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Abstract

The cryosphere, the region of the Earth where water is stored in its solid form, plays a crucial role

in regulating Earth’s energy balance and contributes to moisture fluxes and freshwater storage

and release, providing water resources to many regions of the world. The cryosphere affects and

is affected by climate conditions, being a driver and a sentinel of climate change, and playing a

role of paramount importance from global to local scale processes. Here, different topics related

to the cryosphere are investigated, spanning from the Greenland ice sheet to the Italian alps.

A climatology of snow depth and snow water equivalent is carried out using a dataset of snow

depth and snow density measurements collected at 299 sites between 1967 and 2020 over a

wide portion of the Italian Alps. By performing different statistical analyses, a decrease of 12

cm every decade in snow depth and 37 mm every decade in SWE has been found since 1967.

Average snow depth in the period 1994-2020 has been 33% lower than in the period 1967-1993,

with stronger effects at low altitudes (reduction of 63% below 1500 m asl).The average SWE in

1994-2020 has been 36% lower than in 1967-1993. These results are confirmed by the increased

elevation of the computed null snow depth elevation and the detected change-points at the end

of the 1980s. The analysis of the HISTALP dataset confirmed the strong dependency of snow

accumulation and melt on air temperature, impacting liquid/solid precipitation separation and

timing of melt onset. The influence of snow on ground at local scale has been investigated

evaluating the contribution of snowmelt to intense rain-on-snow events in Lombardy. By means

of measured temperature, precipitation and snow depth data and the calibration of a snowmelt

model, the timeseries of the combination of precipitation and melt has been obtained for the

fixed durations 1, 3, 6, 12 and 24 h. The annual maxima analysis revealed that snowmelt

increases the quantiles obtained from the selected extreme values distributions of about 2.2%,

with stronger impacts for longer durations, up to 10%. At a larger scale, the analysis of surface

melting over the Greenland ice sheet is of paramount importance to better estimate the ice

sheet contribution to sea level rise. The cross-calibration of five different sensors collecting

satellite data over the Greenland ice sheet between 1979 and 2019 has been performed. The

comparison with in-situ observation and the output of the regional climate model MAR revealed

that a threshold-based melt detection algorithm based on the electromagnetic emission model

MEMLS shows the best performances in capturing surface melting evolution. The long-term

trends analysis showed an increase of surface melting areal extension of about 3.6-6.9% of the

Greenland ice sheet every decade. The melting season has started between 3 and 4 days earlier

and between 3 and 7 days later every decade. The total number of melting days has increase by

3-5 days every decade. A statistical downscaling algorithm for the regional climate model MAR

has been implemented. The comparison with in-situ observations and satellite measurements
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revealed that the downscaled dataset can well capture temperature temporal evolution and

spatial distribution. It better captures at local scale the cumulated surface mass balance,

exhibiting lower errors when compared with measured surface mass balance with respect to

the original modelled output.
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Sommario

La criosfera, la porzione della superficie terrestre dove l’acqua è immagazzinata allo stato solido,

svolge un ruolo di fondamentale importanza nella regolazione del bilancio energetico terrestre e

del ciclo idrologico, fornendo risorse idriche a molte regioni del pianeta. La criosfera, regolando

ed allo stesso tempo essendo influenzata dalle condizioni climatiche, è una importante sentinella

dei cambiamenti climatici, subendone gli effetti e scaturendone ulteriori a scala globale e locale.

In questo studio vengono analizzate diverse tematiche legate alla criosfera, dalle Alpi italiane alla

Groenlandia. Viene studiata in primo luogo la climatologia di altezza ed equivalente in acqua

del manto nevoso (SWE) tramite l’analisi statistica di altezza e densità della neve raccolte

tra il 1967 ed il 2020 in un’ampia regione delle Alpi italiane. Dall’analisi statistica è emerso

che l’altezza neve è diminuita di 12 cm e lo SWE di 37 mm per decade dal 1967. L’altezza

media della neve si è ridotta del 33% nel periodo 1994-2020 rispetto al periodo 1967-1993,

mentre lo SWE del 37%. Gli effetti del cambiamento climatico risultano essere più intensi a

basse altitudini, con una riduzione dell’altezza del manto nevoso del 63% al di sotto dei 1500

m. Questi risultati sono ulteriormente confermati dal change-point trovato a fine anni 1980.

L’analisi del dataset HISTALP mostra la forte dipendenza dell’evoluzione del manto nevoso

dalla temperatura, influenzando lo stato di precipitazione e regolando l’inizio della fusione. Gli

effetti del manto nevoso a scala locale sono stati studiati analizzando il contributo della fusione

nivale nel caso di eventi di precipitazione intensa con presenza di neve al suolo. L’analisi è

stata limitata alle stazioni di Aprica e Pantano d’Avio, in Lombardia, dove sono stati raccolti

i dati di temperatura, precipitazione ed altezza neve dal 1996. Con i dati osservati è stato

calibrato un modello gradi-giorno tramite il quale è stato possibile ricostruire la serie temporale

della somma di precipitazione e fusione nivale per le durate di 1, 3, 6, 12 e 24 ore. L’analisi

degli annual maxima ha mostrato che la fusione nivale contribuisce ad un incremento medio dei

quantili di circa il 2.2%, aumentando con la durata fino a raggiungere, in un solo caso, il 10%.

Ad una più larga scala, lo studio della fusione superficiale della Groenlandia è di fondamentale

importanza nella stima del contributo della calotta di ghiaccio all’innalzamento del livello medio

degli oceani. Sono stati raccolti ed intercalibrati i dati satellitari a microonde passive raccolti da

sensori montati su cinque diversi satelliti tra il 1979 ed il 2019. Il confronto con dati misurati da

stazioni meteorologiche e con simulazioni del modello climatico regionale MAR hanno mostrato

che un algoritmo basato sul modello di emissione elettromagnetica MEMLS riesce a cogliere

l’evoluzione spaziale e temporale della fusione superficiale. L’analisi dei trend di lungo periodo

ha mostrato che la superficie di fusione è aumentata tra il 3.6 ed il 6.9% dell’intera area della

Groenlandia per decennio durante il periodo di osservazione. Inoltre, la stagione di fusione è

iniziata tra i 3 ed i 4 giorni prima e si è conclusa tra i 3 ed i 7 giorni dopo ogni decennio.
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Il numero totale medio di giorni di fusione è aumentato di circa 3-5 giorni per decennio. Per

l’area della Groenlandia è stato poi implementato un algoritmo di downscaling statistico per il

modello MAR. Il confronto con le misure di temperatura delle stazioni meteorologiche e con i

dati di temperatura superficiale rilevati dal satellite Lansat-8 mostra come il dataset ad elevata

risoluzione riesca meglio a cogliere la distribuzione spaziale della temperatura, senza perdere

accuratezza a livello locale. Il confronto con le misure di bilancio di massa superficiale mostra

invece un sostanziale miglioramento rispetto all’output originale a bassa risoluzione.
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Chapter 1

Introduction

In the beginning the Universe

was created. This has made

many people very angry and been

widely regarded as a bad move.

D. Adams,

The Restaurant at the End of

the Universe

The cryosphere is the region of the Earth where water is stored in its solid form, either

annually or seasonally. Its components are snow, glaciers, ice sheets, ice shelves, ice caps, fresh-

water ice, sea ice, icebergs, permafrost, and ground ice. It plays a crucial role in regulating the

Earth’s climate system through different mechanisms, and it is interconnected with the atmo-

sphere, the hydrosphere, and the biosphere. It regulates Earth’s energy balance by reflecting

some of the incoming solar radiation due to its high albedo and contributes to moisture fluxes

and freshwater storage and release, providing water resources to many regions of the world. The

cryosphere affects and is affected by climate conditions, being a driver and a sentinel of climate

change, and playing a paramount importance role from global to local scale processes.

According to NOAA’s 2021 Annual Climate Report the global temperature has increased on

an average rate of 0.08°C every decade since 1880, with a significantly faster rate of 0.18°C
per decade after 1981. Such rate is not spatially homogeneous around the globe, with stronger

increase in polar regions. This phenomenon is called polar amplification and it is caused by a

combination of feedback mechanisms (Serreze and Barry, 2011). As the surface air tempera-

ture increases, water vapor brought into the atmosphere through evaporation and transpiration

processes increases, as well as the water vapor holding capacity of the atmosphere according

to the Clausius-Clapeyron relation. Temperature increases can also affect clouds absorption

properties, possibly amplifying or weakening temperature changes. Water vapor content and

cloud cover can affect surface temperature due to their greenhouse effect (Bony et al., 2006).

Moreover, as ice- and snow-covered areas retreat as a consequence of rising temperatures in the

polar regions, larger dark surfaces previously covered by ice and snow are exposed. These darker

areas can absorb a larger portion of the incoming solar radiation, leading to further increase in

temperatures. Arctic sea ice extent has been dramatically decreasing since the end of the 1970s,
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exposing a wider area of dark and energy absorbing ocean (Cavalieri and Parkinson, 2012).

The albedo of the Greenland ice sheet has been decreasing in the past decades and is expected

to decrease at a faster rate than the actual climate projections (Tedesco et al., 2016), further

impacting Polar temperatures. This mechanism is called ice-albedo feedback, firstly theorized

by Arrhenius (1896). These feedback mechanisms are expected to accelerate the effects of the

warming climate at the Poles, such as ice mass loss from the ice sheet, contributing to sea

level rise. Between 2002 and 2016 the Greenland and Antarctica ice sheet have contributed

to increase the average sea level of 0.8 mm and 0.4 mm every year and their contribution is

expected to increase by the end of the century, threatening low-lying coastal communities and

small island states. The changes in the cryosphere are having significant impacts on ecosystems

and biodiversity. For example, the loss of sea ice in the Arctic is causing habitat loss for species

such as polar bears and seals, while the melting of glaciers and ice sheets is leading to changes

in the distribution and abundance of freshwater species (IPCC, 2019).

At lower latitudes, the cryosphere in of great importance in regulating the hydrological cycle. In

the Alpine region it affects many aspects of human life (Beniston et al., 2018). The separation

of solid and liquid precipitation, together with the timing of the melting season, affects the

water resources at regional scale. In fact, snow accumulates at high altitudes in winter, being

a natural freshwater reservoir. As the melting season begins, freshwater volumes are released

as surface runoff and contributing to water availability for multiple purposes (e.g., agriculture

and hydropower generation). Italy’s hydropower generation corresponds to more than 40% of

the national renewable energy production. Changes in timing of the available water volumes

for energy production can affect the hydropower plants, potentially forcing managers in re-

considering the current plant operation. The accumulation of snow in winter also guarantees

water availability in summer. Consequently, a decreased snow accumulation would lead to drier

summer months, as happened in 2022. The summer of 2022 has been the hottest and driest

of the last 500 years in Italy, with an intense and long duration drought, causing costs of lost

production close to 1 billion euros (agricultural lobby Coldiretti estimate). Snow in the alps can

also regulate flood events timing and peak volume. If flood events can be mitigated and delayed

by the snowpack capacity to retain rainfall, on the other hand snow can enhance flood intensity

by providing additional water volume through snowmelt. Finally, snow is extremely important

from a socio-economic prospective. Winter tourism in the Alps is dominated by snow related

activities (mainly skiing), a business of about 10 billion euros that provides seasonal jobs and

keeps the Alpine human activity, slowing down the ongoing depopulation. Monitoring changes

in the cryosphere and understanding its impacts is critical for policymakers, scientists, and

communities to make informed decisions for water respurces management, mitigation and adap-

tation measurements, and guide investments.

This research thesis is aimed to investigate different topics related to the cryosphere, spanning

from the Greenland ice sheet to the Italian alps. Each chapter is an independent research pa-

per covering a specific topic. In Chapter 2 and Chapter 3 the research is focused on regional

(Chapter 2) and local (Chapter 3) scale aspects of the cryosphere. In Chapter 2, a climatology

of snow depth and snow water equivalent is carried out using a dataset of snow depth and

snow density measurements collected at 299 sites between 1967 and 2020 over a wide portion
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Chapter 1. Introduction

of the Italian Alps. The analysis relies on a combination of classical statistical analyses and

tests, aimed in identifying trends, change-points and correlations with climatic indexes and

meteorological variables. In Chapter 3 the influence of snow on ground during rain-on-snow

events is investigated. A snow water equivalent accumulation and melt model is implemented

in order to estimate the contribution of snow melting in rainy days at two stations located in

Lombardy. The contribution of snowmelt is estimated statistically in terms of increments of

the indensity-duration-frequency curves computed using the annual maxima method taking in

consideretion meltwater produced in rain-on-snow days together with precipitation. Chapter 4

and Chapter 5 focus on larger scale processes. In Chapter 4 a climatology of surface melting

over the Greenland ice sheet has been carried out through the analysis of enhanced resolution

passive microwave satellite observations. Data from five different sensors are cross-calibrated

and combined to reconstruct a sufficiently long timeseries for climatological studies. Four differ-

ent threshold-based melt detection algorithm are implemented, tested using in-situ observations

and regional climate model outputs. The melting maps obtained are used to reconstruct the cli-

matology of surface melting of the Greenland ice sheet in terms of temporal duration and spatial

extension. In Chapter 3 a statistical downscaling algorithm is implemented over the Greenland

ice sheet. The results are discussed through the comparison with in-situ measurements and

remotely sensed data.
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Chapter 2

Climatology of Snow Depth and

Water Equivalent measurements in

the Italian Alps (1967 - 2020)

Toutefois, ce vêtement de neige,

ce blanc manteau dont parlent

les poètes, est percé, déchiré en

mille endroits.

É. Reclus,

Histoire d’une montagne

Under submission:

Ranzi, R., Colosio, P. and Galeati, G. (2023). Climatology of Snow Depth and Water Equivalent

measurements in the Italian Alps (1967 - 2020). Hydrology and Earth System Sciences.

Abstract

A climatology of SWE based on data collected at 299 gauging sites was performed for the

Italian Alps over the 1967 – 2020 period, when the Italian National Electric board conducted

routinely and with homogeneous methods snow depth and density measurements. Six hydro-

logical sub-regions were investigated spanning from the eastern Alps to the western Alps at

altitudes ranging from 1000 m to 3000 m asl. Measures were conducted at fixed dates at the

beginning of each month from 1 February to 1 June and on 15 April. To our knowledge this is

the most comprehensive and homogeneous dataset of measured snow depth and density for the

Italian Alps. Significant decreasing trends over the years at fixed dates and elevation classes were

identified for both snow depth (-0.12 m decade−1 on average) and snow water equivalent (−37

mm decade−1 on average) in most of the six investigated areas. The analysis of snow density

data showed a temporal evolution along the snow accumulation and melt season, but no altitu-

dinal trends were found. A Moving Average and Running Trend Analysis (MARTA triangles),
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2.1. Introduction

combined with a Pettitt’s test change-point detection, highlighted a decreasing change of snow

climatology occurring around the end of the 1980s. Correlation with climatic indexes indicate

significant negative values of Pearson correlation coefficient with winter North Atlantic Oscil-

lation (NAO) index and positive values with winter West Mediterranean oscillation (WeMO)

index for some areas and elevation classes. Results of this climatology are synthesized in a

temporal polynomial model useful for climatological studies and water resources management

in mountain areas.

2.1 Introduction

The effects of global climate on the cryosphere at different latitudes have been widely studied in

the last decades (Pörtner et al., 2019). The comparison between photos of the past decades with

the current ones, together with imagery analysis from satellites, confirms the retreat of glaciers

in the Alpine region (Ranzi et al., 1999; Beniston, 2012). Analysis of long term observed snow

depth and simulated snow density in 20 gauging sites in the Italian Alps highlights a decrease

of snow water equivalent especially after the 1990s (Colombo et al., 2022). Modifications of the

Greater Alpine Region climate have been confirmed by the analysis of the HISTALP dataset,

with significant trends in temperature, twice as the global average, precipitation and relative

humidity (Auer et al., 2007; Brunetti et al., 2009). In fact, the alpine region is an extremely

sensitive area to the variations of climate condition, making mountain glaciers sentinels of cli-

mate change. Snow is the largest component of the cryosphere in terms of areal extension. Its

importance in the Alpine region is related to climatological, hydrological, biological, economic,

and social aspects (Beniston et al., 2018). Snow cover regulates the surface energy balance,

affecting circulation patterns and atmospheric flow regimes (Ge and Gong, 2009). The hydro-

logical cycle is strongly dependent on the separation between solid and liquid precipitation and

the timing of the melting season onset, mainly driven by temperature. Moreover, snow accu-

mulation and melting are a major component of the mass balance of glaciers. Snow monitoring

is crucial in order to provide a proper estimate of glaciers mass and energy balance to evaluate

glacial response to snow cover variations. The presence of snow is also of paramount importance

for ski resorts and for winter tourism in general in the Alpine region, accounting for about 10

billion euro, maintaining seasonal jobs and slowing down the rural depopulation in the valleys

(Lehr et al., 2012; Reynard, 2020).The water stored as snow in winter is released as the melting

season begins, contributing to the water availability for agriculture and energy production in

hydropower plants (HPP). Hence, it is of great interest for HPP managers having an accurate

quantification of the snow water equivalent (SWE) and possible variability in a climate change

scenario (Schaefli et al., 2007). In view of this, since 1966, ENEL (Italian National Electric

Board) conducts systematic observations of snowpack depth and density in the basins sub-

tended by seasonal regulation reservoirs. The ENEL measurement program is similar to other

institutional measurement networks (e.g. SNOTEL; Serreze et al., 1999). Before the creation

of ENEL, some power companies already took care of periodic measurements of the snowpack

consistency on the Alpine and Apennines basins supplying reservoirs within their competence.

