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ABSTRACT

This thesis addresses some of the aspects related to the physical Human–Robot Interac-
tion (pHRI), with a particular focus on industrial applications. The main motivation is
that humans and robots have complementary skills, that, combined, can improve work-
ing conditions, safety, and productivity. Indeed, robots are extremely precise, they can
possibly carry heavy objects, and, if properly programmed, have exceptional proprio-
ceptive capabilities. Instead, humans can face and solve new problems easily, can adapt
quickly to fast-changing scenarios, can reason, and have natural capabilities of under-
standing and interacting with the environment. Therefore, the objective of this thesis is
to make robots trusty assistants for humans, allowing smooth and natural interaction.
On the one hand, humans naturally understand partners’ goals, and it is easy for two
humans to perform a task together, also with limited interaction channels. On the other
hand, those capabilities are not intrinsic to robots and must be addressed to allow smooth
interaction.

This thesis, without claiming to be exhaustive, wants to address three fundamental
aspects of the interaction between partners.

First, this thesis investigates the modeling of human behavior. This is an extremely
vast field of study. Therefore, this work limits its focus on modeling human behavior
in physical interaction with a robot. In particular, this work addresses human behav-
ior modeling as (i) a feedback controller employing an Extended Kalman Filter (EKF) to
recover online the time-variant human’s gain matrix; (i) as an Optimal Control, using In-
verse Optimal Control (IOC) to recover human’s cost function; (iii) and uses information
of the interaction to make predictions of future intention of motion of the human, using
a Machine Learning model. Finally, various experiments show the applicability and the
limitations of the three aspects concerned with human modeling. Then, this thesis inves-
tigates the modeling of the physical interaction between humans and robots. The pHRI
is described within a Game-Theoretic Framework. In this, the human and the robot are
two agents acting on a low-level Cartesian Impedance system. Both Cooperative and
Non-Cooperative models are addressed in the continuous (differential game theory) and
discrete versions with the formulation of a distributed Model Predictive Control (GT-
dMPC). The system’s behavior is analyzed for different situations to understand the lim-
itations and applicability of the two models. Finally, the Role Arbitration between the
human and the robot is addressed. Role arbitration is the mechanism that assigns the
role of leader either to the human or the robot. Since humans and robots have comple-
mentary skills, it is fundamental that such skills are used at the right moment. Experi-
ments on lab mockups and in a real industrial scenario are carried out to show that Role
Arbitration improves performances on various aspects related to industrial application,
such as precision, a limited effort of humans, flexibility, and reduction of cycle time. Not
related to modeling, this thesis also evaluates subjective preferences during interaction.
Indeed, humans are various and each has specific preferences on everything. The same
happens when dealing with the pHRI scenario. To address this aspect, this thesis also
proposes Preference Based Optimization (PBO) to tune the robot behavior (i.e., its control
parameters) based on users’ preferences.
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SOMMARIO

Questa tesi affronta alcuni aspetti legati all’interazione fisica uomo-robot (pHRI) con par-
ticolare attenzione alle applicazioni industrial. La motivazione principale è che gli es-
seri umani e i robot hanno competenze complementari che, combinate, possono miglio-
rare le condizioni di lavoro, la sicurezza e la produttività. Infatti, i robot sono estrema-
mente precisi, possono trasportare oggetti pesanti e, se adeguatamente programmati,
hanno eccezionali capacità proprioceptive. Gli esseri umani, invece, sono in grado di
affrontare e risolvere problemi, si adattano rapidamente a scenari in rapida evoluzione,
sanno ragionare e hanno capacità naturali di comprendere e interagire con i robot e con
l’ambiente. Pertanto, l’obiettivo di questa tesi è quello di rendere i robot degli assis-
tenti fidati per l’uomo, consentendo un’interazione fluida e naturale. Da un lato, gli
esseri umani capiscono naturalmente gli obiettivi dei partner e per due esseri umani è
facile eseguire un compito insieme, anche con canali di interazione limitati. D’altra parte,
queste capacità non sono intrinseche ai robot e devono essere affrontate per consentire
un’interazione fluida.

Questa tesi, senza pretendere di essere esaustiva, vuole affrontare tre aspetti fonda-
mentali dell’interazione tra partner.

In primo luogo, questa tesi studia la modellazione del comportamento umano. Si
tratta di un campo di studio estremamente vasto. Pertanto, questo lavoro si limita a
modellare il comportamento umano nell’interazione fisica con un robot. In particolare,
questo lavoro affronta la modellazione del comportamento umano come (i) un control-
lore di feedback attraverso l’utilizzo di un filtro di Kalman esteso (EKF) per recuper-
are online la matrice del guadagno umano variabile nel tempo; (ii) come un control-
lore ottimo, utilizzando un controllo ottimo inverso (IOC) per recuperare la funzione
di costo dell’uomo; (iii) e utilizza le informazioni dell’interazione per fare previsioni
sull’intenzione futura di movimento dell’uomo, utilizzando un modello di apprendi-
mento automatico. Infine, vari esperimenti mostrano l’applicabilità e i limiti dei tre as-
petti relativi alla modellazione umana. In seguito, questa tesi studia la modellazione
dell’interazione fisica tra uomo e robot. La pHRI è descritta mediante teoria dei giochi.
In questo contesto, l’uomo e il robot sono due agenti che agiscono su un sistema de-
scritto come impedenza Cartesiana.Vengono affrontati sia modelli cooperativi che non-
cooperativi, sia nella versione continua (teoria dei giochi differenziali) che in quella disc-
reta, con la formulazione di un controllo predittivo distribuito (GT-dMPC). Il compor-
tamento del sistema viene analizzato in diverse situazioni per comprendere i limiti e
l’applicabilità dei due modelli. Infine, viene affrontato il tema dell’arbitrato dei ruoli
tra l’uomo e il robot. L’arbitrato dei ruoli è il meccanismo che assegna il ruolo di leader
all’uomo o al robot. Poiché gli esseri umani e i robot hanno competenze complementari, è
fondamentale che tali competenze vengano utilizzate al momento giusto. Gli esperimenti
condotti su simulazioni, in laboratorio e in uno scenario industriale reale dimostrano che
l’arbitrato di ruolo migliora le prestazioni di vari aspetti legati all’applicazione industri-
ale, come ad esempio precisione, sforzo limitato dell’uomo, flessibilità e riduzione del
tempo di ciclo. Come ulteriore aspetto non legato alla modellazione, questa tesi valuta
anche le preferenze soggettive durante l’interazione. Infatti, gli esseri umani sono di-
versi e ognuno ha preferenze specifiche su tutto. Lo stesso accade quando si ha a che
fare con uno scenario pHRI. Per affrontare questo aspetto, questa tesi propone anche
l’ottimizzazione basata sulle preferenze (PBO) per regolare il comportamento del robot
(cioè i suoi parametri di controllo) in base alle preferenze degli utenti.
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CHAPTER 1

INTRODUCTION

The idea of automating tasks and creating mechanical beings can be traced

back to ancient civilizations. Early examples are the Mechanical Theater

of Heron and the Antikythera Mechanism. In the Renaissance, Leonardo

da Vinci, the renowned Italian artist, scientist, and inventor, conceptu-

alized and designed various machines and automata, including a hu-

manoid robot. One of his most famous robotic designs is referred to as

the "Leonardo da Vinci Robot" or the "Mechanical Knight". He never built

a fully functional version of this robot during his lifetime, but he left be-

hind detailed sketches and notes describing its design and mechanisms.

The robot was intended to be powered by a combination of clockwork

mechanisms and hidden weights. With Jacques de Vaucanson, a French

inventor, in the 18th century, the Digesting Duck is considered one of the

early examples of automata. Vaucanson’s robotic duck was showcased in

1739 and gained considerable attention during its time. It was designed

to imitate the motions and behaviors of a real duck, including flapping

its wings, drinking water, eating grain, and even digesting food. It was

known for its ability to defecate, seemingly adding to its realistic appear-

ance. Wolfgang von Kempelen, an Austrian inventor, created "the Turk".
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It was designed to play chess against human opponents and appeared to

possess extraordinary skills. The Turk consisted of a large wooden cabi-

net with a chessboard on top. Inside the cabinet, there was a mechanical

figure dressed as a Turk, sitting behind the chessboard. The automaton

appeared to be capable of moving the chess pieces and playing the game

with great skill. Inside the cabinet, a human chess master concealed him-

self and controlled the movements of the Turk through a series of levers

and pulleys. The Turk left a lasting impact on the public’s imagination

and became an influential symbol of the intersection between machinery

and human-like capabilities.

(a) The antikythera
mechanism

(b) The Da Vinci’s
mechanical knight

(c) The de Vaucan-
son’s digesting duck

(d) The von Kempe-
len’s Turk

Figure 1.1: Ancient famous automata examples

The term "robot" first appeared in a play called R.U.R. (Rossum’s

Universal Robots), published by the Czech author Karel Čapek in 1921,

where robots were manufactured biological beings that performed all un-

pleasant manual labor. Another author, Isaac Asimov, in 1942 formu-

lated the Three Laws of Robotics and, in the process, coined the word

"robotics".

The history of robotics, in the last century, faced exponential growth.

The foundation of the modern robotics industry dates back to 1954, when

George Devol invented the Unimate. Devol sold the first Unimate to

General Motors in 1960, and it was installed in 1961 in a plant in Ew-

ing Township, New Jersey, to lift hot pieces of metal from a die-casting
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machine and place them in cooling liquid. The first mobile robot capa-

ble of reasoning about its surroundings, Shakey, was built in 1970 by

the Stanford Research Institute. Waseda University initiated the WABOT

project in 1967, and in 1972, it completed the WABOT-1, the world’s first

full-scale humanoid intelligent robot. The SCARA, Selective Compliance

Assembly Robot Arm, was created in 1978 as an efficient, 4-axis robotic

arm. Best used for picking up parts and placing them in another loca-

tion, the SCARA was introduced to assembly lines in 1981. The popular

Roomba, a robotic vacuum cleaner, was first released in 2002 by the com-

pany iRobot.

(a) The Unimate
robot

(b) The Shakey (c) The WABOT-1 (d) The SCARA (e) The Roomba

Figure 1.2: Modern robots examples

In recent decades, robotic platform design and production have con-

tinuously grown, with specific designs for various applications. Au-

tonomous Mobile Robots (AMR) [3, 128] are spreading for indoor and

outdoor applications, from warehouse logistics to agriculture [12]. Do-

mestic robots are nowadays a reality to help with tedious housework.

Consider, for example, lawn mowing [22], vacuum cleaning [72], or win-

dow cleaning robots [96, 157]. Social robots are also used in and for ed-

ucation [13]. They belong to all the categories of robots interacting with

humans, such as robot receptionists, waiters, etc. Robots are also found
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in operating theaters, where they do not replace the surgeon but are used

as accurate assistants for minimally invasive procedures [7, 133]. Some

robots take inspiration and try to mimic natural behaviors and principles.

They are the so-called biologically inspired [54, 106] robots. Among them,

particular attention is given to Humanoid robots [152], robots with the as-

pects and capabilities typical of humans. Along with the spread of robots

in the most disparate fields, traditional robots, and their first applica-

tions are related to the industry [131]. Historically, industrial robots have

always been confined in cages for safety reasons to avoid any possible

-dangerous- interaction with humans. This involves production plants

designed on purpose to allow robots and humans to have different, sep-

arate workspaces. In today’s industries, the desire for a safe and flexible

manufacturing environment has pushed researchers to study solutions

where the robots can be easily moved, possibly removing cages, still en-

suring safety. To this purpose, Collaborative robots or cobots are becom-

ing increasingly important [161, 162]. Indeed, such robots are designed

on purpose to work alongside humans, simplifying the certification of an

application from a safety point of view.

Among the various, this thesis focuses on industrial robots and ap-

plications of robotics in strict collaboration with human operators, where

the Human-Robot Interaction field begins.

1.1 HUMAN-ROBOT INTERACTION

Human-robot interaction (HRI) is the discipline that studies and allows

safe and natural interaction between humans and robots [139]. Interac-

tion can be seen from various points of view, which can be briefly sum-

marized in physical and social interaction [9]. The social interacting robots

belong to all those that mainly give information to humans, and today,

are spreading across hospitals, hotel receptions [19], and airports [70].

The Physically interacting robots belong to all kinds of robots capable of
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manipulating objects and interacting with the physical world and peo-

ple. On the one hand, social robots can also interact with humans physi-

cally and require capabilities to deal with the surrounding environment,

such as localization and navigation, obstacle avoidance, etc. On the other

hand, physically interacting robots must be aware of humans and must

have capabilities of more "social" interactions such as intention under-

standing [43], various communication channels such as verbal (NLP) and

nonverbal [153], etc. Therefore, the distinction between physical and so-

cial interacting robots is usually fuzzy, and both aspects should be con-

sidered when dealing with robots.

(a) A social robot (b) A physical interacting robot from [132]

Figure 1.3: Examples of social and physical interacting robots

One major issue that arises with the HRI relates to human safety. In

order to develop safe and precise HRI, robots should be designed and

developed so that they do not provoke accidents (i.e. deaths, injuries,

and property damage). According to [178], there are several types of

robots (differentiated based on their functionality, degrees of freedom,

workspace, etc.), possibly categorized with respect to their interaction

with humans. The first category consists of the Robots in the wild, where

humans and robots are not collocated. They are spatially or temporally

separated, have remote and limited HRI, and require high autonomy. The
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second category comprises the Professional Service Robots, which interact

proximately with co-workers. The third category consists of the Personal

service robots, which posse the complex, rich, and proximately HRI and in-

termediate level of autonomy as humans and robots are collocated, e.g.,

robots assistants to elderly and disabled people.

This thesis focuses on the Professional Service Robots category, with a

bit of personalization. In particular, this thesis addresses robots and their

spread in manufacturing and industrial scenarios. The current state-of-

the-art in collaborative robotics for industrial applications is the result of

a long legacy of research and development in actuation principles and

mechanisms from the 2000s onward, together with abundant literature

about improving control performances, intuitive interaction modes, and

perception with sensors [169].

Safety, also in these scenarios, is a crucial aspect that requires clear

definitions [170] and appropriate metrics and control strategies [179]. Since

safety is a crucial node to be addressed for any robotics application in-

volving humans, normatives have appeared in recent years. According

to the standard rules defined by the ISO in [59–61], safety depends on

and is evaluated considering the entire application and not the single

modules such as the robotic platform, its control, and the other modules

alone. According to the standards, the robot at the end-effector should

not move faster than 250 mm/s to certify the application. It should also

stop if the external forces and power exceed a threshold according to the

so-called Power Force Limitation (PFL). To ease the deployment of col-

laborative applications, robots also evolved to comply with the safety

requirements. Such kinds of robots are often referred to as Cobots. The

Cobots are robotic manipulators that implicitly implement and ensure

some safety, such as safety stops when detecting external forces, limited

end-effector velocities, etc. Some examples are the Kuka Iiwa, the Uni-

versal Robots, the Franka-Emika Panda, and many others.

6



1.2. Game Theory overview

(a) The Kuka iiwa robot (b) The UR5 robot (c) The panda robot

Figure 1.4: Examples of Cobots

Human–robot collaboration has found several applications [47, 80].

Despite this, real-world applications in industrial scenarios still face some

issues [78] such as employee-centered factors like the fear of job loss and

ensuring an appropriate level of trust in the robot are considered essen-

tial. Also, acceptability makes actual deployment challenging [113]. One

relevant challenge of Industry 5.0 is the design of human-centered smart

environments (i.e., prioritizing human well-being while maintaining pro-

duction performance). In these environments, robots and humans will

share the same space and collaborate to reach common objectives. This

makes the requirement of measures and metrics to assess the quality of

HRC [20].

1.2 GAME THEORY OVERVIEW

Consider now a shared task between a human and a robot, such as an as-

sembly or carrying an object together. Both are agents that can do some-

thing on a specific object. Both know the presence of the other. They pos-

sibly also know what the other should do, and they can help each other

or not. All these elements are typical of the mathematical branch called

Game Theory (GT). Game theory is the study of mathematical models of
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strategic interactions among rational agents. Therefore, with the word

game, we refer to a set of rules, agents, information, etc. To characterize

a game, one needs to specify several items: (i) the players are the agents

that make decisions, (ii) the rules define the actions allowed by the play-

ers and their effects, (iii) the information structure specifies what each

player knows before making each decision 1. (iv) The objective specifies

the goal of each player. For a mathematical solution to a game, one fur-

ther needs to make assumptions about the player’s rationality regarding

questions such as: Will the players always pursue their best interests to

fulfill their objectives? Will the players form coalitions? Will the play-

ers trust each other? Moreover, games can be zero-sum or non-zero-sum.

A zero-sum game is a mathematical representation in game theory and

economic theory of a situation that involves two sides, where the result

is an advantage for one side and an equivalent loss for the other. In other

words, player one’s gain is equivalent to player two’s loss, resulting in

zero net improvement in the game’s benefit. In contrast, non-zero-sum

describes a situation where the interacting parties’ aggregate gains and

losses can be less than or more than zero. A situation where one’s win

does not necessarily mean another’s loss, and one’s loss does not neces-

sarily mean the other party wins. Finally, the mode of play can be mainly

Cooperative and Non-Cooperative.

In this thesis, the system the players will interact with is defined by

a Cartesian impedance model (see chapter 3). The human and the robot

are considered as two players. The forces they can apply to the Cartesian

impedance system are their actions, and a specific cost function will de-

fine their goals. Moreover, in this thesis, we consider a particular type

of system, called Differential/Dynamic, that describes the evolution of a

system that depends on time. Throughout this thesis, both cooperative

1For example, chess is a full-information game because the game’s current state is
fully known to both players as they make their decisions. In contrast, Poker is a partial
information game.
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and non-cooperative interactive models are addressed and implemented

for pHRI applications. It will be shown that, in some situations, coop-

eration is more desirable since it allows the robot to assist the human.

In some others, the non-cooperative situation is adopted to let the robot

pursue its own goal, which can be in contrast to the human goal. In fig-

ure 1.5, a schema of the possible situation found in Differential/Dynamic

is visible.

Figure 1.5: Classification of Differential/Dynamic games according to [120]

1.3 MOTIVATION

The motivation behind this work is that, despite being widely investi-

gated, the HRI, particularly the pHRI, still requires many advancements

and studies before real industrial, easy-to-use applications can be de-

ployed in real-world scenarios.

Without any claim of solving once and for all the problems mentioned

above, this thesis wants to present some advancements in the pHRI fields

with potentialities for future industrial applications.
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The motivation for Game-Theoretic modeling is that it models inter-

actions among different decision-makers. Therefore, the pHRI modeling

of the interaction within the GT framework is worth investigating.

In particular, a significant focus is given to the human being. Some

aspects are required for the robot to assist and adequately interact with

the human. Therefore, modeling human behavior and understanding its

intentions are investigated. Instead, some other aspects are crucial for

the human acceptance of a robotic teammate. Therefore, this thesis also

investigates humans’ subjective perception of the interaction, proposing

questionnaires to evaluate the various aspects and also an optimization

of the robot’s parameters based on personal preferences.

1.4 CONTRIBUTION

The main contributions of this thesis in the human modeling field are:

(i) modeling human behavior as a full-state linear feedback control, (ii)

Inverse Optimal Control (IOC) to understand the fundamental behavior

of humans interacting with a variable, passive system, (iii) modeling and

prediction of human intention in pHRI tasks.

In particular, modeling human behavior as a full-state linear feedback

control neither investigates nor considers the complex dynamics of the

human arm, as other works do. Despite this simplification, this model

can explain human behavior, particularly in interaction with a machine

or a robot, and is relevant and useful from a control point of view, particu-

larly for direct and inverse optimal control problems and game-theoretic

modeling. Note that such a model does not consider any additional ex-

ternal contact on purpose. It is meant to solve applications of human-

robot co-transportation of large or heavy objects. Therefore, it models

only the free motion in the space at the current state of the study. The

contribution is to propose an implementation of the EKF as an identifica-

tion method for human control gains in pHRI tasks. Concerning previ-
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ous works, We investigate the possibility that such gains are time-variant,

possibly quickly. We present simulation results to support our choice and

real experiments to show feasibility in real-world applications. The main

result of modeling humans is to prove that linear feedback control can

opportunely describe human behavior in pHRI tasks. This result opens

the way to control design and inverse optimal control to identify humans’

objectives.

This thesis also aims to implement Inverse Optimal Control (IOC)

to understand the fundamental behavior of humans interacting with a

variable, passive system. It is possible to obtain basic yet valuable in-

formation to develop natural pHRI controllers. The simple LQR model

is studied. Indeed, despite its simplicity, as shown, LQR cost functions

can capture essential human behaviors during the interaction. Moreover,

modeling the human cost function as the LQR cost function allows easy

integration in the Linear Quadratic Game-Theoretic (LQGT) framework,

which provides useful tools for pHRI controller design.

Finally, defining human intention as the desired motion intention of

a human over a finite rolling prediction horizon, this thesis proposes a

learning model with a novel training procedure based on iterative train-

ing and Transfer Learning to make such a prediction. First, an iterative

training procedure allows adapting the model to improve the prediction

error and provide proper assistance. After that, transfer learning is pro-

posed to address the time issue related to handling new situations. Such

a model is integrated into the GT-dMPC framework proposed by this

thesis.

This thesis also presents contributions to Game-theoretic modeling of

the pHRI. Previous works in the literature deal with implementing game-

theoretical frameworks to describe and manage pHRI, focusing on the

Non-Cooperative models. As described in the previous section, it turns

out that cooperation improves the outcome for the players. Therefore,

11
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this thesis wants to investigate Cooperative models based on Coopera-

tive Game Theory.

Specifically, in such an application field, the contributions of this the-

sis are: (i) to study the solutions of the LQ-CGT and the LQ-NCGT games

to see the game’s different behaviors according to different tuning pa-

rameters; (ii) to give insights into the game-theoretic description of pHRI

tasks and prepare the way to develop adaptive controllers based on the

GT formulation, capable of switching from one model to the other ac-

cording to role arbitration logic; (iii) to analyze such games according to

parameter tuning; (iv) to propose a Game-Theoretic distributed Model

Predictive Control (GT-dMPC) to describe the pHRI; (v) to solve the infi-

nite horizon LQ-CGT case (as a minor contribution).

Moreover, in general, pHRI studies consider the robot to be a pas-

sive assistant of the human, with follower capabilities. Still, no initiative

is given to the robot to lead a task. This thesis wants to investigate all

these situations where the human is leading, and the robot must assist,

or conversely, the robot drives the system far from unwanted situations

and all the possible situations in between to have a smooth transition.

Motivated that humans and robots should cooperate and take advantage

of cooperation, this thesis aims to realize a control framework for natural

and mutual collaboration. In this sense, this thesis defines Role Arbitra-

tion frameworks based on differential game theory to allow pHRI.

Finally, since each person has different preferences during interaction,

this thesis also proposes a tool for tuning the relevant parameters to make

such interaction smooth and pleasant to users. The main contribution in

this field is presenting a method for tuning a pHRI controller based on the

preferences of different subjects. Such a procedure must be fast and easy.

Moreover, interesting results can be observed as general human prefer-

ences. We tested our methodology on two different tasks, one requiring

precise path following and the other requiring a fast and large motion
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toward a target position. The data are analyzed to see general human be-

havior and preferences. Finally, a questionnaire is proposed to the users

to check this method’s applicability in real environments, involving time

required for tuning and satisfaction.

1.5 THESIS OUTLINE

The content of the thesis is divided into eight chapters and an appendix.

Chapter 1 introduces the topics of the thesis, presenting motivations

and contributions and a list of publications related to the topics presented

in the present thesis.

Chapter 2 reviews the most relevant work on which this thesis takes

inspiration, on the various topics addressed. First, the physical Human–

Robot Interaction is reviewed, focusing on Game-theoretical modeling of

the pHRI problems. Then, the human behavior modeling is presented,

addressing how it can be modeled as a feedback controller by an Inverse

Optimal Control approach and by intention of motion. Moreover, the

Game-theoretic modeling of human interaction is reviewed, as it repre-

sents the basis for most of the work presented in this thesis. The main

aspects related to shared control and role arbitration are presented. Fi-

nally, strategies for Preference Based Optimization are reviewed.

Chapter 3 presents the Cartesian Impedance Control, which repre-

sents the basic system of the entire thesis in its continuous and discrete

formulations.

Chapter 4 presents the modeling of human behavior addressed in this

thesis in all its formulations. It presents an Extended Kalman Filter to re-

cover control gains, Inverse Optimal Control to recover human cost func-

tion, and deployment and training of a Learning model to predict desired

human intentions. All the methods are introduced with a problem for-

mulation, the methodology is detailed and simulated, and experimental

results are finally presented.
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Chapter 5 presents the modeling of the pHRI in a Game-Theoretic

framework. Both Cooperative and Non-cooperative models are addressed

with continuous and discrete formulations. The system performances are

analyzed with simulations to understand the behavior.

Chapter 6 presents the implementation of the methodologies proposed

in this thesis to solve different pHRI tasks. It presents applications for hu-

man and robot co-handling large/heavy components, soft components,

and Role arbitration methodologies.

Chapter 7 presents a method to tune the controller parameters accord-

ing to subjective preferences.

Finally, chapter 8 presents the conclusions that can be drawn from this

thesis and possible future developments of the methodologies presented

in this work.

The thesis concludes with a bibliography and an Appendix with ad-

ditional material and useful mathematical formulations.
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CHAPTER 2

RELATED WORKS

This chapter reviews the relevant works in the fields related to the work

proposed in this thesis. First, it presents an overview of the most rel-

evant and interesting works in the physical Human-Robot Interaction

field. Then, it analyzes different methodologies to infer human inten-

tions and modeling. Finally, it investigates how shared autonomy and

role arbitration are addressed in the literature.

2.1 PHYSICAL HUMAN–ROBOT INTERACTION

HRI has been growing as a research field in recent years, considering the

need for collaborative manufacturing tasks shared between humans and

robots within modern factories[62, 138]. In particular, in the field of HRI,

Human-Robot Collaboration (HRC) deals with a collaborative approach

that allows the robot and the human operator to perform complex tasks

together, with direct interaction and coordination [171]. When the inter-

action and collaboration between humans and robots become physical,

We are dealing with the physical Human-Robot Interaction (pHRI) [24].

A widely used technique to handle pHRI is Impedance/Admittance
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Control [45, 51]. This type of controller, proposed initially by Hogan [51]

lets the robot manipulator behave as an equivalent mass-spring-damper

system when subject to external forces. It spread in the pHRI field be-

cause it is intrinsically compliant, making the interaction smooth and

safe. Many studies aimed at making the Impedance Control adaptive

to improve interaction performances. Two main methods exist to make

Impedance Control adaptive: (i) modify the impedance set-point, and

(ii) modify the impedance parameters, i.e., the mass, spring, and damper

values. Examples of the adaptation of the impedance set-point according

to interaction with a human can be found in [101], where optimal trajec-

tory deformation is studied, in [44] that uses a Neural Network to iden-

tify the set-point, in [158] with a nonlinear model reference adaptation, in

[146, 147], where a fuzzy logic control updates online the set-point, in [46]

the reference trajectory is shaped to ensure it is within the constrained

task space, and in [103] with application to teleoperation. Adaptation of

the mass-spring-damper parameters is exploited as in [26, 34, 117] and

[177]. Recent works aim to modify both impedance parameters and set-

point simultaneously. In [145], a hybrid controller allows manual guid-

ance for a robot to assemble an aircraft panel. In [149, 150], Reinforcement

Learning updates the parameters online, while [91] exploits a neural net-

work (NN) to update the desired position and the impedance parameters

to maintain stability. In [86], a controller that adapts impedance param-

eters and velocity is proposed, allowing interaction between a human, a

robot, and the environment.

The main drawback of the abovementioned approaches is that the

robot always represents a passive helper to the human. Many situa-

tions require Shared Autonomy (SA) and Shared Control (SC) of the task.

[156] presents a brief survey on SA in pHRI. In this situation, the robot

and the human can interact with the controlled system differently, possi-

bly switching roles. Consider that many tasks may require the robot to
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lead the action away from unwanted situations, taking control over the

human in circumstances such as singularity proximity, joint limits, and

robot workspace boundaries that may not be visible to a human. In this

case, SA relates to Role Arbitration (RA), which can be defined as the

mechanism that assigns the control of a task to either the human or the

robot [100].

Target applications can be co-manipulation of large objects, such as

aeronautical components, as in [145]. In the case of large object manipu-

lation, the precise positioning at the target pose is imposed by assembly

tolerances, but the connecting trajectory from the picking pose to the tar-

get pose can be adjusted [37, 38]. It may also happen that large objects

can occlude the human operator sight, and the robot should prevent col-

lisions with the environment [10]. Figure 2.1 shows a typical large com-

ponent co-manipulation.

Another application can involve flexible material co-transportation as

in [124, 164]. Similarly to the previous case, a precise position with re-

spect to the target pose is sometimes needed to match exactly the compo-

nent’s design, such as in composite material draping. Otherwise, struc-

tural and aesthetical properties drop. Still, the connecting trajectory can

be modified during transportation, with the constraints imposed by the

robot limitations and target precision requirement. Other target applica-

tions involve the teleoperation of robots, such as in [71], where the human

remotely operates a robotic arm. In that scenario, it is possible that the

human cannot see the scene clearly because of occlusions, and the robot

should take control [126], or the human guides at a high level and the

robot provides trajectory correction[176].

This work wants to investigate Role Arbitration for pHRI to solve

such applications. In particular, we rely on Impedance Control. Since

making Impedance Control can be risky and complex and may lead to

instability [79], We want to keep constant the low-level impedance con-
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2.1. Physical Human–Robot Interaction

Figure 2.1: The typical large object co-manipulation scenario. On one side, a
lightweight robot is grasping a large object. The robot cannot hold the object
alone, as it has a limited payload and workspace. On the other side, a human is
grasping the same object, with possibly the same problems. In this situation, the
robot can guide the human to approach precisely a target pose without exceed-
ing its payload.

trol parameters and consider it as a given system on which the human

and the robot can interact with. Because Game Theory provides math-

ematical models of strategic interaction among players, We also want to

investigate the Game-Theoretical formulation of the human and the robot

interacting with the mass-spring-damper system given by the Impedance

Control. Therefore, the following subsection is dedicated to the review of

the related works regarding (i) Game-Theoretical formulation of human

behavior, (ii) Game-Theoretical formulation related to the specific pHRI
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applications, and (iii) Shared Autonomy and Role Arbitration applica-

tions and methods.

2.1.1 GAME-THEORY IN PHRI

Since GT represents a powerful framework to describe interactions and

is capable of describing human interaction, applications of GT model-

ing to pHRI control are arising in the literature. The concept of Nash

Equilibrium is exploited in [93], and similarly, [16] to update the robot

cost function with unknown information about the human based on the

interaction force. The same differential non-cooperative game-theoretic

modeling is also proposed in [95] and [94]. These works exploit pol-

icy iteration to update the robot’s cost function similarly compared to

the previous two works presented. An observer to estimate the oppo-

nent control law is presented in [89] for the two-player game and in [184]

for the multiple agents game. These works propose a universal game-

theoretical framework that addresses various game-theoretical behaviors

under certain control parameter tuning care. Extension to these works is

in [114], where the trajectory tracking problem is addressed in the non-

cooperative scenario. Finally, the authors also investigated the coopera-

tive scenario in [40], where the weighting factor is made variable to allow

the adaptive impedance behavior of the robot.

2.2 HUMAN BEHAVIOR MODELING

This section reviews the main works related to modeling human behav-

ior. In particular, this thesis relates to modeling the human as (i) a feed-

back controller, (ii) an optimal controller, (iii) modeling its intention as a

prediction of desired motion, and (iv) modeling human interaction with

Game Theory.
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2.2. Human behavior modeling

2.2.1 HUMAN MODELING AS FEEDBACK CONTROLLER

It was shown that humans understand each other’s intentions while phys-

ically interacting to perform a task [167]. This suggests that such a capa-

bility can also be beneficial while humans and robots interact. On the

one hand, the robot’s intentions are known and pre-programmed, and

the human has the natural capabilities to understand them. On the other

hand, this is not true for the robot, which requires some method to iden-

tify the human control law. Hence, methodologies can be defined to make

the robot capable of understanding human behavior. Human intentions

identification is relevant in many different fields of robotics, spanning

from mobile robots [76, 130] to industrial manipulators [127, 134]. On the

one hand, artificial intelligence methods are promising [23]. On the other

hand, they typically require huge amounts of data. Therefore, model-

based techniques are still widely used and investigated.

