclusion: This study suggests that FF%
measurements are reproducible, particularly for larger lesions in both SS and VS assessments.

Keywords: fat fraction; radiomics; bone metastasis; MET-RADS-P; prostate cancer; whole-body
magnetic resonance imaging

1. Introduction

In recent years, whole-body magnetic resonance (WB-MR) has become a widely used
technique to assess treatment response [1] in multiple myeloma, breast cancer, and prostate
cancer [2–4].

If the integration of diffusion-weighted (DWI) sequences allows the medullary cellu-
larity changes to be detected earlier than with morphologic sequences, the T1-weighted
gradient-echo Dixon sequences generate four parameters simultaneously (in-phase, IP;
out-phase, OP; fat-only, FO; water-only, WO), which describe specific characteristics of
medullary bone and metastases. Combining these parameters through the equation
FO/(FO + WO), it is possible to obtain the parameter named “fat fraction” (FF%), which
can estimate the percentage of hemopoietic and adipose medullary bone and estimate the
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presence of fat within the metastases involving the medullary bone. FF% decreases in the
case of malignant infiltration, while increasing as the cancer tissue is progressively replaced
by fatty bone marrow restoration. It has been demonstrated that FF% can stratify early
treatment response in multiple myeloma, which makes it better than DWI [5–7].

In multiple myeloma, the repeatability of measurements of apparent diffusion coeffi-
cient (ADC) derived from DWI has been demonstrated to be excellent even when a central
single slice was contoured; conversely, for FF% both repeatability and reproducibility are
influenced by lesion size [8].

Semiautomatic volumetric segmentation has been conducted in recent years with a
variety of open source or proprietary software [9]. Petralia et al., using one of these software
packages, have demonstrated an excellent intra- and inter-observer inter-class correlation
coefficient (ICC) for ADC measurement in breast cancer and a moderate to excellent ICC in
prostate cancer [10].

At the moment, as far as we know, there are no studies focused on the repeatability
and reproducibility of FF% in prostate cancer patients with bone metastatic hormone naive
disease. This study aims to demonstrate that and to evaluate the concordance of FF%
values obtained with a single-slice and a volumetric segmentation.

2. Materials and Methods
2.1. Patient Selection

Thirty-four patients were randomly extracted from the entire list of 126 patients of the
prospective phase II BonEnza trial. The number 34 was calculated using the sample-size
calculation method described in the statistical analysis section. The BonEnza trial aims to
test the activity of LHRH-A plus enzalutamide plus/minus zoledronic acid in terms of bone
response assessed by WB-MR in prostate cancer patients with bone metastatic hormone
naive disease. The local ethics committee approved the prospective phase II BonEnza trial,
and written informed consent was obtained from the subjects for the use of their data. The
study was written in compliance with the GRRAS checklist [11].

2.2. Imaging Protocol

The WB-MR examinations were performed using a 1.5T MR scanner (MAGNETOM
Aera, Siemens Healthcare, Erlangen, Germany). The scanning protocol (shown in Table 1)
was MET-RADS-P compliant [3].

Table 1. MET-RADS-P compliant WB-MRI scanning protocol.

SEQUENCE DWI T1 DIXON T2 HASTE T1 TSE T2 STIR

Orientation Axial Axial Axial Sagittal Sagittal

TR 7820 6.66 700 500 5490

TE 59 2.39 98 11 65

FOV (mm) 430 430 470 380 380

Flip Angle (◦) 10

b values (s/mm−2) 50,800

In particular, DWI scans extended from the upper border of the orbits to mid-thigh
and consisted of four contiguous stations of 50 slices acquired in free-breathing using 2D
single-shot echo-planar imaging (SS-EPI). The shimming technique used for the DWI scans
was Station-Specific Shim, through which a single volumetric shim was determined for
each station and applied for all slices within the station. Axial T1-DIXON and T2 HASTE
scans extended from vertex to mid-thigh.
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FF% is extrapolated from the T1 Dixon sequence, which provides a set of four different
images as follows: in-phase, out-of-phase, water only, and fat only. FF% maps were
computed using the following equation:

FF% =

(
f at only

water only + f at only

)
∗ 100

A typical cumulative WB-MRI data acquisition time per examination was 50 min.