However, these surveys were carried out unevenly, adopting different instruments and, of course,
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Chapter 2. Snow climatology in the Italian Alps

with different procedures for processing and interpretating the collected dataset. The ENEL

measurement campaigns are scheduled since the early 1960s at fixed dates from the 1st of Febru-

ary to the 1st of June at fixed locations in the catchments of the main Alpine reservoirs. Such

extensive and standardized monitoring campaign represents a rich and valuable source of in situ

measurements covering a wide portion of the Italian Alps for a 54-years time window spanning

the 1967-2020 period. Hydrological models and remote sensing techniques have been widely

used to estimate SWE (Taschner et al., 2004; Tedesco et al., 2015) and snow cover (Terzago et

al., 2010). However, in situ measurements are required to validate such estimates and it is not

trivial to reconstruct a coherent timeseries long enough to be suitable for climatological studies

by means of satellite observations. Lejeune et al. (2019) used snow dataset of 57 years from a

mountain meteorological station to evaluate snow depth variability between 1960 and 2017, a

temporal range sufficiently wide to evaluate climate impacts on snow depth. A similar dataset

has been used by López-Moreno (2020) to evaluate long-term trends of snow depth and snow

cover in the Pyrenees. Schöner et al. (2019) used an ensemble of 196 stations to study the

snow depth and its linkages to climate change over the Swiss-Austrian Alps over the monitoring

period 1961-2012. A more comprehensive study of the Northern Hemisphere has been carried

out by Pulliainen et al. (2019) using the GlobSnow v3.0 dataset (Takala et al., 2011) for the

monitoring period 1980-2018. Valt and Cianfarra (2010) found a reduction of snow cover du-

ration and snowfall between 1950 and 2009, together with breakpoints of the timeseries at the

end of the 1980s. Marty et al. (2017) observed a SWE decrease, more pronounced in spring

than in winter, over the observation period 1968-2012. Colombo et al. (2022) modelled the

SWE from 19 historical snow depth measurements and studied the links of the Standardized

SWE Index with teleconnection indexes and temperature anomalies. Marcolini et al. (2017)

analysed snow depth series in the Adige basin, finding a reduction of snow cover duration and

snow depth over the period 1980-2009, especially at low elevation sites. The dataset we use here

covers almost the same period of previous studies, but it is spatially distributed over the Italian

Alpine Region and includes snow density measurements to estimate SWE. Such combination of

spatial and temporal coverage makes this dataset an extremely precious support to understand

snow variability and climate change impacts in the Italian Alps. In this study, we present a

detailed long-term trends and variability analysis of snow depth and SWE measurements in a

wide portion of the Italian Alps between 1967 and 2020. In Section 4.2, after a description of

the study area and the snow depth and density measurement procedure, we present the datasets

adopted and describe the statistical methodology used for the climatological analysis. We also

present a simple model to estimate the SWE as function of elevation and day of the year based

on polynomial regressions of the observed snow depth and snow density. In Section 3.3 we

present and discuss the results obtained for snow depth and snow density comparing them with

the analysis of meteorological variables and climatic teleconnection indexes.
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Figure 2.1: Map of the research area. The individual basins are grouped in the six macro
basins by number: (1) Toce, (2) Serio-Brembo, (3) Adda, (4) Oglio-Chiese-Sarca, (5) Adige
and (6) Piave-Brenta. Locations of snow depth and density (black dots) and snow depth (white
squares) are also reported.

2.2 Datasets and Methods

2.2.1 The study area and basins aggregation

In this study we focus our analysis on the following basins of the Alpine Region: Cordevole and

Piave, in the Veneto Region, Cismon, Brenta, Noce, Sarca, Chiese, Valsura, in the Trentino-

Alto Adige Region, Mallero, Adda, Bitto, Serio, Brembo, Oglio, in the Lombardia Region

and Toce in the Piemonte Region. We aggregate the individual basins in six groups (Figure

2.1) according to the hydrographic criteria, merging tributaries to the main river branch (e.g.

Cordevole aggregated to Piave), and the geomorphoclimatic criteria, aggregating basins with

similar annual average precipitation, temperature and geographical orientation (e.g. Piave and

Brenta or Oglio, Chiese and Sarca). Toce basin’s slopes are mainly east oriented, and its climate

is affected by the influence of Lake Maggiore. As it is the only basin where data are available

in the Piemonte Region, we decided not to aggregate it with other basins (we denote the group

simply as Toce). Since Serio and Brembo are the tributaries of the lower Adda, downstream Lake

Como, and their slope is mainly oriented southward, facing Po River valley, they can be grouped

in a unique macro-basin denoted as Serio-Brembo. Bitto and Mallero slopes are respectively

North and South facing and both basins are tributaries of the upper Adda, oriented westward,

upstream the Lake Como. Consequently, we aggregate Bitto, Mallero and Adda basins into

one group (denoted as Adda). Oglio, Chiese and Sarca basins are fed by meltwater of the

Adamello glacier; accordingly, we considered a unique macro basin called Oglio-Chiese-Sarca.

We denote as Adige the macro-basin including its tributaries Noce and Valsura. Finally, we

aggregate Piave, Brenta, Cismon and Cordevole in another group (denoted Piave-Brenta), most

influenced by the Adriatic Sea.
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Chapter 2. Snow climatology in the Italian Alps

Figure 2.2: Photo of (a) CN2 type snow sampler and (b) detail of the cutting knife with the
three internal fins and (c) the complete kit in its transporting bag.

2.2.2 Snow depth, snow density and snow water equivalent

We use a dataset of snow depth and snow density measurements collected between 1967 and

2020. The locations of the 299 measurement stations, reported in Figure 2.1, are fixed with

minor displacements over the monitoring period. For each measurement station multiple mea-

surements of snow depth were taken and then averaged. The choice of such locations is based

on accessibility in every moment of the winter under normal meteorological conditions and

representativeness of natural snow deposition, avoiding areas where avalanche snow might be

collected or places where other forcings might change the snowpack height. The measurement

dates are fixed in time on 1 February, 1 March, 1 April, 15 April, 1 May and 1 June, providing

strong consistency for the timeseries analysis. Overall, 44’198 snow depth and 14’060 snow

density measurements were collected and processed.

The tools adopted for height and density measurements of the snowpack have been designed by

the Hydrographic Office of the Water Authority of Venice. One of the tools is a snow weighter

CN2 type (Figure 2.2a), derived from the CN1 type, tested by the Snow Commission of the

Glaciological committee, through small technical changes suggested by ENEL in order to make

the use of it easier and faster. The CN2 type snow weighter is made of four tubular elements

in duraluminium, each 50 cm long and with internal diameter of 7.2 cm. Screwable brass caps

are attached to the ends of the four tubes, allowing to join two or more elements. On the side

of each tube there are measurement notches from 0 to 50 cm in order to measure the exact

height of the snow. The checking of this height is completed with a graduated rod, made of

three pluggable elements in rust-proof alloy. Other accessories that complete the snow weighting

tools set are: two snow cutting knifes (Figure 2.2b) applicable to the bottom of each of the

duraluminium tubes, dynamometers for the weighting, a shovel for the digging of the trenches,

nylon bags with rings to attach the dynamometers to, hammer and wrenches for the screwing

of the tubes (Figure 2.2c). Only in recent years the probes used in some sites were substituted

with Teflon probes with similar characteristics.

The measurement procedure of snow depth and density in case of snowpack height lower

than 2 m starts with a first check of the snow depth with a graduated rod in order to pre-
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pare the instrumentation with the proper number of tubular elements. Then, the instrument

is thrust into the snowpack applying a constant pressure and continuous rotational movement

until ground level, reading the snow depth measurement on the external notches. Finally, the

instrumentation is extracted from the snowpack, depositing the collected sample in a nylon bag

to be weighted. In case of snowpack deeper than 2 m, multiple extractions are necessary. A snow

pit must be dig up to ground level, paying attention to maintain vertical the front wall. Then,

an aluminum plate is inserted horizontally, a first sample is taken from the snowpack surface

until the plate is reached and the partial depth measurement is recorded. The procedure is then

repeated until the ground level is reached. The snow density is finally computed dividing the

weight by the known volume of the sample. In case of snow depth measurement only, a simple

graduated rod is adopted.

Each snow depth and snow density measurement is recorded together with the name of the

drainage basin, average slope, orientation with respect to the North and elevation. We aggre-

gated data in the six macro-basins described in the previous section in four elevation bands of

equal range of 500 m (1000-1500, 1500-2000, 2000-2500 and 2500-3000 m a.s.l.). We performed a

preliminary data quality check in order to remove possible erroneous data due to human mistake

in the data recording. In case of snow depth, it might happen that a zero is recorded instead

of a missing value. Specifically, we checked all the zero snow depth records by comparing them

with the closest measurement points. If the snow depth measurements in the locations nearby

the equivocal point are larger than a fixed threshold (set at 0.7 m) we consider that zero as a

missing value. In the specific case of equivocal measurements in date 15 April, we also checked

the previous and following date of measurement of that point. If in that location the snow depth

on 1 April and 1 May is larger than 0.7 m we consider the equivocal zero as a missing value.

In case of snow density measurements, we removed density values larger than a fixed threshold

of 0.75 g cm−3, considered far larger than typical snow density values (Allard, 1957; Marbouty,

1980).

We used the snow depth and snow density measurements that have passed quality check to

estimate the SWE (mm) as

SWE = hs
ρs
ρw

(2.1)

Where hs (mm) is the snow depth and ρs (kg m−3) the snow density and ρw (kg m−3) is

the liquid water density simply estimated as 1000 kg m−3. Since there is not a snow density

measurement for each snow depth record, we assigned to ρs the measured snow density only if

present. In case of missing snow density value in correspondence to the considered snow depth

measurement, we assigned to ρs a mean value computed as the average of the other available

snow density values measured in the corresponding date, macro-basin and elevation class. In

case there are no density measurements in the corresponding geomorphic class, we consider the

SWE data for the specific date, macro-basin and elevation class as missing. Finally, we obtained

a timeseries ranging from 1967 to 2020 of average value snow depth and snow density for each

macro-basin, elevation class and measurement date.
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Figure 2.3: Timeseries of (a) cumulated precipitation and (b) air temperature averaged over
the period DJFM from the HISTALP dataset, spatially averaged over the six macro-basins
areas.

2.2.3 Temperature and precipitation data

Precipitation and temperature are the main meteorological variables regulating accumulation

and melting of snow, with air temperature mainly governing the separation of solid and liquid

precipitation and driving snowmelt. To evaluate the effects of precipitation and temperature

variability on snow depth and SWE in the considered macro-basins, we consider the HISTALP

dataset (Auer et al., 2007; Chimani et al., 2011). HISTALP is a multi-century-long (1780-2015)

database of monthly homogenized records of temperature, pressure, precipitation, sunshine, and

cloudiness for the Alps. Here, we consider the gridded precipitation and 2 m above ground level

air temperature data, provided at 0.08° spatial resolution. Specifically, we considered the average

temperature of December, January, February and March over the period 1967-2015. Since 1967,

the number of the meteorological stations adopted to create the database and the distance

between them have not changed (Auer et al., 2007), making the timeseries sufficiently reliable

for the long-term variability and trends analysis. We extract from the gridded dataset the

average temperature over each macro-basin reported in Figure 1. Accordingly, we consider the

cumulated precipitation of December, January, February and March. The extracted timeseries

are reported in Figure 2.3.

2.2.4 North Atlantic Oscillation and Western Mediterranean Oscilation in-

dexes

Following the approach proposed by Ranzi et al. (2021), we evaluate the link of SWE with

large scale circulation variability. Specifically, we consider the North Atlantic Oscilation (NAO)

index and the Western Mediterranean Oscillation index (WeMO). NAO is a global circulation

pattern index defined as the normalized surface sea-level pressure difference over the North

Atlantic Ocean between the Subtropical (Azores) high and Subpolar (Iceland) low. It influ-

ences the European climate during winter (Osborn, 2011) and it presents a negative correlation

with precipitation in the Italian Alps (Steirou et al., 2017; Zampieri et al., 2017; Brugnara and
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Maugeri, 2019). WeMO index is a regional teleconnection pattern, spatially limited to the west-

ern Mediterrean basin (Martin-Vide and Lopez-Bustins, 2006). It is defined by the difference

of monthly sea-level pressure between the Padua and San Fernando (Cádiz) stations. Here, we

consider average DJFM NAO and WeMO indexes to address the links with spring snow depth

measured in the considered Alpine basins.

2.2.5 Statistical and climatological analysis

In order to investigate possible variability and tendencies of snow depth and SWE during the

monitored period we adopt three main methods of statistical analysis. At first, we compute

the trend over the complete period 1967 – 2020 by means of a least-square linear regression. In

order to test the statistical significance (p-value<0.05) of such trends we adopted the Mann –

Kendall (MK) non-parametric test (Mann, 1945; Kendall, 1975) and the parametric Student’s

t test on the slope of the regression line, testing the null hypothesis H0 of no trend against the

alternative hypothesis H1 of linear trend (Rosso and Kottegoda, 2008). Such trend analysis

provides only one piece of information, even if important, related to the general tendency of the

studied timeseries. The second analysis consists in a moving average and running trend analysis

(MARTA from this point on), similarly to that reported in Brunetti et al. (2009) and Ranzi

et al. (2021). MARTA consists in computing running trend and a moving average for all the

possible sub-periods longer than 10 years, reporting the results in a chart where the central year

of the sub-period is reported on the horizontal axis and its length on the vertical one. In the

chart of the running trends, computed by least-square linear regression, slopes are represented

by the color of the pixel. We represent on the plot each trend. However, statistically significant

trends according to the MK (p-value<0.05) are represented by thicker pixels. In the chart of

the moving averages, instead, all the sub-period averages are reported. MARTA is an effective

exploratory data analysis and visualization tool, able to capture and highlight periods of values

higher or lower than the long term mean in the timeseries. Here, we extend such approach taken

from Brunetti et al. (2009) including a change detection analysis by means of the application

of the Pettitt’s test (Pettitt, 1979). Pettitt’s test is a non-parametric technique to solve the

change-point problem (i.e., identifying if and when the probability distribution of a stochastic

variable has changed), testing the null hypothesis H0 of no change. We graphically represent

the change-point, if present, in the moving averages chart, indicating the year detected with

the statistical test. As third analysis, in order to evaluate the global behavior of snow depth

and SWE in each basin, we compute the difference between the averages of the two halves

of the monitoring period 1967 – 1993 and 1994 – 2020. We test the statistical significance of

such differences by means of the non-parametric Mann – Whitney U test (Mann and Whitney,

1947). In this case we test the null hypothesis that the probability of the considered variable

between 1967 and 1993 being larger than between 1994 and 2020 is equal to the probability of

the considered variable in the latter period being larger than the former.

Finally, we study the relationship and dependencies of snow depth and SWE with variability and

changes in climate. We perform the same MARTA analysis to the temperature and precipitation

timeseries presented above. Moreover, to evaluate the possible links between snow depth and

the teleconnection indexes we evaluated the Pearson’s correlation between the snow depth on 1
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April and 15 April and the winter (DJFM) NAO and WeMO indexes.

2.2.6 Snow Water Equivalent model

To compute the SWE it is necessary to have a measurement of both snow depth and snow

density (Allard, 1957). Empirical regressions of snow density over day of the year in the Italian

Alps have been studied by several authors (e.g., Avanzi et al., 2015; Guyennon et al., 2019).

Accordingly, we evaluated the average temporal evolution of snow density during the monitoring

period updating with our new dataset the parameters of the model proposed by Guyennon et al.

(2019), who found that the temporal evolution of snow density is well described by a quadratic

polynomial function of the day of the year as

ρs(DOY ) = n0 + n1(DOY + 61) + n2(DOY + 61)2 (2.2)

Where ρs is the snow density, DOY is the day of the year. Snow depth on the ground increases

during the accumulation season and start decreasing after the melt onset. Concurrently, positive

correlation between snow depth or SWE and elevation in the Alps are reported by many authors

(Bavera and De Michele, 2009; Durand et al., 2009; Lehning et al., 2011; Grunewald et al.,

2014). Accordingly, we propose a snow depth model linearly dependent on elevation and with

time dependent coefficients. For each macro-basin and measurement date we estimate the best

fitting linear model of average observed snow depth as a function of elevation as

hs(H,DOY ) = m(DOY )[H −H0(DOY )] (2.3)

Where hs is the snow depth, H is the elevation above sea level, m the slope and H0 the

elevation of null snow depth in the regression (snow line elevation). In such way, we reconstruct

the elevation dependency of snow depth at different moments of the accumulation and melting

seasons. Hence, the temporal dependency is contained in the coefficients m and H0,, computed

for each available measurement date. In order to obtain a continuous estimate of snow depth

as function of both elevation (H) and time (DOY), we fit the computed m and H0 using a

third-order polynomial curve as

m(DOY ) = a0 + a1(DOY ) + a2(DOY )2 + a3(DOY )3 (2.4)

H0(DOY ) = b0 + b1(DOY ) + b2(DOY )2 + b3(DOY )3 (2.5)

Where a0, a1, a2, a3, b0, b1, b2 and b3 are obtained by a least-square best fitting procedure.

By substituting Equation 3.4 and in Equation and then Equation and in Equation , we obtained

a simple model to estimate the SWE as function of both elevation and time. The parameters of

the proposed model are calibrated for the two periods mentioned above (1967-1993 and 1994-

2020) and for each macro-basin. Because of the scarcity of measurements above 2500 m asl, it

is not easy to determine whether a maximum threshold is reached at higher altitudes. However,

considering that at higher altitudes the major slopes tend to trigger avalanches and the blowing

winds tend to prevent snow deposition, we assume, based also on the available observations,
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that our altitudinal trends can be extrapolated up to 2500 m asl and a plateau value can be

assumed above such altitude. Of course, such threshold is dependent on the topography of the

considered basin and a larger number of high-elevation measurements is needed to provide a

better estimate of the elevation of the plateau.

2.3 Results and discussion

2.3.1 Snow depth

We computed the temporal trends of snow depth for each macro-basin, elevation class and

date of measurement. In Figure 2.4 we report the timeseries of snow depth for the Toce and

Oglio-Chiese-Sarca macro-basins on 1 April and 1 May, together with the equation of the linear

model used to estimate the temporal trend. For each case, the snow depth timeseries shows

a decreasing trend, with a slightly steeper regression line in case of Oglio-Chiese-Sarca region.