A widespread field of research focuses on identifying human mod-

els and human control laws. Many studies investigate the identification

of the human model and its control law coupled with a controlled dy-

namical system subject to fast changes, with applications mainly focused

on manual control [111]. These works model the human with a transfer

function composed of equalization parameters (position and rate gains)

of the human controller model and time delay and neuromuscular pa-

rameters and study how it varies when a fast change modifies the con-

trolled dynamical system, focusing on the identification of the transfer

function parameters.

Among these works, in [136], the authors use a linear model for the

human dynamics and a dual Extended Kalman Filter (EKF)[166] to esti-

mate both state (gain and delay) and dynamics (frequencies and damp-

ing) parameters. A similar approach with an Unscented Kalman Filter

(UKF) is used in [143] to understand how gains vary according to the

varying dynamics of the controlled system dynamics.
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These works show the interesting fact that linear control can describe

human actions. Despite this, involving a model identification of the hu-

man dynamics makes the problem complex and applicable only to spe-

cific applications (e.g., manual control of an aircraft), restricting the us-

age to a small range of applications or frequencies. On the contrary, for

shared tasks during pHRI, identifying the human control law, described

as a full state feedback controller as in [89, 90], might be sufficient and

more general, avoiding the introduction of complex dynamical models

that require more complex model identification. In this case, the human

control action is described by a gain matrix, which multiplies the system’s

state.

Techniques to identify the gain matrix of linear system models ap-

pear in the literature. These works focus on identifying only the linear

feedback control law that produces an observed output rather than a

complete system identification. In [140], the control law described as full

state feedback gain matrix is estimated by a maximum-likelihood estima-

tor (MLE) via minimizing the least-squares error for a linear state-space

model, while in [33], the gain matrix is computed by minimizing the nor-

malized residuals for the same linear state-space formulation. In [108],

the Least Squares (LS) estimation method is suggested for the identifi-

cation. Such methods have the drawback of requiring complete control

and state histories to compute a constant gain matrix, making such an

approach not applicable to online identification.

Moreover, following game-theoretical nomenclature, identifying with

player an agent which performs control actions on the system, these works

consider only the one-player case while performing the identification in

pHRI applications involves two (or more) players, namely, the human

and the robot.

When more than one player is considered, for linear systems, their

control action can still be described by linear feedback gain matrices, one
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for each player.

The LS formulation appears in [55] for the two-player game. Again, it

displays limitations for online applicability and considers constant gain

matrices for both players.

Recursive Least Squares (RLS) are used in [184] to identify the human

control law online for human-robot-human co-handling of an object. [89]

proposes an observer with an updated law based on a game-theoretical

formulation of the interaction for online identification. Such approaches

[89, 184] show good results and convergence in simulation but assume

constant gain matrices, both for the human and the robot, which result

from a Nash Equilibrium in a game-theoretical description of the interac-

tion. This comes from the assumption that a human behaves as a ratio-

nal player in a non-cooperative game and keeps his control law constant

when an equilibrium is reached. Similarly, in [90], a UKF is used for on-

line gain matrix identification, still considering constant gains, computed

as minimization of a constant cost function.

2.2.2 INVERSE OPTIMAL CONTROL

Many techniques and models are studied and presented in the litera-

ture to describe human and human-machine behavior. Such models span

from elementary models (humans as a spring) to complex neuromuscu-

lar models and Optimal Control models, depending on the need. Please

see [155] for a complete and up-to-date review.

Provided that Game Theory (GT) represents a robust framework to

describe an individual’s behavior during interaction [63], this work fo-

cuses on the identification of optimal behaviors of humans and the recov-

ery of the human cost function, as this modeling allows direct integration

into GT frameworks. Optimal Control (OC) aims to find a control action

for a dynamic system over a time window to minimize a cost function.

Conversely, Inverse Optimal Control (IOC) techniques are adopted to re-
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cover the cost function that produced observed control actions and state

histories.

The most common strategy used in IOC is to parametrize an un-

known objective function as a weighted sum of relevant features (or ba-

sis functions) with unknown weights [1]. This model is also adopted to

describe human behaviors in performing different tasks. Human jump-

ing is studied in [173], highlighting the possibility that the cost function

varies during the task. In [67] and [97] study human movement by de-

tecting changes to the optimization criterion during a squat task. Human

arm reaching is studied in [129], considering free-space reaching motions.

The results show a trade-off between kinematics and dynamics-based

controllers depending on the reaching task. Interestingly, this trade-off

depends on the initial and final arm configurations. [104] also studies

human arm motions with applications to human-robot collaboration in

a shared workspace. These works involve cost functions with multiple

features but consider only motions in the free space without accounting

for interactions.

If the only cost function’s features considered are the state and con-

trol action, the problem is reduced to a typical Linear Quadratic Regu-

lator (LQR). In this case, more specific IOC techniques exist. Such tech-

niques compute the weight matrices starting from the feedback matrix

and not the complete control and state histories[108] [64] [55]. Interest-

ingly, such methods do not require the entire trajectory to identify the cost

function, but only the knowledge of the gain matrix is sufficient. Finally,

such approaches appear suitable for studying humans in interaction with

autonomous agents, as described by Game Theory, as in [58, 77, 144].

Motivated by the previous studies, this work aims to implement IOC

to understand the fundamental behavior of humans interacting with a

variable, passive system. It is possible to obtain basic yet valuable in-

formation to develop natural pHRI controllers. The simple LQR model
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is studied. Indeed, despite its simplicity, as shown, LQR cost functions

can capture essential human behaviors during the interaction. Moreover,

modeling the human’s cost function as the LQR cost function allows easy

integration in the Linear Quadratic Game-Theoretic (LQGT) framework,

which provides useful tools for pHRI controllers design [89, 93, 94].

2.2.3 HUMAN INTENTION DETECTION

The two main research branches that aim at understanding the desired

human intention of motion rely on (i) model-based and (ii) data-driven

approaches.

The model-based approach builds on modeling the human arm with

the standard impedance model [32, 159]. This approach requires esti-

mating the human arm impedance parameters. The main drawback of

this approach is that such parameters are subjective, time-variant, and

depend on the specific task considered. For example, lifting an arm on

the vertical plane has different parameters with respect to opening the

same arm on the horizontal plane, and so on. Therefore, such a physical

human arm model presents low flexibility and generalization. A differ-

ent approach is to implement a more control-oriented modeling of the

human rather than a physical model, considering it as a feedback con-

troller [42, 137], with control gains as unknown parameters to be recov-

ered. This approach still requires a control model that might introduce

modeling errors and parameter estimation techniques. Finally, in [141],

the human intent is obtained by double integration of the estimated ac-

celeration imposed on the robot admittance control.

The data-driven approach aims at training Machine Learning algo-

rithms based on data (either real or synthetic) collected and builds a

model that transforms inputs into outputs. Among the various, Neu-

ral Networks (NN) achieve excellent results in approximating complex

non-linear systems with high uncertainties. In particular, when dealing
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with sequences (either logical or temporal), Recurrent Neural Networks

(RNN) are a very effective implementation of NN. Indeed, RNNs account

for previous events, allowing information to persist over a certain hori-

zon. There are various types of RNN [160], vanilla RNN, Gated recurrent

unit (GRU), and Long-Short Term Memory (LSTM) are the most common

types. In particular, the LSTM [49] architecture outperforms the classical

RNN and is now widely adopted to solve multiple problems where the

sequential pattern of the data may store important information, such as

speech recognition. The same reasoning applies to human intent estima-

tion since the previous motion state may be a manifestation of the intent.

Indeed, various works adopt RNN architectures for the prediction of

human motion. Vision-based data are usually exploited [109, 180, 181], as

cameras provide a clear understanding of the scene and are able to detect

the human skeleton without requiring any contact to feed both LSTMs

and GRUs models. [172] presents the AutoRegressive Integrated Moving

Average (ARIMA) model for the visual identification of the elbow motion

of a human. The main drawback of using vision-based information is

that specific hardware is required, and image data are quite complex to

be processed, increasing the time required for algorithms training.

To overcome camera-related issues, other works exploit different data

information. In [6], the input data to the LSTM model are read via Force

MyoGraphy (FMG). Multiple subjects are used to train the model, but

the approach is not general. A different sensor based on electromyogra-

phy (EMG) signals acquired from human arm muscles is used in [165].

In this work, the authors propose using a NN to classify the intended

direction of human movement. This work limits to the classification of

the desired direction of motion to allow the robot assists. Despite this,

no prediction of future motion intentions in terms of desired trajectory

is addressed. Also, Gaussian processes can be used such as in [99] and

[107]. The first proposes identifying human motion intention interacting
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with an exoskeleton via a sparse Gaussian process. The second models

the human arm as 7 degrees of freedom (DoFs) impedance and estimates

the intention as the human force by Gaussian Process.

In [52], an Adaptive Neural Network estimates the joint coordinates

of the human lower limb interacting with an exoskeleton for rehabilita-

tion. In contrast, [21] predict human motion intention by online learning

without training. In [91], the model is based on Radial Basis Function

Neural Networks (RBFNN). In this work, an updating law adjusts the

NN weights online to guarantee estimation accuracy even when human

motion intention changes. Still, the prediction horizon is one step. Inter-

estingly, [105] and [102], propose an LSTM to predict the reference set-

point at the next step but do not address any adaptation to new users

or objects. In addition, [102] proposes training and using LSTM to pre-

dict the reference one time instant but does not adapt the model to new

users, so each new human has to record the full set. Finally, one of the

author’s previous works addresses a model composed of LSTM cascaded

with Fully Connected (FC) standard NN layers [35]. Such a model is it-

eratively trained to adapt the model to understand the interaction bet-

ter, and Transfer Learning (TL) is proposed to adapt the same model to

new users, trajectories, or co-manipulated objects, showing the capacity

of generalization and long-term prediction.

2.2.4 GAME-THEORY FOR MODELING HUMAN BEHAVIOR

Let’s now review how human behavior can be modeled using GT for-

mulations and which modes have been studied to understand how they

can be included in the pHRI framework. Game-theoretic modeling of hu-

mans interacting with machines has been increasingly exploited recently.

Typical applications of GT models are used for humans interacting with

a programmed active front steering (AFS) in the shared driving of ve-

hicles (Non-Cooperative [119], Cooperative [121], and others [65, 120]).
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Such works are limited to modeling interaction and lack experimental

data to confirm that GT models describe interaction with real humans.

Experimental evaluations are presented in [122] and in [118]. The first

work presents results on the behavior of six individuals interacting with

the AFS. Compared with the standard optimal control, it is shown that

their interacting behavior is better described by the Non-Cooperative for-

mulation. Similarly, the second shows that GT-based formulation better

describes the driver’s behavior than the driver’s classic steering control

strategy.

Studies on a human-human dyad, rather than human-machine, allow

an understanding of how their behavior changes according to the inter-

acting situations. In [58], a human-human dyad performs a shared refer-

ence tracking without the possibility of communicating. It shows that the

non-cooperative model is more descriptive than a model that considers

the partner’s action as a system disturbance. Human-human interaction

is also studied in [17] and [98]. These works compare the dyad with a

single individual behavior. Individual players tended towards coopera-

tive behavior to find the solution, whereas two players tended towards

non-cooperation on average. Reasonably, the cooperative solution is best

if the players can communicate and trust each other. If no agreement ex-

ists because there is no communication and trust, human behavior can be

modeled as non-cooperative. Note that these works put the participants

in non-cooperative situations on purpose (human dyads are not allowed

to communicate, and the machines the humans are interacting with are

programmed in a non-cooperative way).

2.3 SHARED AUTONOMY AND ROLE ARBITRATION

Finally, we want to present the most common and recent advancements

in the RA and SA fields to give a background to the proposed work. The

most common way to describe Shared Autonomy (SA) and Shared Con-
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trol (SC) is a linear combination of human and robot control inputs as

h(uh, ur) = α uh + (1 − α) ur. This formulation is used, possibly with

different definitions of the ui, in many of the following works. In [156],

Shared Autonomy and Shared Control in pHRI are reviewed, highlight-

ing the differences, pros, and cons. Ultimately, SC is more specific to the

application domain and task. At the same time, SA approaches provide

a favorable autonomy level adaptation feature that leverages inference

of human intentions. In [116], authors investigate the objective and sub-

jective effects of dynamic role allocation for a physical robotic assistant

for a cooperative load transport task. Two dynamic Arbitration laws are

proposed for effort sharing. A continuous first-order dynamical system

governs one with the arbitration parameter bounded within the interval

[-1,1], and the other is discrete. Results show that the dynamic role al-

location is objectively better than its fixed counterpart. [102] proposes

variable impedance control along with an assistive controller that grad-

ually decreases to zero when the human user applies forces to pull the

robot away from the predicted goal. In [88], to help a human, a strat-

egy based on a multi-modal intent inference of human intention is devel-

oped. By looking at the natural eye-hand cooperation during a natural

human manipulation, it is possible to understand the human intention

of motion. The environment and the estimation introduce uncertainties,

so a confidence index on the identification is defined. The arbitration

weight of the robotic agent is defined as a combination of confidence in

the intent inference and robotic autonomy. Role arbitration is presented

in [93] and [94] as a Variable Impedance Control, where human inten-

tions are detected from interaction force. In [18], the robot assumes two

roles, with a control scheme that switches between a teaching phase (the

robot is a passive follower) and an active phase (the robot is in adap-

tive admittance control). In [175], a controller capable of learning human

behavior and providing assistive or resistive force is proposed, but no
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dynamic role allocation is proposed. Similarly, [110] propose a switching

controller based on assistive adaptive impedance control. The stiffness

parameter goes from high values to zero. This allows trajectory track-

ing and autonomous task execution in the first case and manual guid-

ance in the second. In [87], a fuzzy controller introduces a cooperative

coefficient according to different driving intentions, safety, and perfor-

mance parameters in a cooperative driving scenario. In [66], the shared

autonomy problem for the human-robot collaboration is introduced into

a Partially Observable Markov Decision Problem. In [73], the Coopera-

tive problem is addressed for the human-driver assistant problem. Fi-

nally, [74] propose a GT formulation of the problem, allowing switching

between the Cooperative and the Non-Cooperative interaction models

for collision avoidance in a shared human-robot driving scenario. De-

spite the interesting problem formulation and arbitration solution, only

simulation results are presented.

2.4 PBO

Given the control framework, different parameters have to be tuned. In

particular, the control algorithm typically has parameters that depend on

the user, which can only be estimated, and parameters that can be set

according to the required task, performance, and user experience level.

For example, according to previous research, [28, 53, 84], operators pre-

fer low values of the impedance parameters for large movements at high

velocities, while high values when performing fine movements at low

velocities. In [34], these insights are used to make a variable admittance

control. The damping parameter is made variable according to the veloc-

ity of the robot within a stable region.

Moreover, human subjective preferences may influence the tuning of

the controllers. Different works analyze this crucial aspect of the HRI,

even in domains not directly related to pHRI. The works in [4, 5] propose
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tuning robotic prosthesis control parameters to meet the user’s prefer-

ence while ensuring their safety. [27] evaluates the participants’ percep-

tion of the collaboration, and [50] evaluates human-robot collaboration’s

fluency based on subjective and objective evaluations. [154] defines a

questionnaire to try to remove the subjective part from evaluations. Fi-

nally, [25] defines subjective metrics to assess an HRI motion planner.

Therefore, it is clear that a method for control parameter tuning should

be defined according to the various requirements, not least human pref-

erences.

A novel method to optimize parameters based on human preferences

is the so-called Preference Based Optimization (PBO). PBO aims at opti-

mizing a set of parameters where a cost function cannot be directly eval-

uated but only recovered from preferences expressed by a user. By iter-

atively proposing to the user a new comparison to make, the algorithm

learns a surrogate of the cost function preferences expressed by the user.

Among the various, in this work, We selected the GLISp algorithm [15]

to tune the robot controller’s parameters. Such an algorithm has proven

great results in tuning control algorithms based on human preferences as

MPC controller calibration for line keeping, obstacle avoidance, continu-

ous stirring tank reactor [182, 183], and path-based velocity planner for

tuning material deposition in [148, 151].
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CHAPTER 3

IMPEDANCE CONTROL

This chapter introduces the basic Cartesian Impedance control for the

robotic manipulators, representing the base interactive system. By im-

plementing Cartesian impedance, the robot motion at the end effector be-

haves following a mass-spring-damper system dynamics, which is gen-

erally considered to be compliant and safe for interaction with humans

and the environment. Therefore, in this thesis, the basic, low-level sys-

tem is considered to be an equivalent mass-spring-damper system, and

the human and the robot are considered two external agents acting on it.

On top of it, a Game-Theoretical framework can be constructed to let the

robot understand human intention and act consequently, as explained in

sections 5.2 and 5.3.

3.1 IMPEDANCE CONTROL

Denoting with q(t) the vector of joints coordinates, the standard manip-

ulator dynamics in the joint space is given by

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (3.1)
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where M(q) ∈ R
n×n is the inertia matrix, C(q, q̇) ∈ R

n×n is the Coriolis

and centrifugal force, G(q) ∈ R
n is the gravitational force, and τ ∈ R

n is

the torque control input. The forward kinematics gives the end-effector

Cartesian pose

x(t) = f (q(t)) (3.2)

where x(t) denotes the Cartesian position vector and f a function that

maps joint coordinates into Cartesian pose at the end-effector, and the

Cartesian velocity and accelerations are given by differentiating it as

ẋ(t) = J q̇(t) (3.3)

where J(q) ∈ R
n×n is the Jacobian matrix. It is then possible to rewrite

(3.1) in the Cartesian space as

Mx(q)ẍ + Cx(q, q̇)ẋ + Gx(q) = J(q)−Tτ (3.4)

The feedback linearization is realized by imposing the control input τ as

τ = J(q)T[Mx(q)ẍre f + Cx(q, q̇)ẋ + Gx(q)] (3.5)

leading to ẍ = ẍre f , with ẍre f defines the desired acceleration.

Cartesian Impedance control can be implemented to make the robot’s

behavior responsive and compliant with human interaction. It repre-

sents a virtual mass-spring-damper system, and the human can impose

wrenches to move it. The impedance model in the Cartesian space is de-

scribed as follows:

Mi (ẍ − ẍ0) + Ci (ẋ − ẋ0) + Ki (x − x0) = uh(t) (3.6)

where Mi, Ci and Ki ∈ R
6×6 are the desired inertia, damping, and stiff-

ness matrices, respectively, ẍ(t), ẋ(t) and x(t) ∈ R
6 are the Cartesian
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accelerations, velocities and positions at the end-effector, x0 is the equilib-

rium position of the virtual spring, and uh(t) ∈ R
6 represents the human

wrench applied to the system. The Cartesian coordinates in x are defined

according to [163], with the vector x = [pT θT]T where pT are the position

coordinates and θT the set of Euler angles. This choice assumes that the

angular rotation maintains limited values in the target applications.

Since the purpose of this thesis is to design assistive controllers, it is

convenient to add a virtual wrench ur(t) ∈ R
6 that represents an addi-

tional external contribution that the robot can provide, leading to

Mi (ẍ − ẍ0) + Ci (ẋ − ẋ0) + Ki (x − x0) = uh(t) + ur(t) (3.7)

The definition and computation of the additional control input ur(t) is the

main objective of the Game-Theoretical framework presented in sections

5.2 and 5.3. A schema of the Impedance Control with the human and the

robot acting on it is visible in figure 3.1.

u
r

u
h

Figure 3.1: The schema of the impedance system with the two external contri-
butions.
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3.2 STATE-SPACE FORMULATION

The equation (3.7) can be rewritten in a linearized state-space formulation

around the working point as

ż = Az + Bhuh + Brur (3.8)

where z = [x ẋ]T ∈ R
12 is the state space vector, the matrix

A =

[
06×6 Ja

−M−1
i Ki −M−1

i Ci

]
(3.9)

is the state, or system matrix,

B12× 6
h = B12× 6

r =

[
06×6

M−1
i

]
(3.10)

is the control matrix, with 06×6 denoting a 6 × 6 zero matrix and Ja the

analytical Jacobian matrix, with the dimensions of the considered Carte-

sian components. To provide the robot with reference in the joint space,

kinematic inversion is computed at the velocity level as

q̇re f (t) = J(q)+ ẋ(t) (3.11)

where q̇re f (t) ∈ R
n, are the reference velocities in the joint space, J(q)+

is the pseudoinverse of the analytical Jacobian matrix. Joint positions are

then computed via a simple integration. Assume q̇ ≃ q̇re f , considering

that today’s robots have excellent tracking performance in the frequency

range excitable by the operator.

The low-level Impedance Control loop described in (3.7) can be seen

at a higher level as a given system, with two agents acting on it, the hu-

man and the robot, namely.
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3.2.1 DISCRETE-TIME FORMULATION

Finally, since the robot controllers accept commands in discrete time, and

data are typically collected in discrete time, it is also convenient to rewrite

the system described in 3.8 in discrete time.

z(k + 1) = Ad z(k) + Bd,huh(k) + Bd,rur(k)

y(k) = Cd z(k)
(3.12)

with Ad, Bd,h and Bd,r indicating the discrete versions of the matrices A,

Bh and Br, and k indicating the current time instant, z(k+ 1) the evolution

of the system at the next step, and Cd the output matrix that converts z(k)

to y(k).

The method used in this work to convert from continuous to discrete

systems is briefly explained in appendix A.1.
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CHAPTER 4

MODELING HUMAN BEHAVIOR

This chapter investigates various aspects of human modeling, which must

be addressed for a proper Game-Theoretic description of the pHRI. First,

it is convenient to consider human wrenches as the output of a linear

feedback controller. Therefore, the first section is dedicated to recovering

the online human feedback control gain matrix by adopting an Extended

Kalman Filter (EKF) for parameter identification. Then, provided that

the human control inputs can be modeled as the output of a linear state

feedback control, it is interesting to model how such feedback gains are

generated. Taking inspiration from the fact that, in general, humans tend

to optimize something when they engage in activities, Inverse Optimal

Control (IOC) is adopted to approximate the cost function that humans

minimize during a reaching task with the robot. Finally, predicting the

intention of motion of humans is a necessary piece of information for the

robot to assist appropriately. This thesis proposes the training and us-

ing a Recurrent Neural Network (RNN) capable of predicting the desired

human motion within a defined rolling horizon.
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4.1 IDENTIFICATION OF HUMAN CONTROL GAINS VIA

EXTENDED KALMAN FILTER

This section is based on the method and results presented in [42].

This work extends the previous literature by addressing the online

identification of a human’s possibly time-varying control gains while phys-

ically interacting with a robot. Indeed, it is reasonable to assume that a

human modifies his control law during a task. Therefore, the objective is

to define an online method capable of identifying the time-varying con-

trol gains of the human, which can explain the coupled system behavior

while keeping the human model simple.

A modification of the LS technique proposed in [55] and the RLS

method from [184] are implemented for comparison with the proposed

EKF. The usage of EKF is less computationally expensive than a UKF es-

timator, as the Jacobians can be computed analytically offline. The quality

of the model tracking is good since the system is close to linear, as experi-

ments demonstrated (see Discussion) EKF and UKF were experimentally

tested, and no visible improvements were found using the UKF. More-

over, the tuning of the UKF was found to be more complex. Simulation

results show that the EKF approach outperforms the LS and RLS methods

in the accuracy of the identification of the control law, mainly when time-

varying control laws are considered. Experimental results show that the

identified laws can explain and reproduce human behavior.

This section, as others [56, 92], wants to investigate human behavior

modeling as a full-state linear feedback control. Such a model is limited

to the human’s control behavior and does not investigate nor consider

the complex dynamics of the human arm, as other works do. Despite

this simplification, this model can explain human behavior, particularly

in interaction with a machine or a robot, and is relevant and useful from

a control point of view, particularly for direct and inverse optimal control

problems and game-theoretic modeling. Note that such a model does not
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consider any additional external contact on purpose. It is meant to solve

applications of human-robot co-transportation of large or heavy objects.

Therefore, it models only the free motion in the space at the current state

of the study.

The main contribution of this section is to propose an implementation

of the EKF as an identification method for human control gains identifica-

tion in pHRI tasks. Compared to previous works, it investigates the pos-

sibility that such gains are time-variant, possibly quickly. It presents sim-

ulation results to support the EKF choice and real experiments to show

feasibility in real-world applications. The main result of this section is to

prove that linear feedback control can opportunely describe human be-

havior in pHRI tasks. This result opens the way to control design and

inverse optimal control to identify humans’ objectives.

4.1.1 PROBLEM FORMULATION

Consider the state-space Cartesian impedance control presented in (3.8).

Due to the impedance behavior of the robot end-effector, the objective is

to design a controller for the robot control input ur to allow end-effector

motion according to the desired task, as set-point reaching or trajectory

following.

The robot control input is formulated as a linear state feedback control

law as

ur(t) = −Kr(t)z(t) (4.1)

where Kr(t) is the time-varying feedback gain matrix. Assuming that

the human also implements a linear feedback control law, as in [89, 90],

his/her control input results in

uh(t) = −Kh(t)z(t) (4.2)

where Kh(t) is the time-varying feedback gain matrix. Note that the hu-
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man control input uh is the force the human applies to the system, which

can be measured. From now on, human control effort and force are used

as synonyms.

In control design, the tuning of the gain matrix is a broad research

area, and techniques such as pole placement [135], which allows speci-

fying the closed-loop poles of the controlled system, or LQR [81], which

allows designing optimal controllers for desired performances, are typi-

cally used. These classical approaches can be adopted to define the robot

gain matrix Kr(t). Conversely, the human gain matrix must be identified.

Given the robot control law (the LQR method is used in this work),

the problem is to recover the human control law parameters described in

(4.2) to provide the robot with helpful information about human control.

The following problem can then be formulated.

Problem: given the current system state z(t), the robot control input ur(t)

computed as (4.1), and the measured human control input uh(t) assumed to be

results of the linear feedback control law 4.2, given the system dynamics 3.8,

identify the control gain matrix Kh(t) that produced such control input uh(t).

4.1.2 EXTENDED KALMAN FILTER DESIGN

To ease the reading, the rest of this section focuses on the one-DoF formu-

lation of the problem. In doing this, with a bit of abuse of notation, the

state vector z = [∆x ẋ]T ∈ R
2 reduces to two elements and ∆x and ẋ iden-

tify the position and linear velocity relative to the robot base frame on one

single axis, and not the 3 × 1 position and velocity vectors presented in

the system modeling subsection. Moreover, the time dependency of the

gain matrices will be hidden despite being considered in the modeling

and the experiments.

Substituting 4.2 and 4.1 in 3.8, results in

ż = (A − BKh − BKr) z. (4.3)
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Assuming the robot gain matrix is known, considering then z, the gain

matrix Kh will be a 1 × 2 matrix with elements Kh = [k1,h k2,h], with com-

ponents k1,h and k2,h to be identified. An augmented state is defined as

ζ =




x

ẋ

k1,h

k2,h




(4.4)

The filter dynamics can then be defined as

f (ζ, ν) =




ẋ

ẍ

k̇1,h

k̇2,h



=




νẋ
−(k1,h+k)∆x−(k2,h+d)ẋ−Krz

m + νẍ

νk̇1,h

νk̇g2,h




(4.5)

where the vector ν = [νẋ, νẍ, νk1,h
, νk2,h

]T accounts for uncertainties in model

parameters/estimates and k and d denote the single element of the ma-

trices Ki and Di of (3.7). The observer for the augmented system can be

defined as 



˙̂ζ = f (ζ̂, ν) + KEKF(y − Cζ̂)

y = h(ζ, w)
(4.6)

with ˙̂ζ the augmented state estimate derivative, C the observation matrix

for the robot position and velocity, and KEKF the gain matrix, defined as:

KEKF = PCR−1 (4.7)

with measurements noise matrix R defined as R = HE(wwT)HT. h is

the observation function that maps sample inaccuracies, due to measure-

ment noise, through the matrix H = ∂h
∂w

∣∣∣
ζ̂
. The covariance matrix P is
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continuously updated as

Ṗ = AaP + PAT
a − PCTR−1CP + Q (4.8)

with matrix Aa = ∂ f
∂ζ

∣∣∣
ζ̂
, and matrix Q used for parameter estimation de-

fined as Q = GaE(ννT)GT
a = GaVGT

a , with Ga =
∂ν
∂ζ

∣∣∣
ζ̂
.

The estimated feedback control gain matrix K̂h can then be recon-

structed from the augmented state as K̂h = [k̂1,h k̂2,h].

Remark 1

A very similar approach can be applied with the discrete-time system

in (3.12), with the difference that, in that case, two different phases

(predict and update the filter) are required.

4.1.3 VALIDATION

The presented approach is validated with simulations and real experi-

ments. The results are presented and discussed in this section. The pro-

posed approach is compared with two previously implemented methods:

Least Squares Method (LSM) and Recursive Least Squares (RLS).

The procedure in figure 4.1 is applied to evaluate the proposed ap-

proach for both simulation and experimental results. State and control

data are offline simulated/collected and recorded. Subsequently, such

data are replayed, involving the "online" estimation of the time-varying

gain matrix. Finally, the estimated time-varying matrix simulates the sys-

tem and reproduces the original behavior.
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Remark 2

The data simulation/collection and gain matrix identification steps

can be performed online together. This work chooses to separate

them to compare the same data sets for the three methods, avoid-

ing real-time related issues. Moreover, in this way, it is possible to

use the same data for comparison.

Data collection/simulation

gain matrix identification identified system simulation

real vs identified
comparison

Figure 4.1: The evaluation procedure.

4.1.3.1 PERFORMANCE INDEXES

Some numerical performance indexes are defined and introduced below

to compare the proposed method with others.

The human feedback gain matrix is known and available in the simu-

lated scenario so that a direct comparison can be made between the nom-

inal and the identified one. The mean of the percentage identification

error is defined as

EKh
=

1
t f

∫ t f

0

||K̂h(t)− Kh(t)||
||Kh(t)||

dt (4.9)

Conversely, the human gain matrix is unknown in real experiments. There-

fore, the values obtained for the identified gain matrix are used to com-

pute the same trajectory in a simulated environment to measure the esti-

mation’s reliability. Two additional indexes are then defined. The mean
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percentage state error is measured as

Ez =
1
t f

∫ t f

0

||ẑ(t)− z(t)||
||z(t)|| dt (4.10)

where z(t) is the measured Cartesian state and ẑ(t) is the Cartesian state

computed simulating the system (3.8) with Kh = K̂h(t), estimated by 4.6.

Finally, the Root Mean Squared Error (RMSE) of the control input ū is

considered to measure the control input u. This is because if the system

is not adequately excited and the control input is close to zero, a high

percentage error may arise due to division by ∥uh∥, close to zero, even

if the error is not significant, making the percent error comparison not

reliable. The RMSE is computed as the square root of the Mean Squared

Error (MSE), computed as

RMSEu =

√
1
t f

∫ t f

0
(uh(t)− ûh(t))2 dt (4.11)

The results obtained are compared with the other two common identifi-

cation techniques. The first one is the Least Square Method (LSM) similar

to the one presented in [55], with the difference that [55] requires the com-

plete history of both x(t) and uh(t). In this work, due to the online pur-

pose, the integral is computed between a rolling interval T = [ti f t f tc]

with tc denoting the current time, ti = tc − ∆t the initial time and ∆t in-

dicates a fixed time interval. The matrix K̂h is computed as

K̂h(tc) = min
Kh

∫ tc

tc−∆t

||Kh z(t) + uh(t)||2dt (4.12)

In the ideal case, uh(t) = −Khz(t), minimizing (4.12) allows to find a

good estimate of the matrix K̂h.

The second method used for comparison is the Recursive Least Squares

(RLS), as in [184]. The authors define θ = −KT
h , y = uT

h , and W = zT, with
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y = Wθ, and estimate the values of the gain matrix with the following

update rules.

˙̂θ = −PWTe

Ṗ = λP − PWTWP

e = ŷ − y

(4.13)

The proposed method and the others are tested first by making null

robot contribution (i.e. ur(t) = 0, ∀t), then adding the robot control input

both in simulations and real experiments.

4.1.3.2 SIMULATION RESULTS

First, simulations are performed to assess the feasibility of such an ap-

proach for control gain matrix estimation.