2.3. Image Segmentation

For each patient, two operators in consensus identified a small lesion (<10 mm axial
diameter) and a large lesion (≥10 mm axial diameter), annotating the positions of both.
Lesion selection was performed by evaluating DWI images along with FF% and other
morphologic sequences, to identify and segment only active focal lesions. Segmentation
was performed manually and independently by the two readers: reader 1 with one year of
experience and reader 2 with three years of experience in whole-body imaging. Reader 1
segmented each lesion twice to assess intra-reader agreement, and reader 2 segmented each
lesion once to assess inter-reader agreement. Single-slice measurements were performed on
the axial slice deemed to be the most representative of the whole lesion (i.e., the slice with
the largest cross-sectional area). The choice of the most representative slice was performed
independently by the two readers who were blinded to the selection of the other reader.
Therefore not all the lesions were segmented on the same slice by both readers, which
represents a setting similar to clinical routine. Volumetric segmentation was performed on
axial sections (Figure 1). All segmentations were performed with the freeware software
3DSlicer (v.5.6.2).
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Figure 1. Graphic example of volumetric segmentation using 3D Slicer: (a) axial fat-fraction image
without segmentation; (b) axial fat-fraction image with manual segmentation of the lesion; (c) volu-
metric rendering of the multiple slice segmentations; (d) volumetric segmentation displayed on a
sagittal reconstruction. Volumetric segmentation was done drawing a polygonal ROI encompassing
the entire lesion on every slice in which the lesion itself was visible.
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2.4. First-Order Features Analysis

First-order features were extracted using the Python library pyradiomics (v 3.0.1)
on original unfiltered images. Voxel outliers more than three standard deviations away
from the mean were removed before computing features, to reduce influence related
to segmentation errors or extreme values. Voxels were resampled to a dimension of
3 × 3 × 3 mm to look at a coarser texture. Intensity was rescaled in percentage value to
account for fat-fraction map calculation variability (some maps were calculated with a
factor of 100, others with a factor of 1000). The bin count was fixed at 64 and texture was
extracted with a 2D slice-by-slice approach to account for non-isotropic sequences.

2.5. Statistical Analysis

Sample size calculation was made according to results published in a previous
study [8].

For a repeated measure standard deviation ratio of 2 between small and large lesions,
according to previous data 44 lesions are required (at least 22 patients with one small and
large lesion each). Within-subject standard deviations and differences in within-subject
variances were calculated according to Barwick et al. [8]. Levene’s test was performed
to formally test differences in within-subject variances between small and large lesions,
for both single-slice and whole-volume measurements. Inter- and intra-rater agreement
of FF% were evaluated with ICC, using a one-way single-measure absolute agreement
model. Barwick et al. reported excellent inter- and intra-rater agreement of axial mean FF%
(ICC > 0.9) [8]. We calculated a minimum sample size of 33 patients according to 0.8 power,
0.05 statistical significance, minimum acceptable reliability of 0.75, and expected reliability
of 0.9. The final sample size was 34 patients.

Bland–Altman plots were also used for visual inspection of agreement between mea-
surements.

Intra-reader agreement was evaluated after two weeks to minimize recall bias. Inter-
reader agreement was evaluated between the mean measurements of reader 1 and the
measurements of reader 2.

Agreements were calculated for both single-slice measurements and whole-volume
measurements. ICC was considered to be poor if less than 0.5, moderate if between 0.5 and
0.75, good if between 0.75 and 0.9, and excellent if >0.9 [12].