The results for each macro-basin, elevation class and date of measurement are reported in Table

2.1. The 57% of the cases exhibits a 95% statistically significant decreasing trend according

to the MK or Student’s t test, in accordance with the results found by Matiu et al. (2021).

We found that absolute value of the long-term trend slopes increase moving from winter (i.e., 1

February and 1 March measurements) to spring (1 and 15 April and 1 May). These are common

results across all macro-basins. For the Serio-Brembo macro-basin we obtained the strongest

decreasing trend in the elevation class 2000-2500 in the date of 15 April, with a decrease of snow

depth of about 0.3 m every decade. The computed trends are coherent with the ones obtained

by Schöner et al. (2019) who computed a decrease up to 0.12 m every decade in the southern

regions of the Swiss and Austrian Alps for the monitoring period 1961-2012.

We report in Figure 2.5 the MARTA triangles for the same macro-basins of Figure 2.4. Such

graphical representation of the running averages and trends highlights the temporal variability

of the timeseries analyzed. In the centered moving averages plot is reported the change-point

detected by the Pettitt’s test. In case of Toce, we found a change-point in 1985 for the snow

depth measured on 1 April while for the Oglio-Chiese-Sarca case we obtained a statistically

significant change-point for both 1 April and 1 May timeseries in 1988 and 1989, respectively.

Table 2.2 contains the statistically significant change-point years detected by the Pettitt’s test.

The 50% of the cases exhibits a statistically significant change-point according to the Pettitt’s

test. The change-points obtained range from 1980 to 1992, with 1989 being the mode and 1988

the median. Specifically, the most occurring results are 1986 (frequency f=19%), 1987 (f=19%),

1988 (f=25%) and 1989 (f=26%). Such late 1980s has first been found by Marty (2007) for the

Alpine snow and later confirmed by Reid et al. (2015) at global scale.

Then, we evaluated the difference in average snow depth for each macro-basin, elevation

class and date of measurement. Figure 2.6 shows the average snow depth computed over the

monitoring periods 1967-1993 (red circles) and 1994-2020 (black circles). If the difference be-

tween the averages of the two samples is statistically significant according to the Mann-Whitney

U test, the circles are filled. To improve readability of the plot, an upward or downward blue

arrow is reported if an increasing or a decreasing statistically significant trend is present (Table

2.1), respectively. In case of the Toce basin, at the lower altitudes, a statistically significant
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Figure 2.4: Time series average of snow depth (black dots) in Toce (a, b) and Oglio-Chiese-
Sarca (c, d) macro-basins on 1 April (a, c) and 1 May (b, d). Error bars indicate the standard
deviation over the specific macro-basin and dashed lines the least-square interpolation line.

difference has been found only in April, together with a statistically significant decreasing trend,

with an average decrease of 0.32 m. However, in the elevation class 1500-2000 the difference in

snow depth in the two periods is statistically significant from 1 March to 1 June, with a decrease

of 0.37 m; in the elevation class 2000-2500 the average difference between the two periods is

0.38 m, statistically significant from 1 April. The Serio-Brembo and Oglio-Chiese-Sarca macro

basins exhibits the strongest differences between the two periods, statistically significant for the

90% of the cases. At the lowest altitudes the difference between the two periods is similar, with

an average decrease of 0.28 m (1000-1500) and 0.39 m (1500-2000) for Oglio-Chiese-Sarca and of

0.26 m (1000-1500) and 0.41 m (1500-2000) for Serio-Brembo. In the elevation class 2000-2500

the difference between the two periods in Serio-Brembo macro-basin (0.78 m) is more than twice

larger than the one obtained for Oglio-Chiese-Sarca (0.33 m). Measurements of snow depth in

the elevation class 2500-3000 show a statistically significant difference of 0.54 m on average

starting from 1 April in the Oglio-Chiese-Sarca macro-basin. We found a similar behavior in

Adda basin for the elevation classes 1500-2000 and 2000-2500, with a statistically significant

difference of 0.39 m and 0.4 m, respectively. The Adige basin exhibits fewer statistically signif-
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Figure 2.5: Moving Average and Running Trend Analysis (MARTA triangles) of snow depth
on 1 April (a, c) and 1 May (b, d) in the altitudinal class 1500-2000 m asl for the Toce and
2000-2500 m asl for the Oglio – Chiese – Sarca macro-basins. In the top part of each panel the
statistically significant change point detected by the Pettitt’s test (5% significance) is reported
as dashed line while in the bottom part the statistically significant trends with 5% significance
level of the Mann-Kendall test are reported as thicker pixels.
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EC Date
Temporal trend (1967-2019) of snow depth (m decade−1)

Macro-basin
Toce S-B O–C–S Adda Adige P–B

1000 – 1500

1 Feb - -0.08 -0.07 ND - -0.04*
1 Mach - -0.07 -0.09 ND - -
1 Apr -0.12 -0.10 -0.10 ND - -0.07
15 Apr -0.10 -0.05 -0.10 ND - -0.07
1 May -0.06* ND -0.06 ND - -0.04
1 June - - - ND - -

1500 – 2000

1 Feb - - - - - -
1 Mach -0.09 -0.10* -0.09 - - -
1 Apr -0.14 -0.18 -0.13 - - -
15 Apr -0.17 -0.21 -0.15 -0.13 - -0.12
1 May -0.16 -0.18 -0.18 -0.13 -0.07 -0.13
1 June -0.06 -0.08 -0.04 -0.06 -0.02* -0.03*

2000 – 2500

1 Feb - -0.18 - - - -0.05*
1 Mach - -0.24 -0.09* -0.08* - -
1 Apr - -0.27 -0.11 - - -
15 Apr - -0.31 -0.13 -0.13* - -0.10
1 May - -0.29 -0.16 -0.16 -0.07* -0.09
1 June -0.18 -0.24 -0.08 -0.11 -0.04 -

2500 – 3000

1 Feb ND ND - ND - ND
1 Mach ND ND - ND - ND
1 Apr ND ND -0.12* ND - ND
15 Apr ND ND -0.19 ND - ND
1 May ND ND -0.19 ND - ND
1 June ND ND -0.19 ND -0.17 ND

Table 2.1: Trends of snow depth (1967 – 2019) for each macro-basin, elevation class (EC) and
date. Statistically significant results according to Mann – Kendall and Student’s t tests only
are reported. If only one test is passed the trend is marked with an asterisk while cases in which
there is not enough data are flagged as ND (no data).

icant differences, mainly in the two central elevation classes, with an average decrease of 0.21

m (1500-2000) and 0.19 m (2000-2500). In the Piave-Brenta basin the difference in snow depth

between the two periods results statistically significant in 89% of the cases at the three lowest

elevation classes, with a decrease of 0.21 m (1000-1500) and 0.29 m (1500-2000 and 2000-2500).

These results are coherent with the decrease computed by Lejeune et al. (2019) for a mid-

altitude (1325 m asl) mountain site in France (Col de Porte). They estimated a decrease of

0.39 m in snow depth between the 1969-1990 and 1991-2017 periods. The results obtained show

different trends for the considered regions. In view of this, Matiu et al. (2021) pointed out the

difficulties in generalizing the results to the whole Alpine area

Finally, we evaluated the elevation dependency of snow depth in each macro-basin for each

measurement date. In Table 2.3 we report the values of m and H0 least-square regression

coefficients fitting average snow depth vs altitude in Equation . Since the results of the Mann

– Whitney U test suggest that there is, in general, a statistically significant difference between

the first and second halves of the observation period, we present the results for both 1967 – 1993
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Figure 2.6: Average snow depth (Hs) in the 1967-1993 (red circles) and in 1994-2020 (black
circles) periods are plotted for each elevation class in the six observation campaigns dates (1
Feb, 1 Mar, 1 Apr, 15 Apr, 1 May, 1 Jun). Statistically significant (p ≥ 0.01, Mann-Kendall
test) trends of the entire 1967-2020 period are sketched as upward (downward) blue arrow for
increasing (decreasing) trends. Circles are filled if the difference of Hs between the two periods
is statistically significant (p ≥ 0.01, Mann-Whitney U test).
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EC Date
Change point (year)

Macro-basin
Toce S-B O–C–S Adda Adige P–B

1000 – 1500

1 Feb - 1987 1988 ND - -
1 Mach - - 1989 ND - -
1 Apr - - 1988 ND - 1988
15 Apr - - 1986 ND - 1988
1 May - ND 1989 ND - 1989
1 June - - - ND - -

1500 – 2000

1 Feb - - - - - -
1 Mach 1987 - 1989 - - 1989
1 Apr 1988 1988 1988 1988 - 1988
15 Apr 1989 1988 1988 1988 - 1988
1 May 1986 1986 1989 1986 - 1989
1 June 1987 1989 1992 1987 - -

2000 – 2500

1 Feb - 1986 - - - -
1 Mach - 1989 1989 1980 - -
1 Apr 1985 1987 1987 1985 - 1988
15 Apr - 1987 1989 1986 - 1987
1 May - 1989 1992 1986 - 1989
1 June 1986 1987 1987 1987 - -

2500 – 3000

1 Feb ND ND - ND - ND
1 Mach ND ND - ND - ND
1 Apr ND ND 1986 ND - ND
15 Apr ND ND 1989 ND - ND
1 May ND ND 1990 ND - ND
1 June ND ND 1986 ND 1986 ND

Table 2.2: Years of change-point detected by Pettitt’s test in snow depth timeseries for each
macro-basin, elevation class (EC) and date. Otatistically significant results only are reported
while cases in which there is not enough data are flagged as ND (no data).

and 1994 – 2020 sub-periods. Together with the coefficients obtained from the linear regression

analysis, we report the R2 values for each case as an indicator of goodness of the fitting function.

The Oglio-Chiese-Sarca, Serio-Brembo and Piave-Brenta macro-basins show higher values of R2

and a common behavior of m and H0. In fact, in these basins, m increases after February

(accumulation) showing a peak value in spring, reinforced by the earlier onset of the melting

season at lower elevations, and then decreases as melting develops at higher elevations. In fact,

during the accumulation period the principal factor affecting m is the change from rain to snow

with elevation while during the melt period it is more affected by the variation in melt with

elevation (Allard, 1957). On the other hand, H0 exhibits an almost stable or decreasing behavior

during the accumulation phase, strongly increasing as the melting season starts. We also observe

that H0 exhibits higher values in the second half of the monitoring period, indicating that the

elevation of null snow depth has moved towards higher altitudes, accordingly to the hypothesis

of decreasing snow depth. Such results confirm the tendency modelled by Giorgi et al. (1997)

who studied the elevation dependency of surface climate change impacting snow depth over the

Alpine region. The results obtained for Adige, Adda and Toce basins show less reliable results

according to the lower values of R2 obtained and the physically meaningless negative values of
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H0, mainly due to the lower number of snow depth measurements.

Basin Date
1967 - 1993 1994 - 2020

m [m/km] H0 [m] R2 m [m/km] H0 [m] R2

Toce

1 Feb 0.95 593 0.007 1.023 718 0.343
1 Mach 1.24 650 0.011 1.23 742 0.408
1 Apr 1.74 941 0.04 1.72 1113 0.509
15 Apr 1.97 1092 0.068 1.93 1241 0.570
1 May 2.24 1276 0.121 2.19 1427 0.621
1 June 2.19 1483 0.262 1.57 1571 0.589

Serio

Brembo

1 Feb 1.37 909 0.710 0.91 776 0.616
1 Mach 1.72 957 0.680 0.83 495 0.310
1 Apr 1.94 1027 0.582 0.94 712 0.430
15 Apr 2.12 1128 0.743 1.37 1204 0.644
1 May 2.13 1260 0.708 1.63 1458 0.280
1 June 1.23 1522 0.466 1.51 1801 0.403

Oglio

Chiese

Sarca

1 Feb 0.67 375 0.817 0.69 703 0.725
1 Mach 0.66 26 0.623 0.79 697 0.696
1 Apr 0.98 638 0.781 1.07 1145 0.745
15 Apr 1.22 899 0.784 1.15 1269 0.788
1 May 1.25 1115 0.791 1.04 1425 0.704
1 June 0.9 1491 0.515 0.68 1643 0.410

Adda

1 Feb 0.27 -2617 0.013 0.78 1.57 0.235
1 Mach 0.07 -17704 4.00E-04 0.52 -770.71 0.069
1 Apr 0.03 -59185 3.00E-05 0.78 288.63 0.111
15 Apr 0.61 -517 0.017 1.18 1003.38 0.215
1 May 0.65 -25 0.017 1.73 1504.91 0.379
1 June 1.66 1638 0.133 1.72 1884 0.676

Adige

1 Feb 0.34 -209 0.663 0.54 570 0.465
1 Mach 0.43 -341 0.633 0.43 -12 0.668
1 Apr 0.75 643 0.776 0.78 933 0.589
15 Apr 0.89 886 0.800 0.98 1197 0.907
1 May 1.16 1298 0.855 1.16 1442 0.862
1 June 1.09 1692 0.745 0.49 1634 0.530

Piave

Brenta

1 Feb 0.51 92 0.528 0.53 385 0.630
1 Mach 0.67 101 0.567 0.70 424 0.603
1 Apr 0.94 646 0.814 0.90 840 0.649
15 Apr 1.24 953 0.850 1.48 1109 0.742
1 May 1.16 1144 0.859 0.95 1292 0.709
1 June 0.53 1333 0.373 0.43 1462 0.408

Table 2.3: Linear regression coefficients (m and H0) and R2 of the least-square linear fitting
of average snow depth and elevation for the two sub-periods 1967-1993 and 1994-2020.

2.3.2 Snow density

In order to investigate possible variability and tendencies of snow depth and SWE, we evaluated

snow density data variations with elevation and in time. In Figure 2.7 we show the snow

density plotted as a function of the elevation, for the six considered measurement dates, in

the Piave-Brenta macro basin. We found that, within each elevation class, snow density does
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Figure 2.7: Snow density (ρ) dependence on elevation for the macro-basin Piave-Brenta.
Average snow density for each measurement date is represented with different color intensity
with changing date of the year.

not substantially vary with elevation for a specific measurement date. On the other hand, we

found that snow density increases with measuring date. Such behavior is common among all

the macro-basins studied. In Figure 2.8 we report the average snow density computed over

the monitoring period. From a least-square fitting of Equation we obtained new values for the

polynomial coefficients, better modelling the data here presented (R2=0.998) and compared

with the model from Guyennon et al. (2019). Specifically, we obtained n0=277, n110
−1=-3.6

and n210
−3=5.1. Such seasonal increase of snow density is related to different processes such

as compaction, increase of liquid water in the snowpack due to melting as the temperature

increases.

2.3.3 Snow water equivalent

For the available SWE estimates, we computed the temporal trends for each macro-basin, ele-

vation class and date of measurement. In Table 2.4 we report the temporal trends computed

over the monitoring period 1967-2020. Obviously, the general behavior is in accordance with

the one found in case of snow depth. Among the considered timeseries, we obtained statistically

significant trends in 44% of the cases according to the MK or Student’s t test, mainly in the

Oglio-Chiese-Sarca macro-basin. In this macro-basin, the computed trends increase in terms

of absolute value moving from winter to spring in the two lower elevation classes, reaching the

maximum between 15 April (-36 mm every decade for 1000-1500) and 1 May (-67 mm every

decade for 1500-2000); in the two higher elevation classes we found statistically significant trends

for the measurement dates of 15 April, 1 May and 1 June, suggesting that the spring snow has

been more strongly affected in the past decades, reaching the maximum absolute value in May

(-48 mm every decade for 2000-2500 and -67 mm every decade for 2500-3000). In Table 2.5

we report the results of the change-point analysis performed by means of the Pettitt’s test.
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Figure 2.8: Temporal variability of snow density (ρ). Average snow density for each measure-
ment date is represented as black diamond. We also report in red the computed polynomial
model, in blue the one proposed in Guyennon et al. (2019) and a linear model as black dashed
line.

The change-points obtained range from 1986 to 1991, with 1988 being both mode and median.

Specifically, the most occurring change-point years are 1989 (f=17%), 1986 (f=27%) and 1988

(f=46%). The Pettitt’s test confirms on a sound statistical basis the findings of other studies,

such as Marty et al. (2017), based on SWE measurements, and Colombo et al. (2022), based

on snow depth measurements and SWE modelling. Valt and Cianfarra (2009) obtained similar

results, finding breakpoints between 1984 and 1994. Also in this case, the Oglio-Chiese-Sarca

macro-basin exhibits statistically significant results for the largest cases of elevation classes and

measurement dates. For this specific macro-basin, we found the statistically significant change

points mainly April and May, in agreement with the results obtained for the long-term trends.