The system presented in (3.8) is simulated along one direction only,

identified as x, with m = 10 kg, d = 25 Ns/m and k = 0 N/m, leading

to matrix A =
[

0 1
0 −2.5

]
, B =

[
0

0.1

]
. Note that we use lowercase letters

for the simulation with one DoF to denote mass, damping, and stiffness

parameters because they are scalar values and not matrices. The target

position is variable with time, and is xre f (t) = 0.5 m until x = xre f , then

xre f (t) = −0.5 m and so on. The simulated human control gain matrix

is set to Kh(t) = [50, 10], while, if active, the robot control gain matrix

is set to Kr(t) = [20, 1]. Moreover, to have a time-varying behavior, the

first element of the gain matrix (k1
1,h = 50) is modified, adding a slow-

changing term as k2
1,h(t) = k1

1,h + 20sin(0.2t), a fast-changing term as

k3
1,h(t) = k1

1,h + 2sin(5t), and both k4
1,h(t) = k1

1,h + 20sin(0.2t) + 2sin(5t).

The gain parameters for the EKF are QEKF = diag([.1, .1, 10e4, 10e4])

and REKF = diag([.01, .01])), for the RLS PRLS(0) = diag([10e2, 10e2])

and λ = 0.95 and for the LS the selected time interval is ∆t = 0.05s. Such

parameters are manually tuned to minimize the error of the identified
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control input. The initial guess of the human control gains is the same for

the three methods and is set to K̂h(0) = 0.3Kh(0). The simulation is run

for 35 seconds, with a time step of 0.005 seconds.
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Figure 4.2: Results from the evaluation of the proposed indexes. The figures are
cut on the y-axis to make the most relevant results visible. The values above the
y limits are indicated on the corresponding bars. The first row presents results
for the ur(t) = 0 case, while the second row presents results for the case in which
the robot is active.

Eight simulations are run, one for each value of k1,h(t), without and

with the robot active, and the results of the proposed indexes are sum-

marized in figure 4.2.

The first row shows the simulation results with ur(t) = 0, while the

second row shows the results of the simulations with the robot contribu-
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tion. In particular, from figures 4.2a and 4.2d, it appears clear that, when

the gains are non-constant, the EKF represents the best solution, even if

for constant values, the LS method can perfectly recover the real values.

Indeed, the real values of the gains are identified with an error between 2

and 4 % with the EKF, while other methods are more variable. Moreover,

a significant error in the EKF identification is due to the time needed for

convergence; after that, it reduces dramatically.

The system’s state is well reconstructed by the EKF and LS methods,

with a mean error lower than 1% in all the cases, while RLS shows worse

performance.

Finally, looking at the reconstructed control input, the LS method is

the best. Despite this, the well-identified control input comes from a very

unstable identification of the control gains. This may lead to unstable be-

havior when the identified values are used for control purposes. Finally,

the RMSE relative to the EKF identification appears small if compared to

the maximum control input magnitude (about 30N), making its estima-

tion acceptable.

As an explanatory case, in figure 4.3, the history of the estimation of

the control gains is shown for k4
1,h, with ur(t) = 0. It can be seen that the

EKF way better identifies the gains, and LS presents a very unstable and

oscillating behavior.

Simulations show that the EKF results as the most suitable method

for gain identification, with a mean percentage identification error on the

control gains almost constant around 4% in the ur(t) = 0 case around 3%

when the robot is active. The LS method can reproduce the control input.

Still, it can also be very unstable in understanding the human control

strategy, making its usage possibly dangerous for developing coopera-

tive control strategies. It must be noted that the LS method performances

strictly depend on the choice of the width of the considered window. In-

deed, the LS method can perform very well if the window is enlarged and
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Figure 4.3: identified control gains for the simulated case

the instability does not arise, but the capability to recover fast changes of

the control gains, such as in the k4
1,h(t), decreases. Therefore it is worth

considering its use for the cases in which the parameters sought do not

change rapidly or if the general human behavior is the core of the study

and not the particular, possibly online, time-variant behavior sought, as

in [41, 55]. On the other hand, the use of the EKF guarantees better per-

formances in cases where the objective is to precisely recover the gains of

the human at each time instant.

The simulations focus on the one DoF case to ease the presentation

of the results. To show that the presented method can also deal with

multi-DoF systems, figure 4.4 shows the gains identified by the EKF dur-

ing a simulated task involving three DoFs on the horizontal x–y plane.

The DoFs considered are the translations on the x and y-axis and the ro-

tation θ around the z-axis. The task considered is the same as the one

DoF case, but the set-points are different along the various axes and are

switched together as soon as the target along the x-axis is reached. Note
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Figure 4.4: The values of the gains in the 3 DoFs simulated case, with results
comparable to what was observed in one of the cases.

that adding Cartesian rotations to the problem introduces nonlinearities.

Despite this, the problem of rotations can be simplified by linearizing

around a working point. In particular, considering relevant human-robot

interactive applications such as large object co-manipulation, no relevant

rotations are allowed, and typically they happen along one axis at a time.

For example, consider a large panel co-transport. The main rotations will

likely take place around the vertical axis only. Therefore, the proposed

simulation wants to mimic the scenario where a human and a robot co-
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manipulate a large object with large motions on the x–y plane, and the

rotations along the vertical axis are partially allowed (no full turns can

be performed). The simulated parameters are M = diag([10, 10, 5]), D =

diag([25, 25, 10]) and the stiffness matrix is kept null. The reference gains

are K1 = [50 + 20sin(0.2t) + 2sin(5t), 30 + 5sin(0.4t) + 0.5sin(5t), 20 +

3sin(0.6t) + 0.5sin(5t)] and K2 = [10, 15, 5].

4.1.3.3 EXPERIMENTAL RESULTS

Figure 4.5: The subject performing experiments with the real setup. On the left is
the UR5 with the Robotiq FT300 sensor mounted at the end-effector and a handle
to allow the human to grasp it. On the right is visible the monitor showing in
green dot the current tip position, in dotted red the reference trajectory. The
human is asked to move the robot tip (green dot) along the red trajectory, and as
long as it reaches one end, switch goals to reach the other.

Simulations show that the EKF approach is suitable and performs

well in gain estimation. Hence, experiments with a real robot and a

human are performed to identify the feedback gain parameters for the

human. Note that this work only shows results relative to one human
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subject. The question of whether the approach is generalizable might

arise and is worth a brief explanation. This work does not want to model

general humans’ behavior, general humans’ precision in reaching a tar-

get, or anything else related to general humans. This work aims to re-

cover online the time-variant gains of a human modeled as linear state

feedback. This identification is independent of any subject performing

the proposed task and performs as well as with any subject. Three sub-

jects were tested during the design, and no meaningful differences were

observed in the identification. Of course, the gains’ values vary from

subject to subject, but this is irrelevant to prove the proposed approach.

The selected robotic platform is a UR5 equipped with a Robotiq FT300

sensor for force/torque sensing at the end effector. The designed ex-

periment involves a reaching task similar to the simulation. A switch-

ing reference is set, and the human has to move the robot tip to the tar-

get position in Cartesian impedance control. The target and the current

robot tip positions are shown on a monitor as a reference for the hu-

man. The target set-point is set to ±0.3 m, the impedance parameters

chosen are m = 10 kg, k = 0 N/m, and three different values of damping

are considered for testing the methods on various system dynamics, as

d1 = 25 Ns/m, d2 = 50 Ns/m and d3 = 100 Ns/m. The real setup can

be seen in figure 4.5, showing the robot, the sensor, and the monitor used

for reference.

The Robot control gain matrix Kr is computed as a solution of the

LQR problem for system dynamics described by (3.8), without human

contribution (i.e. uh = 0), with matrices Q = diag([10, 1]) and R = 0.1,

resulting in Kr,1 = diag([10, 3.89]).Kr,2 = diag([10, 2.04]) and Kr,3 =

diag([10, 1.04])

The parameters for the EKF are unchanged concerning the simulated

cases. At the same time, for the RLS, the matrix PRLS(0) was found to per-

form better if set to Prls(0) = diag([10e3, 10e3]), with a forgetting factor
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Table 4.1: The errors computed for the human as (4.10) and (4.11)

EKF RLS LS

ur = 0 ur ̸= 0 ur = 0 ur ̸= 0 ur = 0 ur ̸= 0

Ez d1 2.26 1.99 25.42 16.22 10.96 5.29
d2 2.85 2.33 34.30 16.60 13.49 8.89
d3 2.22 2.34 29.23 19.02 unst unst

RMSu d1 0.51 0.57 3.98 3.44 5.57 1.64
d2 1.19 1.10 9.75 7.02 12.16 7.94
d3 1.75 1.60 12.56 11.41 unst unst

λ = 0.8, and the time interval for the LS is set to 0.08 seconds.

Table 4.1 summarizes the evaluation indexes in the real experiments

computed for humans. Only the mean percentage error on the state (4.10)

and the RMSE on the control input (4.11) can be computed, as the real

control gains are not available in the real experiments.

The mean percentage error on the identified state is kept small for the

EKF (between 2 and 3 %) for all the cases, while it is huge for the RLS

and LS. Moreover, the LS method shows highly unstable behavior for

cases where the damping increases, proving its impossibility to be used

for online gain identification. The EKF shows the lowest RMSE compared

to RLS and LS.

Figure 4.6 shows the measured and identified state and control histo-

ries using the three methods for d = 25 and robot active case.

In particular, as shown in the simulation, the LS method is capable of

reproducing the control input (figure 4.6b) but is very unstable in iden-

tifying the control gains. In contrast, the EKF shows a more consistent

behavior and faithfully reproduces the control input and state history.

Since in the experiments with the robot active (i.e., ur ̸= 0), its gains

are known, and the same indexes can be computed for the robot. The
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Figure 4.6: identified human’s state, effort and control gains for the real case

same procedure described in figure 4.1 is applied, computing Kr(t) in-

stead of Kh(t). This allows a direct comparison between the identified

and the real gains. The above indexes are presented in table 4.2.

Table 4.2 shows good results for the RLS and EKF methods, while the

LS performs poorly in gains identification. This is due to some measure-

ment noise, which makes more unstable the LS computation. The RLS

performs better than the EKF, which can also be seen from the simulation

results where the control gains are kept constant. Despite this, identifi-
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Table 4.2: The errors computed for the robot as (4.9), (4.10) and (4.11)

EKF RLS LS
EK d1 6.94 2.05 22.20

d2 6.14 1.21 40.16
d3 6.67 0.79 10.03

Ez d1 3.85 1.30 0.45
d2 4.29 1.28 0.54
d3 4.27 1.29 0.66

RMSu d1 0.51 0.35 0.26
d2 0.53 0.35 0.26
d3 0.47 0.11 0.03

cation errors and RMSE are small, showing values comparable to what

was observed in the simulation for the EKF. This comparison represents

a useful tool for assessing the EKF behavior when used in a real scenario,

showing its applicability to this identification problem.

Figure 4.7 shows the identified gains for the d = 25 case. Once again,

the figure shows that the LS has an unstable behavior while the EKF ap-

proaches the real value, even though with a small offset.

4.1.3.4 DISCUSSION

The presented results show that the usage of the EKF provides better

results than the other methods used for comparison. A direct comparison

with the UKF is not directly presented, as for systems close to linear as

the one considered in this work, no sensible differences were found. As

visible from (4.5), the nonlinearities are due to the coupling between state

variables and parameters to be estimated, which augment the state. The

approximation of the system dynamics is presented in appendix (A.4).

As visible, no high nonlinearities are present; hence the approximation of

the nonlinear system to its linearized version does not introduce sensible

56



4.1. Identification of human control gains via Extended Kalman Filter

0 5 10 15

time [s]

0

5

10

15

k
1

(a) identified values of k1,r

0 5 10 15

time [s]

-4

-2

0

2

4

6

8

k
2

(b) identified values of k2,r

Figure 4.7: identified robot’s control gains for the real case

errors.

Finally, the average computational time for the method is computed

for online usage. All the computations are done with Matlab R2021b on

a PC with an Intel i7 core processor. The mean computational time for

the EKF was about 0.05 ms, while for the UKF was 0.1 ms, about double.

The LS method is the one that requires more time, with about 1 ms, while

RLS average time is the lowest, with about 0.01 ms.

4.1.3.5 CONCLUSION

This section proposes an EKF to identify the time-variant human control

law. A state-space formulation and the control law as linear state feed-

back describe the problem. Augmenting the state with the unknown con-

trol gains is possible to identify them online. A reaching task involving

time-varying control laws is simulated, comparing EKF with a modified

LS and an RLS. The results show that the EKF approach performs better

than the LS and RLS methods, particularly in identifying the gains in the
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4.2. Human cost function identification via Inverse Optimal Control

time-variant cases. Experimental results show that the EKF approach is

more stable than LS and performs better than RLS and LS.

4.2 HUMAN COST FUNCTION IDENTIFICATION VIA IN-

VERSE OPTIMAL CONTROL

The following is based on results presented in [41]. This section inves-

tigates the problem of recovering the human cost function. The human

cost function is responsible for generating the human control gain matrix

of the previous section.

This section considers the Cartesian impedance equation in (3.6), with-

out the robot contribution. Following the state space formulation pre-

sented in 3.2, it can be written as

ż = Az + Bhuh (4.14)

with A, B and z defined as in 3.2.

4.2.1 OPTIMAL CONTROL PROBLEM

Many previous works describe human’s intention as the minimization of

a quadratic cost function. In particular, it is possible to assume the cost

function as quadratic on the state and control input, leading to the LQR

formulation of the problem (as examples see [89, 93, 119]). Therefore, the

human objective can be described as the minimization of a quadratic cost

function, defined as

Jh =
∫ ∞

0
(z Qh z + uh Rh uh) dt (4.15)

where Jh is the cost that the human incurs, Qh ∈ R2n×2n is a matrix con-

taining weights on the state, and Rh ∈ R6×6 is a matrix of weights on the

control input.
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Remark 3

The human model weights Qh and Rh are unknown and must be

identified. A reasonable estimate of the human parameters, Q̂h and

R̂h, can be obtained with the IOC method as presented in the follow-

ing section.

Given the control objective in (4.15), and the system dynamics in (4.14),

the LQR Optimal Control Problem can be summarized as

min
u

Jh =
∫ ∞

0
(z Qh z + uh Rh uh) dt

s.t.ż = A z + Bh uh

z(t0) = z0

(4.16)

The LQR optimal control has the feedback form

uh = −K z(t) (4.17)

in which the human control action is described as linear feedback propor-

tional to the system’s state. In (4.17), the matrix K represents the feedback

gain matrix, computed as

K = R−1
h BTP (4.18)

in which the matrix P is the unique solution for the feedback linear-

quadratic optimal control problem, solution of the infinite horizon Con-

tinuous Algebraic Riccati Equation (CARE), given by

ATP + PA − PBhR−1
h BT

h P + Qh = 0. (4.19)
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4.2.2 HUMAN OBJECTIVE IDENTIFICATION

Given the definition of the direct Optimal Control Problem as in (4.16),

this section addresses the Inverse Optimal Control problem. That is,

given observed state and control histories, denoted as z̄ and ūh, given the

system dynamics in (4.14), recover the cost function (4.15) that produced

such control histories.

As discussed, different IOC techniques exist. Among the various, this

work implements the one presented in [55], considering the human as

the only active player, as briefly described in this section.

4.2.2.1 GAIN IDENTIFICATION

The method relies on the knowledge of the feedback gain matrix. Because

the gain matrix of the human is not known, it has to be recovered. If

the complete trajectory (or a sufficient part of it) is known, it is possible

to apply the Least Square Method (LSM), and the matrix Kh is obtained

from

K̂h = argmin
Kh

∫ t f

ti

∥Kh z̄(t) + ūh(t)∥2 dt (4.20)

where ti and t f indicate the initial and final time of the trajectory (or a

sufficient portion of it), and the symbol ˆ(·) indicates an estimate of the

real value.

4.2.2.2 INVERSE OPTIMAL CONTROL

This section briefly presents the main steps to recover the cost function of

a player. Refer to [55] for the full treatment. As preliminary, denote · as

the Kronecker sum, defined as

X · Y = (X ¹ Iq) + (Ir ¹ Y) (4.21)

with X ∈ Rr×r and Y ∈ Rq×q.
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Given A, B, and K̂h, the Inverse Optimal Control (IOC) problem can

be solved as follows. First, denote F, F·, K̂· and Z as

F = A − BK̂h,

F· = FT · FT,

K̂· = K̂T
h · K̂T

h ,

Z = (In ¹ BT)F−1
·

M =
[
Z Z K̂· + K̂T ¹ I

]

Then, denote θ as the vector of vectorized weights as

θ = [vec(Q̂) vec(R̂)]T. (4.22)

As demonstrated in [55], if θ satisfies

M θ = 0 (4.23)

the Q̂ and R̂ are the correct unkown parameter for (4.19).

Given that (4.23) is a reformulation of (4.19), the parameter set of the

inverse LQ differential system is given by

θ = ker(M) (4.24)

with convex boundaries such that Rh > 0. As typical in IOC problems, a

residual is defined as

r = M θ (4.25)

to consider non-optimal behaviors and imperfect modeling of K̂. The
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following quadratic problem is formulated to minimize the residual

min
θ

||r||22 =
1
2

θT H θ

s.t. I θ g 0

R > 0

(4.26)

with H = 2MT M.

Remark 4

All the λ θ, λ > 0 solutions are acceptable, since the solution of prob-

lem (4.16) is the same for any λ J, λ > 0.

Remark 5

The constraints in (4.26) are imposed by Optimal Control necessary

conditions, i.e. matrix Q semi-positive definite and matrix R strictly

positive definite.

4.2.3 EXPERIMENTS

In this section, experimental results are presented. First, the design of

experiments is presented, with comments on the evaluation procedure,

then results are presented and analyzed.

4.2.3.1 DESIGN OF EXPERIMENTS

Three subjects are involved in this study. Each subject is asked to move

the robot end-effector to a fixed, unknown set-point along the z-axis. The

impedance parameters of the robot are set to M = 10, and three values

of damping D = [25, 50, 75] are tested to verify how different systems
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modify the control objective. The stiffness is set K = 0. Each subject

is asked to perform 12 set-point reaching for each damping value for a

total of 36 reaching tasks. Each reaching is along the x–axis only, with the

set-point at various, random distances. Before each recording session,

the subject is allowed to practice for a while to gain confidence with the

system.

The measured exchanged forces, the reference position, and the ac-

tual positions compute the IOC problem. The forces are measured with a

Robotiq FT300 sensor mounted on the robot tip. The robotic system gives

the positions directly, and the velocities are computed by differentiating

the positions.

The human cost function matrices, as typically happens [58, 77], are

assumed to be nonzero only on the diagonal terms, resulting in Q =

diag([q1, q2]), and R = r. Moreover, since the solution to the optimal

control problem is the same for any λ Jh with λ scalar, as an additional

constraint to (4.26) is set q1 = 1. In this way, all the recovered cost func-

tions are comparable.

A first analysis is done on the recovered features (q1, q2 and r) from

(4.26) to check their variation with respect to the variations of the system.

In the ideal scenario, the weights can be different between different sub-

jects. Despite this, each subject should have constant weight values, even

when varying the system’s parameters.

A measure of the control input is defined to evaluate the goodness of

the recovered costs as

Eu =

∫ t f

t0
u(t)− û(t) dt

umax
(4.27)

where umax is the maximum measured control effort, and it is used to

normalize the errors to make the comparison fair. The recovered control

input û(t) is computed by running a system simulation. In the ideal case,
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this value should be zero. Defining the set-point as xsp = xre f − x0, and

the Raise Time RT as the time required to move the system from x0 to

0.95 xsp, it is possible to define a ratio

RTsp =
RT

xsp
, (4.28)

to check how the different systems influence the rise time by remov-

ing dependency from the set-point distance. In the ideal case, the ratio

should be the same for a given system with any set-point and should

increase by increasing the damping.

Finally, a possible relation between the distance from the set-point

and the weight of the control is investigated. In the ideal case, the values

of R should always be the same, without regard for the set-point.

4.2.3.2 RESULTS

As previously discussed, the weight q1 is constrained to be q1 = 1, and

the other weights q2 and r are computed consequently. From the exper-

iments, all the subjects have a negligible q2, with values in the order of

1e − 4. This means that human feedback is based mainly on position, as

also happens in [57]. Since the values of q2 are very close to 0, the rest of

this paper will approximate them with 0 without further analysis.

Given q2 = 0, the ratio between q1 and r drives the system’s response.

The analysis of the values of R, visible in figure 4.8a, shows that humans

have a low weight also in how much effort is put into the task. The low

value of r, compared with q1, means that a fast set-point reaching is more

favorable than saving effort.

Moreover, three subjects tend to decrease the value of r as the damp-

ing increase, which means that reaching the desired position at a specific

time should remain almost constant against changes in the system.

Figure 4.8b also displays such a behavior, showing the ratio RTsp.
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The Figure shows a minimal increment in the ratio compared with

the increment of damping, particularly in subjects 2 and 3, confirming

that humans appear more interested in time than in the effort required.

This study also shows a correlation between the set-point distance

and the weight a human gives to the control effort. The farther the set-

point is, the higher the control weight, as shown in figure 4.9.

The error between the measured and reconstructed control input is

analyzed. Figure 4.8c shows the normalized error between the measured

and the simulated control effort of the three subjects in the three scenar-

ios.

Finally, figure 4.10 presents one control history measured and recov-

ered for each subject in the study, with the corresponding normalized

error.
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Figure 4.8: The results of the performance indexes

4.2.3.3 DISCUSSION

This work’s analysis suggests human modeling as an optimal controller

and hints about real human intention. The most relevant result is that

humans tend to keep the required time as constant as possible when per-
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Figure 4.9: Correlation between control weight identified and different set-
points, for subject 3

forming a task. This is probably because a human control works as feed-

back on a visual stimulus and keeps this control -which is not considered

in the presented study- constant.

Despite this, optimal control modeling of a human interacting with a

robot can still be adopted, keeping in mind some baseline rules shown in

the results section. The human’s weight on control input decreases if the

system becomes more rigid against motions and decreases as the desired

position becomes closer to the current one.

4.2.3.4 CONCLUSIONS

This work presents a study of human behavior modeled as optimal con-

trol during physical Human-Robot Interaction. Theoretical modeling of

the system and control model is presented, and the formulation of the

Inverse Optimal Control is presented. IOC is used to recover the cost

functions of three subjects performing a reaching task interacting with

different robot behavior. The analysis shows that OC modeling of a hu-

man may be used and gives good results with some caution.

Such a model presents applications in designing game-theoretical-
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Figure 4.10: Example of one trial of each subject.

based controllers for pHRI, in which the knowledge of the other’s cost

function is necessary. Moreover, it can also be used as a reference in mod-

eling human behavior for digital twin simulations.

4.3 LEARNING HUMAN INTENTION PREDICTION VIA RE-

CURRENT NEURAL NETWORK

This chapter investigates the human intention prediction via Recurrent

Neural Networks (RNN) and Transfer Learning (TL), proposing a method

to iteratively train the model to adapt it to the interaction and TL to adapt

the model to new users and situations. The proposed predictive module

builds upon the Game-theoretic control frameworks presented in 5.2 and

5.3. It integrates with both the control frameworks. Please refer to those

models for completeness.

4.3.1 MODEL DESCRIPTION AND TRAINING

This subsection introduces the two main components of the model and

their training procedure, based on iterative training and transfer learning.
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4.3.1.1 RNN+FC MODEL

As also discussed in [91], the following can express the human limb dy-

namics in interaction with a robot at the robot’s tip

−Ch ẋ − Kh(xre f ,h − x) = uh, (4.29)

with Ch and Kh damping and stiffness matrices. Assuming that Ch =

Ch(x, ẋ) and Kh = Kh(x), the desired human motion can be defined as

xre f ,h = F(x, ẋ, uh). (4.30)

The function F is nonlinear and time-variant. The problem becomes even

more complicated if the human and the robot interact while transporting

a large object, with additional inertia and different contact points. There-

fore, We propose using a Recurrent Neural Network (RNN), cascaded

with a Fully Connected (FC) layer (RNN+FC), to learn the complex hu-

man dynamics and provide the robot with the desired trajectory over the

next horizon. In particular, among the various types, this work proposes

using Long-Short Term Memory (LSTM), which has proven to have bet-

ter performances for long-time series than the basic RNN.

The proposed method aims to identify and predict, over a finite rolling

horizon, the desired human trajectory, given the history over a finite hori-

zon. The RNN+FC model takes the last k time instant as input and pre-

dicts the human desired trajectory over the next N steps. The model ac-

cepts as inputs the actual robot positions and velocities x = [x, y, z, R, P, Y]T

and v = [ẋ, ẏ, ż, ωx, ωy, ωz]T, respectively, the force the human is exert-

ing uh = [ fx, fy, fz, τx, τy, τz]T, and the nominal robot trajectory xref,r =

[xre f ,r, yre f ,r, zre f ,r, Rre f ,r, Pre f ,r, Yre f ,r]
T. Defining with T the current time,

the input data are defined as x = {xT−k, ..., xT} and v = {vT−k, ..., vT}
the vector containing the positions and velocities of the past k time in-

stant, respectively, uh = {uhT−k, ..., uhT} the vector containing the hu-
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Figure 4.11: Human trajectory identification using the RNN+FC.

man interaction wrench over the past k time instant and xref,r = {xref,rT−k, ..., xref,rT}
the vector containing the reference trajectory of the robot of the past k

time instant. The output of the model is a finite sequence of reference

positions in the horizon that goes from time T + 1 to T + N, defined

as x̂ref,h = {xref,hT+1, ..., xref,hT+N}, where (̂·) denotes an estimate. A

schema of the proposed model with inputs and output is visible in Fig-

ure 4.11.

4.3.1.2 ITERATIVE TRAINING

Before using the model, data have to be acquired and processed to train

the input-output relationship, i.e. the function F in (4.30) in our case. Col-

lecting data without using the model (assuming, for example, x̂ref,h =

xref,r) allows the model training. However, once the model is being used,

the robot behavior is no more the same as during the data collection

phase because the assumption x̂ref,h = xref,r does not hold anymore. The

robot assists using that estimate. The model can predict xref,h only with

the original robot behavior based on such an assumption.

We propose an iterative training procedure to face this problem, We

first collect an initial dataset D0 without using any model, letting x̂ref,h =

xref,r. We train a model, call it M0 with the subscript 0 indicating it is the
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model trained with no model, which depends on the first dataset only

M0 = M0(D0). Once we have a model, a new data collection phase be-

gins. After the second dataset D1 is collected, it is possible to train a sec-

ond model M1 = M1(M0, D0). This procedure is iterated for K times

until a stop criterion is reached, and the model MK = MK(Mk−1, Dk−1)

is finally ready for usage. A stopping criterion can be the prediction error,

defined as the average of the Root Mean Square Error (RMS),

eRMS =
1
L

L

∑
T=1

√√√√ 1
N

T+N

∑
k=T

(∥x̂ref,hk
− xk

2

∥), (4.31)

where x̂ref,hk
is the predicted human intention, xk the measured poses, L is

the length of the trajectory, and N is the prediction horizon. The iterative

procedure stops when ||ek+1
RMS − ek

RMS|| < tol.

4.3.1.3 TRANSFER LEARNING

Equation (4.29) differs from human to human. It describes human dy-

namics when the human is grasping the robot’s tip but does not consider

possible co-carried large objects that can be grasped from one side by the

robot and from the other by the human, making the assumption invalid.

The model MK obtained after the iterative procedure might require ad-

ditional training to adapt to new users and objects.

The main drawback of iterative procedures is they are time-consuming,

requiring time for data collecting and model training. Transfer learning is

a widely adopted method to speed up training starting from a pre-trained

model.

Among the different TL techniques, We propose adopting a widely

used strategy in computer vision or NLP domains, which consists of

“freezing” some model layers and re-train on new data only a few lay-

ers, which means having fewer parameters to be tuned compared with
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Algorithm 1 The iterative training procedure
Require: Sample records
Ensure: Trained model M
1: Record dataset D0 without any model train model M′ with dataset D0

2: while ||ek+1
RMS − ek

RMS|| < tol do
3: Record dataset Dk with model Mk;
4: train model Mk+1 with dataset Dk;

5: if new user or object then
6: Record dataset DTL with model Mk+1;
7: train model MTL with dataset DTL;

the complete model. In this work, we propose to freeze the RNN part of

the model and fine-tune only the final FC layer, with the insight that the

RNN learns the features of the pHRI (e.g., a force in a direction means that

the human wants to steer the system in the same direction, an increasing

force means the human is accelerating), while the FC layer learns how

a specific user does interact (e.g., how much force a particular user uses

to steer the system, how fast a specific user accelerate the system, etc.).

With the TL approach, it is possible to quickly adapt the model MK to

new users and additional objects co-carrying, with little data collection

and fast training, leading to MTL = MTL(MK, DK). The iterative proce-

dure is summarized in 1, and a schematic presentation is visible in 4.12.

Figure 4.12: The schema of the training procedure. On the left, the iterative
training. On the right, the Transfer Learning.
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4.3.2 MODEL EVALUATION

The presented method is evaluated with real experiments. The robotic

platform is a UR5 robot, with a Robotiq FT300 mounted at the tip for

measuring the human interaction force. For this study, we want to simu-

late a collaborative motion along the x–y plane, which is typical for appli-

cations such as large object co-transportation. Moreover, the experiments

want to simulate a situation in which a human and a robot are moving

together along a trajectory, and the human, at a certain point, needs to de-

form the trajectory (e.g., because there is an obstacle that the robot doesn’t

know in between).

4.3.2.1 DATA COLLECTION

For the model’s training, we collect the robot’s actual poses and velocities

from the robot’s controller. The interaction force is measured at the robot

tip via the FT sensor. An external computer computes the robot’s nominal

trajectories and streams the commands in real time. The data are sampled

at 8 milliseconds. Three nominal robot trajectories are defined: linear,

curved, and sinusoidal. The three trajectories are visible in Figure 4.13a,

4.13b, and 4.13c, respectively. The human must follow three trajectories

visible on a monitor and deform them to avoid an obstacle that appears

randomly at some point in the trajectory. The robot does not know the

position of the obstacle.

To train the model, a single operator performed 20 repetitions for each

trajectory for 60 trials. Despite the stop criterion (4.31) being matched af-

ter 1 iteration, we decided to perform 4 iterations to evaluate if iterating

more can produce some improvement. The RNN+FC model has input

data collected in the 125 time instant precedent, and the prediction hori-

zon is set to 50 time steps. The LSTM model comprises 3 layers with 250

nodes, and the FC comprises two connected layers. The learning rate, de-

cay function, and the optimizer of the RNN+FC model are obtained with
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(a) Trajectory 1 (b) Trajectory 2

(c) Trajectory 3

Figure 4.13: The trajectories visible on the monitor. The red box is the obstacle,
the green cross is the current position, and the red dot is the robot reference. The
training uses trajectories 4.13a, 4.13b, and 4.13c.

Optuna [2]. The model is trained for 25 epochs.

The impedance parameters are Mi = diag(10, 10), Ci = diag(100, 100),

and the stiffness is set to null Ki = diag(0, 0), as typically in pHRI. The

mass and damping coefficients have been hand-tuned to allow smooth

motions. The cost of the two players are set as

Qh,h = Qr,r = diag([1, 1, 0.0001, 0.0001]), Qh,r = Qr,h = 02×2 and Rh =

Rr = diag([0.0005, 0.0005]). The human cost function parameters Qh,h,

Qh,r and Rh are recovered via Inverse Optimal Control (IOC) as in [41],
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4.3. Learning human intention prediction via Recurrent Neural Network

Figure 4.14: Experimental setup: a Robotiq FT300 sensor is at the robot tip; a
monitor shows the reference trajectory.

and an average value is used. The robot parameters Qr,r, Qr,h, and Rr

are set equal to the human’s to mimic a person. Different tuning may re-

sult in more assistive behavior, which might be desirable. Since the DGT

controller accepts as a reference for (5.15) only one set-point rather than

a prediction horizon, we take the 20th point of the prediction horizon. Fi-

nally, α = 0.8 is chosen to allow sufficient assistance. This value allows

high assistance and the robot to recover the position of the robot set-point

autonomously. Moreover, this value and higher allows the assumption

zre f ≃ zre f ,h to hold. Figure 4.14 shows the setup.