Agreement analysis was performed also for first-order features on volumetric segmen-
tations, for both small and large lesions. Inter-reader agreement for volumetric first-order
features was performed by comparing the first measurement of reader 1 and the unique
measurement of reader 2. We did not compute the mean of measurements of reader 1 for
this analysis because we considered it inappropriate to calculate a mean for some of the
first-order features extracted (such as kurtosis or skewness, which may have positive or
negative values).

The correlation between single-slice measurements and whole-volume measurements
for mean FF% value was evaluated using measurements of the three readers (two from
reader 1 and one from reader 2) using Spearman’s correlation coefficient. The correlation
was considered moderate if between 0.5 and 0.75, good if between 0.75 and 0.9, and
excellent if >0.9. Spearman’s rho 95% CI was calculated with Bootstrap with one repetition.

Statistical analysis was performed with R v3.6.0.3.

3. Results

A total of 34 patients were included in our study. Of these, 28 had small lesions that
were large enough to be segmented on more than a single slice. The remaining patients had
small lesions that segmented on a single slice only, so they were excluded from volume
measurements and were included only for single-slice measurements.
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Agreement

Variances between measurements of small and large lesions were significantly dif-
ferent, with smaller lesions having higher measurement variances for both single slice
(p-value < 0.001) and whole volume (p-value = 0.008). Visual inspection of Bland–Altman
plots showed higher agreement between intra-reader measurements compared to inter-
reader measurements (see Figures 2 and 3 and Table 2).
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and hole-volume measurements. The means are expressed as fat-fraction percentages (FF%) and
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for intra-reader agreement. The differences are also expressed as percentages, representing the
percentage differences between the two measurements.
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Figure 3. Bland–Altman plots for inter-reader agreement in small and large lesions, single-slice
and whole-volume measurements. The means are expressed as fat-fraction percentages (FF%) and
represent the average of the two measurements. These measurements were taken by the two different
operators for inter-rater agreement. The differences are also expressed as percentages, representing
the percentage differences between the two measurements.
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Table 2. Bias and limit of agreement (LoA) for both single-slice and volumetric measurements. Mean
(%) indicates the mean value of included lesions for comparison.

Mean (%) Bias 95%CI LoA
[Lower-Upper]

Small Lesions
Intra-reader slice 16.3 0.611 [−0.692; 1.91] [−6.71; 7.93]

Intra-reader volume 18.2 0.175 [−0.851; 1.2] [−5.01; 5.36]
Inter-reader slice 16.5 −0.47 [−2.89; 1.95] [−14.1; 13.1]

Inter-reader volume 19.4 −2.32 [−4.38; −0.268] [−12.7; 8.07]
Large Lesions

Intra-reader slice 15 −0.373 [−0.783; 0.037] [−2.68; 1.93]
Intra-reader volume 15.9 0.114 [−0.616; 0.844] [−3.99; 4.22]

Inter-reader slice 15.2 −0.564 [−1.66; 0.532] [−6.72; 5.59]
Inter-reader volume 16.3 −0.9 [−1.67; −0.13] [−5.22; 3.42]

Summary ICC for intra- and inter-reader agreement and correlations between single-
slice and volumetric measurements are reported in Table 3.

Table 3. Summary agreement measures of FF% measurements in small and large lesions, both single
slice and volumetric. Slice–volume correlations expressed as Spearman’s rho are also reported.

Small Lesions (<10 mm) ICC 95% CI

Intra-reader single slice 0.914 0.837–0.956
Inter-reader single slice 0.641 0.393–0.802

Intra-reader volume 0.957 0.910–0.980
Inter-reader volume 0.762 0.551–0.882

Large Lesions (>10 mm) ICC 95% CI

Intra-reader single slice 0.971 0.942–0.985
Inter-reader single slice 0.805 0.647–0.897

Intra-reader volume 0.897 0.806–0.947
Inter-reader volume 0.883 0.780–0.940

Slice–volume correlation Spearman’s rho 95% CI

Small lesions 0.817 0.598–0.916
Large lesions 0.649 0.342–0.852

Moderate agreement was observed in inter-reader single-slice measurements for small
lesions. Good agreement was observed in inter-reader volumetric measurements for small
lesions, inter-reader single-slice and volumetric measurements of large lesions, and intra-
reader volumetric measurements of large lesions. Excellent agreement was observed in
intra-reader measurements of small lesions, and single slices.