As for the case of snow depth, we evaluated the difference in average SWE for each macro-basin,

elevation class and date of measurement. In Figure 2.9 we report the average SWE computed

over the monitoring periods 1967-1993 (red circles) and 1994-2020 (black circles). The Oglio-

Chiese-Sarca macro-basins presents statistically significant results in most cases. We found that

the largest statistically significant differences in SWE between the two periods is in Spring, for

the measurement dates of 1 April and 15 April for the 1000-1500 elevation class and 15 April

and 1 May for the other cases. The average difference between the two periods is 85 mm for

the elevation class 1000-1500, 135 mm for 1500-2000, 104 mm for 2000-2500 and 226 mm for

2500-3000. The Piave-Brenta macro-basin shows similar results, with statistically significant

differences in 89% of the cases. We found the largest statistically significant differences on 1

April and 15 April for the 1000-1500 elevation class, with an average difference of 59 mm, on

15 April and 1 May for the 1500-2000 elevation class, with an average difference of 82 mm,

and 1 May and 1 June for 2000-2500 elevation class, with an average difference of 78 mm. For

the Adige basin we found statistically significant differences mainly in the 1500-2000 elevation

class, with an average difference of 70 mm. For the Toce and Serio-Brembo macro-basins the
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EC Date
Temporal trend (1967-2019) of SWE (mm decade−1)

Macro-basin
Toce S-B O–C–S Adda Adige P–B

1000 – 1500

1 Feb ND ND -11* ND - -
1 Mach ND ND -22 ND - -
1 Apr ND ND -34 ND ND -
15 Apr ND ND -36 ND ND -22
1 May ND ND -21 ND ND -14
1 June ND ND -2* ND ND -

1500 – 2000

1 Feb - - -24 - - -
1 Mach ND ND -27* - - -
1 Apr -121 -55* -43 - - -
15 Apr ND - -59 - - -37
1 May -85* -69 -67 - - -47
1 June -24* -22* -21 - ND -15*

2000 – 2500

1 Feb - -78 - - ND -19*
1 Mach ND ND - - ND -
1 Apr -281 -113 - - ND -
15 Apr ND -191 -38 - ND -
1 May - -125 -48 - ND -23*
1 June ND -92 -30 - - -

2500 – 3000

1 Feb ND ND - ND - ND
1 Mach ND ND - ND - ND
1 Apr ND ND - ND - ND
15 Apr ND ND -61 ND - ND
1 May ND ND -67 ND - ND
1 June ND ND -58* ND -55 ND

Table 2.4: Trends of snow water equivalent (SWE, 1967–2019) for each macro-basin, elevation
class (EC) and date. Statistically significant results according to Mann–Kendall and Student’s
t tests only are reported. If only one test is passed the trend is marked with an asterisk while
cases in which there is not enough data are flagged as ND (no data).

estimate of SWE appears less robust than in the other basins, mainly because of the fewer avail-

able measurements of snow density, resulting in more scattered timeseries in Figure 2.9. The

Adda basin exhibits statistically significant differences in the 1500-2000 and 2000-2500 elevation

classes, with an average difference of 141 mm and 104 mm, respectively. Similarly, Marty et

al. (2017) observed a stronger decrease of SWE at higher altitudes. Moreover, they also found

larger decreases for April SWE than for February SWE, in agreement with our results.

2.3.4 Climate variability

In order to evaluate possible links between climate variability and changes occurred during the

monitoring period and the amount and persistence of snow in the considered macro-basins, we

performed the MARTA analysis to temperature and precipitation data. Specifically, we con-

sidered the average DJFM precipitation and temperature obtained from the HISTALP dataset.

We report the results of the precipitation analysis in Figure 2.10 and the temperature analysis

in Figure 2.11. For all the considered macro-basins, DJFM precipitation exhibits a slight non-
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Figure 2.9: Average snow water equivalent (SWE) in the 1967-1993 (red circles) and in 1994-
2020 (black circles) periods are plotted for each elevation class in the six observation campaigns
dates (1 Feb, 1 Mar, 1 Apr, 15 Apr, 1 May, 1 Jun). Statistically significant (p ≥ 0.01, Mann-
Kendall test) trends of the entire 1967-2020 period are sketched as upward (downward) blue
arrow for increasing (decreasing) trends. Circles are filled if the difference of SWE between the
two periods is statistically significant (p ≥ 0.01, Mann-Whitney test).

24



Chapter 2. Snow climatology in the Italian Alps

EC Date
Change point (year)

Macro-basin
Toce S-B O–C–S Adda Adige P–B

1000 – 1500

1 Feb ND ND - ND - -
1 Mach ND ND - ND - -
1 Apr ND ND 1988 ND ND 1986
15 Apr ND ND 1988 ND ND 1988
1 May ND ND 1989 ND ND 1988
1 June ND ND - ND ND -

1500 – 2000

1 Feb - - - - - -
1 Mach ND ND 1988 - - -
1 Apr - - 1988 - - 1988
15 Apr ND - 1988 - - 1988
1 May - 1991 1989 - - 1989
1 June - - - - ND -

2000 – 2500

1 Feb - 1986 - - ND -
1 Mach ND ND - - ND -
1 Apr - 1988 1987 - ND 1988
15 Apr ND - 1988 - ND -
1 May - 1990 1989 - ND 1987
1 June ND - 1986 - - -

2500 – 3000

1 Feb ND ND - ND - ND
1 Mach ND ND - ND - ND
1 Apr ND ND 1986 ND - ND
15 Apr ND ND 1986 ND - ND
1 May ND ND 1986 ND - ND
1 June ND ND 1986 ND - ND

Table 2.5: Years of change-point detected by Pettitt’s test in SWE timeseries for each macro-
basin, elevation class (EC) and date. Statistically significant results only are reported while
cases in which there is not enough data are flagged as ND (no data).

significant decrease over the monitoring period and no statistically significant change-point is

detected according to the Pettitt’s test (Figure 2.10). By looking at the sub-periods between

10 and 20 years, it is possible to notice three areas of statistically significant trends, showing an

increase before 1980, a decrease around 1990 and another increase around 2000, confirming a

non-uniform tendency over the complete monitoring period. We also performed the same sta-

tistical analysis to the HISTALP mean monthly temperature averaged over all the basins (not

shown here), to evaluate possible differences in climate variability between accumulation and

melting seasons. Temperature increases significantly in both the accumulation (from January

to March) and, even more significantly, the melting period (April and May), consistently with

results reported by many authors as Auer et al. (2007) and Brunetti et al. (2009). These

results explain the decrease in snow depth and SWE on 1 April and the accelerated melt on 15

April – 1 June period. Both winter (DJFM) and spring (April and May) temperatures exhibit

a marked increase after 1987, where a change-point is detected by the Pettitt’s test. This result

is consistent with the change-point detected in the snow depth and SWE timeseries, suggesting

a strong impact of temperature increase, especially in spring, on snowmelt. The combined ef-

fect of precipitation and temperature variability is consistent with the observed stationarity of

25



2.3. Results and discussion

winter (February and March) snow depth and SWE, the significant decrease of the maximum

SWE observed in April and the accelerated melt in May. Marty et al. (2017) found similar

result, linking the strong low elevation SWE decreases to temperature increases and decreasing

snow/rain ratio. These results confirm the impact of temperature rise on snow, affecting conse-

quently the hydrological cycle and water availability.

Finally, we evaluated the correlation between snow depth on 1 and 15 April and the DJFM NAO

and WeMO indexes. In Figure 2.12 we report the matrixes of statistically significant Pearson’s

correlations, where the rows represent the six macro-basins and the columns the four elevation

classes. We obtain a negative statistically significant Pearson’s correlation between winter NAO

and spring snow depth ranging between -0.30 and -0.55 for 1 April and between -0.29 and -0.49

for 15 April. These results are coherent with previous studies of several authors as Steirou et al.

(2017) who found linkages between NAO and precipitation in Europe; Colombo et al. (2022)

found a negative correlation between NAO and SWE indexes. The WeMO index exhibits an

opposite link with snow depth, with positive statistically significant correlation ranging between

0.27 and 0.37 for 1 April and between 0.27 and 0.40 for 15 April, in agreement with the positive

correlation between winter WeMO and precipitation (0.38) obtained by Ranzi et al. (2021).

2.3.5 Snow water equivalent model

Here we show the results obtained from the SWE regression model presented in Section 4.2,

applied to the case of Oglio-Chiese-Sarca macro-basin. In Figure 2.13 we show the values of m

(a) and H0 (b) obtained from the linear regression analysis of average snow depth measurements

for the monitoring period 1994-2020 (black diamonds) obtained from Table 2.3. We selected the

Oglio-Chiese-Sarca macro basin as it shows the highest R2 values (Table 2.3) and the second

half of the monitoring period as more representative of the current nivological situation. The

best fitting of Equation and are plotted as dotted black lines and the coefficients a0, a1, a2, a3,

b0, b1, b2 and b3 are reported as well, together with R2 values. The fitting curves well describe

the observed behavior presented in Section 3.3.1, showing high values of R2 (0.97 for m and 0.99

for H0). Such fitting must be considered valid only within the considered time period as it might

introduce strong uncertainty due to the low number of points adopted for the fitting procedure.

However, the curve obtained provides an analytical function to estimate the temporal evolution

of the linear regression coefficients m and H0. Hence, the following equation can be written to

model the SWE as function of time and elevation.

SWE(H,DOY ) = m(DOY )[H −H0(DOY )]
ρs(DOY )

ρw
(2.6)

The coefficients n0, n1, n2, to define the second-order polynomial function of ρs are reported

in Section 3.3.2. With the estimates of m, H0 and ρs obtained from the long-term snow depth

and snow density observations it is possible to estimate the SWE in the DOY-H space as shown

in Figure 2.14. From the contour plot, we observe that the DOY of maximum SWE for fixed

elevation (DOY of the local minimum of the SWE isolines) linearly shifts in time, confirming

the behavior observed in the previous sections. However, for elevations higher than 2500 m

asl, we consider the model less reliable as the number of snow depth measurements is lower at
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Figure 2.10: MARTA triangles of total winter (DJFM) precipitation for the six macro-basins
from the HISTALP dataset. In the bottom part the statistically significant trends with 5%
significance level of the Mann – Kendall test are reported as thicker pixels.
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Figure 2.11: MARTA triangles of average winter (DJFM) temperature for the six macro-
basins from the HISTALP dataset. In the top part of each panel the statistically significant
change point detected by the Pettitt’s test is reported as dashed line while in the bottom part
the statistically significant trends with 5% significance level of the Mann – Kendall test are
reported as thicker pixels.

Figure 2.12: Statistically significant (p≥0.05) Pearson’s correlation between winter average
teleconnection indexes NAO (a and c) and WeMO (b and d) and the snow depth measured on
1 April (a and b) and 15 April (c and d) for the Toce (TO), Serio-Brembo (SB), Piave-Brenta
(PB) Oglio-Chiese-Sarca (OC), Adige (AN) and Adda (AD) and for the four elevation classes
(EC).
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such elevation and above a certain point snow depth might reach a plateau or even decrease

(Grünewald et al., 2014).

Figure 2.13: Slope m (a) and null snow depth elevation H0 (b) as function of the day of the
year (black diamonds). Dotted black line represents the third-order polynomial fitting curve
(Equation and ).

Figure 2.14: Contour plot of snow depth and snow water equivalent (SWE) in the time-
elevation (DOY-H) space for the 1994-2020 period.

2.4 Conclusions

We studied changes and variability of snow depth and SWE in six macro-basins of the Italian

Alps over the monitoring period 1967-2020 based on measurements collected on 1 February, 1

March, 1 April, 15 April, 1 May and 1 June. Our results show the effects of the temperature

increase of the past century on snow accumulation in the Italian Alps. We found statistically

significant decreasing trends in both snow depth (-0.12 m decade−1 on average in the Oglio-

Chiese-Sarca basin) and SWE (-37 mm decade−1 on average in the Oglio-Chiese-Sarca basin)

over the years and a statistically significant decrease of snow depth and SWE between the two

halves of the monitoring period (1967-1993 and 1994-2020). Specifically, we found that, on

average, snow depth decreased of 33% on 1 April, exhibiting stronger differences between the
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two periods at lower altitudes (63% in the 1000-1500 m elevation class) and smaller difference

towards higher elevations (29% at 1500-2000 m, 22% at 2000-2500 m and 18% at 2500-3000 m).

In case of SWE we found an decrease of 36% with respect to the 1967-1993 period, higher at

low elevations (52% at 1000-1500 m) and substantially lower at higher altitudes (between 28%

and 29%). These results have been also confirmed by the higher values of snow line elevation H0

we obtained. The computed trends and differences exhibit a strong change in spring (1 April

and 15 April mainly) snow depth and SWE, suggesting that spring snowmelt is highly impacted

by global warming. Such behavior can have strong effects on the hydrological regime of the

considered catchments, possibly modifying magnitude and timing of flood events and affecting

water availability in the summer.

We found that around 1988, on average, there has been a change-point, with snow depth and

SWE being lower in the following decades. This appears to be a common result for all the

macro-basins and elevations. To reject the hypothesis of possible errors in the snow depth

and SWE timeseries due to measurement methodology variations or other factors affecting

the timeseries reliability, we performed the same change-point detection analysis on measured

temperature data from HISTALP dataset, resulting in a change-point in the same period. This

result confirms the robustness of our findings and highlights the strong effects of temperature

on snow amount and persistency, both in terms of rain-snow separation and melt onset. The

analysis of precipitation and temperature data also confirms the weaker variation during the

accumulation season (1 February and 1 March) in contrast with the strong decrease in snow

depth and SWE during the melting season. The correlation analysis of NAO and WeMO

climatological indexes with snow depth on 1 April showed similar correlations obtained in other

studies. In fact, we found negative Pearson’s correlation coefficient in case of NAO index

and positive in case of WeMO index. Further investigations might highlight the impacts of the

observed changes in climatological and nivological conditions on hydropower energy production.

The elevation and time dependency analysis of snow depth and snow density measurements

allowed us developing a simple SWE model as a function of time and elevation. In fact, as

shown in Figure 2.8, snow density changes significantly only with the day of the year, being

almost constant with altitude. On the other hand, snow depth linearly increases with elevation

and, of course, increases along the accumulation season and start decreasing as the melting

season begins. From such analysis we obtained the parameters for a simple SWE model that

can be applied to estimate the SWE evolution between February and July as function of the

elevation and day of the year. Such model can be used to estimate SWE for local applications

in the considered macro basins.
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Chapter 3

Rain-On-Snow: the contribution of

snowmelt to intense flood events in

Lombardy

There is great vigour in the

waters that come down from the

snows of the Misty Mountains.

J.R.R. Tolkien,

The fellowship of the ring

Abstract

The contribution of snow on ground in the formation of floods has been investigated. We

calibrated a snow water equivalent (SWE) accumulation and melting model to estimate a degree-

day factor based on observed precipitation, temperature and snow depth, later used to quantify

snowmelt in rain-on-snow days. We analyzed 27 years of precipitation observations collected

at the meteorilogical stations of Aprica and Pantano d’Avio through the annual maxima (AM)

method, obtaining the IDF curves of precipitation only (P) and combined precipitation and

melting (P+M) for the two locations. We found an average increase in the quantiles of 2.2%

when considering meltwater contribution, larger for longer durations, up to 10% for d=24 h

with an average of 3.2% for Aprica and 4.1% for Pantano d’Avio. Future developments will

include the analysis of longer durations (1,2,3,4,5 days), as meltwater contribution is expected

to increase.

3.1 Introduction

Snow plays a role of paramount importance in the Alpine region, being a natural freshwater

reservoir. On the one hand, snowmelt runoff is a major component of the hydrological cycle,

regulating water availability for water supply systems. On the other hand, it can contribute to

increase flood volumes in case of intense rainfall events. Rain-on-snow (ROS) events occur when
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snow present on the ground is melting in conjunction with a rainfall event, possibly causing land-

slides, high streamflows (Berris and Harr, 1987) and avalanches (Conway and Raymond, 1993;

Heywood, 1988). These events are characterized by a complex generation mechanism, mainly

driven by air temperature, precipitation phase (i.e., solid or liquid) and, obviously, presence of

snow on the ground (Il Jeong, 2017). Snow on ground can actually play a double role. From

one point of view, it can slow down the formation of floods, retaining the rainfall volumes and

delaying the occurance of peak flows. In fact, snow can be considered as a porous media and

water can flow throug it according to a Darcian flow (Colbeck, 1972; Colbeck and Anderson,

1982). The water reteined by the snowpach can reach 6% of the snow depth. On the other hand,

it can enhance the flood event by releasing additional runoff from melting and, consequently,

contributing with additional water to the peak flow volume.

Climatological analysis of ROS present difficulties related to the combination of the mechanism

generating ROS events. Trends are found of both signs, mainly because warmer temperatures

result in both an increase of the ratio of rain to snow events and a decrease and disappearing of

snow cover (Cohen et al., 2015). Snow cover in the Italian Alps has been decreasing since 1967

and precipitation data do not exhibit statistically significant trends over the same period, sug-

gesting a decrease of possible ROS events. On the other hand, temperature has been increasing

since 1967 and at an even faster rate since the end of the 1980. Such increase in air temperature

could increase the number of rainy days in a year.

In a climate change scenario, intense flood events are however expected to increase in frequency.

The estimate of flood peak flow for a given return period is in general carried out by taking

into account a rainfall event with the same return period. Extreme rainfall statistical analysis

is carried out through extreme value theory in order to obtain an estimate of the amount of

precipitation for given return period. The Intensity-Duration-Frequency curves provide a model

to evaluate the precipitation depth as a function of the duration and the return period. The

methodology mostly adopted to build such model is the analysis of the annual maxima (AM),

which considers a sample composed by the largest observation for every year of the available

measured precipitation series.

Here, we investigate the contribution of snowmelt during rain-on-snow events. We calibrate a

simple snow water equivalent (SWE) accumulation and melt model, later used to estimate the

additional contribution of snowmelt to intense precipitation at the Aprica and Pantano stations.

Then, through the AM method, we estimate the impact of snowmelt on the IDF curves.

In the next sections we present the dataset adopted, the SWE model, the statistical approach

here considered and we present the results obtained.

3.2 Datasets and Methods

3.2.1 Meteorological data

Lombardy meteorological stations network is managed at regional level by ARPA Lombardia,

the regional Environment Protection Agency. The monitoring stations provide measurements

at sub-hourly time scale of different meteorological variables such as precipitation, temperature,

relative humidity, total radiation, wind speed and direction, and in some cases, snow depth.
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Here, we use precipitation [mm], temperature [°C] and snow depth [cm] observations measured

at Aprica (46.154 N, 10.147 E) and Pantano d’Avio (46.167 N, 10.474 E). Aprica is located

Alpine pass between Valtellina and Valcamonica at an altitude of 1180 m asl; Pantano d’Avio

(simply Pantano from here on) is placed nearby an artificial lake in Valcamonica at an altitude

of 2390 m asl. The selection of these two stations has been mainly driven by the long temporal

coverage. In fact, in both sites, we considered 27 years of continuous observations, from 1996

to 2022. For both meteorological stations we considered daily precipitation, temperature, and

snow depth measurements to calibrate the snow accumulation and melt model based on the

degree-day factor method, classify rain-on-snow days and obtain a daily average estimate of

meltwater production. Then, we used the sub-hourly precipitation measurements to obtain

intense precipitation events at different durations. Specifically, we focus our attention to sub-

daily events, considering the 1 hour, 3 hours, 6 hours, 12 hours and 24 hours durations. The

temporal resolution at which the data are provided changes along the considered monitoring

period, being 30 minutes from 1996 to 1999 and 10 minutes after 2000. The dataset can

be found and freely downloaded from the ARPA Lombardia meteorological data web portal

(https://www.arpalombardia.it/Pages/Meteorologia/Richiesta-dati-misurati.aspx.).