4.3.2.2 ITERATIVE TRAINING EVALUATION

To evaluate the model’s prediction capability, we measure the average

RMS along each trajectory, computed as in (4.31). First of all, we evalu-

ate the improvement provided by the iterative training. We compare the
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4.3. Learning human intention prediction via Recurrent Neural Network

eRMS for four iterations. At each iteration k, data Dk are collected with the

model trained on the previous iterations Mk−1.

We also want to evaluate the error to the width of the prediction hori-

zon. This information is relevant, for example, in a Model Predictive

Control (MPC) implementation or to foresee in advance dangerous situ-

ations (e.g., collisions that the human does not expect, proximity to the

robot workspace boundaries, etc.). Therefore, we measure the eRMS with

different prediction horizons. Note that we use the same model, so a

horizon of 50 time steps is computed in all the cases, but we evaluate

just the first n samples of it for horizons of H = {5, 10, 20, 50} time steps,

which corresponds to 0.04, 0.08, 0.16, and 0.4 seconds. Figure 4.15 shows

the results of the iterative training evaluations, also with the time horizon

dependence. On the one hand, by iterating the model, the eRMS decreases

significantly in two iterations, after that, remains stable, and no sensible

improvements are visible after one iteration of the model. On the other

hand, for a wide prediction horizon, the error increases. This is mainly

because predicting human deviations from the nominal trajectory in ad-

vance is complex. Indeed, the eRMS increases just before the human starts

the deviation from the nominal trajectory, and the robot cannot know it

in advance. Despite this, the average error is about one millimeter and

increases to about two with the maximum prediction horizon considered.

Some improvement can be achieved in terms of prediction direction. This

is visible qualitatively from Figure 4.16 and can be explained by evalu-

ating the maximum prediction error. More results relative to the other

trajectories are presented in the appendix A.3 . Therefore, the maximum

expected error eMAX should be considered. Indeed, a significant error

may cause an unwanted robot behavior that may cause it to go in the

wrong direction because the human intention is misunderstood, even for

some time instants. Results are visible in table 4.3. It is visible that by

iterating more, the maximum error decreases. In general, both eRMS and
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(a) Prediction horizon
of 0.04s

(b) Prediction horizon
of 0.08s

(c) Prediction horizon
of 0.16s

(d) Prediction horizon
of 0.4s

Figure 4.15: Model Evaluation: eRMS for four models with different prediction
horizons and model iterations Mk.
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(d) M3

Figure 4.16: Model Evaluation: the prediction at the various model iterations
Mk. The maximum prediction horizon is considered (0.4s). In solid black, the
prediction at each time instant. In dashed red, the executed trajectory.

eMAX should be considered in the evaluations. Indeed, even though the

eRMS is similar, this might be because a significant error (but limited in

time) "vanishes" if the eRMS is computed over a long trajectory where the

average error is very low.

4.3.2.3 TRANSFER LEARNING EVALUATION

To evaluate the capabilities of generalization of the proposed method,

three different new situations are addressed: (i) a trajectory not used dur-

ing the training, (ii) five new subjects, and (iii) a different co-manipulated

object. First, we evaluate the model’s capability to predict human intent

with a new trajectory. Then, TL learns the new trajectory and compares
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Table 4.3: Model Evaluation: eMAX for different models Mk and horizons Hk.
Values are in millimeters

M0 M1 M2 M3

H5 11.1 ± 1.9 4.7 ± 3.5 4.1 ± 1.5 3.0 ± 0.4
H10 12.0 ± 1.8 5.0 ± 3.4 4.2 ± 1.5 3.2 ± 0.4
H20 14.3 ± 1.8 5.9 ± 3.3 4.9 ± 1.4 3.9 ± 0.5
H50 24.4 ± 2.9 13.7 ± 4.1 13.5 ± 2.2 10.6 ± 1.6

the errors. As for the previous case, different prediction horizons are

evaluated. Results are in table 4.4. The eRMS is similar to the predic-

tion made on the training trajectories, around 1 mm for small prediction

horizons (up to H20), and becomes larger for wider prediction horizons.

The TL allows for reducing the error, making it comparable to that of the

known trajectories. TL procedure improves the maximum error of the

prediction, and its results are comparable to that of the known trajecto-

ries. The experimental setup of this case is visible in figure 4.17a.

(a) The new trajectory used
for transfer learning.

(b) Different subjects per-
forming the task.

(c) TL with different objects
experiments.

Figure 4.17: The three situations addressed with transfer learning.

Then, five subjects are asked to perform the three trajectories used

during the training and deform them by directly grasping the robot at

the tip. The experimental setup of this case is visible in figure 4.17b.

Finally, the subject that trained the base model grasps a panel of 106x82cm
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assisted by the robot. By adding the object, different forces are exchanged.

The experimental setup of this case is visible in figure 4.17c. Figure 4.18

shows the prediction error relative to the maximum prediction horizon

considered (50 time steps, or 0.4 s) before and after applying the TL. The

TL improves the predicting performances for the case of different sub-

jects, making the average error after the TL comparable to the error of the

iterated model, about 2mm. The TL also decreases the errors also for the

case of the co-manipulated object.

(a) Transfer to different tra-
jectory (Case I).

(b) Transfer to different sub-
jects (Case II).

(c) Transfer to different ob-
jects (Case III).

Figure 4.18: Transfer learning Evaluation: value of erms

Table 4.5 shows the time required for each iteration’s dataset collec-

tion and model training, comparing it with the TL time. The iterative

procedure takes about two hours for each iteration. The TL approach

allows performing this procedure only once. After that, the model can

be adapted to new situations in about 10 minutes, thanks to the TL ap-

proach. The computation runs on a laptop with Intel i7 and NVIDIA

GeForce 1050.
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Table 4.4: Transfer Learning Evaluation, Case I: eRMS and eMAX before and after
TL, for different models Mk and horizons Hk. Values are in millimeters.

M3 MTL

eRMS eMAX eRMS eMAX

H5 1.13 ± 0.034 9.60 ± 10.9 0.89 ± 0.049 3.15 ± 0.79
H10 1.15 ± 0.026 9.65 ± 10.8 0.95 ± 0.056 3.36 ± 0.60
H20 1.15 ± 0.017 9.96 ± 10.6 1.03 ± 0.060 3.62 ± 0.40
H50 2.71 ± 0.052 19.4 ± 5.43 1.68 ± 0.092 12.6 ± 2.54

Table 4.5: Transfer Learning Evaluation; time required for the data collection
and model training.

Iterations TL subjects TL object
dataset collection 60 ± 10 min 5 ± 2 min 5 ± 2 min

training 45 ± 5 min 4 ± 1 min 4 ± 1 min
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CHAPTER 5

DIFFERENTIAL/DYNAMICS GAME
THEORY FOR PHRI

This chapter is based on findings described in [40] and [36]. This chapter

investigates the modeling of the interaction between humans and robots

from a game-theoretic point of view. It formulates the basic problem and

shows how to compute the robot’s input in the GT framework. First,

a continuous time dynamics model is used, and solutions are derived

for the cooperative and non-cooperative cases. Then, the discrete-time

model is analyzed, proposing the solution of a distributed Model Predic-

tive control.

5.1 COOPERATIVE AND NON-COOPERATIVE GAME-THEORY

This section introduces the two main modes of play in Game Theory.

To clearly explain and analyze the two main possible interaction mod-

els, let’s introduce a classic example: the rope-pulling game. The follow-

ing example takes inspiration and partially follows the example in the

introduction presented in [48]. In particular, let’s focus on the non-zero-

81



5.1. Cooperative and Non-cooperative Game-Theory

sum game, which will be the situation addressed in the proposed thesis

for the pHRI. The game is formulated as follows. Two players push a

point mass by exerting forces f1 and f2. Both players exert forces with

the same magnitude (|| f1|| = || f2||), but they pull in different directions

θ1 and θ2. The game is played for 1 second. Initially, the mass is at rest,

and for simplicity, we assume unit forces and a unit mass. According to

Newton’s law, the point mass moves according to

ẍ = cosθ1(t) + cosθ2(t), ẋ(0) = 0, x(0) = 0

ÿ = sinθ1(t) + sinθ2(t), ẏ(0) = 0, y(0) = 0

Player P1 wants to maximize x(1), whereas player P2 wants to maximize

y(1).

Let’s first consider the non-cooperative case. Suppose that player P1

follows the course of action θ1(t) = 0 throughout the whole time period

and therefore ẍ = 1 + cosθ2(t), ÿ = sinθ2(t), ∀t ∈ [0, 1]. In this case, the

best course of action for P2 so as to maximize y(1) is precisely to choose

θ2(t) = π
2 , ∀t ∈ [0, 1]ÿ(t) = 1, ∀t ∈ [0, 1]. Moreover, any deviation from

this will necessarily lead to a smaller value of y(1). In this sense, once

P1 decides to stick to their part of the solution in (1.3), a rational P2 must

necessarily follow their policy in (1.3).

Conversely, suppose that player P2 follows the course of action θ2(t) =
π
2 throughout the whole time period and therefore ẍ = cosθ1(t), ÿ =

sinθ1(t) + 1, ∀t ∈ [0, 1]. In this case, the best course of action for P1 so

as to maximize x(1) is precisely to choose θ1(t) = 0, ∀t ∈ [0, 1]ẍ(t) =

1, ∀t ∈ [0, 1] Moreover, any deviation from this will necessarily lead to a

smaller value of x(1). Also now, once P2 decides to stick to their part of

the solution in (1.3), a rational P1 must necessarily follow their policy in

(1.3).

A pair of policies that satisfy the above properties is called a Nash equi-
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librium solution. The key feature of Nash equilibrium is that it is stable,

in the sense that if the two players start playing at the Nash equilibrium,

none of the players gains from deviating from these policies.

Let’s now consider the cooperative case. The pair of policies P1 and P2

that the players should pursue are θ1(t) =
π
4 ∀t ∈ [0, 1] and θ2(t) =

π
4 ∀t ∈

[0, 1], respectively. This pair of policies leads to constant accelerations ẍ =

ÿ =
√

2 and therefore x(1) = y(1) =
√

2
2 >

1
2 . This policy is interesting

because both players do strictly better than with the Nash policies. This

is not a Nash equilibrium solution, in spite of the fact that both players

can do better than with the Nash solution. Solutions such as this one are

the subject of cooperative game theory, in which one allows negotiation

between players to reach a mutually beneficial solution. However, this

requires faith/trust among the players. As noted above, solutions arising

from cooperation are not robust with respect to cheating by one of the

players.

A solution like the cooperative one is called Pareto-optimal because

it is impossible to further improve one player’s gain without reducing

the gain of the other. The problem of finding Pareto-optimal solutions

can typically be reduced to a single-criteria-constrained optimization. In-

deed, for the non-zero-sum rope-pulling game, all Pareto-optimal solu-

tions can be found by solving the following constrained optimization

problem maxθ1(t),θ2(t)x(1) : y(1) g α with α ∈ R. Pareto-optimal solu-

tions are generally not unique and different values of α result in different

Pareto-optimal solutions. All Pareto-optimal solutions can also be found

by solving unconstrained optimization problems. This is the case for this

example, where all Pareto-optimal solutions can also be found by solving

maxθ1(t),θ2(t) αx(1) + (1 − α)y(1)

The different solutions are found by picking different values for α in the

interval [0, 1].
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In figure 5.1, the two outcomes (cooperative and non-cooperative) of

the rope-pulling game are displayed. It is visible that, by cooperation,

both players improve their objectives.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Figure 5.1: The cooperative and non-cooperative outcome of the rope-pulling
game

This simple example highlights some crucial themes that the pro-

posed work will address. First of all, it clarifies the main differences,

advantages, and disadvantages of the two modes of play, the Cooperative

and the Non-Cooperative, namely. It introduces the concepts of Nash equi-

librium and Pareto optima solutions. It introduced the concept of games

(i.e., the system we are dealing with), players (i.e., the agents acting on

the system), and their policies (i.e., the actions they apply to the system)

and objectives (i.e., the rules to determine the agents’ actions).

5.2 DIFFERENTIAL GAME THEORY

This section describes the differential (continuous-time) problem, address-

ing its game-theoretical formulation and cooperative and non-cooperative

solutions. Finally, an analysis of the system response with different pa-

rameters tuning is given.

Given the system dynamics (3.8), it is now important to define the
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players’ objective. Usually, agents’ objectives are formulated as cost func-

tions that must be minimized. The objectives can be modeled as functions

containing just quadratic terms. There are two main reasons for such a

formulation. First, these differential games are analytically and numer-

ically solvable. Second, this linear quadratic problem setting appears if

the agents’ objective is to minimize the effect of a perturbation of their

nonlinear optimally controlled environment.

Depending on the problem description, three main types of games are

proposed. In the case players do not make any agreement and seek the

optimization of their own cost without trusting each other for coopera-

tion, we are in a Non-Cooperative situation. Conversely, in the Cooper-

ative case, players agree to cooperate because cooperation can improve

the outcome for all players with respect to non cooperate. This situation

requires trust and agreement from the opponents. The third situation de-

scribes the leader-follower case, where the followers minimize their cost

function, and the leader minimizes their own based on the follower’s

choice. The so-called Stackelberg solutions represent its solutions. This

work analyzes only the first two models, Non-Cooperative and Cooper-

ative, because they allow easier Role Arbitration and switch from one

mode to another due to intrinsic peer interaction. At the same time,

the leader-follower situation requires subsequent choices. Moreover, one

player always has to anticipate the action of the other, making difficult

the actual implementation.

A final consideration of the human and robot objectives should be

done. In general, one wants to follow a trajectory during the motion from

a pose to a target one. In this paper, we define as zre f ,h and zre f ,r the de-

sired trajectories that the human and the robot would follow if they were

the only agent acting on the system (3.6). In particular, standard motion

planners can compute the robot trajectory, while the human trajectory

must be identified. The objective of the two presented GT models is, in
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the end, to let the system in (3.6) evolve according to a trajectory that is

obtained by a combination of the two desired trajectories.

5.2.1 NON-COOPERATIVE GAME THEORY

The non-cooperative formulation of the problem involves competition

between players. The objective for each player is the minimization of

his cost function. The non-cooperative aspect implies that the players

are assumed not to collaborate to attain this goal. In the following, we

formulate the non-cooperative problem as a two-player, non-zero-sum

game. A complete treatment of non-cooperative game theory is in [11].

In the non-cooperative case, the human and the robot aim to minimize

their cost functions, subject to the other influence which are given by

Jh,nc =
∫ ∞

0

[
(z − zre f ,h)

T Qh (z − zre f ,h) + uT
h Rh uh + uT

r Rh,r ur

]
dt (5.1)

and

Jr,nc =
∫ ∞

0

[
(z − zre f ,r)

T Qr (z − zre f ,r) + uT
r Rr ur + uT

h Rr,h uh

]
dt (5.2)

where zre f ,h and zre f ,r are the human and robot reference targets, Qh and

Qr ∈ R
12×12 are weight matrices on the state, Rh and Rr ∈ R

6×6 are

weight matrices on the player’s control input and Rh,r and Rr,h ∈ R
6×6

are weight matrices on the opponents’ control input.

The non-cooperative differential game problem can be summarized

as

min
uh

Jh(z, uh, ur)

min
ur

Jr(z, uh, ur)

s.t. ż = Az + Bh uh + Br ur

z(t0) = z0

(5.3)
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Definition 1: Nash Equilibrium

The so-called Nash equilibrium is the set of solutions to (5.3). A Nash

equilibrium is a situation where no player has convenience in chang-

ing its control action, formally defined as

Jh(z, u∗
h, u∗

r ) f Jh(z, u∗
h, ur)

Jr(z, u∗
h, u∗

r ) f Jr(z, uh, u∗
r )

(5.4)

and the control actions uh and ur are the Nash equilibrium policies.

Two types of solutions exist based on the information players have on

the current state of the system: open-loop and feedback. We consider

only the feedback solutions in this work since position and force mea-

surements are available online to the robot, and the human has direct

visual feedback of the task. In the case of linear systems as (3.8) and

quadratic cost functions as (5.1) and (5.2), the control policies of the play-

ers are computed as

uh = −Kh,nc (z − zre f ,h) (5.5)

and

ur = −Kr,nc (z − zre f ,r) (5.6)

The matrices Kh,nc and Kr,nc are the full-state feedback matrices, com-

puted as Kh,nc = R−1
h BT

h Ph and Kr,nc = R−1
r BT

r Pr, where Ph and Pr are

solutions of coupled Riccati equations. For simplicity, define with Si =

BiRi,iB
T
i and Si,j = BiR

−1
i,i Rj,iR

−1
i,i BT

i , with i = {h, r}. The two coupled

Riccati equations are
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Figure 5.2: The block diagram of the non-cooperative model. The Kh,nc and Kr,nc

are obtained by the minimization of (5.3)

0 = (A − SrPr)
TPh + Ph(A − SrPr)

T − PhShPh + PrSr,hPr + Qh

0 = (A − ShPh)
TPr + Pr(A − ShPh)

T − PrSrPr + PhSh,rPh + Qr

(5.7)

which can be solved as in [30]. The block diagram of the non-cooperative

game interaction is in figure 5.2.

5.2.2 COOPERATIVE GAME THEORY

The Cooperative formulation of the problem allows agreement between

the players to define a shared objective and work together toward it. The

objective of each player is shared with the others, and a final, common

objective is defined according to the agreement found. Players trust each

other, and cooperating can improve their outcomes without hurting oth-

ers. Each player is generally confronted with a whole set of possible

outcomes from which somehow one outcome (which generally does not

coincide with a player’s overall lowest cost) is cooperatively selected. In

the following, We present the Cooperative formulation of the two-players

game, based on [29, 31], with an extension to the agreement of a shared

reference.
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In a cooperative framework, the human and the robot can be seen as

two agents, each one to minimize a quadratic cost function, defined as

Jh,c =
∫ ∞

0

[
(z − zre f ,h)

T Qh,h (z − zre f ,h)+

+(z − zre f ,r)
T Qh,r (z − zre f ,r) + uT

h Rh uh

]
dt

(5.8)

and

Jr,c =
∫ ∞

0

[
(z − zre f ,h)

T Qr,h (z − zre f ,h)+

+(z − zre f ,r)
T Qr,r (z − zre f ,r) + uT

r Rr ur

]
dt

(5.9)

where Jh,c and Jr,c are the cost that the human and the robot incur, Qh,h, Qh,r ∈
R

12×12 and Qr,h, Qr,r ∈ R
12×12 matrices that weight the state and refer-

ences and Rh, Rr ∈ R
6×6 weights on the control input.

By cooperating, a shared objective is defined as

Jc = α Jh + (1 − α) Jr =
∫ ∞

0

(
z̃T Qc z̃ + uT Rc u

)
dt (5.10)

with z̃ = z − zre f , where zre f , Qc and Rc must be defined, and α ∈ (0, 1)

represents the weight each player’s cost has in the overall cost. Combin-

ing (5.8) and (5.9) into (5.10), after some calculations, can be obtained

Qc = α (Qh,h + Qh,r) + (1 − α) (Qr,h + Qr,r) (5.11)

and

Rc =

[
α R̂h 06× 6

06× 6 (1 − α) Rr

]
(5.12)

Finally, defining

Qh = α Qh,h + (1 − α)Qh,r (5.13)
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and

Qr = α Qr,h + (1 − α)Qr,r (5.14)

the reference zre f is a weighted composition of the human and robot ref-

erences that can be expressed as

zre f = Q−1
c (zre f ,h Qh + zre f ,r Qr) (5.15)

With a further step, the system in (3.8) becomes

ż = Az + Bu (5.16)

with A ∈ R
12×12 defined as before, B ∈ R

12×12 = [Bh Br] and u =

[uh ur]T ∈ R
12×1.

The Linear Quadratic Differential Game problem can be finally for-

mulated as a classical LQR problem:

min
u

Jc =
∫ ∞

0

(
zT Qc z + uT Rc u

)
dt (5.17)

s.t. ż = A z + Bu

z(t0) = z0

The problem in (5.17) has infinite solutions lying on the Pareto frontier,

depending on the parameter α.
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Figure 5.3: The block diagram of the cooperative model. The K is obtained by
the minimization of (5.17)

Definition 2: Pareto Efficiency

A set of strategies U ∗ = {u∗
h, u∗

r } is called Pareto efficient if there not

exists another set U = {uh, ur} such that

Jh(U ) f Jh(U ∗)

Jr(U ) f Jr(U ∗)
(5.18)

with at least one strict inequality.

All the solutions of problem (5.17) are Pareto efficient, and the choice of

one or another opens a new problem, the so-called Bargaining theory.

In an LQ-CGT framework, the control action u is defined as full-state

feedback as

u = −Kgt z̃ = −Kgt z + Kgt zre f (5.19)

with Kgt = R−1
c BTP and matrix P solution of the Algebraic Riccati Equa-

tion (ARE)

0 = ATP + PAT − PBR−1
c BTP + Qc

Note that u = [uh, ur]T. Therefore, the human and robot control inputs

can be extracted by slicing the vector of control inputs. The block diagram

of the cooperative interaction model is visible in figure 5.3.
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5.2.3 DGT CONTROLLER PARAMETERS TUNING PERFORMANCES

Since there are many parameters, analyzing how the robot’s behavior

changes depending on various parameter tuning is interesting. The hu-

man parameters cannot be imposed and are recovered as described in

the previous chapter. The Impedance system presented in Chapter 3 is

simulated.

5.2.3.1 EXPERIMENTS

The CGT and NCGT approaches are also compared with the classical

feedback LQR in simulations and preliminary experiments with a trained

human.

In the LQR case, the human and the robot aim at minimizing their

cost functions without any regard for the other player’s actions, which

are given by

Jh,lqr =
∫ ∞

0

(
(z − zre f ,h)

T Qh (z − zre f ,h) + uT
h Rh uh

)
dt (5.20)

and

Jr,lqr =
∫ ∞

0

(
(z − zre f ,r)

T Qr (z − zre f ,r) + uT
r Rr ur

)
dt (5.21)

which have solutions Kh,lqr = R−1
h BT

h Ph,lqr and Kr,lqr = R−1
r BT

r Pr,lqr, where

Ph,lqr and Pr,lqr are solutions of the AREs.

For all the cases, the matrices Qh and Qr are defined as in the cooperative

case, as in (5.12), (5.13) and (5.14).

5.2.3.2 SIMULATIONS

We designed the virtual experiments to show the system response ac-

cording to the tuning of (i) α, (ii) Qr,r, and (iii) Rr. Indeed, the robot
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cost function can be varied at will, while the human cost function can-

not be imposed. The simulation parameters are zre f ,h = 1 m; zre f ,r =

0. 5m; state weight matrices Qh,h = diag([1, 0.0001]), Qh,r = diag([0, 0]),

Qr,h = diag([0, 0]) and Qr,r = diag([1, 0.0001]); control weight matrices

Rh = 0.0005 and Rr = 0.00051. The system (impedance) parameters are

Mi = 10 N, Di = 25 Ns/m and Ki = 0 N/m. Setting the stiffness coeffi-

cient null is common when pHRI is involved, as in [34, 89]. However, this

particular stiffness choice is not mandatory, and the method is still valid

otherwise. Finally, the control input of the robot represents an additional

stiffness, with a stiffness matrix equal to the control gain matrix.

5.2.3.3 SIMULATION 1 (α MODIFICATION)

Figure 5.6 shows the position trajectory and the control inputs for three

different values of α = {0.2, 0.5, 0.9}. The LQR (dashed lines) is less af-

fected by the change of α since the other’s control input can be seen as an

external disturbance, as the player does not know the opponent’s influ-

ence in the system. NCGT (dotted line), instead, shows a significant vari-

ation. In NCGT and LQR, both players keep putting effort even when an

equilibrium is reached. In NCGT, no player has an advantage in reducing

his effort when Nash equilibrium is achieved. In LQR, an equilibrium is

reached against external disturbance, and the player’s effort can be seen

as a disturbance rejection. Finally, in CGT, both players reduce their ef-

fort to zero after reaching the equilibrium point because they reach the

shared reference together, and no one is interested in changing it.

5.2.3.4 SIMULATION 2 (SMALL Qr,r)

Figure 5.8 shows the case in which Qr,r = diag([0.1, 0.0001]), and α =

{0.01, 0.05, 0.1, 0.2, 0.5, 0.9}. The figure plots only CGT variations since

1These values are computed via Inverse Optima Control techniques on a trained hu-
man. The robot is set to mimic the human cost function.
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(c) shared position with α =
0.9.

Figure 5.4: Positions
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(a) control effort with α =
0.2. Blue lines human control
actions, red lines robot
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(b) control effort with α =
0.5. Blue lines human control
actions, red lines robot

0 1 2 3

Time [s]

-20

0

20

40

60

80

100

120

140

c
o

n
tr

o
l 
e

ff
o

rt
 [

N
]

u
h,cgt

u
r,cgt

u
h,ncgt

u
r,ncgt

u
h,lqr

u
r,lqr

(c) control effort with α = 0.9.
Blue lines human control ac-
tions, red lines robot.

Figure 5.5: Efforts

Figure 5.6: position and control effort comparison varying weight parameter α.

the other controllers have similar behaviors to the one presented for the

CGT. Figure 5.8(a) shows the variation in the state according to α by low-

ering the robot’s state weight matrix. Because the weight on the robot’s

reference is low, the state goes quickly towards the direction of the hu-

man’s reference even for small values of α (> 0.1). The robot reference be-

comes relevant only with minimal values of α. In this simulation, α = 0.1

allows for making them comparable, being the robot’s state weight one-

tenth of the human’s, Figures 5.8(b-c) show the control efforts are similar
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to Simulation 1 (e.g., see the case α = 0.5).
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Figure 5.7: Positions

Figure 5.8: Position and control effort comparison varying weight parameter α
with low weight on the robot state Qr,r = diag([0.1, 0.0001]).

5.2.3.5 SIMULATION 3 (SMALL Rr = {5e−5, 1e−4, 1e−3})

Figure 5.11 shows the results by keeping α = 0.5. On the one hand,

CGT keeps constant the equilibrium position, resulting from an agree-

ment depending on α. On the other hand, the human and robot control

inputs vary according to Rr. The effort of the robot increases as the Rr

decreases, and vice versa for the human effort. Conversely, LQR and

NCGT reach different equilibrium points according to Rr. Indeed, LQR

can partially compensate for the human control effort like an external dis-

turbance. Figure 5.12 shows the costs according to α. The human cost of

the cooperative case is lower for α > 0.6. Increasing α is preferable for

the human when he wants to lead because the robot assists more humans

in reaching their target. Conversely, low α means that the human is more

willing to help the robot reach its target.
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(a) state with Rr = 0.00005.
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(b) state with Rr = 0.0001
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(c) state with Rr = 0.001.

Figure 5.9: Positions
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(a) control actions with Rr =
0.00005.
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(b) control actions with Rr =
0.0001.
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(c) control actions with Rr =
0.001.

Figure 5.10: Efforts

Figure 5.11: Position and control efforts according to different robot weight on
control action Rr.

5.2.3.6 SIMULATIONS NOTES

CGT minimizes both players’ control effort, at least at the equilibrium.

CGT is more favorable for humans with high values of α, possibly with

the human leader. At the same time, NCGT or LQR are more likely to be

adopted with low values of α for the robot-leading situation. Low values

of Rr allow the robot to be more helpful with high α (human leading) and

be more capable of driving the system to its reference with low values of

α (robot leading).
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Figure 5.12: Human (blue lines) and robot (red lines) costs for the three con-
trollers for various α in the simulated cases.

5.2.3.7 REAL-WORLD EXPERIMENTS

Experiments are performed with a human operator cooperating with a

UR5 robot. Two relevant components of the proposed controller must

be addressed when dealing with real humans: knowledge of the hu-

man’s reference and cost function. An Inverse Optimal Controller (IOC)

[41, 144] recovers an estimate of the human parameters, Q̂h and R̂h. The

robot knows the human target that defines the reference in 5.15. This

might seem too restrictive, but it allows fair testing of the controller’s per-

formance. Human target pose identification is a well-investigated topic

[21, 90].

The humans performing the experiments know the robot’s behavior

and the different control techniques. This awareness is achieved after

proper training, even if the human does not know anything initially. This

choice is made for different reasons. (1) the methodology copes with a

human aware of the robot, so it is expected that the operator knows (at

least approximately) the robot’s behavior and has some knowledge. (2)

The knowledge of the opponent’s intention is among the hypothesis of

the GT formulation. The purpose of the experiments is to verify if the

CGT describes pHRI and to avoid additional noise. This hypothesis must
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be relaxed in real-world applications, which will be addressed in future

works. (3) If the human is aware of the CGT behavior of the robot, better

results can be achieved thanks to cooperation. This experiment can be

seen as a test for the method’s long-term applicability. This assumption

is also in [121].

The operator’s target is shown on a monitor, with the robot one and

the robot tip’s current position. The human is asked to reach the target

position in physical interaction with the robot. Such a target position

is not visible on the monitor. The human only knows the weight α =

{0.2, 0.5, 0.9} (defined offline). The target poses are zre f ,h = 0.6m and

zre f ,r = 0.3m.

The robot applies a virtual force ur, while the human applies a real,

measured force to the system. The balance of the two forces is turned

into a velocity command through an impedance controller. The human

and the robot move the system toward their goals (which are different for

NCGT and LQR, the agreed one for CGT), knowing each other’s goals.

Figure 5.15 plots the state and efforts for three controllers with α =

0.5. As from 5.15(a-b-c), the equilibrium solution is reached in all three

cases. The human measured and nominal control efforts are in 5.15(d-e-

f). The nominal control effort is computed with the gain matrix Kh,i =

R−1
h BT

h Ph,i with i = {cgt, lqr, ncgt}. As expected from simulations, CGT

shows that once the equilibrium (i.e., agreed reference) is reached, neither

the human nor the robot puts any more effort into the system. On the con-

trary, the other two controllers still inject effort into the system to keep the

equilibrium. Moreover, this continuous pulling of the robot towards its

reference introduces oscillations, as the human does not exactly behave

as modeled. On the contrary, CGT appears more smooth. Humans and

robots share the same target and cooperatively steer the system towards

it without "pulling" it in different directions. The human costs of per-

forming real-world experiments are computed for a time window of 3.5s.
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with α = 0.5.
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LQR with α = 0.5.
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(c) measured position for
NCG with α = 0.5.

Figure 5.13: Positions
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and robot control efforts and
nominal human control effort.
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(c) NCG measured human
and robot control efforts and
nominal human control effort.

Figure 5.14: Efforts

Figure 5.15: position and control effort comparison for the three controllers with
the weight parameter α = 0.5

The results are in figure 5.16. This measurement reflects what is observed

in the simulated scenarios: the human incurs high costs for low values of

α, and vice versa, low costs for high values. The opposite happens for the

LQR and NCGT because it is more convenient to work with high values

of α for humans. In such a case, a lower effort produces better results.

High values of α lead to a shared target close to the human’s, and the

robot drives the system toward it.

Finally, the error between measured and nominal human control ef-
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forts is computed for the three controllers for three values of α. The errors

are the sum over the time windows of 3.5s and normalized by the maxi-

mum nominal control input:

Eu =
1

max(uh,n)

∫ t f

ti

∥uh − uh,n∥ dt (5.22)

Figure 5.17 shows that the CG better fits with the pHRI, making it

more applicable to real-world applications.
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Figure 5.16: Computed Human cost
varying α.
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Figure 5.17: human’s control errors for
the three controllers varying α.

5.2.3.8 DISCUSSION

Consider that a high value of α corresponds to the human-leading, while

a low value corresponds to the robot-leading. In the real world, a human

likely wants the help of the robot to pursue his target but would probably

not accept putting too much effort into the task to help the robot when the

α is low. In this sense, a scenario suggests using CGT when the human

leads and NCGT or LQR when the robot leads. Therefore, the robot helps

the human in the first case and drives the system toward its reference

when it wants to lead.

As simulations show, a small robot’s control action weight increases

the robot’s reactiveness, helping humans. For high values of α, the robot

is more willing to help the human reach its target, while for low values,

the robot is more willing to reach its target and can exert higher forces
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compared with the case in which Rr = Rh. This behavior could make the

cooperation between a human and a robot more comfortable.

Real-world experiments confirm that for the CGT case, the human

cost is higher for low values of α and vice versa for the other two. Com-

paring the three real-world experiments, CGT fits the model better, allow-

ing modeling the pHRI as a cooperative game, which might be helpful for

simulations and tuning of the controllers. Moreover, having a model that

reasonably fits with data possibly allows for online prediction of human

behavior. This prediction capability can improve assistive controllers’

design and provide the robot with some information about the future be-

havior of its opponents.