ICCs of volumetric measurements were higher compared to ICCs of single-slice mea-
surements for intra- and inter-reader agreement in small lesions and for inter-reader agree-
ment in large lesions. Only intra-reader single-slice measurements had higher ICCs com-
pared to volumetric ones. ICCs of intra-reader agreement were higher for all measurements
compared to ICCs of inter-reader agreement. Given the low sample size and wide over-
lapping confidence intervals, we could not evaluate the statistical significance of these
results.

The strong correlation between single-slice and volumetric measurements was ob-
served for small lesions (Spearman’s rho 0.817), while only a moderate correlation was
observed in large lesions (Spearman’s rho 0.649, see Figure 4).
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Figure 4. The plot shows a correlation between single-slice measurements and volumetric measure-
ments. R = Spearman’s rho, yellow line = regression line, gray bands = 95% confidence bands.

First-order volumetric feature agreement was possible on 30 large lesions and 27 small
lesions. Full agreement results are reported in the Supplementary Materials.

For large lesions, 10Percentile, 90Percentile, Median, Minimum, and RootMean-
Squared had both inter- and intra-reader agreement > 0.75.

For small lesions, 10Percentile, Median, Minimum, and RootMeanSquared had both
inter- and intra-reader agreement > 0.75. We did not compute a correlation analysis between
single-slice and volumetric measurements for histogram features.

4. Discussion

The development of new target drugs for treating bone metastatic castration resis-
tant prostate cancer (mCRPC) patients led to an improvement in overall survival (OS),
quality of life (QoL), and control of pain [13]. However, the response among patients is
heterogeneous and the validation of biomarkers for early stratification of the likelihood of
response to personalized therapy and minimizing the loss of time and economic resources
is paramount [14]. FF% has been demonstrated as valuable in tracking treatment response
and is a promising biomarker of treatment outcome in multiple myeloma [15].

The image analysis of this prospective study approaches the topic of lesion quantiza-
tion by assessing the inter- and intra-observer repeatability of FF%.

We also investigated the correlation between single-slice measurements of mean FF%,
which represents the routine clinical approach to the more accurate but time-consuming
volumetric segmentation. Conflicting studies in the literature report differences in values
between 2D and 3D measurements in other fields, but this difference is not always clinically
relevant [16], so this kind of analysis becomes necessary when evaluating new imaging
biomarkers. If a biomarker is too variable it becomes irrevocably useless when translated
into the clinical practice.

The highest values of ICC have been found for intra-observer agreement (0.914 and
0.971 for small and large lesions, respectively). This is not surprising given that the
radiologist’s eye tends to repeat measurements using the same internal “settings”, with
low variability over time. However, it is not realistic in clinical practice that a WB-MR is
serially evaluated by the same radiologist. For this reason, there must be a preference for
measurements with the minimum inter-observer variability.

The inter-observer variability for small lesions (<1 cm) is too high, so we must be
cautious when evaluating small lesions and we should choose to make measurements on
larger lesions whenever possible. To include fat-fraction evaluation in response criteria such
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as MET-RADS-P, we must take into account the influence of lesion size on the repeatability
of mean measurements, so it is reasonable to choose a lesion size large enough to be robust
to measurement variations.