3.2.2 Precipitation data correction

In order to estimate the meltwater production concurrently with intense precipitation events, a

simple snow water equivalent (SWE) model has been implemented. Obviously, snow accumula-

tion is governed by the intensity of snowfall events. However, Grossi et al. (2017) found that in

the two considered monitoring sites, precipitation measurements by rain gauges are generally

affected by a systematic underestimation, usually stronger in case of snowfall events. In view

of this, we corrected the daily precipitation data by applying a temperature-based correction

procedure proposed by Grossi et al. (2017). The corrected precipitation Pc is computed as

Pc = (1 + αsCs)P (3.1)

αs =


1, if Tm < Tl

(Th − Tm)/(Th − Tl), if Tm < Tl < Tl

0, if Tm > Th

(3.2)

Where P is the measured precipitation, Cs is a correction factor scaled by means of the

coefficient αs, limited between 0 and 1 (Figure 3.1), which is a linear function of the daily

average temperature and depends on the minimum threshold value for liquid precipitation Th

and the maximum threshold value for solid precipitation Tl. The values of Tl and Th were

obtained by a statistical analysis of snowfall, rainfall and mixed events and fixed at Tl=0°C
and Th=2°C, a symmetric neighborhood of the center of the mixed events distribution Ts=1°C.
The correction factor Cs is calibrated for the specific meteorological station. Specifically, we

considered Cs=0.6 for Aprica and Cs=1.05 for Pantano. We note that the higher correction

coefficient obtained by Grossi et al. (2017) for Pantano indicates that winter precipitation is
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Figure 3.1: Temperature dependent coefficient αs.

more strongly underestimated than in case of Aprica. In fact, for this specific site they found a

34% underestimation of the mean yearly precipitation. We apply this correction procedure to

have a better estimate of the precipitation volume contributing to snow accumulation, without

affecting liquid precipitation events.

3.2.3 Snow water equivalent and snow melt model

We used the corrected precipitation data to run a simple SWE model that takes as input,

together with precipitation, daily temperature data. The SWE on ground for a certain day i

(SWEi [mm]) can be computed as

SWEi = SWEi−1 +Ai −Mi (3.3)

Where SWEi−1 [mm] is the SWE of the previous day, Ai [mm] andMi [mm] are, respectively,

accumulation and melting occurring on the i-th day. The corrected precipitation contributes

completely to snow accumulation when daily average temperature is below the maximum thresh-

old value for solid precipitation Tl=0°C, increasing SWE on ground, and melting is null. As

the average temperature overcomes the threshold value of 0°C, snowmelt starts, and M takes

positive values. As an alternative to a more accurate calculation of snowmelt based on energy

balance (Anderson, 1968, 1976), a simplified estimate can be provided by the degree-day method

(Rosa, 1956; Martinec 1960), considering air temperature only. Here we model snowmelt by

means of a degree-day approach corrected with respect to the classical formulation based on

temperature only in order to consider the contribution of liquid precipitation. Specifically, we

computed melting as

M =
PT

80
+ ksT (3.4)

Where T is the daily average temperature (°C), P is precipitation (mm) and ks (mm °C d-1) is
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the degree-day factor. The number 80 (°C) is the ratio between the latent heat of melting (333.5

J g-1) and the specific heat of water (4.186 J g-1 °C-1), rounded to the nearest whole number.

Typical values of ks range from 1.6 to 6, varying with snow density, wind speed and elevation,

and a value of 2.74 if often used when other information is lacking (NRCS, 2009). Here, we

calibrate this parameter through the comparison with SWE estimates obtained from the daily

snow depth measurements at the considered sites. This approach takes into consideration both

precipitation and temperature contribution to snowmelt. In this regard, in case the daily average

temperature is between the threshold values of Tl=0°C and Th=2°C, we consider that a portion

αsP of such precipitation would contribute to accumulation and the complementary portion

(1− αs)P to snowmelt, where αs is the same parameter previously presented. Such separation

must be taken into account since we run the model with the daily precipitation timeseries

corrected with the temperature-based procedure. In this case, we assume that the portion of

solid precipitation linearly decreases from 1 to 0 as the average temperature goes from 0°C to

2°C. Finally, when the measured air temperature is larger than Th=2°C, accumulation is null

and all the precipitation contributes to snowmelt. Obviously, the admissible values of M for

the i-th day are limited between zero and the sum SWE of the previous day and, if present, the

accumulation of the current day.

3.2.4 Snow density models

In order to calibrate the snowmelt degree-day factor model, we compared the modelled SWE

with in situ estimates derived from daily snow depth measurements. The SWE (mm) can be

estimated as

SWE =
HSρs
ρw

10 (3.5)

Where HS (cm) is the measured snow depth, ρs (kg m−3) is the snow density and ρw (kg m−3) is

the liquid water density, estimated as 1000 kg m−3. Since there are no continuous snow density

measurements at the considered sites we obtain an estimate from empirical relations, in order

to estimate the SWE at daily temporal scale. Many authors proposed different formulations to

estimate snow density along accumulation and melting season. Here, we consider four different

formulations of snow density as function of the day of the year. Specifically, we considered the

linear function proposed by Pistocchi (2016), who estimated snow density as

ρs(DOY ) = m0 +m1(DOY + 61) (3.6)

Where DOY is the day of the year and the parameters m0 = 200 kg m−3 and m1=1 were cali-

brated by the authors considering 2009-2011 winters in Bolzano. We also considered a quadratic

formulation proposed by Guyennon et al. (2019) and recalibrated in chapter 2, estimating the

snow density as

ρs(DOY ) = n0 + n1(DOY + 61) + n2(DOY + 61)2 (3.7)

Where the parameters (n0,n1,n2) are equal to (288.9, 0.93, 0.0082) for Guyennon et al. (2019)

and

(277, 0.36, 0.0051) from chapter 2.
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Figure 3.2: Snow density empirical relationships.

Finally, in view of the availability of daily snow depth measurements, we considered an empirical

relation that estimates snow density as a function of the DOY and HS (Strum et al., 2010) as

ρs(Y,DOY ) = ρ0 + (ρMAX − ρ0)(1− ek0HS(Y,DOY )+k1DOY ) (3.8)

Where ρ0=223.7 kg m−3 is the base snow density, ρMAX=597.5 kg m−3 is the maximum

snow density, HS is the snow depth, Y is the specific year when HS is measured and the two

parameters (k0,k1) are equal to (-0.0012, -0.0038). Such formulation provides a year-by-year

estimate of snow density as it is a function of snow depth measurements. In Figure 3.2 we show

the selected snow density formulations.

3.2.5 Statistical analysis

In the frequency analysis of hydrological quantities, annual maxima (AM) approach is the most

often adopted. The main reasons are its ease of application and the difficulty in obtaining

original timeseries for the oldest measurement stations, for which the information is generally

limited to annual maxima. Such approach is theoretically correct and widely used. The first

analysis is the proper choice of a probabilistic distribution able to model the annual maxima

sample. Here, we consider and compare three cumulative distribution functions (CDF) generally

adopted for extreme value analysis: the Gumbel distribution (EV1), the Generalized Extreme

Value distribution (GEV) and the log-normal distribution (L-N).
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EV1 distribution

The Gumbel (or EV1) belongs to the family of the Extreme Value distributions. The EV1

distribution of a random variable x takes the form

P (x) = e−e−
x−u
α (3.9)

where α is the scale parameter and u the location parameter. The two parameters can be

estimated through the mean µ(x) and the standard deviation σ(x) as

α =
σ(x)

1.2825
,

u = µ(x)− 0.450σ(x)

(3.10)

obtained from the definition of the theoretical moments of the distribution. For the EV1 distri-

bution the skewness is constant (γ ∼ 1.14).

The Generalized Extreme Value distribution

The GEV distribution is a general formulation of the Extreme Value distributions (Jenkinson

1955, 1969). Its CDF P (x) is defined as

P (x) = e−[1−x−u
α

]
1
k (3.11)

where α is the scale parameter, u the location parameter and k the shape parameter. The

parameter k determines the type of extreme value distribution. For k < 0 the GEV represent

a Frechet distribution (EV2), for k < 0 the Weibull distribution (EV3) and in case of k = 0

the Gumbel distribution, previously described. The mean, the variance and the skewness of the

GEV are expressed as

µ(x) = u+
α

k
[1− Γ(1 + k)], k > −1

σ2(x) = (
α

k
)2[Γ(1 + 2k)− Γ2(1 + k)], k > −1

2

γ = sign(k)
−Γ(1 + 3k) + 3Γ(1 + k)Γ(1 + 2k)− 2Γ31 + k

[Γ(1 + 2k)− Γ2(1 + k)]
3
2

, k > −1

3

(3.12)

It can be noticed that the skewness does not depend on α and u, being a function of the

parameter k only which can be estimated by estimating γ. Then, it is possible to estimate α

and u as

α =

√
k2σ2

Γ(1 + 2k)− Γ2(1 + k)
(3.13)

The Log-Normal distribution

The log-normal (L-N) distribution is also frequently used in extreme value analysis. It is a

two-parameters distribution describing the distribution of the natural logarithm of the variable
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x as a normal distribution. The probability density function of the L-N is expressed as

p(x) =
1

x
√
2πα

e−
1
2
[ ln x−u

α
]2 (3.14)

where the two parameters are the mean and the standard deviation of the natural logarithm of

the variable x estimated as

α =

√
ln (1 +

σ2(x)

µ2(x)
),

u = lnµ(x)− 1

2
ln (1 + +

σ2(x)

µ2(x)
)

(3.15)

Parameters estimate: L-moments

The parameters of the selected probability distribution can be estimated following different ap-

proaches. Here, we use the methods of moments and the L-moments method.

The method of moments widely adopted due to its simplicity. It consists in setting the pop-

ulation moments of the selected probability distribution P (x) with the sample moments and

solving the population moment expression for the parameter of interest, as described previously

for the EV1 and the L-N. For unbiased estimates of the moments, the sample moments are

multiplied by a correction factor (1 for the mean, N
N−1 for the variance and N2

(N−1)(N−2) for the

third-order moment). As higher order moments are characterized by higher variance, distribu-

tions with parameters depending on lower order moments are more suitable, expecially when

the numerosity of the sample is limited.

A more robust methodology to estimate the probability distribution parameters is the use of

the L-moments (Hosking, 1990). Being {x1, ..., xn} and {x1:n, ..., xn:n} the ordered sample, the

L-moments (and their ratios) are defined as

L1 = E(x),

L2 = 2w2 − L1,

L3 = 6w3 − 6w2 + L1,

L4 = 20w4 − 30w3 + 12w2 − L1,

t3 =
L3

L3
,

t4 =
L4

L3

(3.16)

where L1 is the sample mean, L2 is a dispersion measurement of the sample, t3 is the L-skewness

and t4 the L-kurtosis. The parameters w2, w3 and w4 are the estimates of the Probability
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Weighted Moments (PWM) and are computed as

w2 =
1

n(n− 1)

n∑
i=2

(i− 1)xi:n,

w3 =
1

n(n− 1)(n− 2)

n∑
i=3

(i− 1)(i− 2)xi:n,

w4 =
1

n(n− 1)(n− 2)(n− 3)

n∑
i=4

(i− 1)(i− 2)(i− 3)xi:n

(3.17)

The L-moments are linear combination of the PWM and can be used to estimate the parameters

of the GEV distribution. The location (u), scale (α) and shape (k) parameters of the GEV can

be estimated as
k ∼ 7.8590c+ 2.9554c2,

c =
2w2 − L1

3w3 − L1
− 0.63093,

α = k
L2

Γ(1 + k)(1− 2−k
,

u = L1 −
α

k
[1− Γ(1 + k)]

(3.18)

Here, we estimate the EV1 and L-N distributions parameters according to the method of mo-

ments and the GEV parameters according to the L-moments method.

3.2.6 Intensity-Duration-Frequency curves

The Intensity-Duration-Frequency (IDF) curves provide a relationship between precipitation

intensity h and its duration d, for a given return period T . Different relationships have been

proposed (e.g., Sherman, 1931; Chow, 1962), but the most commonly adopted relationship in

Italy is a power low in the form

h(d, T ) = a(T )dn(T ) (3.19)

where a(T ) and n(T ) are the two coefficients varying with the return period. The parameters

can be easily computed by least-square fitting the linear relationship, obtained by applying the

logarithm to the IDF formulation, defined as

Y = n(T )X +Q (3.20)

where Y = log h(d, T ),Q = log a(T ) and X = log d. In general, the IDF curves are computed

for the return periods of 2, 5, 10, 20, 50, 100, 200, 500 and 1000 years. The data points to

be fitted by the linear relationship are the quantiles obtained from the considered probabilistic

function expressed in terms of return period T (x)

T (x) =
1

1− P (x)
(3.21)

For the calculation of the quantiles we estimated the location (u) and scale (α) parameters

we adopted the method of moments for the EV1 and L-N and the L-moments for the GEV
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Figure 3.3: Modelled (red) and estimated (black circles) SWE for Aprica (a,b) and Pantano
(c) stations in three different hydrological years.

distribution. For the shape parameter k of the GEV we considered an average value of the k

values computed for each duration with the L-moments. Here, we compute the IDF curves for

Aprica and Pantano locations considering two cases: the measured precipitation (P) and the

considered sites (i.e., the classical IDF analysis) and the combined contribution of precipitation

and melting (P+M).

3.3 Results and discussion

3.3.1 Calibration of degree-days melting model

After correcting both Aprica and Pantano daily precipitation records according to methodology

proposed by Grossi et al. (2017), we implemented a simple accumulation/melt model based

on the degree-day melting factor to estimate the SWE on ground. Such model is necessary

to calibrate a proper degree-day factor (ks) to estimate the melting contribution to floods in

conjunction with heavy rain events. By minimizing the RMSE between modelled and estimated

SWE, we obtained a value of ks=3.05 mm °C d−1.

In Figure 3.3 we report the modelled (red) and estimated from HS and ρs (black cirlces) SWE

in three different years for Aprica (a and b) and Pantano (c). Here we considered an average

SWE estimated from HS and the proposed ρs formulations (estimated SWE from this point).

The modelled SWE at the Aprica site for the hydrological year 2013-2014 can fairly describe the

estimated SWE on ground variability througout the accumulation and melting season, showing

a slow overestimation of the maximum SWE value (Figure 3.3a). For the year 2019-2020

however the model shows a stronger overestimation of the SWE on ground in accumulation

(Figure 3.3b). However, the maximum value of SWE is well estimated, as well as the melting

season. On the contrary, in the case of Pantano for the hydrological year 2009-2010 (Figure

3.3c), the model seems to underestimate the accumulation of SWE on ground in some periods,

capturing the maximum value and the decreasing lamb of the SWE curve for the melting season.

Since we are interested in estimating the additional contribution of melting in rainy days, we

are more interested in finding a calibrated ks that allows the model to fit the melting season

and properly captures the rate of SWE decrease than accumulation. In view of this, we consider

the obtained ks properly calibrated for our purpose.

40



Chapter 3. Rain-On-Snow events in Lombardy

3.3.2 Rain-on-snow extreme events and corrected IDF curves

Once the ks parameter is estimated, it is possible to estimate the additional contribution of

snowmelt to liquid precipitation during rain-on-snow events. We used the sub-hourly precipita-

tion data to reconstruct the precipitation timeseries for the durations of 1 h, 3h, 6h, 12h and 24

h (P). Then, we computed the melting contribution solving Equation 3.4 using the reconstructed

P for each duration, daily average air temperature and estimated SWE (from HS and ρs). Since

the second term of Equation 3.4 (ksT ) is expressed in mm d−1, we multiply for a reduction

coefficient equal to d/24 to consider the melting occurring within the considered duration. The

estimated melt (M) is then added to the precipitation (P), obtaining the timeseries of conjunct

contribution of precipitation and melting (P+M) at both Aprica and Pantano stations.

Figure 3.4 and Figure 3.5 show the extracted maximum precipitation and combined precipita-

tion and melting for each year of observation at the Aprica and Pantano stations. It is possible

to notice that, of course, not every value of the series has been affected by the additional melt.

The maximum value of P+M for a certain year can be the same of P if rain-on-snow events

do not occur for that year or if the occurring rain-on-snow events show lower intensity than a

rainfall event. On the other hand, the AM of P+M can be higher than than the AM of P in

two cases: 1) the AM of P occurs when snow is present on the ground (i.e., is a ROS event)

triggering melting or 2) the AM of P is not a ROS event and another event in the same year,

characterized by lower intensity than the AM of P, is a ROS event and, combined with the

induced melting, produces a value of P+M higher than the AM of P.

We computed the parameters of the selected probability distributions for each duration, for

both P and P+M AM series and for both Aprica and Pantano locations (Table 3.1). With the

estimated parameters we computed the quantiles for the return periods T = 5, 10, 20, 50, 100, 200

years for both P and P+M and evaluated the increment provided by the melting contribution

computing the percentage change (i.e., the ratio between the difference of the P+M and P

quantiles and the P quantile). The quantiles computed for Aprica and Pantano are reported in

Table 3.2 and Table 3.3. For the Aprica station, we obtained from the quantiles estimated with

the GEV distribution an average percentage change of 2.8%, ranging from 0.3% (obtained for a

return period T=5 and duration d=1 h) to 10.1%. Similarly, the quantiles obtained using the

EV1 distribution exhibit an average percentage increment of 2.1%, ranging from 0.5% and 3.8%.