Limitations to real-world applications are mainly due to human mod-

eling. First, the experiments are performed by a trained human, aware of

CGT methods, while operators do not precisely follow the CGT formu-

lation. Second, human costs vary from person to person and possibly

along the work shift. Third, the task could make it vary. For this pur-

pose, the presented method should be enriched with a robustness term.

Furthermore, it could be possible to investigate the performance of on-

line IOC techniques to identify the cost function in run-time. Finally, as

stated above, the human target is taken for granted in this work. In real-

world applications, this is typically not true and predictive models for

the human target should be investigated and integrated.

5.2.3.9 CONCLUSIONS

This section presented a controller for the pHRI based on Cooperative

Game Theory. A shared reference is computed, and a solution to the

LQ-CGT reference tracking problem is obtained. Starting from two dif-

ferent references, the controller converges to an agreed one, sharing the

required effort to drive the system to the target. The proposed method

is compared in simulations and real-world experiments with the two
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controllers, LQR and NCGT. A set of simulations investigates the per-

formances of the proposed controller, varying the control parameters.

Real-world experiments partially confirm what was observed in the sim-

ulated cases and show that CGT better fits with the pHRI task. Finally, a

discussion of the results obtained is proposed, addressing the possibility

and limitations of the proposed methodology. Future works will involve

online human-robot role arbitration, making variable the parameter α in

run-time, possibly switching between CGT and LQR/NCGT controllers.

Finally, online human target position prediction will be included in the

control scheme, as it is crucial for real-world applications.

5.3 GAME-THEORETIC DISTRIBUTED MODEL PREDICTIVE

CONTROL

This section presents the formulation of the distributed Model Predic-

tive Control (dMPC) problem. Then, it presents the solution to the dMPC

problem in a Game-Theoretic (GT) framework for both the Non-Cooperative

and the Cooperative cases, leading to the GT-dMPC framework. Imple-

menting a Model Predictive Control framework is particularly interesting

in the pHRI scenario since it allows to continuously update the control

inputs according to the system’s current state. This allows to take into ac-

count human uncertainties and unpredictability easily. Moreover, it fully

exploits the long-term human intention prediction presented in chapter

4.
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5.3.1 DISTRIBUTED MODEL PREDICTIVE CONTROL - DMPC

According to the dMPC presented in [142], consider the discrete version

of the Cartesian impedance 3.12, written as

z(k + 1) = Adz(k) + Bh,duh + Br,dur

y(k) = Cd z(k)
(5.23)

with z, Ad, Bh,d and Br,d defined as in chapter 3, and Cd ∈ R
m×12 is de-

fined according to the desired output. According to the MPC formula-

tion, define the prediction horizon as Np and the control horizon as Nc.

The output prediction in the future Np sampling times, calculated at time

k is given by:





y(k + 1) = Cd Adz(k) + CdBhuh(k) + CdBrur(k)

y(k + 2) = Cd A2
dz(k) + Cd AdBhuh(k)+

+Cd AdBrur(k) + CdBhuh(k + 1) + CdBrur(k + 1)
...

y(k + Np) = Cd A
Np

d z(k) + · · ·+ Cd A
Np−Nc

d Bhuh(k + Nc − 1)+

+Cd A
Np−Nc

d Brur(k + Nc − 1)
(5.24)

which can be written in compact matrix form as

Y(k) = Fz(k) + ΦhUh(k) + ΦrUr(k) (5.25)

where Y ∈ R
mNp is the predicted output and is equal to

Y(k) =




y(k + 1)

y(k + 2)
...

y(k + Np)



=




Cd z(k + 1)

Cd z(k + 2)
...

Cd z(k + Np)




(5.26)
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F ∈ R
mNp×12 is the free response matrix, equal to:

F =




Cd Ad

Cd A2
d

...

Cd A
Np

d




(5.27)

and Φi ∈ R
mNp×6Nc , with subscript i = h, r denoting the human and

robot, are matrices representing the forced response

Φi =




CdBi,d 0 . . . 0

Cd AdBi,d CdBi,d . . . 0

Cd A2
dBi,d Cd AdBi,d . . . 0
...

...
. . .

Cd A
Np−1
d Bi,d Cd A

Np−2
d Bi,d Cd A

Np−Nc

d Bi,d




(5.28)

The two vectors Uh(k) and Ur(k) ∈ R
6Nc are the input vectors along the

horizon that must be defined.

5.3.2 NON-COOPERATIVE GT-DMPC

Consider also that the human and the robot have their reference trajec-

tories. Define with Yre f ,h(k) = [yre f ,h(k + 1), yre f ,h(k + 2), . . . , yre f ,h(k +

Np)]T the trajectory a human would like to follow over the next Np timesteps

if there is no interaction with the robot. Similarly, Yre f ,r(k) = [yre f ,r(k +

1), yre f ,r(k + 2), . . . , yre f ,r(k + Np)]T denotes the trajectory planned by

a motion planner that the robot would like to follow over the next Np

timesteps if there is no interaction with the human. The predicted track-
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ing errors at each timestep are

Ei(k) =




e(k + 1)

e(k + 2)
...

e(k + Np)



=




y(k + 1)− yre f ,i(k + 1)

y(k + 2)− yre f ,i(k + 2)
...

y(k + Np)− yre f ,i(k + Np)




(5.29)

with subscript i = h, r denoting the human and robot. The tracking errors

in compact form are:

Eh = Y(k)− Yre f ,h(k) (5.30)

and

Er = Y(k)− Yre f ,r(k) (5.31)

According to [75, 121], the human and the robot have the objective

of minimizing a cost function that depends on the tracking error and the

control effort required, defined as

Jh(k) =
N

∑
l=1

eh(k + l)T Qh eh(k + l) + uh(k + l)T Rh uh(k + l)

= ET
h Q̃hEh + UT

h R̃hUh

(5.32)

and

Jr(k) =
N

∑
l=1

er(k + l)T Qr er(k + l) + ui(k + l)T Ri ui(k + l)

= ET
r Q̃rEr + UT

r R̃rUr

(5.33)

with

Q̃i =




Qi

. . .

Qi


 and R̃i =




Ri

. . .

Ri


 (5.34)
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The NGT-dMPC problem for the Cooperative Game Theoretic pHRI

can then be summarized as

min
uh

Jh = Eh(k)
T Qh Eh(k) + Uh(k)

T Rh Uh(k),

min
ur

Jr = Er(k)
T Qr Er(k) + Ur(k)

T Rr Ur(k),

s.t. Y(k) = Fz(k) + ΦhUh(k) + ΦrUr(k).

(5.35)

Following [142] and [75], the solution of problems (5.35) can be com-

puted as

U∗ =

[
U∗

h

U∗
r

]
=

[
I Kh

Kr I

]−1 [
Lh 0

0 Lr

] [
Zh

Zr

]
(5.36)

in which, defining

Sh = (ΦT
h QhΦh + Rh)

−1ΦT
h Qh

Sr = (ΦT
r QrΦr + Rr)

−1ΦT
r Qr

(5.37)

the gains are computed as

Kh = ShΦh

Lh = [−ShFh Sh]
(5.38)

Kr = SrΦr

Lr = [−SrFr Sr]
(5.39)
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and the states are

Zh =




z(k)

yre f ,h(k + 1)
...

yre f ,h(k + N)



=

[
z(k)

Yre f ,h(k)

]
(5.40)

and

Zr =




z(k)

yre f ,r(k + 1)
...

yre f ,r(k + N)



=

[
z(k)

Yre f ,r(k)

]
(5.41)

Finally, to implement the receding horizon logic, only the components of

U∗
h and U∗

r relative to the next step are used, hence uh(k) = U∗(1) and

ur(k) = U∗(1 + N).

5.3.3 COOPERATIVE GT-DMPC

According to [142], to implement the cooperative GT dMPC, the system

in 3.12 can be augmented as

za(k + 1) = Aaza(k) + Bh,auh + Br,aur

ya(k) = Ca za(k)
(5.42)

with za = [zT zT]T, Aa = blkdiag(Ad, Ad), Bh,a = [Bh Bh]
T and Br,a =

[Br Br]T, and Ca ∈ R
2m×24 is defined according to the desired output.

Following the same procedure in (5.24), the system in (5.42) can be writ-

ten as

Ya(k) = Faza(k) + ΦhUh(k) + ΦrUr(k) (5.43)

where the predicted output Ya ∈ R
2mNp , the free response matrix Fa ∈

R
2mNp×24, and the forced responses Φh and Φr ∈ R

2mNp×6Nc are com-
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puted similarly to (5.26), (5.27), and (5.28), respectively. The two vectors

Uh(k) and Ur(k) ∈ R
6Nc are the input vectors along the horizon that must

be defined.

Consider also that the human and the robot have their reference tra-

jectories, defined with Yre f ,h(k), and Yre f ,r(k) as in the previous section.

Recalling the tracking errors from (5.30) and (5.31), the augmented sys-

tem error can be defined as

Ea(k) =




y(k)− yre f ,h(k + 1)

y(k)− yre f ,r(k + 1)

y(k + 1)− yre f ,h(k + 2)

y(k + 1)− yre f ,r(k + 2)
...

y(k + Np − 1)− yre f ,h(k + Np)

y(k + Np − 1)− yre f ,r(k + Np)




(5.44)

According to [75, 121], the human and the robot have the objective of

minimizing a cost function that depends on the tracking error and the

control effort required, defined as

Ji(k) =
N

∑
l=1

ei(k + l)T Qi,i ei(k + l) + ej(k + l)T Qi,j ej(k + l)+

+ ui(k + l)T Ri ui(k + l)

=
N

∑
l=1

[
ei(k + l)T ej(k + l)T

] [Qi,i 0

0 Qi,j

] [
ei(k + l)

ej(k + l)

]
+

+ ui(k + l)T Ri ui(k + l)

=
N

∑
l=1

ea(k + l)T Qi ea(k + l) + ui(k + l)T Ri ui(k + l)

(5.45)

with i, j = {h, r} subscripts denoting the human and robot matrices. In

equations 5.45, Qi,j defines the weight that the human and the robot as-
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sign to their own and the opponent’s reference tracking error, ei(k + l) =

y(k + l)− yre f ,i(k + l) refers to the tracking errors foreseen for the human

and the robot at time step k+ l, with ea(k+ l) =

[
eh(k + l)

er(k + l)

]
, and uh(k+ l)

and ur(k + l) are the control inputs of the human and the robot at time

step k + l. Matrices Q̃i and R̃i are defined as in (5.34). Finally, equations

(5.45) can be rewritten in compact form as

Ji(k) = Ea(k)
T Q̃i Ea(k) + Ui(k)

T R̃i Ui(k) (5.46)

5.3.3.1 COOPERATIVE GAME-THEORETIC PROBLEM FORMULA-

TION

In a cooperative game, the players agree to cooperate by sharing a com-

mon objective. The common objective is a weighted sum of the singular

objectives, and the weights are the bargaining outcome. The bargaining

is defined by a set of parameters {αi, i = 1 : Nplayers, ∑
N
i=1 αi = 1, 0 <

αi < 1}, which weights the contribution of each player.

The shared objective is defined as

Jgt(k) = α Jh(k) + (1 − α) Jr(k) (5.47)

It is then possible to define Qgt = α Q̃h + (1 − α) Q̃r, Rgt,h = α R̃h and

Rgt,r = (1 − α) R̃r. Therefore, from equation 5.47, the Cooperative Game-

Theoretic single objectives of the two players are defined as

Jh,gt(k) = Ea(k)
T Qgt Ea(k) + Uh(k)

T Rgt,h Uh(k) (5.48)

and

Jr,gt(k) = Ea(k)
T Qgt Ea(k) + Ur(k)

T Rgt,r Ur(k) (5.49)

The GT-dMPC problem for the Cooperative Game Theoretic pHRI

can then be summarized as
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min
uh

Jh,gt = Ea(k)
T Qgt Ea(k) + Uh(k)

T Rgt,h Uh(k),

min
ur

Jr,gt = Ea(k)
T Qgt Ea(k) + Ur(k)

T Rgt,r Ur(k),

s.t. Ya(k) = Faz(k) + ΦhUh(k) + ΦrUr(k).

(5.50)

Following [142] and [75], the solution of problems (5.50) can be com-

puted as

U∗ =

[
U∗

h

U∗
r

]
=

[
I Kh

Kr I

]−1 [
Lh 0

0 Lr

] [
Zh

Zr

]
(5.51)

in which, defining

Sh = (ΦT
h QgtΦh + Rgt,h)

−1ΦT
h Qgt

Sr = (ΦT
r QgtΦr + Rgt,r)

−1ΦT
r Qgt

(5.52)

the gains are computed as

Kh = ShΦh

Lh = [−ShFh Sh]
(5.53)

Kr = SrΦr

Lr = [−SrFr Sr]
(5.54)

and

Zh = Zr =




zgt(k)

yre f ,h(k + 1)

yre f ,r(k + 1)
...

yre f ,h(k + N)

yre f ,r(k + N)




(5.55)
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Finally, to implement the receding horizon logic, only the components of

U∗
h and U∗

r relative to the next step are used, hence uh(k) = U∗(1) and

ur(k) = U∗(1 + N).

5.4 GT-DMPC PARAMETERS TUNING PERFORMANCES

This section presents simulations of the GT-dMPC frameworks presented

in section 5.3 to understand its performances for different values of the

main parameters, with the objective of understanding the set that bet-

ter fits with the pHRI application. Then the training procedure of the

RNN+FC model is explained and evaluated.

The GT-dMPC frameworks presented in section 5.3 is simulated with

different parameters tuning. For the simulation, only one dof is consid-

ered. The system is discretized at 0.008 seconds. The parameters ana-

lyzed are the prediction horizon Np = {0.04, 0.16, 0.4} which corre-

spond to 5, 20, and 50 timesteps horizons, the bargaining solution pa-

rameter α = {0.2, 0.5, 0.9}, and the weight of the robot’s cost func-

tion for the control input Rr = {0.001, 0.0005, 0.0001}. The parame-

ters of the human cost function cannot be made variable arbitrarily be-

cause they are descriptive of the intrinsic human behavior. Such pa-

rameters can only be recovered as in [41, 82]. In this work, an aver-

age sufficiently descriptive is used, resulting in Qh,h = diag([1, 0.0001]),

Qh,r = diag([0, 0]) and Rh = 0.0005. The impedance parameters of (3.7)

are set to mi = 10, ci = 100 and ki = 0. The two references are given as

Yre f ,h(k) = sin(k : k + Np) and Yre f ,r(k) = 0.5 sin(k : k + Np).

To compare the tracking performances of the proposed controller with

different tuning, we define a tracking error index as

etrac =
∫ t

0
∥Yre f ,h − x∥dt (5.56)

Note that we are interested in designing an assistive controller, and the
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objective is to reduce the tracking error of the desired human reference

trajectory. Table 5.1 presents results for the simulated scenarios of the etrac

index. As visible, with high values of α(= 0, 9), the system tends to fol-

Table 5.1: tracking performances
Rr = 0.001 Rr = 0.0005 Rr = 0.0001

α 0.2 0.5 0.9 0.2 0.5 0.9 0.2 0.5 0.9
N5 6.15 6.15 6.14 6.15 6.15 6.14 6.14 6.14 6.09
N20 5.99 6.07 5.93 5.96 6.03 5.60 5.66 5.56 2.86
N50 4.45 5.16 3.77 4.25 4.73 2.48 3.28 2.71 0.61

low the human reference closer than the robot’s one. Therefore, since this

work aims to define an assistive controller for the human, it is suggested

to use high values of α, thus allowing for better assistance from the robot.

On the contrary, according to GT formulation, with α = 0, 2, it should be

the human that helps the robot follow its reference. This situation is not

realistic. In fact, humans do not know the robot’s reference. Moreover, it

is unnatural for the human to assist the robot, and it prevents the human

from being assisted. So low values of α should be discarded.

Figure 5.21 shows some of the system tracking simulations.
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(a) Rr = 0.01 (b) Rr = 0.0005 (c) Rr = 0.0001

Figure 5.18: Np = 5

(a) Rr = 0.01 (b) Rr = 0.0005 (c) Rr = 0.0001

Figure 5.19: Np = 20

(a) Rr = 0.01 (b) Rr = 0.0005 (c) Rr = 0.0001

Figure 5.20: Np = 50

Figure 5.21: Qualitative evaluation of tracking performances according to dif-
ferent tuning parameters of the GT-dMPC controller. Low values of Rr and long
prediction horizons generally allow human reference tracking performances.
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CHAPTER 6

ASSISTIVE CONTROLLERS
IMPLEMENTATION

This chapter shows the application of the interaction models presented in

chapters 5.2 and 5.3 to assistive controllers. First, it presents applications

of the GT controllers as purely assistive controllers. Such controllers are

assistive in that they help humans pursue a goal, reducing the required

load (e.g., by reducing the required force). Then, it addresses role arbi-

tration methodologies. Finally, it presents an industrial use case in which

applying the methodologies presented in the previous chapters allows

one to perform a complex task such as precise positioning of a large patch

of carbon fiber material with high precision.

6.1 DIFFERENTIAL GT ASSISTANCE CONTROLLER

This section presents the controller implementation proposed in 5.2, en-

hanced by the human intention prediction of section 4.3. In particular,

the Cooperative model is considered. Indeed, under certain parameters

tuning, it allows for the robot to assist the human in pursuing the goal.
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Please refer to 5.2.3 for more details and considerations on this.

This section considers a planar motion. Therefore, the impedance pa-

rameters are Mi = diag(10, 10), Ci = diag(100, 100), and the stiffness is

set to null Ki = diag(0, 0), as typically in pHRI. The mass and damping

coefficients have been hand-tuned to allow smooth motions. The cost

of the two players are set as Qh,h = Qr,r = diag([1, 1, 0.0001, 0.0001]),

Qh,r = Qr,h = 02×2 and Rh = Rr = diag([0.0005, 0.0005]). The human cost

function parameters Qh,h, Qh,r and Rh are recovered via Inverse Optimal

Control (IOC) as in [41], and an average value is used. The robot param-

eters Qr,r, Qr,h, and Rr are set equal to the human’s to mimic a person.

Different tuning may result in more assistive behavior, which might be

desirable. Since the DGT controller accepts as a reference for (5.15) only

one set-point rather than a prediction horizon, we take the 20th point of

the prediction horizon. Finally, α = 0.8 is chosen to allow sufficient as-

sistance. This value allows high assistance and the robot to recover the

position of the robot set-point autonomously. Moreover, this value and

higher allows the assumption zre f ≃ zre f ,h to hold.

We compare the proposed approach with two common strategies,

Impedance Control (IMP) and Manual Guidance (MG). Both controllers

rely on (3.7), with the difference that the robot assistive contribution is

null (ur = 0) for the IMP, and the stiffness matrix is null Ki = 06×6 for

MG. We maintain the same mass for the IMP case, superimpose the stiff-

ness matrix to Ki = diag([200, 200]), and the damping to the 90% of the

critical damping.

We compare the Root Mean Square of the interaction force, a common

performance index for pHRI controllers,

fRMS =

√√√√ 1
L

L

∑
k=0

f 2
k dt, (6.1)
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with L length of the trajectory as before and fk the module of the mea-

sured interaction force at time instant k.

Figure 6.1 reports the comparison of fRMS with the other IMP and

MG, considering our model after TL. The t-test shows no difference be-

tween MG and IMP, while between the TL and the other two, there is.

Although the improvement might seem minor, with a different tuning of

the controller (higher α or smaller Rr) the robot might increase the assis-

tance so that the force decrease even more.

Figure 6.1: The fRMS for Manual Guidance (MG), Impedance (IMP), and our as-
sistive control with TL. A red bar indicates p-values < 0.05. The null hypothesis
is rejected between MTL and both MG and IMP, while it is not rejected between
MG and IMP.

We selected some parameters to tune the robot’s level of assistance,

such as α and Rr. Changing them, also the assistance that the robot can

provide will vary. Applying the TL to fine-tune the model on humans

and robots could be interesting and reasonable.
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6.2 GT-DMPC ASSISTANCE CONTROLLER

This section shows results relative to the implementation of the GT-dMPC

in section 5.3, along with the human intention predictive model of section

4.3.

The proposed approach exploiting the RNN+FC predictive model into

the GT-dMPC framework is evaluated with experiments involving two

different co-manipulated objects for three sets of experiments each. Five

subjects aged between 28 and 36 years old performed the experiments.

The experiments involve the full motion along the Cartesian positions

(x–y–z). Three sets of experiments are designed, involving two different

components. The first component is a granite brick weighing about 3.6

kg, which is usually used for calibration. The second component is a

composite board (size 900x700 mm), an aeronautical component assem-

bled in the cargo area of airplanes. The two objects and the collaborative

setup are visible in figure 6.2.

(a) Mass setup (b) Panel setup

Figure 6.2: The two setups used to perform Transfer Learning and comparison
with MG and IMP controllers.

The experiments are carried out as follows. First of all, the itera-

tive training procedure is performed. The training is carried on in this
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stage without any tool or co-manipulated object. The robot mounts a

lightweight 3d-printed handle to allow the human to grasp it right af-

ter the FT sensor. The trajectories are computed with Moveit!, and the

human is allowed to deform the nominal robot trajectory in the x–y–z

Cartesian space along the translational degrees of freedom. The RNN+FC

model is increased to have 375 hidden layers in the RNN, and it outputs

the prediction of the human desired positions in the x–y–z coordinates.

A total of five iterations are performed to train and adapt the model to

learn the actual interaction. The iterative training procedure output is

the model M4, which is trained to collaboratively reach a precise target

T0 without any additional inertia.

After that, the model M4 can be adapted via TL to co-manipulate dif-

ferent objects with different users. Each new subject is asked to reach the

target point co-manipulating an object, using the GT-dMPC controller,

and the model M4 predicts the desired motion. The target point is the

same one used for the iterative training procedure T0. Each subject, for

each of the two objects, performs 15 reaching tasks to the target T0. After

the dataset collection, TL training is quickly performed, and the compar-

ison of the GT-dMPC controller with the IMP and MG can be performed.

Three different reaching tasks are defined. The first requires the co-

manipulation of the objects and the reaching of the same target used dur-

ing the training T0. Each subject performs such a reaching task five times

with the three controllers. After that, a brief questionnaire is filled out.

Then, a new target T1 is defined. The subjects are asked to reach it in

two different conditions. In the first case, the target T1 is also known to

the robot, defined in this case as T1,k, and Moveit! computes a nominal

trajectory from the home position to T1,k. The second case still involves

reaching the target T1, but now it is unknown to the robot (T1,u), and the

trajectory computed connects the home position to the target pose T0.

After each set, the same questionnaire is filled out, and the subjects are
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asked to score different performances for each controller.

The following performance indexes are defined to evaluate the per-

formances of the proposed controller compared with the MG and the IMP

controllers. Being the objective of the proposed work the design an as-

sistive controller, We consider as performance indexes the required force

to move the object, the precision of positioning such an object to a target

position, and the smoothness of motion to measure the naturalness of the

interaction. The force Root Mean Squared error is considered over the

entire trajectory, defined as

fRMS =

√√√√ 1
L

L

∑
k=0

∥ fk∥2, (6.2)

with L denoting the length of the trajectory and ∥ fk∥ the module of the

measured interaction force at time instant k.

To measure the precision in reaching the target pose, we defined a

tolerance δ. The distance from the target pose is defined as the Euclidean

distance as d(c, t) = ∥xc − xt∥, with subscripts c,t denoting the current

and target pose, respectively. As a performance index, we compute the

average d(c, t) for two seconds after the first occurrence of d(c, t) < δ.

The precision performance index is defined as

davg =
1
n

n

∑
k=0

d(c, t)k. (6.3)

It is important to note that the average over a time horizon gives a mea-

sure of the precision of reaching a target and the stability with which such

a target is reached over time.

To measure the smoothness of the interaction, the Spectral-Arc Length

(SAL), as defined in [8].

Finally, we proposed a questionnaire to the subjects to evaluate sub-
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jective performance indexes which give an intuition of the naturalness of

the interaction. In the proposed questionnaire the subjects are asked to

score five indexes:

• assistance: measures the overall assistance felt by the users provided

by the different controllers;

• naturalness: measures how natural the interaction was perceived by

the subjects in completing the tasks;

• smoothness: measures how smooth the interaction was;

• effort: measures the required force perceived by the subjects during

the interaction;

• detection of intention: measures how well the robot correctly intended

the subjects’ motion intention during motion.

6.2.1 RESULTS

As an illustrative example, figure 6.3 shows the actually executed tra-

jectory, the predicted portion of the trajectory each time instant, and the

nominal robot trajectory, during the execution of the first reaching task,

involving the lumped mass and the initial target pose T0.

The results of the fRMS index are presented in figure 6.4. In general, it

is visible that the IMP controller is the one that requires the higher force

to co-manipulate the objects in both cases. This is because the IMP con-

troller has a virtual spring that always tries to restore the current pose to

the nominal robot trajectory and applies a force opposite to the trajectory

deformation imposed by the subject. The GT-dMPC and MG controllers

show similar performances. In the case of lumped mass, the GT-dMPC

slightly performs better, showing that the RNN+FC model has learned

the interaction model even if a payload is applied.
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Figure 6.3: Predicted, executed, and nominal trajectories for the co-
manipulation of a lumped mass object.

The results of the davg are shown in figure 6.5. In this case, the IMP

controller performs well when the target pose is known to the controller,

as the virtual spring applies a force to move the robot towards it. De-

spite this, the additional payload is not considered by the IMP controller.

Therefore, humans must still apply vertical force to reach the target pose

properly. Moreover, when the human wants to reach a target different

from the nominal one, the IMP cannot provide any assistance. On the

contrary, the IMP controller tends to reach its known target, deriving

from the human one. The MG controller cannot provide any assistance to

reach the target pose, and its performances strictly depend on each sub-

ject’s capabilities. The GT-dMPC controller performs better than the two

others in almost all three cases regarding the mass task.

The SAL index shows that the proposed GT-dMPC controller per-

forms comparably to the other two controllers in most cases. In general,

the MG controller allows smooth motions because it has a passive be-
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Figure 6.4: Force RMS, measured as in (6.2), for the three tasks and the three
controllers

havior, and the IMP controller allows smooth motion because it tends to

follow the nominal trajectory, which is typically computed to avoid too

high acceleration in pHRI tasks. It is interesting to see that the GT-dMPC

with the active assistive contribution shows comparable performances

and that the introduced assistance does not worsen the SAL index. More-

over, in the unknown reaching task, the IMP controller is incapable of any

assistance, making it hard to deform the trajectory and precisely reach the

target. In this case, the SAL is more negative (indicating more jerky trajec-

tory execution), and the robot’s behavior introduces oscillations. Results

of the SAL computation are visible in figure 6.6.

Finally, the questionnaire results are presented in table 6.1. Note that

the presented results are an aggregate of the singular scores given after

each task to each controller. Therefore, the results presented are, in some

cases, contradictory. This happens because, for example in the IMP case,

the IMP controller is very assistive for the tasks involving the reaching

of a known target but is not assistive at all if the target is unknown to
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Figure 6.5: Average distances, measured as (6.3) for the three tasks and the three
controllers

the controller. Therefore the same subject can perceive high assistance in

some cases and low in others. We present an aggregate of the results to

give an overall performance of the controllers, and to evaluate also their

flexibility.

The GT-dMPC controller is the one that shows higher assistance, with

most of the scores ranging between 3 and 4. The MG controller also

shows good results, with about one-third of the scores equal to 3. This

can be interpreted as the humans like a slightly damped interaction as

this can sometimes help in being precise and damps the load descent,

letting the human perceive a little assistance in terms of "gravity com-

pensation". The IMP controller shows various and different scores. This

happens because it can be quite assistive in cases where the target pose is

known. In such cases, the IMP controller helps with precise positioning

by applying an attractive virtual force. For the same reason, it applies

an attractive virtual force in the vertical direction to the nominal vertical

target, partially relieving the human operator and giving the impression

of sustaining the weight.
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Figure 6.6: average SAL for the three tasks and the three controllers

Table 6.1: Subjective questionnaire showing the percentage of responses count.
Score % 0 1 2 3 4

Assistance GT-dMPC 0 6.67 20.0 40.0 33.3
MG 13.3 13.3 13.3 60.0 0
IMP 13.3 26.7 13.3 20.0 26.7

Naturalness GT-dMPC 0 0 33.3 20 46.7
MG 0 13.3 13.3 66.7 6.67
IMP 13.3 26.7 53.3 6.67 0

Smoothness GT-dMPC 0 0 6.67 66.7 26.7
MG 6.67 13.3 26.7 53.3 0
IMP 0 40.0 20.0 40.0 0

Effort GT-dMPC 0 46.7 46.7 6.67 0
MG 0 13.3 60.0 26.7 0
IMP 6.67 33.3 0 26.7 33.3

DoI GT-dMPC 0 0 26.7 26.7 46.7
MG 0 6.67 33.3 46.7 13.3
IMP 20.0 13.3 53.3 6.67 6.67
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Naturalness evaluates how natural is perceived the interaction by the

user. The GT-dMPC controller shows great performance, with the ma-

jority of the scores in 4, indicating that the proposed controller allows

natural pHRI. Also the MG controller shows good performance, as its

passivity guarantees a natural behavior of the robot. Despite this, it is

perceived as a little less natural since it does not provide any support

and the humans felt to be the only ones in charge of the task. Compared

with the other two, the IMP controller does not show significant results.

This is mainly because it has a reference trajectory that tends to follow,

introducing forces that sometimes are not following the desired motion

of the human.

Regarding smoothness, the GT-dMPC performs slightly better than

the MG controller, with great results for both. In this case, the IMP con-

troller is also evaluated with good scores, only slightly lower than the

other two controllers. This can still be because the IMP controller, re-

acting to external forces that the additional inertia can produce, might

oscillate a little, even in proximity to the target position.

The effort is measured as the lower, the better since it was asked to

score how much effort each subject should put into completing each task.

In this case, the GT-dMPC scores are in the lower half, showing that the

proposed controller is capable of relieving the users from carrying the

weight and also allows trajectory deformation according to the desired

user intention without requiring excessive interaction force. The MG

controller performances are in the upper half of the range. This is be-

cause it does not require any particular force to deviate from the nominal

trajectory. Still, it cannot assist in reducing the perceived weight of the

co-transported object. The IMP controller has different scores, either they

are high or low. This happens because in some tasks when the target is

known, the IMP controller assists in quickly reaching the target and lift-

ing the weight, and applying a reactive force in the vertical direction. On
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the contrary, when the user wants to deviate from the nominal trajectory,

as in the case of an unknown target, the user should apply a higher force

to counteract the attractive virtual force to the nominal trajectory.

Finally, the perceived Detection of Intention is evaluated. The GT-

dMPC is the controller that better gives the impression of detecting where

the human wants to go and provides proper assistance. The MG con-

troller also shows good results because it smoothly allows motions ac-

cording to human desire. The IMP scores are slightly different, as in the

case the target is known, the human can think that the robot properly un-

derstands the intention of reaching a desired point, but when the target

it is not known it does not.

6.3 ADAPTIVE IMPEDANCE CONTROLLER FOR HUMAN-

ROBOT ROLE ARBITRATION BASED ON COOPERATIVE DIF-

FERENTIAL GAME THEORY

This section presents a controller that allows role arbitration between hu-

mans and robots. It implements the cooperative controller as presented

in 5.2. The role arbitration is mitigated by the interaction force that the

human imposes on the robot tip. The resulting behavior is a robot capa-

ble of completing a task autonomously but also allowing the human to

modify the trajectory easily.

6.3.1 PRELIMINARIES

Some preliminary consideration must be made to understand the ele-

ments that compose this controller properly.

6.3.1.1 BARGAINING

In a cooperative environment, it is rational to consider the set of Pareto

solutions. Since there are infinite Pareto-optimal solutions, we enter the
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bargaining theory arena to decide which is the most effective one. The

bargaining problem is how to define the appropriate α. In classical bar-

gaining solutions (Nash, Kalay-Smorodinsky, egalitarian), α is defined

such that the cost of all players decreases compared to their non-cooperative

cost.

In this work, the two players bargain on who leads and follows the

task; in this sense, one can accept a higher cost if he is the follower. Hence,

α is used as a weighting factor to move the control authority from the

robot to the human and vice-versa. Indeed, for high values of α, the robot

cost tends to disappear from the overall cost computation Jα. Hence it

will be less costly for the robot to put much effort into the system, becom-

ing the leader, resulting in a higher cost for the human. On the contrary,

for low values of α, the robot cost increases, and its control input will be

dramatically reduced, leading the control authority to the human. Each

situation in between represents a cooperative solution where the control

authority is shared appropriately.