There is higher agreement between different operators when evaluating large lesions
(>1 cm), especially for volumetric measurements when lesions are segmented on multiple
slices (ICC 0.883, 95% CI 0.780–0.940). This is not surprising as the larger number of voxels
selected within the core of lesions mitigates the influence of the more peripheral pixels that
could be erroneously included during manual segmentation. We hypothesize by manual
ROI inspection that the main source of variability could be the differing inclusion by the
operators of the “tumor-healthy fat marrow interface”, which in untreated patients is often
sharp, with round focal lesions with low FF% surrounded by healthy marrow tissue with
high FF%. Accordingly, the slice–volume correlation for these large lesions drops down to
0.649, not justifying—in our opinion—the use of a single central slice instead of the entire
volume. In single-slice measurements, segmentation errors have a greater influence on
mean value leading to unreliable results. Finally, it would be recommended to segment
lesions with at least 1 cm of diameter, when possible, using a volumetric approach.

An optional, more robust approach, less dependent on segmentation errors and
operators’ experience compared to the mean value, could be the evaluation of first-order
statistic parameters [17]. Volumetric histogram analysis has been extensively investigated
in the past with promising results, and a large body of literature has demonstrated its
clinical utility when applied to parametric maps, especially in diffusion-weighted imaging
ADC and perfusion rCBV maps [17]. Current applications, among many, include prostate
cancer grading [18] and differential diagnosis of lung lesions [19]. Test–retest studies
showed that percentiles have good repeatability compared to features related to intensity
distribution such as skewness or kurtosis, which are often less reliable [20–22]. Percentiles
are less influenced by outliers and also more straightforward in the interpretation of their
values compared to more elaborated heterogeneity and radiomic features, but given that
repeatability can be pathology specific it should ideally be performed for each specific
cohort of patients [10].

Preliminary data on ADC histogram analysis showed that histogram values are more
reproducible when performed on the whole volume of a lesion compared to different single-
slice approaches, in particular when evaluating extreme percentiles, but the clinical impact
is unknown [23]. Our preliminary data showed, in keeping with the literature, that volu-
metric 10th percentile, median, minimum, and root mean squared had size-independent
good agreement, with high ICC values both in large and small lesions, compared to mean
values which had good agreement only for large lesions. Volumetric histogram analysis
in ADC measurements also seems to be independent of lesion size, so we didn’t perform
a 2D–3D correlation [10]. In patients undergoing different treatments with variable fat
marrow replacement over time, often in an irregular fashion, it could be hypothesized that
a 3D approach would be more reasonable, but this needs further confirmation. The need to
contour larger lesions could be perceived as frustrating because it is more time-demanding;
however, robust region-growing or machine learning algorithms are able (or will be in the
near future) to segment the entire lesion starting from a seed point placed within the lesion
by the operator [24]. The future direction is almost certainly automatization of measure-
ment. Automatic segmentation would likely improve the agreement of the calculated FF%
by reducing the variability associated with operator segmentation of lesions. This study has
limitations. The sample size and the number of lesions that have been evaluated are quite
low. The number of observers is just two. Although the study population of 34 subjects
was calculated based on the sample size, a larger number of patients would enhance the
robustness of our repeatability. Furthermore, there is not a big gap in experience between
the two authors, and this could influence the inter-observer variability. Given that only
pre-therapy lesions have been considered, actually we do not know the expected changes
in FF% in responding lesions. For this reason, is it difficult to interpret the numeric intra-
and inter-observer variability (derived from Bland–Altman plots) in terms of possible
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clinical utility. Histogram analysis was also not possible in a few patients because of lesion
characteristics, but given the low number of excluded lesions, it is unlikely that this could
have influenced the results. Segmentation has been performed manually; this is a major
limitation given it is conceivable that an automatic or semiautomatic approach would have
improved the measurement reproducibility, with studies reporting no variability according
to lesion size when performing automated methods of segmentation [10]. We also chose
not to assess repeatability of radiomic features since there are still many concerns about the
repeatability of features according to image preprocessing and segmentation [25].

5. Conclusions

In conclusion, FF% measurement is highly reproducible when considering whole le-
sions >10 mm. Percentile-based histogram features showed good reproducibility; however,
the clinical value of their implementation is currently unknown. The use of semiautomatic
segmentation is advisable for standardizing segmentations, while studies of test–retest
variability could address this potentially additional source of bias.
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