With the L-N distribution the percentage change is smaller, with an average increment of 1.4%

and two cases (T=100, 200 years and d=24 h) with a decrease of 0.3% and 0.8%. In general,

we found that the contribution of melting increases with the duration and the return period

for the GEV and EV1 cases. We found the same behavior in case of L-N distribution, with the

exeption of the 24 h quantiles. For the Pantano station, we found that the quantiles of the GEV

distribution increased on average of 3% when considering melting, with a decrease of 0.5%, only

for the return period of 200 years and duration of 6 hours, and a maximum percentage increase of

9.1%. In case of the EV1 quantiles, the average percentage change is 2.6%, ranging between 1.1%

and 5%. For the L-N distribution, the percentage change ranges between -1.4% and 4%, with an

average of 1.4%. Also in this case, the meltwater contribution increases with the duration with

maximum differences in case of d=24 h. This fact suggests that longer durations (i.e., 1, 2, 3, 4
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Figure 3.4: Timeseries of the annual maxima of P and P+M for the Aprica station

and 5 days) might present a stronger increase in the quantiles considering melting contribution.

For the 24 h duration the average percentage change is of 3.2% for Aprica and 4.1% for Pantano

when considering all the selected probability distributions. Without considering the L-N results,

which exhibited counterintuitive results, the average percentage increase is 4.5% for Aprica and

5.4% for Pantano. Ranzi (2014, unpublished) found that the contribution of snowmelt to the 48

h duration during the catastrophic event occurred in Adige basin in 1966 (3 and 4 November)

ranged between 10% and 20%.

Finally, we computed the parameters a and n of the IDF curves by linear regression of the

logarithmic transformation of the quantiles and the durations (Table 3.4) for P and P+M, for
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Figure 3.5: Timeseries of the annual maxima of P and P+M for the Pantano station

all the return periods at Aprica and Pantano stations. In Figure 3.6 the IDF obtained from

the EV1 are reported as example for both Aprica (a,c) and Pantano (b,d) stations. From the

figure it is possible to see the increment in terms of intensity for given duration and frequency

(or return period).

3.4 Conclusions and future developments

Snowmelt can enhance flood peak volumes when ROS events occur. We investigated the im-

portance of snow on the ground during intense rainfall events at two locations in Lombardy,
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EV1 LN GEV

Station d [h] u α u α k α u

Aprica
P

1 19.63 7.02 3.10 0.37 0.01 7.22 19.62
3 28.75 7.71 3.46 0.29 0.19 9.17 29.41
6 38.85 10.25 3.76 0.29 0.27 13.20 40.02
12 54.31 17.59 4.11 0.34 0.22 22.20 55.64
24 71.03 29.71 4.39 0.41 -0.10 26.96 69.63

Aprica
P+M

1 19.65 7.11 3.10 0.37 0.01 7.23 19.61
3 29.04 7.89 3.47 0.29 0.19 9.26 29.76
6 39.27 10.57 3.77 0.29 0.25 13.36 40.38
12 54.71 18.42 4.12 0.35 0.16 22.23 55.65
24 73.24 30.91 4.43 0.42 -0.15 26.02 71.40

Pantano
P

1 17.15 6.65 2.97 0.39 0.12 7.33 17.58
3 28.12 11.02 3.46 0.39 0.07 11.75 28.51
6 39.45 15.37 3.80 0.39 0.06 16.90 39.59
12 54.64 22.04 4.13 0.40 0.06 24.65 54.42
24 74.54 28.56 4.44 0.39 0.12 34.04 75.12

Pantano
P+M

1 17.32 6.81 2.98 0.40 0.12 7.43 17.75
3 29.00 11.04 3.49 0.39 0.09 11.94 29.47
6 40.91 15.73 3.84 0.39 0.08 17.72 41.13
12 57.20 22.14 4.17 0.39 0.03 24.22 56.72
24 79.15 29.42 4.49 0.38 0.07 33.54 79.03

Table 3.1: Parameters of the selected probability distributions.

Aprica and Pantano d’Avio. We reconstructed the precipitation timeseries at the two locations

by correcting the precipitation measurements throughout a temperature based approach aimed

in minimizing the measurement error during winter. We used the corrected precipitation data at

daily temporal resolution to run a SWE accumulation and melt model based on the degree-day

factor. We calibrated the model comparing the outputs with the SWE estimated through snow

depth measurements and snow density estimated by four different empirical formulation. We

obtained a calibrated ks equal to 3.05 mm °C d−1 and used it to estimate snowmelt in case of

ROS events. We reconstructed, from the sub-hourly precipitation measuremens, the cumulated

precipitation timeseries (P) for the durations of 1, 3, 6, 12 and 24 hours and computed the

associated snowmelt (M) in case of ROS events, obtaining the conjunct timeseries of rainfall

and snowmelt (P+M). We applied the annual maxima approach for the extreme value statistical

analysis using the GEV, the EV1 and the Log-normal distribution. We found that, on average,

snowmelt contributes for about 2.2%. Its influence is larger for longer durations, suggesting the

importance of studying also precipitation series cumulated for more than 24 h. For the largest

duration (24 h), the average increment to the rainfall volume provided by snowmelt reaches

larger percentages, up to 10%, with an average increment of 3.2% at the Aprica station and

4.1% at Pantano. Finally, we provided the IDF curves for the two stations considering both

cases of precipitation measurements only and the combination of precipitation and snowmelt.

Future developments of this research will include the extension of the statistical analysis to

longer durations (e.g., 1, 2, 3, 4, 5 days) and the implementation of an energy balance model

for a more accurate estimate of the snowmelt contribution.
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P P+M

GEV

T/D 1 3 6 12 24 1 3 6 12 24
5 30.3 41.3 56.3 84.1 113.3 30.4 41.8 57.1 85.2 115.3
10 35.6 46.1 62.2 95.2 137.8 35.8 46.6 63.3 97.5 141.4
20 40.6 50.1 66.9 104.3 163.1 40.9 50.7 68.3 107.9 169.5
50 47.0 54.5 71.8 114.1 198.7 47.5 55.1 73.6 119.7 210.8
100 51.7 57.3 74.7 120.3 227.7 52.5 57.9 76.8 127.5 245.9
200 56.4 59.8 77.1 125.6 258.7 57.4 60.4 79.5 134.4 284.9

EV1

5 30.2 40.3 54.2 80.7 115.6 30.3 40.9 55.1 82.3 119.6
10 35.4 46.1 61.9 93.9 137.9 35.7 46.8 63.1 96.2 142.8
20 40.5 51.7 69.3 106.5 159.3 40.8 52.5 70.7 109.4 165.1
50 47.0 58.9 78.9 122.9 186.9 47.4 59.8 80.5 126.6 193.9
100 51.9 64.2 86.0 135.2 207.7 52.4 65.3 87.9 139.5 215.5
200 56.8 69.6 93.1 147.4 228.4 57.3 70.8 95.2 152.3 237.0

LN

5 30.7 41.3 55.8 83.7 115.5 30.8 41.8 56.7 85.1 118.1
10 36.5 47.3 64.0 99.3 139.1 36.7 48.0 65.2 101.3 141.1
20 42.1 53.0 71.8 114.5 162.2 42.4 53.8 73.2 117.0 163.5
50 49.5 60.2 81.6 134.2 192.8 49.8 61.1 83.4 137.5 193.0
100 55.1 65.5 88.9 149.3 216.3 55.5 66.5 90.9 153.2 215.5
200 60.8 70.8 96.2 164.5 240.3 61.2 71.9 98.5 169.1 238.5

Table 3.2: Quantiles of the selected probability distributions for Aprica.

P P+m

GEV

T/D 1 3 6 12 24 1 3 6 12 24
5 27.6 45.2 63.7 89.9 121.7 28.0 46.2 66.1 92.2 126.7
10 32.0 52.9 75.0 106.6 142.0 32.4 53.8 77.5 109.4 148.6
20 35.8 59.8 85.2 121.9 159.8 36.4 60.5 87.7 125.4 168.6
50 40.2 68.3 97.8 140.9 180.5 41.0 68.7 100.1 145.7 192.9
100 43.2 74.3 106.8 154.5 194.6 44.1 74.3 108.7 160.5 210.1
200 46.0 80.0 115.3 167.5 207.5 47.0 79.6 116.9 174.9 226.4

EV1

5 27.1 44.7 62.5 87.7 117.4 27.5 45.5 64.5 90.4 123.3
10 32.1 52.9 74.0 104.2 138.8 32.7 53.8 76.3 107.0 145.4
20 36.9 60.9 85.1 120.1 159.4 37.6 61.8 87.6 123.0 166.5
50 43.1 71.1 99.4 140.7 186.0 43.9 72.1 102.3 143.6 193.9
100 47.7 78.8 110.2 156.0 205.9 48.7 79.8 113.3 159.1 214.5
200 52.4 86.5 120.8 171.4 225.8 53.4 87.4 124.2 174.5 235.0

LN

5 28.2 46.0 63.8 89.1 120.4 28.6 46.7 65.9 91.6 125.3
10 34.5 55.9 77.1 108.0 145.7 35.1 56.4 79.6 110.1 149.7
20 40.8 65.7 90.1 126.6 170.6 41.5 65.9 93.0 128.2 173.5
50 49.2 78.8 107.4 151.4 203.6 50.1 78.4 110.7 152.0 204.9
100 55.7 89.0 120.7 170.6 229.2 56.8 88.1 124.4 170.3 228.8
200 62.4 99.4 134.4 190.3 255.3 63.7 98.1 138.4 189.0 253.2

Table 3.3: Quantiles of the selected probability distributions for Pantano.
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Aprica P Aprica P+M Pantano P Pantano P+M

CDF T [y] a n a n a n a n

GEV

5 28.10 0.426 28.24 0.431 27.39 0.472 27.79 0.479
10 31.81 0.435 31.97 0.442 31.85 0.476 32.23 0.485
20 35.01 0.443 35.15 0.453 35.84 0.479 36.16 0.490
50 38.68 0.453 38.78 0.470 40.62 0.482 40.78 0.497
100 41.12 0.461 41.16 0.483 43.93 0.484 43.93 0.502
200 43.32 0.469 43.27 0.496 47.01 0.486 46.84 0.508

EV1

5 27.45 0.430 27.56 0.438 27.08 0.465 27.41 0.475
10 31.67 0.434 31.83 0.443 32.08 0.466 32.48 0.474
20 35.71 0.438 35.93 0.447 36.88 0.466 37.35 0.473
50 40.94 0.441 41.23 0.450 43.09 0.466 43.65 0.472
100 44.86 0.443 45.20 0.452 47.74 0.466 48.37 0.472
200 48.77 0.445 49.16 0.454 52.38 0.466 53.08 0.472

L-N

5 28.17 0.427 28.31 0.432 28.07 0.460 28.42 0.468
10 32.75 0.433 33.01 0.437 34.27 0.456 34.72 0.461
20 37.09 0.438 37.47 0.440 40.40 0.454 40.97 0.455
50 42.67 0.444 43.22 0.444 48.63 0.451 49.35 0.448
100 46.84 0.447 47.54 0.447 55.03 0.449 55.86 0.444
200 51.02 0.451 51.87 0.449 61.62 0.447 62.58 0.440

Table 3.4: Parameters of IDF curves for Aprica and Pantano stations obtained from the
regression of the quantiles computed through the GEV, EV1 and L-N distributions.
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Figure 3.6: IDF curves obtained from the quantiles of the EV1 distribution of the annual
maxima of P and P+M for the Aprica and Pantano d’Avio meteorological stations.
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Abstract

Surface melting is a major component of the Greenland ice sheet surface mass balance, affect-

ing sea level rise through direct runoff and the modulation of ice dynamics and hydrological

processes, supraglacially, englacially and subglacially. Passive microwave (PMW) brightness

temperature observations are of paramount importance in studying the spatial and temporal

evolution of surface melting due to their long temporal coverage (1979-to date) and high tem-

poral resolution (daily). However, a major limitation of PMW datasets has been the relatively

coarse spatial resolution, being historically of the order of tens of kilometres. Here, we use

a newly released PMW dataset (37 GHz, horizontal polarization) made available through the

NASA Making Earth System Data Records for Use in Research Environments (MeASUREs)
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program to study the spatiotemporal evolution of surface melting over the Greenland ice sheet

at an enhanced spatial resolution of 3.125 km. We assess the outputs of different detection

algorithms through data collected by Automatic Weather Stations (AWS) and the outputs of

the MAR regional climate model. We found that sporadic melting is well captured using a

dynamic algorithm based on the outputs of Microwave Emission Model of Layered Snowpack

(MEMLS) model while a fixed threshold of 245K is capable of detecting persistent melt. Our

results indicate that, during the reference period 1979 – 2019 (1988 – 2019), surface melting

over the ice sheet increased in terms of both duration, up to 4.5 (2.9) days per decade, and

extension, up to 6.9% (3.6%) of the entire ice sheet surface extent per decade, according to the

MEMLS algorithm. Furthermore, the melting season has started up to 4.0 (2.5) days earlier

and ended 7.0 (3.9) days later per decade. We also explored the information content of the

enhanced resolution dataset with respect to the one at 25 km and MAR outputs through a

semi-variogram approach. We found that the enhanced product is more sensitive to local scale

processes, hence confirming the potential of this new enhanced product for monitoring surface

melting over Greenland at a higher spatial resolution than the historical products and monitor

its impact on sea level rise. This offers the opportunity to improve our understanding of the

processes driving melting, to validate modelled melt extent at high resolution and potentially

to assimilate this data in climate models.

4.1 Introduction

The Greenland ice sheet is the largest ice mass in the Northern Hemisphere with a glaciated

surface area of about 1,800,000 km2, a thickness up to 3 km, and a stored water volume of

about 2,900,000 km3, enough to rise the mean sea level by about 7.2 m (Aschwanden et al.,

2019). In this regard, estimating mass losses from Greenland is crucial for better understanding

climate system variability and the contribution of Greenland to current and future sea level

rise. According to data from the Gravity Recovery and Climate Experiment (GRACE) satellite

mission, which records changes in Earth’s gravitational field, Greenland lost mass at an average

rate of 278±11 Gt y−1 between 2002 and 2016 (IPCC, 2019), contributing to a sea level rise

of 7.9 mm per decade. The contribution of the Greenland ice sheet to sea level rise was also

accelerating at a rate of 21.9±1 Gt y−2 over the period 1992—2010 (Rignot et al., 2011) thus

indicating that monitoring the Greenland ice sheet together with the Antarctic ice sheet is

crucial to assess the impact of global warming on sea level rise and the global water balance

(Kargel et al., 2005; 2014; Le Meur et al., 2018). Mass can be lost through surface (e.g., runoff)

and dynamic (e.g., calving) processes with total mass loss roughly split in half between the

two (Flowers, 2018). Among the processes influencing the surface mass balance, i.e. difference

between accumulation (Frezzotti et al., 2007) and ablation, surface melting plays a crucial role,

affecting direct loss through export of surface meltwater to the surrounding oceans and though

the feedbacks between supraglacial, englacial and subglacial processes and their influence on ice

dynamics (e.g., Fettweis et al., 2005, 2011, 2017; van den Broeke et al., 2016; Alexander et al.

2016). Passive microwave (PMW) brightness temperatures (Tb) are a crucial tool for studying

the evolution of surface melting over the Greenland and Antarctica ice sheets (i.e., Jezek et al.,
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1993; Steffen et al., 1993; Abdalati et al., 1995; Tedesco et al., 2009; Tedesco, 2009; Fettweis et

al., 2011). The PMW-based algorithms are based on the fact that the emission of a layer of dry

snow in the microwave region is dominated by volume scattering (e.g., Macelloni et al., 2001); as

snow melts, the presence of liquid water within the snowpack increases the imaginary part of the

electromagnetic permittivity by several orders of magnitude with respect to dry snow conditions,

with the ultimate effect of considerably increasing Tb (Ulaby et al., 1986; Hallikainen et al., 1987)

as shown by in situ measurement campaigns (see for instance Cagnati et al., 2004). Because

of the large difference between dry and wet snow emissivity, even relatively small amounts of

liquid water have a dramatic effect on the Tb values (e.g., Tedesco, 2009), making PMW data

extremely suitable for mapping the extent and duration of melting at large spatial scales and

high temporal resolution (in view of their insensitivity to atmospheric conditions at the low

frequencies of the microwave spectrum). Consequently, PMW data have been widely adopted

in melt detection studies and different remote sensing techniques have been proposed in the

literature (e.g., Steffen et al., 1993; Abdalati and Steffen, 1995; Joshi et al., 2001; Liu et al., 2005;

Aschraft and Long, 2006; Macelloni et al., 2007; Tedesco et al., 2007; Kouki et al., 2019; Tedesco

and Fettweis, 2020). The capability of PMW sensors to collect useful data during both day and

night and in all-weather conditions allows surface melt mapping at a high temporal resolution

(at least twice a day over most of the Earth). PMW Tb records are also among the longest

available remote sensing continuous timeseries and an irreplaceable tool in climatological and

hydrological studies, complementing in-situ long-term observations where they are absent or too

coarse. The trade-off associated with the high temporal resolution of PMW data is the relative

coarse spatial resolution (historically on the order of tens of km). This can represent a limiting

factor when studying surface melting as a substantial portion of meltwater production and runoff

occurs along the margins of the ice sheet, with some of these areas being relatively narrow (of

the order of a few tens of kilometers or smaller, depending on the geographic position and time

of the year). The use of a product with a finer spatial resolution would allow a more effective

mapping of surface melting and would also allow a better comparison between in-situ measured

quantities and satellite-derived estimates, reducing uncertainties in the satellite products and

allowing for potential improvements to retrieval algorithms. Lastly, finer spatial resolution tools

could be helpful, should they be proven effective, in improving mapping of meltwater over ice

shelves in Antarctica and improve our understanding of the processes leading to ice shelf collapse

or disintegration (e.g. van den Broeke, 2005; Tedesco, 2009). In this paper, we report our results

of a study in which surface melting over Greenland is estimated making use of a recently released

product developed within the framework of a NASA Making Earth System Data Records for

Use in Research Environments (MeASUREs) project (https://nsidc.org/data/nsidc-0630). The

product contains daily maps of PMW Tb generated at an enhanced spatial resolution of a few

kilometers (depending on frequency, as explained below) between 1979 and 2019. The historical

gridding techniques for PMW sensors (Armstrong et al., 1994, updated yearly; Knowles et al.,

2000; Knowles et al., 2006) were based on a “drop in the bucket” approach, in which the gridded

value was obtained by averaging the Tb data falling within the area defined by a specific pixel.