The selection of the weight parameter α depends on the force applied

by the human and is processed by the sigmoid function:

α = d − a

1 + e−b(∥uh∥−c)
(6.4)

where the constant parameters a, b, c, d are used to shape the function

properly. In particular, a defines the height of the function, b the width of

the transition phase, c represents an offset in the x direction, and d is an

offset in the y direction, moreover the negative sign after d means that α

is decreasing as ∥uh∥ increases.

6.3.1.2 TRAJECTORY TRACKING

For trajectory tracking purposes, it is sometimes useful to divide the con-

trol input into a feedforward and a feedback part.
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Starting from the solution of the ARE in (4.19), the feedback gain ma-

trix is defined as

K f b = R−1
α BTP (6.5)

and the feedback control actions are given by

u f b = −K f bz(t) (6.6)

From (6.6) the feedback control terms demanded from the human and the

robot can be computed as

u f b =

[

ū
f b
h

u
f b
r

]

(6.7)

where ū f b denotes the nominal effort demanded to the human. A feed-

forward term is added to allow trajectory tracking.

The feedforward gain matrix is defined as

K f f = [K f b I]

[

A B

C D

]−1 [
0

I

]

(6.8)

with A and B as in (5.16), and C and D output and feedthrough matrices

of the state-space system description, respectively. The feedforward term

results in

u f f = K f f zre f . (6.9)

Since the system matrix is typically not square in this formulation, the

pseudoinverse can be used instead of the inverse. This results in a vector

of dimension 12, and its components are

u f f =

[

ū
f f
h

u
f f
r

]

(6.10)
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with the superscripts h and r denoting the human and robot contribu-

tions.

Finally, the total control input results in u = u f f + u f b, and the control

action of the robot can be computed as

ur = u
f f
r + u

f b
r (6.11)

6.3.1.3 THE CONTROL LAW AS A VARIABLE IMPEDANCE

Looking at (6.7), can be divided into two components, and the control

inputs demanded from the human and the robot are computed as

[

ū
f b
h

u
f b
r

]

= −
[

K
f b
h

K
f b
r

]

z(t) (6.12)

where Kh ∈ R
6×m and Kr ∈ R

6×m are the components of the matrix K

defined in (6.5). Looking at the robot control input, the feedback part can

be rewritten as

u
f b
r = −K

f b
r

[

x − x0

ẋ

]

(6.13)

Given K
f b
r = [K

f b
r,k K

f b
r,d], the two components associated with the stiffness

and damping of the variable impedance cooperative system are defined

as

K
f b
imp = K

f b
r,k (6.14)

and

D
f b
imp = K

f b
r,d (6.15)

A similar computation can be done for the feedforward terms, resulting

in

u
f f
r = K

f f
r xre f (6.16)
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where K
f f
r represents the components relative to the robot of the matrix

(6.8) and

K
f f
imp = K

f f
r (6.17)

The robot control input results in

ur = −D
f b
imp ẋ − K

f b
imp(x − x0) + K

f f
impxre f (6.18)

Substituting (6.18) into (3.7) results in

Mi ẍ(t) + (Di + D
f b
imp)ẋ(t)+

+(Ki + K
f b
imp) (x(t)− x0(t))− K

f f
imp xre f (t) = uh(t)

(6.19)

Because varying α varies matrix P and matrix K accordingly, (6.19) rep-

resents a variable impedance system subject to the human force, with the

values of Dimp and Kimp updated according to the human will to lead or

follow, detected by force applied.

6.3.2 EXPERIMENTS

An experiment is designed to test the proposed control method for shar-

ing control authority in human-robot collaboration. The robot has to fol-

low a planar circular trajectory, while the human has a different path to

follow, which partially overlaps with the robot one. The nominal robot

trajectory is defined as

xre f ,r(t) =

[

−ρ sin(ω t)

−ρ cos(ω t)

]

(6.20)

where ρ = 0.2 is the radius of the circumference and ω is the angular

velocity.
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The human desired trajectory is piecewise-defined as

xre f ,h(t) =
























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
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


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





xre f ,r(t), t0 < t < t1




−ρ sin(ω t)

x1 +
x2−x1
t2−t1

(t − t0)



 , t1 < t < t2





−ρ sin(ω t)

x2 +
x3−x2
t3−t2

(t − t1)



 , t2 < t < t3

xre f ,r(t), t3 < t

(6.21)

with t0 = 0s, t1 = 3s, t2 = 5s, t3 = 7s.

Figure 6.7: The experimental setup, showing the application and the monitor
displaying the three trajectories: magenta - robot desired trajectory, blue - hu-
man desired trajectory, green - actual trajectory.

The nominal robot trajectory, the desired human trajectory, and the

current position are shown in real-time on a screen, and the human has

the goal to make the current trajectory as close as possible to the desired

human trajectory. Figure 6.7 shows the experimental setup.
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In Figure 6.8, the nominal trajectory of the robot (dashed red line), the

desired trajectory of the human (dashed yellow line), and the actual robot

end-effector positions (solid blue line) are shown.
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trajectory comparison

current pose
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Figure 6.8: Comparison between the nominal trajectory of the robot, the nominal
trajectory of the human, and the measured

To test and compare the proposed approach, the following indices are

computed:

• Trajectory following error, measured as

Etrack =
∫ Tend

Tstart

∥

∥xre f ,h(t)− x(t)
∥

∥ dt (6.22)

As low the Etrack is, as close the actual trajectory is to the nominal

one
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• Geometrical following error, measured as

EXcorr =
∫ Tend

Tstart

∥

∥xre f ,h(t + δt)− x(t)
∥

∥ dt (6.23)

where δt represents the time delay of the actual trajectory with re-

spect to the nominal one, computed by applying cross-correlation

between the nominal trajectory of the human and the measured

one. In this way, it is possible to compare the capability of the hu-

man to track the geometrical reference. As low the EXcorr is, as close

the actual trajectory is to the geometrical one

• Measured interaction force, measured as

F =
∫ Tend

Tstart

∥ f (t)∥ dt (6.24)

As low the F is, as less effort the human has to put in the coopera-

tive task

• Mechanical work, measured as

W =
∫ Tend

Tstart

f⃗ (t) · dS⃗ dt (6.25)

The lower the W is, the less energy the human has to put into the

cooperative task

The goal of the proposed controller is to allow smooth interaction and

leader-follower transition with the human, reducing the effort required

and allowing good trajectory tracking. Hence the goal is to minimize the

indexes defined above together.

As a comparison, three different types of impedance controllers are

used. The CGT controller is compared with an LQR controller, which can

be seen as the CGT with α = 1 always, and two classical impedance
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controllers with different values of stiffness K. One has high stiffness

(HIC), and the other has a low stiffness (LIC) value. For the two classical

impedance controllers (HIC, LIC), the value of the damping to achieve

the critical damping D = 2Dcr

√
KM. For the LQR and CGT controllers,

the values of damping and stiffness depend on the matrices Q̂h, R̂h, Qr

and Rr, defined as Q̂h = diag(50, 50, 1, 1), R̂h = diag(10, 10, 0, 0), Qr =

diag(20, 20, 1, 1) and Rr = diag(1, 1, 0.01, 0.01) for the CGT case, Rr =

diag(1, 1, 0.1, 0.1) for the LQR case, otherwise the stiffness was too high

and too much force was required to move the robot barely. The Q̂h and

R̂h used are average values. The mass matrix for all the cases is defined

as M = diag(10, 10), and the base damping and stiffness for the CGT

and LQR cases are K = diag(0, 0) and D = diag(40, 40). The mass-

spring-damper parameters used or computed for the experiments are

presented in Table 6.2, while Figure 6.9 shows the changing parameters

during the task. For the CGT case, the value of α is bounded such that

0.01 f α f 0.99, and the sigmoid parameters are chosen to be a = 0.98,

b = 0.7, c = 7, d = 0.99.

Table 6.2: The mass, spring, and damping parameters used for the experiments.
CGT HIC LIC LQR

K 55 ÷ 550 100 20 222
D 53 ÷ 135 57 25.5 84

D/Dcr 1.13 ÷ 0.92 0.9 0.9 0.89
M 10 10 10 10

6.3.3 RESULTS

In the test campaign, five subjects (age 30 ± 1) are asked to perform the

task five times for each controller. Before starting the test, the subjects are

allowed to practice as long as needed to feel confident with the current
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Figure 6.9: Variable parameters for the CGT

controller, then five trials in a row with the same controller are recorded.

This procedure is used for each of the four controllers, selected randomly

for each subject.

A UR5 robot is used, controlled by joint velocities. (3.8) is used to

compute the Cartesian reference positions, and (3.11) provides the robot

joint velocity tracking controller with the reference values. A Robotiq FT

300, mounted on the robot tip, is used to measure the force applied by
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Figure 6.10: Indexes comparison

the human.

A t-test compares the CGT controller in pairs with all the others for

each computed index. The t-test allows for defining the statistical rele-

vance of the computed values. The results are in Figure 6.10, with the

mean and standard deviations and the relative p-values.

The tracking error, computed as in (6.22), is shown in Figure 6.10a.
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The CGT controller shows the best performance, and the t-test assesses

the statistical relevance of the measured values. This result can be ex-

plained by the robot’s high stiffness/low damping ratio while the robot

is leading and the low stiffness/high damping ratio while the human is

leading. On the one hand, the high stiffness/low damping ratio allows

fast and reliable trajectory tracking and fast recovery after a trajectory

modification (i.e. the robot is faster in getting back to its nominal tra-

jectory after the human leaves control). On the other hand, a low stiff-

ness/high damping ratio allows the human to move the robot smoothly

and precisely while leading. Compared to the LIC, constant high stiffness

values allow better trajectory tracking in HIC and LQR.

The geometrical error, computed as in (6.23), is shown in 6.10b. The

t-test shows that no significant differences between the four controllers

can be appreciated. This shows that the tasks are executed correctly, and

comparing the controllers for the computed indexes is fair. Indeed, this

shows that similar results can be obtained in terms of the geometrical

path following with all the controllers.

The force evaluation is presented in 6.10c. Since the exchanged force

mainly depends on the robot stiffness ( measured as f = K(xre f ,r − x)),

the lower the stiffness is, the lower the exchanged force. This effect re-

sults in the LIC with the best performance concerning the required force.

Despite this, the CGT controller shows better performance with respect

to LQR and HIC because when interaction happens, its stiffness lowers.

Notably, performances similar to the LIC can be obtained by a different

tuning of the values of matrices Qr and Rr.

Finally, similar considerations can be derived for the mechanical work

shown in Figure 6.10d. Indeed, similar behavior is observed concerning

the force results depending on the interaction force.
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6.3.4 DISCUSSION

The results show that being equal to the capability of the four controllers

in following the nominal geometrical path under human-robot cooper-

ation, the CGT controller outperforms the others in trajectory following.

Moreover, even if the LIC requires less interaction force to accomplish the

task, it shows the lowest capability in trajectory tracking, and the CGT

also requires low interaction forces. As a remark, a similar interaction

force can be obtained for the CGT controller by tuning the parameters

differently.

Interestingly, Table 6.2 and Figure 6.9d show that the critical damping

value varies from lower than critical to higher than critical, according to

the role adaptation. This effect allows the robot to have a more damped

behavior when the human is leading, allowing smooth motion, while a

low damping ratio allows better and faster trajectory tracking when the

robot is leading.

Some limitations of the proposed control can be identified. First, the

human control objective (i.e. the human cost function parameters) can

only be estimated offline with some inverse techniques. Future works

will address online estimation techniques for the human control objective

estimation to adapt the robot behavior accordingly. Indeed, it is reason-

able to suppose that the human may change his cost function parameters

due to fatigue by repeating a task all day long. Secondly, many param-

eters have to be defined arbitrarily. In particular, predicting the variable

damping and stiffness values is difficult. Hence, defining some tuning

rules according to the required performances may be interesting. More-

over, the arbitration law introduced in this work is a simple function of

the force, but it can be improved and modified according to other sensing

capabilities and different human intention estimations. Future work will

address a more complex and improved arbitration law involving visual

feedback, human intention estimation, and force feedback. In such a way,
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with a more complex sensor fusion, a more precise estimate of the human

will to lead or follow can be obtained. Some future applications of this

framework will involve the co-manipulation and the co-transportation

of heavy objects, as well as lightweight parts and deformable objects as

composite materials plies. Another interesting application can be for re-

habilitation purposes, where the robot behavior is adjusted by tuning the

parameter α to make the robot contribution high when the patient can

barely perform a task and gradually lower the robot contribution as the

patient starts to recover some motion capabilities.

6.4 ROLE ARBITRATION WITH DIFFERENTIAL GAME THE-

ORY

This section presents a controller that fully exploits the two interactive

models presented in 5.2 to allow efficient Role Arbitration. The proposed

controller allows switching from the Cooperative to the Non-cooperative

model, to change the robot’s behavior from follower assistant to leader,

according to the situation.

6.4.1 PRELIMINARIES

Some additional considerations are required for proper controller imple-

mentation.

6.4.1.1 HUMAN REFERENCE TRAJECTORY ESTIMATION

The definition of a method for detecting and predicting the desired hu-

man trajectory is out of the scope of this work. Moreover, many accu-

rate techniques exist in the literature, as proposed in [21, 85, 90], so the

choice of the best human trajectory identification techniques is left to the

reader. Despite this, since it is a piece of essential information to apply

the control scheme proposed, it is necessary to identify a method for the
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prediction. In the proposed approach, we decided to implement an easy

yet powerful method based on the direction of the force interaction. The

human reference state is composed of position and velocity vectors as

zre f ,h = [xT
re f ,h ẋT

re f ,h]
T. The velocity component has always had a mi-

nor and typically negligible influence on human behavior, as they are

proven to care only about the position [41, 57]. Therefore it can be set

to zero without any loss of generality, as ẋre f ,h = 06×1. This is a typical

choice made by various works addressing human-machine interaction

[58, 120, 122]. On the contrary, the pose is updated at each cycle by the

following:

x+re f ,h = x−re f ,h + Kp,h uh (6.26)

with (+) and (−) referring to the updated and previous poses, respec-

tively, and Kp,h defines a coefficient proportional to the human exerted

force.

6.4.1.2 ROLE ARBITRATION LAW

As already said, the solution of (5.17) strictly depends on the choice of

α. In the Cooperative Differential Game Theory, the Bargaining Problem

refers to the problem of choosing the best appropriate α, and different

solutions are available in the literature (Nash bargaining solution [123],

Kalai-Smorodinsky [69], egalitarian [68]). These methods aim at identi-

fying the best compromise between players so that everyone has the in-

centive to cooperate rather than compete against each other. The solution

found is static, and the game proceeds by minimizing (5.17).

In the proposed control schema, the value of α is changed dynami-

cally on the fly according to some defined law, allowing the Role arbitra-

tion between the human and the robot. Indeed, this work aims to make

the robot assistive, capable of following human intentions, assisting the

human, and taking control over the human to avoid undesired situations.
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Four main undesired situations are identified:

a) singularities

b) proximity to objects

c) proximity to workspace limits

d) distance to the reference target position

Remark 6

Proximity to joint limits is not directly considered, as in the computa-

tion of the manipulability index, it is already included, as described

below.

To avoid configurations close to singularities, the manipulability in-

dex µ is taken into account, defined as in [39]:

µ = P

√

det(J(q)J(q)T), (6.27)

with penalty factor P, similar to the one introduced in [168] used to scale

the manipulability to account for joint limits. P are computed separately

for each joint j, as

Pj = 1 − e
−k

(qj−qlb
j
)(qub

j
−qj)

(qub
j

−qlb
j
)2 , (6.28)

where k is a scaling factor that can be used to adjust the behavior near

joint limits, qj is the current position of the joint j, and qub
j and qlb

j are the

upper and lower bounds, respectively.

The proximity to objects do is measured as the minimum distance be-

tween any robot link and any object in the environment, possibly exclud-

ing objects that must be manipulated.

do = min(robot − objects) (6.29)
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The proximity to workspace limits dws represents the Euclidean distance

between the current Cartesian position of the robot TCP and the bound-

aries specified according to the application.

dws = ∥xee − xws∥ (6.30)

with xee and xws denoting the Cartesian positions of the end-effector and

the workspace boundaries, respectively.

The distance to the reference target position dtrg is measured as the

Euclidean distance between the current end-effector position and the tar-

get pose of the task (e.g., pick/place pose).

dtrg =
∥

∥xee − xtrg
∥

∥ (6.31)

with xtrg denoting the target position of the end-effector.

(a) manipulability membership function (b) distance to collisions membership func-
tion

(c) distance to workspace boundaries mem-
bership function

(d) distance to target pose membership
function

Figure 6.11: Input membership functions to the Fuzzy Logic System

These four indices allow defining the proper α, allowing for Role Ar-

bitration. It is defined as a Fuzzy Logic System (FL) that accepts as inputs
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the four indices and returns the value of α. In figure 6.11, the four mem-

bership functions related to the four indices are visible. The following

rules are defined:



















































if
(

µ is low
)

or
(

do is low
)

or
(

dws is close
)

or
(

dtrg is close
)

then α is low

if
(

µ is low
)

or
(

do is low
)

or
(

dws is f ar
)

or
(

dtrg is close
)

then α is low

if
(

µ is f ine
)

or
(

do is ok
)

or
(

dws is f ine
)

or
(

dtrg is f ar
)

then α is high

if
(

µ is f ine
)

or
(

do is ok
)

or
(

dws is f ine
)

or
(

dtrg is medium
)

then α is shared

(6.32)

Processing the four membership functions through the above rules al-

lows defining the proper α, with its membership function visible in figure

6.12. Identifying a threshold value of α = αth makes switching from the

Cooperative to the non-cooperative case possible, allowing Role Arbitra-

tion. When α is high, the cooperative interaction model is selected, and

the human can fully control the task and move the robot freely, enhanced

by the robot assistance ur. Conversely, when α is low, the non-cooperative

interaction model is selected, and the robot takes control over the human

by applying a virtual force ur to recover the original safe trajectory. The

block diagram of the arbitration control is in figure 6.13.
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Remark 7

By varying the parameter α, also the matrices Qh, Qr, Rh and Rr vary.

In the Cooperative case, how they vary is straightforward, and it is

described by (5.11) and (5.12). In this case, the parameter α also repre-

sents the solution to the Bargaining problem. In the Non-Cooperative

case, the matrices are computed as (5.13) and (5.14). The value of the

matrices Rh and Rr are kept constant.

Figure 6.12: output membership function of the FLS that defines α.

Non-Cooperative

Cooperative

fuzzy Arbitration
function

Robot

distances manip

Figure 6.13: The block diagram of the arbitration mechanism. The variable α
allows switching between cooperative and non-cooperative models.

145



6.4. Role arbitration with Differential Game Theory

6.4.1.3 SAFETY CONSIDERATIONS

The method proposed does not directly addresses the safety issues that

arise when pHRI is considered. Therefore, some considerations are given.

According to the standard rules defined by the ISO in [59–61], safety de-

pends on and is evaluated considering the entire application and not the

single modules such as the robotic platform, its control, and the other

modules alone.

According to the standards, the robot at the end-effector should not

move faster than 250 mm/s to certify the application. It should also stop

if the external forces and power exceed a threshold according to the so-

called Power Force Limitation (PFL).

Despite being hard to make sure that the application is safe according

to the standards, the proposed FL arbitration law can handle such limi-

tations within certain limits. Indeed, by defining some additional rules,

the FL arbitration can prevent the robot from moving too fast or colliding

unsafely with the human. By preventing such events, robot safety stops

triggered by modules and sensors certified according to the standards

can be reduced.

For example, the proposed fuzzy logic arbitration can handle the speed

limitation. Indeed, the nominal trajectory is computed to comply with

the limited speed constraint. The FL can include monitoring the speed,

and the role of the leader can be assigned to the robot as close as the

end-effector speed approaches the limit if the human tries to move faster.

PFL requires that, in the case of a collision with a human, the power

and force are granted to be below a certain threshold. Such a threshold

depends on the type of collision (free body or pinch) and the body area

where it might happen. To avoid direct collisions with the human body, a

camera system can track the human body position, the human body can

be modeled as an environmental obstacle, and (6.29) allows for taking

this distance into account. Moreover, a rule that monitors the robot’s
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position to the human body parts can also be added. For example, if it

comes too close to the human head, the FL arbitration should allow the

robot to lead the action far from it. It can be handled by measuring the

height of the robot end-effector or directly by using a skeleton tracker if

available. It is also possible to add danger zones as described in [83] and

include them in the FL arbitration law. Of course, this approach should

not consider the human arm that is directly in contact with the robot (if no

co-manipulated object is considered). Otherwise, the distance between

humans and robots will always be zero.

The presented cases do not guarantee the certification of the collab-

orative application, which requires the safety stops of the robot. On the

contrary, they can prevent the robot from incurring such situations, al-

lowing it also to reduce safety stops.

6.4.2 EXPERIMENTS

Three sets of experiments are designed to test the method’s validity. In

all scenarios, the human and the robot must reach a target position and

return to the starting point. In the first case, a collision object is added

to the scene, but the human does not know its presence. In the second

scenario, the human knows the presence of an object, while the robot

doesn’t. The third case does not involve collision objects but requires

reaching an intermediate target point that the robot does not know. The

test cases are designed to simulate these three real-world scenarios:

a) the human and the robot are co-manipulating an object, possibly

significant, that may impede the human’s view of some environ-

mental feature. The robot knows the obstacle’s presence and helps

the human avoid it. Another situation can happen when the obsta-

cle is behind the human, and he does not see it;

b) a dynamical collision object is placed in the middle of the robot’s
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trajectory, and the human sees it and drives the robot far from pos-

sible collisions;

c) a task is mainly repeatable. Still, some exceptions can sometimes

require an additional operation (e.g., during object sorting, most

objects must be placed in a container, but some objects must be redi-

rected for some additional operation due to poor quality).

The proposed approach is compared with two other controller method-

ologies typically used to execute such tasks, standard manual guidance

(MG) and a standard impedance control (IMP). The first controller (MG)

represents a standard when an operator guides the robot, and it acts

as a follower. Typical applications are learning-from-demonstration or

robotic assistance for load reduction. The second controller (IMP) is typi-

cal in pHRI as it allows compliancy and a robot that modifies its trajectory

according to external forces.

Remark 8

The same control can obtain the three controller behavior by switch-

ing off the robot contribution for IMP (i.e., ur = 0 in (3.7)), switching

off the robot contribution, and setting null the robot stiffness for MG

(i.e., ur = 0, and Ki = 0 in (3.7)).

Remark 9

The trajectories are pre-computed using Moveit! and then used for

all the cases to make the experiments fully comparable.
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6.4.2.1 EVALUATION CRITERIA

The following indexes are defined and evaluated to compare the three

controllers. The interaction force is evaluated as a measure of the robot’s

assistance to the human. As less the force is, as better the robot assists the

human. The interaction force is measured as

F =
∫ Tend

Tstart

∥ f (t)∥
T

dt (6.33)

it is normalized over T in which a force greater than a threshold (1N) is

measured.

An index measures the percentage of points in the measured trajec-

tory in which the robot is closer than 1mm to the obstacle to measure the

obstacle avoidance capability. The index is defined as

C% =
nc

np
100 (6.34)

with nc and np indicating the number of points in a collision (i.e. the robot

is closer than 1mm to the obstacle) and the total number of points in the

trajectory, respectively.

An index measures the percentage of points in the measured trajec-

tory in which the robot’s end-effector violates the safe workspace bound-

aries (in this work, it is set to 850mm as from the UR5 datasheet) to mea-

sure the capability in avoiding the violation of the workspace boundaries.

The index is defined as

WS% =
nws

np
100 (6.35)

with nws and np indicating the number of points that violates workspace

boundaries (i.e. the robot end-effector is far more than 850mm from the

robot base) and the total number of points in the trajectory, respectively.
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Finally, since the proposed control also allows precise robot position-

ing at target points (e.g., pick/place target poses), an index evaluates the

capability to precisely reach a target pose, defined as (6.31), measured

when the action is considered concluded.

dtrg =
∥

∥xee − xtrg
∥

∥ (6.36)

This same index is used to measure the capability of reaching target points

known to the robot and the additional via point in case (c), which is un-

known to the robot.

6.4.2.2 EXPERIMENTAL SETUP

A total of 5 participants (age 28 ± 3.5) were involved in the testing. The

participants have different confidence and previous experience with us-

ing robots in general and pHRI tasks. In particular, one participant had

no experience with robots at all. The participants were instructed to move

the robot tip from start to target pose and were told that the robot could

take control over the human in some situations. Participants were asked

to let the robot lead if they sensed that the robot was taking control.

The robotic platform is a Universal Robot 5 controlled in joint velocity

at a frame rate of 125 Hz. The interaction force is measured at 100 Hz with

a Robotiq FT300 sensor mounted at the robot end-effector. A handle is

mounted after the sensor, allowing the human to grasp and interact with

the robot. The robotic setup during the execution of experiments when

the human is leading the robot to avoid an obstacle is visible in figure

6.14.

The parameters used are as follows. Qh,h = diag([1, 1, 1, 0.0001, 0.0001, 0.0001]),

Qh,r = 06x6 and Rh = diag([0.0005, 0.0005, 0.0005]) and Rr = diag([0.0001, 0.0001, 0.0001

1All these values are normalized with respect to Qh,h(1, 1). In Optimal Control prob-
lems, the minimization of Ji equals the minimization of λ Ji, with λ positive value. There-
fore, since the parameters Qh,h and Rh comes from Inverse Optimal Control studies, they
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START 

POSE

TARGET 

POSE

Figure 6.14: Experimental setup during the execution of obstacle avoidance ex-
periment. The human is driving the robot to avoid the physical obstacle high-
lighted by the yellow rectangle in the picture. The nominal robot’s trajectory is
in dashed red. In green is the new trajectory after the human intervention to
avoid the obstacle. In the real setup, the start pose (green circle), the target pose
(red circle), and the obstacle (yellow rectangle) are indicated by tripods to give
the human a reference.

The values of the impedance parameters in (3.7) are set to Mi = diag([10, 10, 10]),

Di = diag([100, 100, 100]) and Ki = diag([0, 0, 0]) for the standard man-

ual guidance and the GT experiments, while Ki = diag([200, 200, 200])

for the standard impedance control.

The values for the human are computed offline via Inverse Optimal

Control as in [41]. Despite the human cost function values possibly chang-

ing according to the task, the subject, and the different stages of the task,

the choice of using fixed values can be justified for several reasons. First

can be normalized to any arbitrary value. The small values of Qh,h relative to the velocity
components of the state indicate that humans do not care about the velocity compared
with the tracking error. The small values of Rh indicate that humans prefer to minimize
the tracking error rather than the effort required to track it.
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of all, the role arbitration mechanism is the fundamental module that

changes the assistance level of the robot, which strictly depends on the

value of α. Both the value of α and the human cost function influence the

outcome of the game, but the value of α has a significantly higher impact

with respect to the human cost function, provided that the values used

to describe the human cost function are reasonable within certain toler-

ances (we selected an average value, it is true that such a value can pos-

sibly change, but changes are within a restricted range around the value

we selected). Note that it is always possible to implement online tech-

niques to recover such parameters on the fly and for different phases of

the task, as demonstrated by different works [42, 56, 67, 174]. The robot’s

parameters are set according to previous studies to assist when required

and provide strong interaction when there is no agreement. The matrices

Qh and Qr are defined as in the cooperative case for all the cases. This

means that, in the cooperative case, Qh and Qr are defined as in 5.2.2 fol-

lowing (5.13) and (5.14). In the non-cooperative case, equations (5.1) and

(5.2) in section 5.2.1 use Qh and Qr. To let the Role Arbitration be smooth

and continuously variable, we also update values of Qh and Qr accord-

ing to the same update used for the cooperative case, following (5.13) and

(5.14).

During the experiments, the FL arbitration module is in charge of se-

lecting the appropriate role for the human and the robot (i.e., the value

of α), according to the current status of the tasks. Therefore, during each

experiment, the value of α varies. By defining a threshold value of α

(αth = 0.5, in this work), the robot selects the cooperative or the non-

cooperative behavior according to α > αth and α < αth, respectively.

6.4.3 RESULTS

This section presents the results relative to the three sets of experiments.
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6.4.3.1 EXPERIMENT WITH THE OBJECT UNKNOWN TO THE HU-

MAN

In the first set of experiments, the robot knows the presence of an obstacle

and leads the human away from an object known to the robot. The goal is

to move the robot end-effector from an initial position to a target position,

then, after a slight pause, move back to the initial position. In the middle

of the trajectory is placed a virtual object. The robot knows the obstacle’s

presence and position, but the human does not. The robot’s nominal tra-

jectory is computed to be collision-free, considering the obstacle known

to the robot.

Figure 6.16a shows the arbitration parameter α variation during the

task. In particular, around second 4, the robot approaches the object, and

do is low. Moreover, dws increases, making α low and the robot close to its

nominal trajectory.

This experiment computes the capability of the three controllers to

avoid any collision. Figure 6.16b shows an average of the index (6.34)

computed for all the subjects. As clearly visible, in the MG case, because

the robot cannot exert any force, the human is not aware of the robot’s

intention and collides with the virtual obstacle. In the GT and IMP cases,

the human can almost always avoid the obstacle, even if it is unknown,

because the robot pulls the human to its collision-free trajectory, helping

him avoid it. In this case, GT and IMP behave similarly in proximity to

the obstacle.

Figure 6.15 shows the trajectories followed by the robot tip with the

three controllers and the nominal collision-free trajectory computed by

the motion planner. As visible, the IMP and GT controllers allow the

robot to pull the human and its tip close to the nominal collision-free

trajectory, allowing the task’s success. On the contrary, in the MG case,

no force can be exerted, and the robot cannot prevent collision with the

obstacle.
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Figure 6.15: The end-effector trajectories in the Cartesian space in the first set
of experiments. The GT and IMP controllers can safely avoid the obstacle by
imposing force on the human. The MG controller cannot impose any force and
collides.

6.4.3.2 EXPERIMENT WITH THE OBJECT UNKNOWN TO THE ROBOT

In this experiment, the human leads the robot away from an object known

only to the human.

In this case, because the human knows precisely where the obstacle

is, it is easier for them to avoid it. Hence the index (6.34) was found to

be always zero, and it is not shown here. Conversely, because the human

can move the robot to avoid the obstacle, this may violate workspace

boundaries. Indeed, during the test with the MG controller, two subjects

exceeded workspace boundaries while avoiding the obstacle (the robot

was straight), leading to swift joint motions of the elbow joint and finally

to the robot’s emergency stop. Figure 6.18b shows an average of the

workspace boundaries violation for the three controllers, computed as

(6.35) (the two occurrences described above are not used for index com-
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Figure 6.16: Experiment A: in this case, the human does not know the obstacle’s
presence.

putation, an additional trial was done). The GT controller is the one that

better avoids workspace boundaries violation, allowing safer deforma-

tions compared with the other two controllers.

As visible from figure 6.17, in the case of MG and partially in the IMP,

the trajectory modified by the human exceeds the safe workspace bound-

aries. The workspace boundaries are, in this work, designed according to

the UR specifications. This means the robot can exceed it, as happens in

this experiment. Most positions can be reached but with restrictions on

the tool orientation because the robot cannot reach far enough in some

situations.
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Figure 6.17: The end-effector trajectories in the Cartesian space in the second set
of experiments (humans must avoid an obstacle). The MG and IMP controllers
slightly exceed the workspace boundaries. The RA framework keeps the GT
controller below the dangerous robot’s over-extension. The light green area rep-
resents the allowed workspace.

6.4.3.3 EXPERIMENT WITH ADDITIONAL TARGET POINT

The third case is presented here. The initial and final points of the task

are the same as in the previous experiment, and the robot’s nominal tra-

jectories are the same. An additional target point is in between, and the

human is asked to reach it. Therefore, instead of directly moving toward

the target point, the human has to modify the robot’s nominal trajectory

to reach an intermediate way-point precisely. No obstacles are involved

in the scene, and the robot allows trajectory deformations as long as the

tip is far from the target pose.

The variation of the various indices is visible in figure 6.20a. As vis-

ible, the only phases where the robot leads happen near the target pose,

granting precise position reach. Instead, during the task execution, the
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Figure 6.18: Experiment B: the human deviates from nominal trajectory to avoid
an obstacle unknown to the robot

arbitration parameter lets the human lead (with an exception at the be-

ginning of the task because the starting position is close to the WS bound-

aries), allowing the robot’s behavior to be comparable to the one of the

MG control. The precision of reaching the intermediate way-point is mea-

sured by (6.36), and results of the comparison with MG and IMP are

shown in 6.20b. The robot’s behavior is comparable to the one of the

MG. Therefore, the precision of reaching the target point is comparable

between GT and MG, showing good performances. On the contrary, the

IMP control does not allow substantial trajectory deformations nor the

robot to slow down/stop at a precise way-point, leading to bad perfor-

mances.

Figure 6.19 shows the trajectory executed with the three controllers

to perform this task. As visible, the target via point is unreachable in

the IMP case. This happens because the robot prevents the human from

reaching it since it does not adapt to the human’s intentions. Indeed,

the IMP controller aims at following the predefined trajectory allowing

just minor adjustments given by the interaction, and too high forces are
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required to modify the trajectory substantially.5/5/23, 5:03 PM about:blank

about:blank 1/1

Figure 6.19: The end-effector trajectories in the Cartesian space in the third set
of experiments (humans must reach an additional via point). The IMP controller
does not allow reaching the desired via point because it pulls the end-effector
toward the nominal trajectory far from the via point. The GT and MG controllers
allow for trajectory modification and reach precisely the additional via point.
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Figure 6.20: Experiment C: trajectory deformation

6.4.3.4 GENERAL CONSIDERATIONS

In this subsection, performances comparable for the three controllers are

analyzed.

Figure 6.21a shows results for the force index in (6.33). In general, the

IMP controller is the one that presents a higher required force to complete

the task for all the cases. This happens because the controller treats hu-

man forces as external disturbances and the virtual spring always tends

to steer the system to the reference position.

MG and GT show comparable forces in the case the human knows the

obstacle and moves the robot to avoid it. Considering the case where the

robot knows the obstacle’s presence, the GT case exchanges more force

because the robot must impose a force to attract the robot end-effector on

the safe collision-free nominal trajectory. Such a force represents a hap-

tic channel of communication that makes the human aware of the robot

wanting to take the lead. In the MG case, the exchanged force is lower

because the robot follows the human without steering capability. This

situation is not applicable because it leads the system to a collision. Fi-
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nally, in the case of additional via point reaching, the MG control requires

some additional force if compared with the GT control because it always

requires force to move in the same direction. In the GT case, the force can

be reduced as the robot assists in moving in the desired direction.

The capacity to reach with precision the final point is in figure 6.21b.

As expected, in the MG case, the capacity to match the final point is left

to human ability, leading to the highest values for all three experiments.

The performances of GT and IMP are comparable, as the two methods

are very similar in behavior when the arbitration parameter α is low.

Finally, note that the robot’s nominal paths are precomputed for each

experimental scenario and kept the same for each experiment. This choice

is made to compare each experiment avoiding dependencies of the var-

ious indexes (in particular (6.33), (6.34) and (6.35)) from different path

lengths. This may raise the reasonable question of how different paths

and path lengths influence the indexes evaluations. In general, differ-

ent values for the indexes are expected with different path lengths, as

they strictly depend on the interaction time or the percentage of interac-

tion along the full path. Despite this, similar results are expected when

comparing the same controllers on the same path, even if it is shorter

or longer than the ones proposed in this work. For example, consider a

longer path for the experiment presented in section IV-A. For sure, the

values visible in 6.16b will be different, as the percentage computed de-

pends on the path length. Despite this, the proposed method still allows

the user to avoid the unknown obstacle better than the MG and IMP con-

trollers.
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(a) Forces exerted by the human while
performing the task with the three con-
trollers. P-values are (0.9560, 0.0067,
0.0130, 0.0126, 0.0005, 0.0003). The null
hypothesis is rejected between GT and
MG if the human deviates from the
robot. The null hypothesis is rejected be-
tween GT and IMP if the robot deviates
from the human trajectory. The null hy-
pothesis is confirmed for the free robot
motion
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Figure 6.21: Evaluation of indexes for the three trajectories

6.5 USE-CASE SCENARIO

Finally, this section presents the application of the Role Arbitration con-

troller presented in the section above to a real industrial use-case. The

role arbitration method is implemented in a real scenario for the manip-

ulation of flexible materials. In particular, the co-manipulation of large

carbon fiber ply is addressed.

6.5.1 TASK DESCRIPTION

The selected use-case scenario involves a human and a robot that must

co-manipulate a set of large carbon fiber plies of different shapes. The

material is pre-preg, meaning that the fibers are pre-impregnated with
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the polymer matrix. Such material is commonly used for applications

that require strong mechanical properties and low weight, such as in

the aerospace and high-performance automotive industries. The specific

use case is designed for the production of the spoiler of the Dallara "La

stradale" car. One of the main issues in composite material production is

the precise positioning of the carbon fibers. Indeed, carbon fibers have

exceptional mechanical characteristics but can only bear tensile stresses,

not compression or shear. Therefore, the fibers must be aligned accord-

ing to the design phase to guarantee that the most stressed points do not

break. Moreover, the specific use-case also must fulfill aesthetic require-

ments.

In this context, the robot is fundamental because of its precision. It can

indeed position precisely the so-called First Lamination Point (FLP) of

carbon fiber plies. The FLP is the point of the ply from which the draping

process begins. If the FLP is positioned with the required precision, then

the draping is very likely to be made as designed. Therefore, the robot

must (i) pick the ply in the precise position and (ii) move the ply into

the mold to guarantee that the FLP is in the correct position. The main

issue when the robot has to manipulate large plies is that it has a limited

workspace, and it might be difficult for the robot to properly grasp and

position the entire ply.

The human, for his part, has a large workspace, as it can freely move.

Another relevant property of humans is that they can easily handle un-

foreseen situations, such as an obstacle in between the path, and take

action to avoid it. Finally, regarding the specific composite material man-

ufacturing, the human operator must perform the draping task, which is

too complex a task to be automatized because the material is sticky and

flexible, and the mold might have angles and slopes that the robot cannot

handle.

For these reasons, it is reasonable for humans and robots to cooperate
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in handling and manufacturing large plies. The complete task is com-

posed of various sub-tasks, that require different levels of autonomy for

both agents in the manufacturing scene. The full draping procedure steps

are detailed in the Appendix A.4.

The most delicate sub-task is collaborative transport. In this situa-

tion, the role of leader continuously moves from the human to the robot

and vice versa. This happens particularly because the workspace of the

robot can be limited, the robot can be huge, and the ply and the gripper

and other features might partially occlude the human sight. In partic-

ular, in the proposed use-case, the workspace is limited by walls and

cell dimensions, and the gripper is particularly massive. These make the

co-manipulation particularly challenging because the human has limited

control of the rear of the gripper, which is not visible and far from the ro-

tation point. This fact that the rear of the gripper is far from the rotation

point means that even small rotations of the ply imply a large linear mo-

tion of the rear of the gripper. Therefore, the Role Arbitration law must

avoid any collisions, still allowing the human to lead the task when far

from collisions.

6.5.2 VIRTUAL FORCE ESTIMATION

This thesis’s previous work relies on force exchange between humans

and robots, measured through the force-torque sensor. Forces are ex-

changed either directly grasping the robot tip as in 4.5, or with a rigid

object in between, as in 4.17c. Nevertheless, the proposed use case ad-

dresses the co-manipulation of a flexible, large object. Being the object

flexible, with a stiffness comparable to the one of a cloth or sheet, the

force can only be imposed with traction when the fabric is fully extended

and has some tension. This makes the measurement complex, even im-

possible, and unreliable when the fabric is not fully extended. To over-

come this issue, a method to estimate a virtual exchanged force uh has to
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be defined.

The method proposed in this work relies on the relative distance be-

tween the human and the robot. This implies that the ply, during the

co-manipulation, must always be without tension. Otherwise, the ply

deformation will always be the same for any applied force. Therefore,

we define a nominal distance lower than the maximum allowed by the

ply. That distance, call it d0
2 represents the zero-wrench state. Therefore,

any deformation with respect to such a pose is defined by the distance be-

tween the human and the robot d. The difference ∆d = d − d0 can be seen

as a force that the human imposes on the system. Finally, since typically

wrenches have magnitudes different from the deformations allowed by

the co-manipulated plies, the relative distances are multiplied by a vector

of gains Kd to convert them into wrenches, resulting into

uh,d = Kd ∆d (6.37)

The distance d is measured from the middle point between the hands

of the human, as shown in figure 6.22. To evaluate the position of the

Figure 6.22: The distance between the human and the robot in yellow. The dis-
tance is measured from the median point between the two hands.

2the distance is described as a vector containing position and rotation information
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hands, several methods can be used. It is possible to use skeleton track-

ing methods to find the hands’ positions but this approach typically does

not guarantee a high frame rate because it requires relatively long im-

age elaboration. Another possibility is the use and tracking of fiducial

markers [115], which allows a higher frame rate. A different and novel

approach relies on mapping deformations of the ply and distances from

the human [125]. This approach requires the training of a Convolutional

Neural Network. After that, it is capable of estimating the distance just

by looking at the shape of the ply. The last approach is used for the ex-

periments presented in this section.

6.5.3 ROLE ARBITRATION LAW

The Role-Arbitration law, for the proposed use-case takes inspiration from

what is proposed in subsection 6.4.1.2, simplifying it a little. We do not

consider singularities and joint limits for the use-case since the proposed

task does not involve dangerous motions that can reach such limitations.

Moreover, to properly consider the size of the gripper, we also do not

directly consider workspace boundaries. Indeed, workspace boundaries

are computed for a single point (the TCP) and do not consider oversized

grippers. Therefore, we consider workspace boundaries as collision ob-

jects. In this way, managing proximity is easier both from a logical and a

computational point of view. The cell is visible in figure 6.23, the yellow

walls represent the workspace boundaries as collision objects.

The role arbitration law, in the end, reduces to measure the distance

from target dtrg as in (6.31), and the distance from collisions do as in (6.29).

The two values are modulated by a sigmoid function defined as in (6.4),

to obtain αtrg = σ(dtrg), and αo = σ(do), with σ denoting the sigmoid

function. Finally, the parameter α is computed as

α = min(αtrg, αo) (6.38)
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Figure 6.23: The cell and its boundaries, defined as collision objects in yellow.

6.5.4 EXPERIMENTS

To verify the proposed method in the use-case scenario, we also compare

with results obtained using a pure Manual Guidance (MG) controller.

When the MG controller is used, the robot only follows human inten-

tions and reduces the ply deformation by trying to keep it undeformed.

Therefore, it allows co-transportation of large plies that otherwise would

be unfeasible for a single human.

6.5.4.1 PERFORMANCE INDEXES

We compare the success rate of the task by using the proposed Role ar-

bitration method and the standard MG controller. The success rate is

measured as three divided by the number of trials nt required to reach
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three times the target pose of the FLP, as

Sr =
3
nt

(6.39)

A task is not considered complete if the robot stops due to safety stops

caused by the gripper exceeding some safe zone installed into the robot

controller. Such safe zones are necessary to prevent the robot from collid-

ing with the external walls and are conservatively positioned 10 centime-

ters from the wall and cell boundaries. We use the same distance to add

the yellow collision walls into the scene for the role arbitration.

We also measure the absolute time T required to reach the target pose

within a certain tolerance. The tolerance is set to be tol = 30mm, and the

distance is measured as the Euclidean distance between the current pose

xc and the target xtrg of the FLP. When d(xtrg − cc) < tol the task ends. T

is measured for the three times the task is a success, with the same data

used to compute Sr. To summarize, T is measures as

T = min{t|d(xtrg − cc) f tol} (6.40)

Another interesting measure is the time required to complete the task

in the collaborative modes with respect to the nominal computed trajec-

tory for the robot only. We measure it as

∆T% =
T − Tn

Tn
(6.41)

where T and Tn represent the time required to perform the actual trajec-

tory and the nominal time, respectively.

To see how much the actually executed trajectory deviates from the

nominal, we also compute the Dynamic Time Warping (DTW) [112]. The

DTW provides information about the geometrical distance between two

trajectories without taking into account the time and possible time shifts
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between the two trajectories. It is useful to see how well the coopera-

tive trajectory executed tracks the original path. Indeed, following the

nominal path represents a great advantage in the case the trajectory is

computed to comply with ergonomic constraints. In this case, the role

arbitration algorithm can also help the human work in ergonomic condi-

tions that might be lost if the human guides the robot.

We do not directly measure the precision with which the robot posi-

tions the FLP with respect to its target pose. This is because the collabora-

tive transportation ends when the FLP approaches the goal pose within

a tolerance. Therefore, the tolerance represents the maximum precision

that we can reach.

A total of three subjects performed the experiments. Each subject is let

to practice with the controller before collecting data. Each subject knows

which control mode is active - either MG or RA - during each task. This

is necessary to let the human know that the robot wants to lead when

it requires control to avoid collisions. One of the subjects has previous

experience with this kind of controller, while it is the first time for the

other two.

6.5.4.2 RESULTS

Table 6.3 shows results relative to the success rate Sr from (6.39). In the

manual guidance case, not all the users completed the task successfully

at each trial. This is mainly due to the fact that, after picking up the ply,

it was very complex to lead the robot far from the picking pose. This is

because the gripper is huge and has to rotate by more than 90◦. Such a

rotation applies around the grasping point of the ply, located on one side

of the gripper. Therefore, even a small rotation around that point causes

a large motion at the rear of the gripper. The grasping point is close to

a wall, and this makes it extremely complex to move the robot. In the

failure cases, the gripper hit the safety fences placed to prevent the robot
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from colliding with the wall, and the task stopped. On the contrary, in

the RA case, when the gripper approaches the wall (i.e., the safety fences),

the robot knows the risk of a collision and takes control over the human

to recover the pre-computed safe and collision-free nominal trajectory. in

this way, it is possible to avoid hitting the safety, and 100% of the trials

succeeded.

MG GT
usr1 100% 100%
usr2 75% 100%
usr3 60% 100%
total 75% 100%

Table 6.3: The success rate for the three users and the global using the two con-
trollers.

In figure 6.24, the indexes relative to the total time T, the percent-

age increment ∆T%, and the DTW are visible. In particular, figure 6.24a

shows the time required to perform the task with the two controllers, for

the three users. It is visible that the MG case takes about three times more

than the time required to reach the target pose xtrg in the RA case. This

is because of two main reasons. First of all, as already discussed, it is

quite complicated to rotate the large gripper in the narrow spaces of the

cell. In the MG controller case, the operator needs to be careful and care

for avoid collisions during the co-manipulation. Therefore, each motion

performed is small and slow, and sometimes the operator must also plan

in advance and reason about the next move. Instead, in the RA case, the

robot helps the human remain in a safe operating zone, and the operator

is more confident in performing faster and larger motions. The second

reason for the great improvement provided by the RA compared to the

MG controller is because when approaching the xtrg, the robot helps the

human and moves the FLP towards its target pose. In the MG case, the
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human must place the ply exactly at the FLP pose without any help. This

task is also very complex because even with a visual reference of where

the robot must go, it is not easy to move with precision the huge gripper

when the only communication channel is a large, deformable ply. Indeed,

if the object were rigid, force feedback would be more intuitive for man-

ual guidance. Moreover, being the ply large and long, the human is far

from the target point, and from the operator’s point of view, it might not

be clear where the FLP is with respect to its target pose.

Figure 6.24b shows results for ∆T%. In this case, it is clearly visible

that the RA controller allows for reducing the execution time if com-

pared with the MG, with respect to the nominal execution time. Note that

the nominal trajectories are computed by a sample-based motion planner

(RRT), therefore the trajectories are not always repeatable, and their exe-

cution time might vary a lot. The interesting result, in this case, is that the

actual execution time with respect to the nominal execution time is more

close in the RA case. Despite being almost double with the RA controller,

with the MG controller, the execution time rises up to five times more

than the nominal one. Consider that the motion planner should also be

"human-aware", and should plan a trajectory that is ergonomic and natu-

ral for the human 3. In this case, it is expected that executed and planned

times do not differ that much. This is very useful for plant scheduling of

tasks and making reliable forecasts on production times, for example.

Finally, figure 6.24c presents the DTW index. The lower the DTW

value is, the more similar the two trajectories are. This shows that, in the

RA case, the actually executed trajectory is more similar than in the MG

case with respect to the nominal one. In general, it is not fundamental

that the executed and the planned trajectories are similar. Despite this,

it can present some advantages. Consider a human-aware, ergonomic,

3The design of a human-aware, ergonomic, natural motion planner is out of the scope
of this work. Despite this, its integration is foreseen and more results will be presented
in future works.
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Figure 6.24: Evaluation of the indexes for the three subjects.

motion planner. In this case, it is very useful that the human follows

the trajectory which is planned to be ergonomic. This can avoid long-

term injuries due to wrong postures and working conditions. Moreover,

consider an optimal motion planner. In this case, the closer the actual

trajectory is with respect to the planned one, the more close-to-optimal

it is. This can further improve cycle times if the trajectory is computed

with that objective. Then consider that some areas in the cell might not be

safe for working. The motion planner can plan a trajectory to avoid such

areas. The closer the actual trajectory is, the safer it is. This last example is

actually what happens in the proposed use-case scenario when the robots

avoid the human from hitting the safety fences by recovering its nominal

trajectory.

Figure 6.25a shows the variation of the arbitration parameter α dur-

ing the execution of collaborative transportation. In the beginning, the

pick pose is close to the safety fence, α is not exactly one, and the human

is helped in moving away from that situation until α is one. As the hu-

man moves the robot, it approaches the safety fences, the distance from

collisions drops, and so it does α, around second 13. After this point,

the robot is blandly in command of the task and moves slowly toward
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the target pose. As soon as the dtrg component gets lower than the do,

the robot strongly takes control of the task, and α quickly goes to zero,

around seconds 33. After this point, the robot is in almost full command

of the task and gets precisely to the target pose xtrg.

Figure 6.25b shows the nominal and actual trajectories based on the

arbitration in 6.25a. At the beginning (rear part of the image), the human

can command the robot, and the two trajectories substantially differ. In

particular, in this case, the motion planner (recall that is it sample-based,

not human-aware, etc.) plans a trajectory (in red) that is not comfort-

able for the human as it rises a lot before descending to the target pose.

Therefore, the human is allowed to modify it and the current trajectory

(in blue) seems more reasonable. In the final part of the trajectory, in the

bottom right, the two trajectories slowly rejoin until the final point where

they match exactly.
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(a) The RA arbitration parameters variation
along the task.

(b) The nominal and modified trajectories

Figure 6.25: The RA parameters and the corresponding trajectories

Finally, figure 6.26, shows the two trajectories in the real scenario.
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Figure 6.26: The nominal and actual trajectories in the cell.

6.5.4.3 CONCLUSIONS

This use-case shows that the RA mechanism is useful in handling real

industrial scenarios. It is shown that with such an approach, the success

rate of the task can be significantly improved. Moreover, the execution

time drops compared to the standard Manual Guidance control. Also the

time increment and the DTW with respect to a nominal planned trajec-

tory indexes show that the RA control overcomes the MG control. This

becomes even more interesting when an optimal, human-aware motion

planner is used to compute the nominal trajectory. In this case, it is pos-

sible to make reliable forecasting on execution times and it is possible to

let operators work in safe conditions, avoiding dangerous areas of the

workcell. A novel motion planner will be integrated in future work to

show that it can further improve the execution time and safe working

conditions.
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CHAPTER 7

PREFERENCE BASED
OPTIMIZATION OF PHRI

CONTROLLERS

The aim of this chapter is to present a method for tuning a pHRI con-

troller based on the preferences of different subjects. Because different

tasks may require different tuning, it is important that such a procedure

is fast and easy. Moreover, interesting results can be observed as gen-

eral human preferences. We tested our methodology on two different

tasks, one requiring precise path following and the other requiring a fast

and large motion toward a target position. The data are analyzed to see

general human behavior and preferences. Finally, a questionnaire is pro-

posed to the users to check this method’s applicability in real environ-

ments, involving time required for tuning and satisfaction.
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7.1 METHOD

Consider the Cartesian impedance system in 3.8, and the Cooperative

Game theoretic framework of 5.2.

7.1.0.1 HUMAN REFERENCE ESTIMATION

In hand-guiding applications, the reference trajectory is typically not known

a priori, and the robot must follow as well as possible human desired ref-

erence. So the problem of estimating the human reference arises. In this

work, We decided to implement an easy yet powerful method based on

the interaction force. The human reference pose is updated at each cycle

by the following:

x+re f = x−re f + Kp,h uh (7.1)

with superscripts + and − referring to the updated and previous poses,

respectively, and Kp,h defines a coefficient proportional to the human ex-

erted force. Kp,h is an arbitrary parameter that can be tuned based on

human preference.

7.1.1 PREFERENCE-BASED OPTIMIZATION

The PBO algorithm employed in this paper is based on the methodology

developed in [15] by some of the authors, where the GLISp algorithm

is introduced. In the following, the algorithm is briefly recalled. Please

refer to the original paper for full treatment.

7.1.1.1 BUILDING A SURROGATE FUNCTION FROM PREFERENCES

The objective of the GLISp algorithm is to learn and minimize a surro-

gate function Ĵ : R
nθ → R of an (unknown) underlying performance

index J based on the observed preferences. Given a set of parameters
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Θ = {θ1, . . . , θN} The surrogate function Ĵ is parametrized as a linear

combination of Radial Basis Functions (RBFs):

Ĵ(θ) =
N

∑
k=1

βkφ(γd(θ, θk)), (7.2)

where d : R
nθ × R

nθ → R is the squared Euclidean distance d(θ, θi) =

∥θ − θi∥
2
2, γ > 0 is a scalar parameter, φ : R → R is an RBF, and β =

[β1 . . . βN ]
T are the unknown coefficients to be computed based on the

available user’s preferences. In this work, the Gaussian RBF φ(γd) =

e−(γd)2
is used, for more examples and explanations of RBFs please refer

to [14].

Given two sets of parameters θi and θj with i ̸= j, the preference

function π : R
nθ × R

nθ → {−1, 0, 1} is defined as:

π(θi, θj) =



















−1 if θi “better” than θj

0 if θi “as good as” θj

1 if θi “worst” than θj.

(7.3)

Therefore, the surrogate function Ĵ has to satisfy the following con-

straints:

Ĵ(θi(h)) f Ĵ(θj(h))− σ + εh if π(θi(h), θj(h)) = −1

Ĵ(θi(h)) g Ĵ(θj(h)) + σ − εh if π(θi(h), θj(h)) = 1

| Ĵ(θi(h))− Ĵ(θj(h))| f σ + εh if π(θi(h), θj(h)) = 0

(7.4)

for all h = 1, . . . , M with M number of expressed preferences, where

σ > 0 is a tolerance, and εh is a positive slack variable which is used to

relax the preference constraints.

Defining with ∆ Ĵh = Ĵ(θi,h)− Ĵ(θj,h) = φγ
N

∑
k=1

(d(θi(h), θk)− (d(θj(h), θk)βk,
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the coefficient vector β describing the surrogate Ĵ is the solution of the

Quadratic Programming (QP) problem, constrained by (7.4):

min
β,ε

M

∑
h=1

εh +
λ

2

N

∑
k=1

β2
k

s.t.∆ Ĵh f −σ + εh, ∀h : bh = −1

∆ Ĵh g σ − εh, ∀h : bh = 1
∣

∣∆ Ĵh

∣

∣ f σ + εh, ∀h : bh = 0

h = 1, . . . , M.

(7.5)

with bh = π(θi(h), θj(h)). The scalar λ > 0 in the cost function (7.5) is a

regularization parameter that guarantees uniqueness in the solution of

the QP problem.

7.1.1.2 ACQUISITION FUNCTION

To guarantee a tradeoff between exploration and exploitation, to generate

a new set of parameters, an acquisition function a(θ) can be defined such

that

θN+1 = arg min
θ∈Θ

a(θ). (7.6)

Let’s define an exploration function as the Inverse Distance Weighting

(IDW)

z(θ) =







0 if θ ∈ {θ1, . . . , θN}

tan−1
(

1
∑

N
i=1 wi(θ)

)

otherwise
(7.7)

where wi(θ) =
1

d2(θ,θi)
.

The acquisition function a : R
nθ → R is constructed as:

a(θ) =
Ĵ(θ)

∆ Ĵ
− δz(θ), (7.8)
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where δ g 1 is an arbitrary exploration parameter and ∆ Ĵ = maxi{ Ĵ(θi)}−

mini{ Ĵ(θi)} is the range of the surrogate function on the samples in Θ

and used in (7.8) as a normalization factor to simplify the choice of the

exploration parameter δ.

After an initialization phase, the following steps are iterated for the

optimization:

i ) generate a new sample by (7.6),

ii ) ask the user to express a preference π(θN+1, θ⋆N);

iii ) update the estimate of Ĵ through (7.5);

iv ) iterate over N.

7.1.2 PARAMETER FOR OPTIMIZATION

To conclude, in this work We are seeking the optimization of the robot’s

weight on the control action (i.e. Rr), the weighting factor of the cost

functions (i.e. α), the proportional gain Kp,h of eq. (7.1).

The Rr is chosen because it affects the cost the robot has on the control

it can provide. As a consequence, the robot’s behavior is more reactive

and can put more effort into the task to track xre f . This is the only pa-

rameter of the robot’s cost function because it is assumed that the Qr is

always 1 on the positions and about 0 on the velocities, null all the rest. In

this way, there is a strict relation between Qr and Rr, in the sense that Rr

is always a fraction of the Qh. Note that this does not change the outcome

of the optimization as min(J) = min(λJ) ∀ λ > 0.

The parameter α represents the solution to the Bargaining problem. It

directly modifies the contribution of the robot into the global cost func-

tion (5.10) and consequently the global optimization (4.16). In general,

high values of α represents more robot contribution and in this work,

more robot assistance.
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Finally, the parameter Kp,h modifies the set-point. At each control

step, the set-point is updated according to (7.1). It is clear that high values

of Kp,h make the updated set-point far from the current one, while low

values make it close. This means that at each control cycle, the farther the

set point is, the higher the control input required to reach it is.

7.2 EXPERIMENTAL VALIDATION

To evaluate the proposed method, We asked 5 healthy subjects, aged be-

tween 27 and 36 years old, to perform two sets of experiments. The sub-

jects have different knowledge and experience in the pHRI field, from

zero experience to some. We defined some numerical indices and a ques-

tionnaire to evaluate objective and subjective performances.

7.2.0.1 DESIGN OF EXPERIMENT

Two sets of experiments are proposed to evaluate the procedure in two

different scenarios. The first experiment wants to evaluate the prefer-

ences of humans in performing a precise task, as a precise path following

in the x–y plane. Subjects are asked to track the path visible in Fig. 7.1.

This task is selected to mimic some typical industrial applications such as

painting, cutting, material deposition, or even teaching-by-demonstration

in hand-guiding applications, where the human drives the robot towards

a path. In these cases, the robot can possibly hold a heavy tool reliev-

ing the operator from the weight, and the human just has to focus on

the guidance asppect. The second task is a reaching task to evaluate the

preferences of humans in performing relatively fast motions without the

necessity to be extremely precise. Subjects are asked to reach a set point

at 650 mm, in the x–y plane. This task is selected to mimic the approach

phase to a target position. In general, these two tasks are selected to

mimic a scenario where the human moves the robot close to a target posi-
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tion, then performs a precise task. It is expected that different preferences

are assigned to different tasks with different goals.

Figure 7.1: A subject performing the path following task. The complete setup is
visible.

For both cases, the human’s cost function is composed of

Qh = diag([1, 1, 0.0001, 0.0001]) and Rh = diag([0.0005, 0.0005]), recov-

ered via Inverse Optimal Control experimentally in a previous work [41].

The impedance parameters are Mi = 10 and Di = 50. The only param-

eters related to the robot which are not optimized during the procedure

are the components of the Qr in the robot’s cost function, which are set

Qr = diag([1, 1, 0.0001, 0.0001]). The robot used for the experiments is a

Universal Robot 5 controlled in velocity at 125 Hz. The human interac-

tive force is measured by a Robotiq FT300 force sensor mounted at the

robot’s end-effector.

The subjects are asked to perform the two tasks as well as possible
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and are asked to give a preference based on the satisfaction of performing

the overall task. In the first case, the subjects are asked to evaluate their

performance in the path following, along with the stress (physical and

mental) required to perform it. In the second case, subjects are asked to

evaluate the support that the robot is able to provide to reach the target

pose quickly and with low effort.

The preferences are expressed, for both experiments, in two steps. An

initial step is necessary to initialize the GLISp. Four experiments with dif-

ferent parameter sets are performed, and the user is asked to rank these

experiments. After that, the best candidate solution found is compared

with a new set, and the user is asked to express a preference. Based on

the preference, the candidate solution is either updated or kept, and the

process is iterated until convergence. We consider convergence when (i)

three times in a row the preferences expressed are "as good as", (ii) three

times in a row the new set of parameters is very similar to the ones sug-

gested previously and discarded, (iii) a maximum number of iteration is

reached.

7.2.0.2 EVALUATION CRITERIA

We used some performance indexes to evaluate the final results and to

analyze relevant trends.

For the first case only, the Dynamic Time Warping (DTW) method

[112] is used to compare the trajectories with the nominal one, to evaluate

how well the preference expressed by the human is able to track it. This

is not applicable to the reaching case because no predefined trajectory is

used, and the subjects are asked to reach approximately a final position.

For both cases, it is possible to measure the force required to com-

plete the task, which is computed as the Root Mean Square (RMS) of the
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measured force as follows:

fRMS =

√

1
tend − t0

∫ tend

t0

f (t)2 dt (7.9)

We measure the fRMS to evaluate how much effort humans like to put

into a task. Indirectly, We want to analyze humans’ preference for hard

or soft haptic feedback in manual guidance applications.

Finally, a quick questionnaire is proposed to the users to evaluate

their feelings on (i) how long was the tuning procedure, (ii) how tiring

it was, and (iii) how much satisfied they are with the optimized param-

eters set. Users are asked to rate on an interval [0,4], with 0 meaning

"no long at all", "no tiring at all", and "not satisfied at all", respectively.

The questionnaire is asked after each optimization (path following and

reaching) to check if there are differences.

7.2.1 RESULTS

Figure 7.2 shows the nominal trajectory (red-dashed), the trajectory with

the best DTW (solid blue), and all the other trajectories performed by a

subject with different parameters during optimization.

We evaluate the DTW to check if the perception of the human on the

best task is also confirmed numerically. In figure 7.3, it is visible for the

five subjects the range of DTW measured with different parameters (for

subjects 2 and 4, the range is cut because a trial was close to instability

and too much high DTW is scored). In red is highlighted the execution

corresponding to the preferred by the human, and in three subjects coin-

cide with the best measured. This study is useful to check that the pref-

erences expressed by the users can also be measured and verified so that

the subjective PBO, in this case, corresponds to objective better results.

A parameter typically used to show the goodness of a proposed pHRI

controller, a measurement of the force exchanged is given, assuming that
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Figure 7.2: Trajectories comparison relative to subject 3. Dashed red is the refer-
ence trajectory, solid blue is the measured trajectory with optimized parameters,
and dotted black are all the other trajectories.

the lower is the best. So, based on the preferences expressed, We want

to see if this sentence is true. The fRMS is visible in figure 7.4, for both

tasks. It is, in general, true that low forces correspond to more pleasant

interaction. Despite this, in a couple of cases, this is not true. This hap-

pens in particular for the reaching task. It seems that humans prefer to

reach the set point quickly rather than save effort. A similar result was

also recovered in [41]

Finally, the preferred parameters set are presented in figure 7.5 for

both tasks for the three subjects. In general, high values of R are pre-

ferred for the path-following task, while low/very low values are pre-

ferred for the reaching task. Recalling that the parameter R is responsible
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Figure 7.3: The DTW relative to various repetitions of the task with different
parameters. In red is highlighted the preference expressed by the user. In three
cases, the preference expressed coincides with the best result, while in the other
two, the preference expressed is anyway very close.

for weighting the robot’s effort in the cost function, high values of R mean

low effort put into the task by the robot. So it makes sense that humans

prefer high assistance for large, fast movements and very little assistance

for small and precise motions. High assistance indeed means faster and

easier reaching of the set point while can introduce oscillation in the case

of small, precise motions.