In the case of the enhanced spatial resolution product, the reconstruction algorithm adopted

to build the Tb maps makes use of the so-called effective measurement response function (Long

51



4.2. Datasets and Methods

et al., 1998), determined by the antenna gain pattern, which is unique for each sensor and

sensor channel. This pattern is used in conjunction with the scan geometry and the integration

period, allowing for “weighting” of measurements within a certain area. The approach used

to generate the enhanced resolution product, a radiometer version of the Scatterometer Image

Reconstruction algorithm, also addresses another issue in the historical PMW dataset, which

is the need for meeting the requirements of modern Earth system Data Records or Climate

Data Records, most notably in the areas of inter-sensor calibration and consistent processing

methods. More details are reported in Section 2.1. We divide the results of our study into

two main parts: in the first part, we report the results of the cross-calibration of different

PMW sensors over the Greenland ice sheet to assure a consistent and calibrated Tb time series.

Specifically, we use the newly developed spatially enhanced PMW product at Ka band (37

GHz), horizontal polarization in view of its sensitivity to the presence of liquid water within

the snowpack (Ulaby et al., 1986; Macelloni et al., 2005). We prefer this frequency to the ∼ 19

GHz, generally used in the literature as it is less sensitive to liquid water clouds (Fettweis et al.,

2011; Mote, 2007), because the Tb at Ka band are distributed at the highest spatial resolution

of 3.125 km (Brodzik et al., 2018). The atmospheric effect on 37 GHz Tb is higher than in case

19 GHz at low values of Tb. However, when considering higher values of Tb, the difference of the

atmospheric effect between 37 GHz and 19 GHz Tb decreases (Tedesco and Wang, 2009). We,

then, focus on assessing whether the noise introduced by the gridding algorithm might limit

the application of the enhanced dataset to mapping surface meltwater. Then, we focus our

attention on testing and assessing existing approaches to deriving melt from PMW data and

propose an update on a recently proposed algorithm in which meltwater is detected when Tb

exceeds a threshold computed using the outputs of an electromagnetic model (Tedesco, 2009).

We compare results from these algorithms with estimates of surface melting obtained from data

collected by automatic weather stations (AWS) in terms of melting timing and with the outputs

of the regional climate model Modèle Atmosphérique Régional (MAR; Fettweis et al., 2017) in

terms of melting timing and extent. Lastly, we focus on the analysis of melting patterns and

trends over study period and investigate the information content in the enhanced resolution

dataset through a semi-variogram analysis.

4.2 Datasets and Methods

4.2.1 Enhanced resolution passive microwave data

We use Ka band (37 GHz), horizontal polarization Tb data produced within the framework of a

NASA MeASUREs project and distributed at the spatial resolution of 3.125 km (Brodzik et al.,

2018) over the Northern hemisphere. Specifically, we use data collected by the Scanning Mul-

tichannel Microwave Radiometer (SMMR) SMMR-Nimbus 7, the special sensor microwave/im-

ager (SSM/I) SSM/I-F08, SSMI/-F11, SSM/I-F13 and the special sensor microwave imager/-

sounder SSMI/S-F17 (Table 4.1) because of its higher orbit stability (http://www.remss.com/support/crossing-

times/). Currently, the product time series begins in 1979 and ends in 2019. Data are provided

twice a day, as morning and evening passes. Beginning and ending acquisition times for the

morning and evening passes are contained within the product’s metadata, together with other
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information. More information can be found at https://nsidc.org/data/nsidc-0630/versions/1.

Historical gridding techniques for PMW spaceborne datasets (Armstrong et al., 1994, updated

yearly; Knowles et al., 2000; Knowles et al., 2006) are relatively simplistic and were produced

on grids (Brodzik and Knowles, 2002; Brodzik et al., 2012) that are not easily accommodated

in modern software packages. Specifically, the coarse resolution gridding methodology is based

on a simple “drop-in-the-bucket” average, i.e. all the measurements within a given time falling

into a specific pixel are averaged. In the reconstruction algorithm used for the enhanced Tb, the

so-called effective measurement response function, determined by the antenna gain pattern and

being unique for each sensor and sensor channel, is used in conjunction with the scan geometry

and the integration period. The gridding approach uses the Backus-Gilbert technique (Backus

and Gilbert, 1967; 1968), a general method for inverting integral equations, which has been

applied for solving sampled signal reconstruction problems (Caccin et al., 1992; Stogryn, 1978;

Poe, 1990) for spatially interpolating and smoothing data to match the resolution between dif-

ferent channels (Robinson et al., 1992), and improving the spatial resolution of surface Tb fields

(Farrar and Smith, 1992; Long and Daum, 1998). More information about the product can

be found at https://nsidc.org/data/nsidc-0630. An example of Tb maps at 37 GHz, horizontal

polarization, in the case of both the coarse and enhanced resolution products over Greenland

on 16 July 2001 is reported in Figure 4.1. The higher detail captured by the enhanced spatial

resolution is clearly visible, especially along the ice sheet edges, where melting generally occurs

at the beginning of the season and lasts for the remaining part of the summer. Figure 4.2 shows

an example of time series of both coarse and enhanced PMW Tb (again at 37GHz, horizontal

polarization) for the pixel containing the Swiss Camp station. From the figure we observe that

the two timeseries are highly consistent with each other, with a mean difference of 0.895 K and

standard deviation of 4.89 K, indicating that the potential noise introduced by the enhancement

process is not a major issue. Yet, differences do exist, as in the case of 3 April 2012 (DOY 93),

when the enhanced product suggests the presence of melting while the coarse product does not.

This is likely due to the different spatial resolution between the two products, as we discuss in

the following sections and shows the added value of using the 37 GHz frequency in detecting

small scale features of the melting process. To compare our results with precedent PMW sur-

face melting products, we perform our calculations also to the widely used PMW dataset by

Mote (2014). The dataset consists in a daily melt maps product obtained from 37 GHz Tb from

SMMR, SSM/I and SSMI/S available on a 25 km grid. This comparison enables us to see the

advantages in using the enhanced resolution product with respect to a coarser resolution surface

melt product. The dataset is generated using a dynamically changing threshold (Mote, 2007)

obtained simulating the Tb change for every grid cell, each year, through a microwave emission

model (Mote, 2014). The dataset covers the temporal window 1979 – 2012 and is available at

the NSIDC website (https://nsidc.org/data/NSIDC-0533/versions/1).

4.2.2 Greenland air temperature data

In order to assess the results obtained from PMW data, we use in-situ data collected by AWS

distributed over the Greenland Ice sheet. In the absence of direct observations of melting,

we use air temperature (3 m above the surface) to extrapolate instances when liquid water is
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SMMR SSM/I(F08) SSM/I(F11) SSM/I(F13) SSMI/S(F17)

Platform NIMBUS-7 DMSP-F08 DMSP-F11 DMSP-F13 DMSP-F17

Temporal
coverage

26/10/1978-
20/08/1987

09/07/1987-
30/12/1991

03/12/1991-
30/09/1995

03/05/1995-
01/04/2009

04/11/2006-
operating

Frequency
(GHz)

37 37 37 37 37

Instantaneous
Field of View
(IFOV) [km2]

27*18 37*28 37*28 37*28 37*28

Incidence
Angle

50.2° 53.1° 53.1° 53.1° 53.1°

Swath width
[km]

780 1400 1400 1400 1700

Data
acquisition

Alternate
days

Daily Daily Daily Daily

Asc. Equator
Crossing Time

24:00 18:17 18:25 17:43 18:33

Desc. Equator
Crossing Time

12:00 06:10 05:00 05:51 07:08

Table 4.1: Characteristics of the PMW sensors used for this work. LST denotes local solar
time.

present, following the procedure adopted by Tedesco (2009) for Antarctica. Specifically, we use

data recorded by stations of the Greenland Climate Network (GC-Net; Steffen et al., 1996). The

AWSs provide continuous measurements of air temperature, wind speed, wind direction, humid-

ity, pressure and other parameters. We focus on air temperature data collected every hour by

17 selected stations reported in Table 5.2. We considered a validation period from 2000 (when

all the considered AWS were in operation) to 2016 and used daily averaged values. More infor-

mation about the GC-Net dataset can be found at http://cires1.colorado.edu/steffen/gcnet/.

4.2.3 The MAR model

We assess the enhanced PMW-based surface melt maps with the outputs of the regional climate

model Modèle Atmosphérique Régional (MAR, e.g., Alexander et al., 2014; Fettweis et al., 2013;

Fettweis et al., 2017; Tedesco et al., 2013). MAR is a modular atmospheric model that uses

the sigma-vertical coordinate to simulate airflow over complex terrain and the soil ice snow

vegetation atmosphere transfer scheme (e.g., De Ridder and Gallée, 1998) as the surface model.

MAR outputs have been assessed over Greenland (e.g., Fettweis et al., 2005; Fettweis et al.,

2017; Alexander et al., 2014). The snow model in MAR, which is based on the CROCUS model

of Brun et al. (1992), calculates albedo for snow and ice as a function of snow grain properties,

which in turn depend on energy and mass fluxes within the snowpack. Lateral and lower

boundary conditions of the atmosphere are prescribed from reanalysis datasets. Sea-surface

temperature and sea-ice cover are prescribed using the same reanalysis data. The atmospheric

model within MAR interacts dynamically with the surface model. In this study, we use the

output from MAR version v3.11.2 characterized by an enhanced computational efficiency and

improved snow model parameters (Fettweis et al., 2017; Delhasse et al., 2020). The model is
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Figure 4.1: Maps of PMW Tb at 37 GHz, horizontal polarization, acquired over Greenland
on 16 July 2001 with the (a) coarse (25 km) and (b) enhanced (3.125 km) resolution products.
Panels (c) and (d) refer to the area highlighted in the square in panels (a) and (b).

forced at the boundaries using ERA5 reanalysis (Hersbach et al., 2020), the newest generation of

global atmospheric reanalysis data that superseded ERA-Interim (Dee et al., 2011), and output

is produced at a horizontal spatial resolution of 6 km. In order to compare output from MAR

with estimates of melt extent obtained from PMW data, we average the liquid water content

(LWC) simulated by MAR along the first 5 cm and 1 m from the surface of the vertical profile

of the snowpack, following Fettweis et al. (2007).

4.2.4 Melt detection algorithms

Generally speaking, melt detection algorithms can be divided into threshold-based and edge-

detection algorithms (e.g., Liu et al., 2005; Joshi et al., 2001; Steiner and Tedesco, 2014). Here

we focus on threshold-based algorithms, detecting melting when Tb values (or their combination)

exceed a defined threshold, computed in different ways depending on the algorithm. For exam-

ple, Steffen et al. (1993) used the normalized gradient ratio GR = (T 19H
b −T 37H

b )/(T 37H
b +T 19H

b )

to detect wet pixels with a threshold value computed based on in-situ measurements. This

method was later updated by Abdalati and Steffen (1995) who introduced the cross-polarized

gradient ratio XPGR = (T 19H
b − T 37V

b )/(T 37H
b + T 19V

b ), where the Ka-band component of the
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Figure 4.2: (a) Time series of Tb at 37 GHz, horizontal polarization, for the year 2012 for the
pixel containing the Swiss Camp site in the case of the coarse (blue) and enhanced (red) prod-
ucts. Threshold values, shown as horizontal lines, are obtained from two approaches considered
in this study: 245 K and MEMLS. (b) The difference between the 3.125 km and the 25 km Tb
time series for the same pixel (mean of 0.895 K and standard deviation of 4.89 K).

Station Latitude Longitude
Elevation
[m a.s.l.]

Swiss Camp 69° 34’ 06” N 49° 18’ 57” W 1149

Crowford Pt. 1 69° 52’ 47” N 46° 59’ 12” W 2022

NASA-U 73° 50’ 31” N 49° 29’ 54” W 2369

GITS 77° 08’ 16” N, 61° 02’ 28” W 1887

Humboldt 78° 31’ 36” N 56° 49’ 50” W 1995

Summit 72° 34’ 47” N 38° 30’ 16” W 3254

TUNU-N 78° 01’ 0” N 33° 59’ 38” W 2113

DYE-2 66° 28’ 48” N 46° 16’ 44” W 2165

JAR-1 69° 29’ 54” N 49° 40’ 54” W 962

Saddle 66° 00’ 02” N 44° 30’ 05” W 2559

South Dome 63° 08’ 56” N 44° 49’ 00” W 2922

NASA-E 75° 00’ 00” N 29° 59’ 59” W 2631

Crowford Pt. 2 69° 54’ 48” N 46° 51’ 17” W 1990

NASA-SE 66° 28’ 47” N 42°30’ 00” W 2425

KAR 69° 41’ 58” N 33° 00’ 21” W 2579

JAR-2 69º 25’ 12” N 50º 03’ 27” W 568

KULU 65° 45’ 30” N 39° 36’ 06” W 878

Table 4.2: Locations of the automatic weather stations of the Greenland Climate Network
(GC-Net) sites used to validate the results in this study

algorithm was switched from horizontally to vertically polarized. Aschraft and Long (2006)

proposed a threshold based on dry (winter) and wet snow Tb as Tc = αM + (1− α)Twet where

M is the average of winter Tb (January and February), Twet fixed as 273 K and Tc indicates the
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threshold value (we keep the same notation in the following). The mixing coefficient α=0.47

was derived considering LWC=1% in the first 4.7 cm of snowpack. Similarly, a method based

on a fixed threshold (set to 245 K and derived from the outputs of electromagnetic model)

above which melting is assumed to be occurring was proposed in (Tedesco et al., 2007). Several

other studies have been detecting melting when Tb values exceed the mean winter value plus

an additional value ∆Tb (M +∆Tb approaches) associated with the insurgence of liquid water

within the snowpack:

Tc = M +∆Tb (4.1)

Torinesi et al. (2003) proposed a value of ∆Tb = Nσ with M and σ (standard deviation of

the timeseries) varying in space (specific pixel) and time (specific year) but fixed N=3 from

the analysis of weather station temperature data. Zwally and Fiegles (1994) used a fixed value

of ∆Tb=30 K. Tedesco (2009) proposed an alternative approach based on the outputs of the

Microwave Emission Model of Layered Snowpack (MEMLS) electromagnetic model (Weisman

and Matzler, 1999). In this case, an ensemble of outputs is generated by MEMLS model by

varying the inputs (e.g., correlation length, LWC, snow density, etc.). These outputs are, then,

used to build a linear regression model for the ∆Tb that is a function of the winter Tb value as

follows:

∆Tb = φM + ω (4.2)

with the values of the coefficients obtained from the linear regression. This is done to account

for the increment related to the presence of LWC within the snowpack as a function of the snow

properties: a fixed increase would correspond to different values of LWC, potentially making the

mapping of the wet snow areas inconsistent in terms of LWC values. For example: a snowpack

with small grain size will require a relatively larger amount of LWC with respect to a snowpack

with larger grain size for the Tb values to increase by 30 K. Or, from a complementary point of

view, an increase of 30 K due to presence of liquid water in the case of a snowpack with relatively

coarse grains will correspond to a lower value of LWC than an increase occurring in a snowpack

with smaller grain size. In summary, the adoption of this approach provides consistency in

terms of the minimum LWC that is detected by the algorithm. Building on Tedesco (2009), we

considered the LWC value of 0.2%. The coefficients are φ = -0.52 and ω = 128 K (R2=0.92).

The Tb threshold value computed in this case can, therefore, be written as follows:

Tc = M + φM + ω = (1 + φ)M + ω = γM + ω (4.3)

where (γ, ω) assume the values of 0.48 and 128 K.

Here, we focus five approaches: the M +∆Tb approach choosing ∆Tb equal to 30K and, to test

the sensitivity to Zwally and Fiegles (1994), 35K and 40K (M+30, M+35 and M+40 from here

on), the algorithm based on MEMLS in case of LWC=0.2% (referred simply as MEMLS from

here on for brevity) and the 245 K fixed threshold (245K from here on). We selected M +∆Tb

and MEMLS due to their higher accuracy in detecting both sporadic and persistent melting

with respect to the other approaches presented above, i.e. Torinesi et al. (2003) and Ashcraft

and Long (2006), proved in previous studies (Tedesco, 2009). We selected also the 245K to test

a more conservative approach aimed to detect persistent melting only. In the following sections,
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we report the results of two algorithms, namely the one using a fixed threshold of 245 K and

the one based on MEMLS.

4.2.5 Inter-sensor calibration

In view of the novelty of this PMW dataset introduced by the enhancement in spatial resolution

thanks to the improvement of the gridding technique, we first focus on the cross-calibration of the

data acquired by the different sensors. This initial processing step aims to account for biases

and differences associated with swath width, view angle, altitude and Local-Time-Of-Day as

well as the specific intrinsic differences associated with each sensor on the different platforms

(Table 4.1). Several approaches have been proposed in the literature to address this issue for the

historical, coarser spatial resolution gridded datasets. For example, Jezek et al. (1993) compared

SMMR and SSM/I over the Antarctic ice sheet for K and Ka bands (∼ 19 GHz and ∼ 37

GHz) for both horizontal and vertical polarizations. Steffen et al. (1993) proposed an approach

focusing over Greenland for the K-band; Abdalati et al. (1995) derived relations between SSM/I

observations for the F08 and F11 platforms over Antarctica and Greenland for 19.35 GHz, 22.2

GHz and 37 GHz. Dai et al. (2015) intercalibrated SMMR, SSM/I (F08 and F13) and SSMI/S

(F17) over snow covered pixels in China and SMMR, SSM/I and AMSR-E over the whole Earth

surface sampling hot and cold pixels. Given the novelty of the Tb products used here and the

absence of specific intercalibration of data collected from different platforms for this product, we

developed an ad-hoc intercalibration for the enhanced PMW dataset. Following Stroeve et al.