An opposite behavior is observed for the parameter α, which is, in

general, preferred low for precise path following and high for fast mo-

tions. The reason is the same as for the R. High values of alpha mean, in

the end, higher assistance.
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Figure 7.4: Forces measured. Comparison between the range tested and the
preferred one. Not in all cases, the minimum force means the human preference
(indicated in red).

Finally, for the Kh,p parameter, low values are preferred for both tasks.

This is due to the fact that too high values lead to jerky and unstable

behavior since the set point is put too far and always overshoots the real

desired target pose.

In conclusion, the questionnaire results are presented in table I for the

two tasks. On average, users are pretty satisfied with the results obtained

with the PBO procedure for both cases. Users also found the procedure

not so long and not so tiring for both tasks. The only slight variation

observed is in the length of the procedure, which was found to be a little

shorter for the reaching case. This can be explained easily because the

time required to perform a single reaching task was way shorter than a
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Figure 7.5: Mean optimal values found for the three parameters. On the left are
the parameters related to the path-following task, on the right to the reaching
task

complete path-following task.

Long Tiring Satisfied
Path following 1.25 1.00 2.75
Reaching 0.75 1.00 2.75

Table 7.1: Questionnaire evaluation results.

7.2.2 CONCLUSION

This work presents a method for tuning an assistive game-theoretical co-

operative controller for pHRI. The GLISp algorithm is used to perform

PBO for two different sets of tasks. Results show that the procedure is
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appreciated by the users and is not tiring. Moreover, it is shown that

subjective human preferences are, in general, coherent with numerical

performance indexes. It was also shown that for each subject, different

sets of parameters are preferred for the different tasks, while similar re-

sults are shared between the same task. This suggests that it is possible to

extract general preferences for tuning such controllers based on the task.

To make this approach more general, online variations of such parame-

ters will be considered in future works for different tasks. For instance, a

complete task may require fast motion to a target pose and then precise

path following, so parameters can be changed smoothly on-the-fly. In

that case, optimization of the transition function will be investigated.
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CHAPTER 8

CONCLUSIONS AND FUTURE
WORKS

8.1 CONCLUSIONS

This thesis aims to implement controllers for physical Human–Robot In-

teraction (pHRI) by describing the interaction within a Differential/Dy-

namic Game-Theoretic (DGT) framework. A DG involves several com-

ponents; some are imposed by the game, such as the system dynamics.

Some others depend on each player, the mode of the game, and the infor-

mation available. Therefore, this thesis, on the one hand, addresses the

modeling of the human as a rational player to include it in a DGT frame-

work; on the other hand, it investigates the robot’s parameters tuning to

make such an interaction smooth and comfortable for the human.

The model of the human represents a crucial piece of information to

formulate the DGT problem. In 4.1, this thesis studies human behavior

as a linear state-feedback controller. The human is modeled as a gain ma-

trix that multiplies the system’s state. Such a gain matrix, which in con-

trol theory is typically obtained by appropriate tuning procedure (e.g.,
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Pole Placement, LQR), is unknown in the case of a human. Moreover, it

is time-variant according to the actual human behavior. This thesis ad-

dresses the identification of such an unknown, time-variant gain matrix.

Starting from observations of the interaction, an Extended Kalman Filter

(EKF) is implemented to show the feasibility of online recovery of the

matrix. Augmenting the state with the unknown control gains makes it

possible to identify them online. Simulations and experiments involving

a reaching task and time-varying control laws are proposed, comparing

EKF with a modified Least Squares method (LS) and a Recursive Least

Squares (RLS). The results show that the EKF approach performs better

than the LS and RLS methods, particularly in identifying the gains in the

time-variant cases. Finally, experimental results show that the EKF ap-

proach is more stable than LS and performs better than RLS and LS.

This study opens the way to Inverse Optimal Control (IOC) method-

ologies, which are also investigated in 4.2. Given that a human can be

described as a linear-state feedback controller, it is possible also to an-

swer the question, "How does a human obtain such a control law?". This

question is investigated in 4.2. It is hypothesized that a human behaves as

an optimal controller. Therefore, he/she has a cost function that wants to

minimize. As a first approximation, this work assumes that the cost func-

tion of the human is quadratic in the state and control effort, leading to an

LQR formulation. Since the objective is to recover the cost function, the

problem is proposed as an Inverse Optimal Control (IOC) problem. Ex-

periments are proposed to show that, under some approximation, even a

simple quadratic cost function can describe human behavior. IOC is used

to recover the cost functions of three subjects performing a reaching task

interacting with different robot behaviors. The results show that even if

a single cost function cannot capture the human complex behavior, there

are certain relations between the cost parameters and different (in mag-

nitude of motion) tasks. The most relevant result is that humans tend to
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keep the required time as constant as possible when performing a task.

The recovered cost function is used for the Game-Theoretical formulation

of the interaction in the experimental section of this thesis, in 6 and 6.3.

Another fundamental piece of information to formulate the Game-

Theoretical problem is the knowledge of the intention. This thesis de-

fines human intention as the desired trajectory that the human wants

to follow over a finite rolling prediction horizon. Chapter 4.3 presents

a method for predicting the desired human trajectory over a finite time

horizon. The model of the human is described with a Recurrent Neural

Network (RNN) trained on real interacting data. The model needs an

iterative training procedure to reduce the prediction error, which is time-

consuming and does not generalize to different users or situations. To

overcome this issue, we propose a Transfer Learning method that adapts

the model to new users and situations. The approach is validated with

real-world experiments. Different prediction horizons are also evaluated

to show the dependency of the error. The time required by the differ-

ent training steps is evaluated, showing that the TL approach reduces

the time necessary to train the model. Finally, the assistive controller en-

hanced by the RNN+FC model is compared to standard controllers used

in pHRI.

Once all the necessary blocks of the GT controllers are available, it

is possible to formulate the Game-Theoretical problem for the Human–

Robot interaction. This thesis proposes two different approaches, one

time-continuous and the other time-discrete. The two models are pre-

sented in 5 and 5.3. The models are also deeply analyzed with simula-

tions to show how they can be used according to different selections of

the parameters that allow selection. The most relevant finding, which is

the same for both models, is that the Cooperative formulation perfectly

suits the situation where the robot should assist the human partner. Con-

versely, the Non-Cooperative formulation allows the robot to lead the
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action when required.

6 proposes different GT-based controller implementations of the co-

operative mode considered. The two control schemas, continuous and

discrete, are used with the human intention estimation module to evalu-

ate the assistive capabilities of the GT-based controllers compared with

standard controllers, Manual Guidance (MG), and Impedance control

(IC). Results show that the performances improve when using the as-

sistance provided by the GT modeling. In the GT-dMPC case, results

show that the proposed controller can provide better assistance in vari-

ous tasks by reducing the required interaction force and allowing better

precision in stable positioning around a target pose. The assistive compo-

nent does not introduce any additional oscillation, allowing natural inter-

action with the human. The final subjective questionnaire shows that the

users generally appreciate the proposed controller better than the other

two.

Then, the Cooperative scenario is also studied for a trajectory follow-

ing task, with role arbitration. The proposed controller is compared with

other MG and IC controllers with different tuning parameters. The re-

sults show that being equal to the capability of the four controllers in fol-

lowing the nominal geometrical path under human-robot cooperation,

the CGT controller outperforms the others in trajectory following. More-

over, even if the LIC requires less interaction force to accomplish the task,

it shows the lowest capability in trajectory tracking, and the CGT also re-

quires low interaction forces. As a remark, a similar interaction force can

be obtained for the CGT controller by tuning the parameters differently.

Interestingly, it can be noted that the critical damping value varies from

lower than critical to higher than critical, according to the role adapta-

tion. This effect allows the robot to have a more damped behavior when

the human is leading, allowing smooth motion. In contrast, a low damp-

ing ratio allows better and faster trajectory tracking when the robot is
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leading.

Finally, the Role Arbitration is achieved by dynamically switching be-

tween the Cooperative and the Non-Cooperative models. A Fuzzy Logic

System defines an arbitration function capable of considering various

dangerous situations to modify the arbitration parameter α. This arbitra-

tion function is a hybrid controller that behaves as empowering manual

guidance when dangerous situations are not foreseen while moving to

a behavior closer to impedance control when the robot approaches dan-

gerous situations. Experiments show that the proposed controller out-

performs the other two (MG and IC) in various situations.

The same approach is also used in an industrial use-case to co-manipulate

large, flexible carbon fiber patches. In the application scenario, results

show that with Role Arbitration, it is possible to reduce the number of

errors during the execution of the collaborative transportation. The time

required reduces dramatically compared to Manual guidance and also

allows for lower deviations from a nominal trajectory.

This thesis’s last chapter is dedicated to studying human preferences.

All the proposed control schema and applications require tuning of a set

of parameters that govern the robot behavior. Therefore, it is essential for

a personalized interaction to allow users to tune such parameters accord-

ing to their preferences. This thesis proposes Preference-Based Optimiza-

tion (PBO) to tune the parameters according to human desire. Moreover,

the set of parameters analysis shows that different sets should be used

for different tasks. Two tasks are proposed to the users: one that requires

precise path following and the other that requires fast teaching of a tar-

get. A general trend demonstrates that humans require different robot

behaviors depending on the task.
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8.2 FUTURE WORKS

Because of the main limitations due to the general human modeling, fu-

ture works will investigate online Inverse Reinforcement Learning (IRL)

and Inverse Optimal Control (IOC). In this way, it will be possible to re-

cover the human cost function online, adapting the robot’s behavior to

the current status of the human, to different subjects, and so on.

Significant improvement will also be implemented within the GT-

dMPC framework, the Role Arbitration mechanism. In doing this, an

online motion planning module can bring significant improvement. In-

deed, in this way, it will always be possible to compute, online at each

time step, a collision-free connecting trajectory from the current status of

the robot to the nominal pre-computed (offline) trajectory of the robot.

So, when the robot requires control, it can reconnect with the initially

planned trajectory in a safe way.

Finally, possible nonlinear modeling of human behavior and adopt-

ing more complex cost functions that consider other components than

only the current state and the effort will give the robot more complete

information and make the interaction more natural.
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[114] S. Musić and S. Hirche. Haptic shared control for human-robot

collaboration: A game-theoretical approach. IFAC-PapersOnLine,

53(2):10216–10222, 2020. 21st IFAC World Congress.

[115] S. Mutti, G. Dimauro, and N. Pedrocchi. Kinematic-aware UKF-

based fast fiducial marker tracker. In E. Stella, F. Soldovieri,

D. Ceglarek, and Q. Kemao, editors, Multimodal Sensing and

Artificial Intelligence: Technologies and Applications III, volume

12621, page 1262115. International Society for Optics and Photon-

ics, SPIE, 2023.

[116] A. Mörtl, M. Lawitzky, A. Kucukyilmaz, M. Sezgin, C. Basdogan,

and S. Hirche. The role of roles: Physical cooperation between hu-

mans and robots. The International Journal of Robotics Research,

31(13):1656–1674, 2012.

[117] F. Müller, J. Janetzky, U. Behrnd, J. Jäkel, and U. Thomas. User

force-dependent variable impedance control in human-robot inter-

action. In 2018 IEEE 14th International Conference on Automation

Science and Engineering (CASE), pages 1328–1335, 2018.

[118] X. Na and D. Cole. Theoretical and experimental investigation of

driver noncooperative-game steering control behavior. IEEE/CAA

Journal of Automatica Sinica, 8(1):189–205, 2021.

[119] X. Na and D. J. Cole. Linear quadratic game and non-

cooperative predictive methods for potential application to mod-

elling driver–afs interactive steering control. Vehicle system

dynamics, 51(2):165–198, 2013.

210



BIBLIOGRAPHY

[120] X. Na and D. J. Cole. Game-theoretic modeling of the steering in-

teraction between a human driver and a vehicle collision avoidance

controller. IEEE T HUM-MACH SYST, 45:25–38, 2015.

[121] X. Na and D. J. Cole. Modelling of a human driver’s interaction

with vehicle automated steering using cooperative game theory.

IEEE/CAA Journal of Automatica Sinica, 6(5):1095–1107, 2019.

[122] X. Na and D. J. Cole. Experimental evaluation of a game-theoretic

human driver steering control model. IEEE Tran on Cyb, pages

1–14, 2022.

[123] J. F. Nash. The bargaining problem. Econometrica, 18(2):155–162,

1950.

[124] G. Nicola, E. Villagrossi, and N. Pedrocchi. Human-robot co-

manipulation of soft materials: enable a robot manual guidance

using a depth map feedback. In 2022 31st IEEE International

Conference on Robot and Human Interactive Communication

(RO-MAN), pages 498–504, 2022.

[125] G. Nicola, E. Villagrossi, and N. Pedrocchi. Co-manipulation of

soft-materials estimating deformation from depth images. Robotics

and Computer-Integrated Manufacturing, 85:102630, 2024.

[126] D. Nicolis, M. Palumbo, A. M. Zanchettin, and P. Rocco. Occlusion-

free visual servoing for the shared autonomy teleoperation of dual-

arm robots. IEEE Robotics and Automation Letters, 3(2):796–803,

2018.

[127] D. Nicolis, A. M. Zanchettin, and P. Rocco. Human intention esti-

mation based on neural networks for enhanced collaboration with

robots. In 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 1326–1333, 2018.

211



BIBLIOGRAPHY

[128] M. A. K. Niloy, A. Shama, R. K. Chakrabortty, M. J. Ryan, F. R.

Badal, Z. Tasneem, M. H. Ahamed, S. I. Moyeen, S. K. Das, M. F.

Ali, M. R. Islam, and D. K. Saha. Critical design and control is-

sues of indoor autonomous mobile robots: A review. IEEE Access,

9:35338–35370, 2021.

[129] O. S. Oguz, Z. Zhou, S. Glasauer, and D. Wollherr. An inverse opti-

mal control approach to explain human arm reaching control based

on multiple internal models. Scientific reports, 8(1):1–17, 2018.

[130] R. Palm, R. Chadalavada, and A. J. Lilienthal. Recognition of

human-robot motion intentions by trajectory observation. In 2016

9th International Conference on Human System Interactions (HSI),

pages 229–235, 2016.

[131] Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish. Recent

progress on programming methods for industrial robots. Robotics

and Computer-Integrated Manufacturing, 28(2):87–94, 2012.

[132] L. Peternel, N. Tsagarakis, D. Caldwell, and A. Ajoudani.

Robot adaptation to human physical fatigue in human–robot co-

manipulation. Autonomous Robots, 42:1011–1021, 2018.

[133] B. S. Peters, P. R. Armijo, C. Krause, S. A. Choudhury, and

D. Oleynikov. Review of emerging surgical robotic technology.

Surgical endoscopy, 32:1636–1655, 2018.

[134] T. Petković, D. Puljiz, I. Marković, and B. Hein. Human in-

tention estimation based on hidden markov model motion val-

idation for safe flexible robotized warehouses. Robotics and

Computer-Integrated Manufacturing, 57:182–196, 2019.

[135] J. W. Polderman and J. C. Willems. Pole placement by state feed-

212



BIBLIOGRAPHY

back. In Introduction to Mathematical Systems Theory, pages 311–

339. Springer, 1998.

[136] A. Popovici, P. Zaal, and D. M. Pool. Dual extended kalman filter

for the identification of time-varying human manual control behav-

ior. In AIAA Modeling and Simulation Technologies Conference,

chapter Human Factors, Perception, and Cueing, pages 1–17.

AIAA, 2017.

[137] A. Popovici, P. Zaal, and D. M. Pool. Dual extended kalman filter

for the identification of time-varying human manual control behav-

ior. In AIAA Modeling and Simulation Technologies Conference,

page 3666, 2017.

[138] E. Prati, M. Peruzzini, M. Pellicciari, and R. Raffaeli. How

to include user experience in the design of human-robot in-

teraction. Robotics and Computer-Integrated Manufacturing,

68:102072, 2021.

[139] E. Prati, V. Villani, F. Grandi, M. Peruzzini, and L. Sabattini. Use of

interaction design methodologies for human–robot collaboration

in industrial scenarios. IEEE Transactions on Automation Science

and Engineering, 19(4):3126–3138, 2022.

[140] M. C. Priess, R. Conway, J. Choi, J. M. Popovich, and C. Rad-

cliffe. Solutions to the inverse lqr problem with application to bi-

ological systems analysis. IEEE Transactions on Control Systems

Technology, 23(2):770–777, 2015.

[141] I. Ranatunga, S. Cremer, D. O. Popa, and F. L. Lewis. Intent aware

adaptive admittance control for physical human-robot interaction.

In IEEE Int Conf Rob and Aut (ICRA), pages 5635–5640, 2015.

213



BIBLIOGRAPHY

[142] J. Rawlings, D. Mayne, and M. Diehl. Model Predictive Control:

Theory, Computation, and Design. Nob Hill Publishing, 2017.

[143] J. Rojer, D. M. Pool, M. M. van Paassen, and M. Mulder. Ukf-

based identification of time-varying manual control behaviour.

IFAC-PapersOnLine, 52(19):109–114, 2019. 14th IFAC Symposium

on Analysis, Design, and Evaluation of Human Machine Systems

HMS 2019.

[144] S. Rothfuß, J. Inga, F. Köpf, M. Flad, and S. Hohmann. Inverse opti-

mal control for identification in non-cooperative differential games.

IFAC-PapersOnLine, 50(1):14909–14915, 2017. 20th IFAC World

Congress.

[145] L. Roveda, N. Castaman, S. Ghidoni, P. Franceschi, N. Boscolo,

E. Pagello, and N. Pedrocchi. Human-robot cooperative interaction

control for the installation of heavy and bulky components. In 2018

IEEE International Conference on Systems, Man, and Cybernetics

(SMC), pages 339–344, 2018.

[146] L. Roveda, S. Haghshenas, M. Caimmi, N. Pedrocchi, and L. Moli-

nari Tosatti. Assisting operators in heavy industrial tasks: On

the design of an optimized cooperative impedance fuzzy-controller

with embedded safety rules. Frontiers in Robotics and AI, 6:75,

2019.

[147] L. Roveda, S. Haghshenas, A. Prini, T. Dinon, N. Pedrocchi,

F. Braghin, and L. M. Tosatti. Fuzzy impedance control for enhanc-

ing capabilities of humans in onerous tasks execution. In 2018 15th

International Conference on Ubiquitous Robots (UR), pages 406–

411, 2018.

[148] L. Roveda, B. Maggioni, E. Marescotti, A. A. Shahid,

A. Maria Zanchettin, A. Bemporad, and D. Piga. Pairwise

214



BIBLIOGRAPHY

preferences-based optimization of a path-based velocity planner

in robotic sealing tasks. IEEE Robotics and Automation Letters,

6(4):6632–6639, 2021.

[149] L. Roveda, J. Maskani, P. Franceschi, A. Abdi, F. Braghin, L. Moli-

nari Tosatti, and N. Pedrocchi. Model-based reinforcement learn-

ing variable impedance control for human-robot collaboration.

Journal of Intelligent & Robotic Systems, 100(2):417–433, Nov 2020.

[150] L. Roveda, A. Testa, A. A. Shahid, F. Braghin, and D. Piga. Q-

learning-based model predictive variable impedance control for

physical human-robot collaboration. Art Intell, 312:32, 2022.

[151] L. Roveda, P. Veerappan, M. Maccarini, G. Bucca, A. Ajoudani, and

D. Piga. A human-centric framework for robotic task learning and

optimization. Journal of Manufacturing Systems, 67:68–79, 2023.

[152] S. Saeedvand, M. Jafari, H. S. Aghdasi, and J. Baltes. A compre-

hensive survey on humanoid robot development. The Knowledge

Engineering Review, 34:e20, 2019.

[153] S. Saunderson and G. Nejat. How robots influence humans: A sur-

vey of nonverbal communication in social human–robot interac-

tion. International Journal of Social Robotics, 11:575–608, 2019.

[154] J. Schmidtler, K. Bengler, F. Dimeas, and A. Campeau-Lecours.

A questionnaire for the evaluation of physical assistive devices

(quead): Testing usability and acceptance in physical human-robot

interaction. In 2017 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), pages 876–881, 2017.

[155] A. Scibilia, N. Pedrocchi, and L. Fortuna. Human control model

estimation in physical human;machine interaction: A survey.

Sensors, 22(5), 2022.

215



BIBLIOGRAPHY

[156] M. Selvaggio, M. Cognetti, S. Nikolaidis, S. Ivaldi, and B. Siciliano.

Autonomy in physical human-robot interaction: A brief survey.

IEEE Robotics and Automation Letters, 6(4):7989–7996, 2021.

[157] T. Seo, Y. Jeon, C. Park, and J. Kim. Survey on glass and façade-

cleaning robots: Climbing mechanisms, cleaning methods, and

applications. International Journal of Precision Engineering and

Manufacturing-Green Technology, 6:367–376, 2019.

[158] M. Sharifi, S. Behzadipour, and G. Vossoughi. Model reference

adaptive impedance control in cartesian coordinates for physical

human–robot interaction. Advanced Robotics, 28(19):1277–1290,

2014.

[159] M. Sharifi, A. Zakerimanesh, J. K. Mehr, A. Torabi, V. K. Mushah-

war, and M. Tavakoli. Impedance variation and learning strate-

gies in human–robot interaction. IEEE Transactions on Cybernetics,

52(7):6462–6475, 2022.

[160] A. Sherstinsky. Fundamentals of recurrent neural network (rnn)

and long short-term memory (lstm) network. Physica D: Nonlinear

Phenomena, 404:132306, 2020.

[161] F. Sherwani, M. M. Asad, and B. Ibrahim. Collaborative robots and

industrial revolution 4.0 (ir 4.0). In 2020 International Conference

on Emerging Trends in Smart Technologies (ICETST), pages 1–5,

2020.

[162] F. Sherwani, M. M. Asad, and B. S. K. K. Ibrahim. Collaborative

robots and industrial revolution 4.0 (ir 4.0). In 2020 International

Conference on Emerging Trends in Smart Technologies (ICETST),

pages 1–5. IEEE, 2020.

[163] B. Siciliano and L. Villani. Robot force control. 2000.

216



BIBLIOGRAPHY

[164] D. Sirintuna, A. Giammarino, and A. Ajoudani. An object

deformation-agnostic framework for human–robot collaborative

transportation. IEEE Transactions on Automation Science and

Engineering, pages 1–14, 2023.

[165] D. Sirintuna, I. Ozdamar, Y. Aydin, and C. Basdogan. Detecting

human motion intention during phri using artificial neural net-

works trained by emg signals. In IEEE Int Conf Robot and Human

Interactive Communication (RO-MAN), pages 1280–1287, 2020.

[166] G. L. Smith, S. F. Schmidt, and L. A. McGee. Application of

statistical filter theory to the optimal estimation of position and

velocity on board a circumlunar vehicle, volume 135. National

Aeronautics and Space Administration, 1962.

[167] A. Takagi, G. Ganesh, T. Yoshioka, M. Kawato, and E. Burdet. Phys-

ically interacting individuals estimate the partner’s goal to enhance

their movements. Nature Human Behaviour, 1(3):1–6, 2017.

[168] M. J. Tsai and Y. H. Chiou. Manipulability of manipulators.

Mechanism and Machine Theory, 25(5):575 – 585, 1990.

[169] F. Vicentini. Collaborative Robotics: A Survey. Journal of

Mechanical Design, 143(4):040802, 10 2020.

[170] F. Vicentini. Terminology in safety of collaborative robotics.

Robotics and Computer-Integrated Manufacturing, 63:101921,

2020.

[171] V. Villani, F. Pini, F. Leali, and C. Secchi. Survey on human–robot

collaboration in industrial settings: Safety, intuitive interfaces and

applications. Mechatronics, 55:248–266, 2018.

217



BIBLIOGRAPHY

[172] Y. Wang, Y. Sheng, J. Wang, and W. Zhang. Optimal collision-free

robot trajectory generation based on time series prediction of hu-

man motion. IEEE Robotics and Automation Letters, 3:226–233,

2018.

[173] K. Westermann, J. F.-S. Lin, and D. Kulić. Inverse optimal con-
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APPENDIX A

APPENDIX

A.1 CONTINUOUS TO DISCRETE CONVERSION

Define the discretization interval as δt. This value is typically imposed

by the controlled system. In most of the experiments in this thesis, δt =

0.008s because the UR5 used is controlled at a frequency of 125Hz, which

corresponds to 0.0008 s. The matrices’ conversion from continuous to

discrete is shown below.

Ad = (I + 0.5 A δt) (I − 0.5 A δt)−1 (A.1)

and

Bd = A−1 (Ad − I) ∗ B; (A.2)
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A.2 EKF MATRICES

In the following, the matrices used for the EKF implementation are pro-

vided for the one-DoF case. The observation function h is defined as

h(ζ, w) =

[

x + wx

ẋ + wẋ

]

(A.3)

The matrix Aa is computed as

Aa(ζ, ν) =
∂ f (ζ, ν)

∂ζ

∣

∣

∣

ζ̂
=













0 1 0 0
−(k+k1,h)

m
−(d+k2,h)

m

xre f −x

m
−ẋ
m

0 0 0 0

0 0 0 0













(A.4)

The matrix H is

H(ζ, w) =
∂h(ζ, w)

∂w

∣

∣

∣

ζ̂
=

[

1 0 0 0

0 1 0 0

]

(A.5)

In the 3-DoFs case, such as in the simulation, the matrix Aa becomes

Aa(ζ, ν) =
∂ f (ζ, ν)

∂ζ

∣

∣

∣

ζ̂
=
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(A.6)

A.3 ADDITIONAL RESULTS HUMAN MOTION INTENTION

PREDICTION

This section presents additional results relative to the training of the RNN+FC

model.

A.3.1 ITERATIVE TRAINING

Recalling the method and results presented in 4.3, it follows some results

relative to the trajectories 2 and 3. Note that the various models MK are

trained on the full set composed of the three trajectories. Therefore, the

model is the same for each iteration. Prediction of the four models for the

trajectories 2 and 3 are visible in figures A.1 and A.2, respectively.
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Figure A.1: Iterative training on trajectory 2

(a) M0 (b) M1 (c) M2 (d) M3

Figure A.2: Iterative training on trajectory 2

A.3.2 TRANSFER LEARNING

Transfer learning is tested with a new trajectory, new users, and co ma-

nipulated objects. In this section, results relative to those situations are

presented. In particular, Figure A.3 presents results relative to the Trans-

fer Learning to a new, unseen trajectory, Figure A.4 presents results rela-

tive to the Transfer Learning to new users, and Figure A.5 presents results

relative to the Transfer Learning to new co-manipulated objects.

(a) M3 (b) MTL (c) M3 (d) MTL

(e) M3 (f) MTL

Figure A.3: Transfer learning case I - new trajectory
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Figure A.4: Transfer learning case II - new users
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Figure A.5: Transfer learning case III - new objects

A.3.3 COOPERATIVE GAME THEORY

This section briefly recalls some definitions relative to the Cooperative

Game-Theory For a complete discussion and demonstrations, see [29].
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Definition 3: Pareto optimality

A set of strategies û = {û1, ..., ûN} is called Pareto optimal (or effi-

cient) if the set of inequalities,

Ji(u) f Ji(û) , i = 1, ..., N (A.7)

where at least one of the inequalities is strict, does not allow for any

solution u ∈ U. (J1(û), ..., JN(û)) is called Pareto solution, and the set

of such tuple is the Pareto frontier.

Define the set A as

A :=

{

α = (α1 , ..., αN)|αi g 0 , and
N

∑
i=1

αi = 1

}

Lemma 1: Pareto optimal control

Let α ∈ A. If û ∈ U is such that

û = arg min
u∈u

(

N

∑
i=1

αi Ji(u)

)

then û is Pareto optimal.
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Corollary 1: Pareto optimality

Consider 3.8, 5.8 and 5.9. Under the assumption that Qi g 0 and

Ji(u) are convex. The set of all cooperative Pareto solutions is given

by

(J1(u
∗(α)), ..., JN(u

∗(α))) , α ∈ A

where the corresponding Pareto Optimum is obtained as

u∗(α) = arg min
u∈U

(

N

∑
i=1

αi Ji(u)

)

A.3.4 CGT MATRICES COMPUTATION

In this section, the computations of Qgt, Rgt and zre f are detailed. Rewrit-

ing and rearranging 5.8 and 5.9 leads to

Jh =
∫ ∞

0
( zT (Qh,h + Qh,r) z + zT

re f ,h Qh,h zre f ,h + zre f ,r Qh,r zre f ,r+

−2 zT
re f ,h Qh,h z − 2 zT

re f ,r Qh,r z + uT
h Rh uh ) dt

(A.8)

and

Jr =
∫ ∞

0
( zT (Qr,h + Qr,r) z + zT

re f ,h Qr,h zre f ,h + zre f ,r Qr,r zre f ,r+

−2 zT
re f ,h Qr,h z − 2 zT

re f ,r Qr,r z + uT
r Rr ur ) dt

(A.9)

Combining these equations into 5.10, it results in

Jgt =
∫ ∞

0
( zTQgtz + zT

re f ,h Qh zre f ,h + zT
re f ,r Qr zre f ,r+

−2 zT
re f ,h Qh z − 2 zT

re f ,r Qr z + uT Rgt u ) dt

(A.10)
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with

Qgt = α (Qh,h + Qh,r) + (1 − α) (Qr,h + Qr,r) (A.11)

Qh = α Qh,h + (1 − α) Qr,h (A.12)

Qr = α Qh,r + (1 − α) Qr,r (A.13)

and

Rgt =
[

α Rh 0
0 (1 − α) Rr

]

. (A.14)

Using 5.10, zre f can be computed by:

Jgt =
∫ ∞

0

(

(z − zre f )
T Qgt (z − zre f ) + uT Rgt u

)

dt

=
∫ ∞

0

(

zT Qgt z + zT
re f Qgt zre f − 2 zT

re f Qgt z + uT Rgt u
)

dt
(A.15)

Being constant zT
re f ,h Qh zre f ,h, zT

re f ,r Qr zre f ,r and zT
re f Qgt zre f , the solution

of problem 4.16 is not affected, and the only components in A.10 and

A.15 to be compared are

−2 zT
re f Qgt z = −2 (zT

re f ,h Qh + zT
re f ,h Qr) z (A.16)

Simplifying, zre f results in

zre f = Q−1(zre f ,h Qh + zre f ,h Qr) (A.17)

A.4 DRAPING PROCEDURE

The proposed manufacturing of carbon fiber composite material task re-

quires the following sub-tasks:

1. the ply, placed on a carrier, is localized, and the robot autonomously

approaches it, positioning with precision with respect to the FLP -

figure A.6a;
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2. the robot grasps the ply autonomously with a gripper equipped

with suction caps. One of the suction cups is directly placed on the

FLP - figure A.6b;

3. the robot partially lifts the ply from the side it is attached to au-

tonomously;

4. the human approaches the ply from the side opposite to the robot

one and grasps it - figure A.6c;

5. the human and the robot together lift the ply to avoid any contact

with the carrier, this is necessary to let the CNN model work - figure

A.6d;

6. the human and the robot together move the ply towards the tar-

get pose. In this phase, the Role-Arbitration law is fundamental.

Indeed, by letting the role continuously switch, the robot avoids

collisions with the environment that might be occluded to the sight

of the human, and vice-versa, the human can command the robot’s

motion to comply with the operator’s preferences. Possibly, the op-

erator can also handle unforeseen situations - figure A.6e;

7. the human and the robot roughly approach the target pose of the

FLP with the human leading - figure A.6f;

8. when the FLP approaches its goal pose within a predefined toler-

ance, the role of leader progressively moves from the human to the

robot. The robot finally positions the PLF precisely to its target pose

- figure A.6g;

9. the robot moves toward the mold until the FLP is in contact - figure

A.6h;

10. the robot stops any motion, it applies a force to keep the FLP in

position while the human performs the draping.
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This procedure is performed multiple times until all the plies are draped.
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(a) The robot approaches the ply - au-
tonomous motion

(b) The robot grasps the ply - au-
tonomous motion

(c) The robot lifts the ply - autonomous
motion

(d) The human and the robot lift the
ply - autonomous motion

(e) The human and the robot transport
the ply towards the goal pose - collab-
orative transport with role arbitration

(f) The human leads the task toward
the goal pose - smooth leader role
switch from human to robot

(g) The robot leads the task precisely to
the goal pose - robot leader

(h) The robot approaches the mold to
allow precise draping

Figure A.6: The various steps of the draping process
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