(1998), we perform the intercalibration using only data collected over the Greenland ice sheet.

We perform a linear regression between the data acquired by two sensors over the Greenland

ice sheet and calculate the slope (m) and intercept (q) of the linear regression

y = mx+ q (4.4)

In Equation 3.4 x and y represent the Tb values from coincident data from the two overlapping

satellite products. We consider two approaches to compute the m and q values in Equation 3.4.

In the first method we compute the weighted average of the daily slope and intercept values

from the regression of daily data. Considering n days, for every i-th day we first compute mi,

qi and the coefficient of determination for the linear regression of Equation 3.4 (R2
i ), and then

we average them according to Equation 4.5 and Equation 4.6

m =

n∑
i=1

miR
2
i

n∑
i=1

R2
i

(4.5)

q =

n∑
i=1

qiR
2
i

n∑
i=1

R2
i

(4.6)
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This choice assigns higher values to the weights obtained from pairs of data with higher corre-

lation. In the second method, we consider all values for all days when data from both platforms

are available and then evaluate m and q through a linear regression fitting procedure based on

least-square fitting. Using the estimated values of m and q, we then correct the values for one

of the sensors by applying Equation 3.4 to the Tb values of one sensor (x, e.g. SMMR) to obtain

new corrected Tb values (y). We perform an additional comparison using the average difference

between the Tb values and evaluating the matching between histograms of the overlapping data

(Dai et al., 2015) by means of the Nash-Sutcliffe Efficiency (NSE) coefficient (Nash and Sutcliffe,

1970), defined as:

NSE = 1−
∑

(hi(T
A
b )− hi(T

B
b ))2∑

(hi(TB
b )− hi(TB

b ))2
(4.7)

where hi is the absolute frequency of the i-th value of Tb of the two sensors (A and B) considered.

The NSE is usually applied in calibration/validation procedures to assess the matching between

measured and modelled quantities, as in Subsection 4.2. After the application of linear relations

found using Equation 3.4 through 4.6, in order to quantitatively assess the impacts of the

intercalibration on Tb values, we computed the absolute difference between the values of the

histograms of the Tb obtained as:

Di = |hi(TA
b )− hi(T

B
b )| (4.8)

where Di is the absolute difference between the two histograms A and B for the i-th value of Tb.

Then, we sum the differences over the total number of pixels and compute the relative variation

as follows:

d =
Doriginal −Dcorrected

Doriginal
(4.9)

where Doriginal and Dcorrected are, respectively, the summations of Di before and after the

calibration. The relative variation d can range from −∞, indicating worsening in matching of

the histograms, to 1, indicating a perfect matching of the histograms after the intercalibration.

4.2.6 Spatial autocorrelation: the variogram analysis

Variogram analysis is generally adopted in geostatistical analyses to evaluate autocorrelation

of spatial data (Delhomme, 1978; Edward et al., 1989) with variograms being characterized by

three parameters: the sill, the range and the nugget effect. The sill is the variance value at which

the variogram becomes flat. The range is the distance at which the variogram reaches the sill.

Beyond this value, the data are no longer autocorrelated. The nugget effect is the variance value

at null distance, theoretically zero and resulting from measurement errors or highly localized

variability. We computed the empirical variogram as

γ(δ) =
1

2N(δ)

∑
i,j∈N(δ)

(xi − xj)
2 (4.10)

where γ is the semi-variance, N(δ) is the number of pair measurements (i, j) spaced by distance

δ and xi and xj are the values of the i-th and j-th measured variable. Generally, the semi-
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variance γ increases as the distance δ increases according to the principle that close events are

more likely to be correlated than distant events. The experimental variogram is the graphical

representation of the semi-variance γ as a function of the distance δ. Finally, the experimental

variogram is fitted with a function (here we use a spherical function) to compute the sill, the

range and the nugget effect.

4.3 Results and discussion

4.3.1 Inter-sensor calibration of enhanced resolution passive microwave data

At first, we show the results obtained for the inter-sensor calibration of the selected satellite

constellation. The overlapping periods for the different sensors are the following: SMMR and

SSM/I-F08 overlap between 9 July 1987 and 20 August 1987 for a total of 22 days (one every

two days as sensed by SMMR sensor); F08 and F11 overlap between 3 December 1991 and 18

December 1991 for a total of 16 days, F11 and F13 overlap between 3 May 1995 and 30 Septem-

ber 1995 for a total of 76 days; and F13 and F17 overlap for the period 1 March 2008 – 10

December 2008 for a total of 71 days. In Figure 4.3 we show the scatter plots of the data used

for the linear regression for Greenland for both evening and morning passes for the SMMR and

SSM/I-F08 sensors, reporting values of m, q and R2. We point out that the overlap between

SMMR and SSM/I-F08 data occurs in the months of July and August. During these months,

the differences between acquisition times (Table 5.2) might lead to biases and errors associated

with snow conditions (e.g., wet vs. dry). Specifically, we expect larger errors at the beginning of

the melting season when snow undergoes thawing/refreezing cycles during the day, potentially

having frozen snow (low values of Tb) early in the morning and late at night (SMMR ascending

and SSMI/-F08 descending passes) and presence of liquid water (high values of Tb) during the

day. We report in Table 4.3 average values of the difference between pairs of Tb data and values

of the NSE coefficient for the histograms of the same pairs. In Table 4.4 we report the values for

slope and intercept obtained from the linear regression analysis of enhanced PMW Tb (37 GHz,

H-pol.) over Greenland for SMMR vs. SSM/I-F08, F08 vs. F11, F11 vs. F13 and F13 vs. F17,

together with the R2 values and values of d computed according to Equation 4.6. In the case

of SSM/I and SSMI/S, R2 values are higher, mostly around 0.98. In Figure 4.4 we also show

examples of histograms in the case of the SMMR and SSM/I F08 sensors. Large differences

are obtained in the case of the SMMR and SSM/I-F08, for both evening and morning passes,

likely because of the difference in overpass time and the presence/absence of melting in some of

the scenes observed by one sensor but not present in the other (Table 4.3). On the other hand,

in the case of the SSM/I and SSMI/S sensors, the average difference is close to 0 K (with the

exception of the F-08 and F-11 satellites showing an average difference slightly larger than 1

K, consistent with previous results obtained by Abdalati et al. (1995) in the case of the 25 km

resolution data) together with NSE values extremely close to 1 (Table 4.3). Still in the case

of SMMR and SSM/I-F08, the higher average difference (ranging between -3.4 K to -4.3 K)

and the relatively lower NSE values (ranging between 0.89 and 0.96) show that these sensors

show the largest bias. Lastly, we only applied the correction to SMMR and we did not apply

the linear regression to the SSM/I F08 – SSM/I F11, SSM/I F11 – SSM/I F13, SSM/I F13
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– SSMI/S F17 datasets as, in this case, the linear correction worsened the agreement between

the two sets of measurements. We applied the correction coefficients obtained with the second

method according to the higher relative improvement for the evening pass.

Sensors
SMMRvs.F08 F08vs.F11 F11vs.F13 F13vs.F17
Eve. Mor. Eve. Mor. Eve. Mor. Eve. Mor.

NSE 0.898 0.936 0.999 0.999 0.999 0.999 0.997 0.997

Average
difference

[K]
-4.27 -3.43 0.50 0.24 -0.49 0.02 0.17 0.52

Table 4.3: Average enhanced-resolution Tb differences at 37 GHz, horizontal polarization, for
the different PMW sensors and NSE coefficient computed for the histograms of Tb.

Figure 4.3: Density scatterplots of SMMR and SSM/I-F08 Tb data sensed during the overlap
period (9 July–20 August 1987) of the two sensors over the Greenland ice sheet for (a) morning
and (b) evening passes. The solid black lines show the linear fitting, and the dashed black lines
show the 1 : 1 line. The color palette indicates the relative frequency.

4.3.2 Assessment of melt detection algorithms

In order to assess the capability of the selected algorithms, we compare the outputs obtained

by PMW data with in situ air temperature daily averaged from AWS as an index of surface

melting (Braithwaite and Oelsen, 1989) and with the liquid water content simulated by the

regional climate model MAR. We first evaluate performances at local scale (at the specific

locations of the selected AWS), comparing the number and the concomitance of melting days

according to PMW and the ground truth reference. Then, according to the results obtained, we

focus on MEMLS and 245K algorithms to evaluate at ice sheet scale the capability of the two

approaches in describing the surface melt extent.
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Greenland SMMR vs. SSM/I-F08

X=F08 m1 m2 q1 q2 R2
1 d1 d2

Morning 0.818 0.821 32.387 31.856 0.88 0.69 0.46

Evening 0.849 0.842 26.027 27.511 0.81 0.12 0.33

X=SMMR m1 m2 q1 q2 R2
1 d1 d2

Morning 1.075 1.0722 -11.140 -10.581 0.88 0.56 0.52

Evening 0.964 0.9653 11.424 11.123 0.81 0.09 0.12

Greenland F08 vs. F11

X=F11 m1 m2 q1 q2 R2
1 d1 d2

Morning 0.991 0.989 2.041 2.537 0.98 0.31 -2.91

Evening 0.998 1.002 0.979 -0.010 0.98 0.25 0.31

X=F08 m1 m2 q1 q2 R2
1 d1 d2

Morning 0.987 0.995 2.230 0.528 0.98 0.10 0.26

Evening 0.980 0.980 3.332 3.711 0.98 0.08 0.11

Greenland F11 vs. F13

X=F13 m1 m2 q1 q2 R2
1 d1 d2

Morning 0.996 1.001 2.328 -0.262 0.98 0.11 0.14

Evening 0.981 0.985 3.831 0.185 0.99 -4.82 -4.98

X=F11 m1 m2 q1 q2 R2
1 d1 d2

Morning 0.962 0.977 8.322 4.482 0.98 -1.73 -0.32

Evening 0.998 1.002 0.934 0.185 0.99 0.10 0.28

Greenland F13 vs. F17

X=F17 m1 m2 q1 q2 R2
1 d1 d2

Morning 1.019 1.029 -3.029 -5.013 0.98 -0.11 -0.005

Evening 1.004 1.007 -0.438 -1.161 0.99 0.14 0.20

X=F13 m1 m2 q1 q2 R2
1 d1 d2

Morning 0.959 0.953 7.267 8.370 0.98 -0.19 -0.35

Evening 0.982 0.982 3.200 3.205 0.99 0.27 0.25

Table 4.4: Slope (m) and intercept (q) obtained from the linear regression analysis between
the selected couples of satellites enhanced PMW Tb at 37 GHz, horizontal polarization over
Greenland. The subscripts refer to the case when the coefficients are weighted by means of the
R2 (case 1, see Equation 4.5 and 4.6) or not (case 2). In the Table, we also report the values
for the R2 as well as the values of d computed according to Equation 4.9.
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Figure 4.4: Histograms of Tb before and after the application of the intercalibration relations
(for Greenland). Relations are applied for both evening (a) and morning (b) passes, and the
histograms of the data and the distance (absolute value of the difference as in Equation 4.8)
between the histograms for original data are reported. The left column represents the uncor-
rected data, the central column represents the results applying the correction to SMMR data
and the right column represents the results applying the correction to the SSM/I data.

Assessment with AWS data

Historically, the presence of liquid water within the snowpack using data from AWS has been

estimated when recorded air temperature exceeds a certain threshold during the day. Because

melting can also occur because of radiative forcing (i.e., solar radiation) and the air temperature

does not necessarily represent the snow surface temperature, we tested three threshold values

for air temperature of 0°C, -1°C and -2°C, as in Tedesco (2009). We assessed the performance

of the PMW-based algorithm by defining commission and omission errors. Commission error

occurs when melting is detected by PMW data but not by AWS data and omission error occurs

when melting is detected by AWS data but not by PMW. The results of the error analysis
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are summarized in Table in the case of the different algorithms and the Mote (2014) dataset

for the different threshold values on the AWS air temperature values. In the table, values of

commission and omission errors are reported as an average over all stations. Specific results for

each AWS location are reported in the supplementary material (Table S2, Table S3 and Table

S4) together with a map of the AWS network (Figure B.1). Table 4.5 also reports as more

general performance indicator the sum of the two commission and omission errors, computed

for each AWS case (C+O). We also report an average value of all the C+O (for both AWS and

MAR assessments, presented in the next subsection) for each PMW algorithm (C+O Mean) as

synthetic index of performance. Our results indicate that the 245K algorithm shows the lowest

commission error (between 0.31% and 0.63%) and the highest omission error (5.38%-9.19%).

This is consistent with this algorithm being the most conservative among those considered (i.e.,

the algorithm is not sensitive to sporadic melting). In contrast, a higher commission error is

achieved in the case of the M+30, M+35 and M+40 thresholds, particularly for the Humboldt

and GITS stations (North-West Greenland), where the commission error is up to one order of

magnitude larger than in the case of MEMLS and 245K algorithms for every ground-truth

reference (e.g. from 0.70% for MEMLS and 0.09% for 245K to 5.63% for M + 30, in case of air

temperature equal to 0°C). Moreover, we note in the case of the MEMLS algorithm the lowest

omission error in Swiss Camp, JAR-1 and JAR-2 sites (6.9% for MEMLS and 8.4% for M +30,

10.0% for M+35, 12.4% for M+40 and 17.4% for 245K). The coarse resolution dataset presents

a commission error between 1.02% and 1.74% and an omission error between 4.06% and 7.12%,

confirming the capability of historical data in detecting surface melting over the Greenland ice

sheet. However, the enhanced resolution dataset presents better results in terms of C+O when

applying the M +40 and MEMLS algorithms. The sensitivity to the air temperature threshold

is low, with commission and omission error, respectively decreasing by about 1% and increasing

by 3% when considering threshold values from 0°C to -2°C.
In order to better understand the sources of the relatively high values of the commission errors

at some locations, we show in Figure 4.5 the timeseries of air temperature and Tb at 37 GHz

H-pol. at three selected stations: a) Summit, b) Humboldt and c) Swiss Camp for the year

2005. The threshold values obtained with the different detection algorithms are also plotted as

horizontal lines (black) as well as the 0°C air temperature threshold (magenta). We selected

these three locations as they are representative of three different environmental and melting

conditions. The timeseries recorded at Summit station (Figure 4.5a) shows the sensitivity

of Tb to physical temperature and its seasonal variations. In this case, the air temperature

remains below 0°C throughout year and the Tb signal does not exceed any threshold value

(horizontal lines). This timeseries is typical of a location where melting is generally absent.

The Tb timeseries collected in correspondence of Humboldt location (Figure 4.5b) shows a

strong and sudden peak starting on 20 July, when the air temperature average is about -0.5 °C
(detected by -1°C and -2°C air temperature thresholds). This event is detected by all algorithms.

Nevertheless, the M+30 (and similar algorithms) indicate the potential presence of melting also

for the period preceding the July melting (between 17 June and 17 July). This melting is not

confirmed by other algorithms or by the AWS analysis, suggesting that the threshold value used

for these algorithms might be too low. Lastly, melting clearly occurs in the case of Swiss Camp
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Figure 4.5: Time series of (blue) enhanced-resolution Tb 37 GHz, horizontal polarization, and
(red) air temperature at the (a) Summit, (b) Humboldt and (c) Swiss Camp stations for the
year 2005. Threshold values obtained with the different detection algorithms are reported as
horizontal black lines (solid line, M +∆Tb ; dashed line, 245 K; and dot-dashed line, MEMLS),
and the 0 ◦C threshold is reported as a magenta solid line. The 30 d window between 17 June
and 17 July is shown in the shaded orange area and reports the average estimated emissivity
(ϵ)values.

(Figure 4.5c), characterized by the sharp and substantial increment of Tb beginning around

mid-May. For this case, all algorithms detect melting, with the MEMLS providing the lowest

threshold and the 245K fixed threshold being the most conservative. The computed rough

estimation of the average emissivity for the period 17 June – 17 July (as Tb divided by the

recorded air temperature) also suggests that melting is not occurring in the considered period

in Humboldt case, presenting an average emissivity even lower than in Summit case. Figure

4.6 shows maps of surface melt extent obtained using the different approaches for July 13th,

2008. Consistent with the results discussed above, the M + 30 and M + 35 algorithms suggest

melting up to high elevations, within the dry snow zone, where it likely did not occur. The

M + 40 and MEMLS algorithms show similar results, while the 245K fixed-threshold approach

shows, as expected, the most conservative estimates. As mentioned, the threshold algorithms

for ∆Tb (M+30, etc.) rely on a fixed ∆Tb value, which could produce errors if there is a large

seasonal range in Tb due to temperature variability. In contrast, the MEMLS algorithm is based

on the linear regression of the ∆Tb as function of different combinations of dry snow conditions

(LWC=0, i.e. different winter Tb means). This provides an appropriate threshold value that

takes into account the snow conditions before melting and, at the same time, follows a more

consistent approach with respect to the amount of LWC detected in the snowpack.

Assessment with MAR outputs

For the comparison between PMW-based and MAR outputs, we averaged the vertical profiles

of LWC computed by MAR to the top 5 cm (MAR5cm) and the top 1m (MAR1m) of snowpack
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PMW AWS/MAR
Average %
Commission

Average %
Omission

C+O
%

C+O Mean
%

M+30

0°C 3.71 2.63 6.34

7.79
-1°C 3.04 3.78 6.82
-2°C 2.44 5.66 8.1

MAR1m 7.11 1.51 8.62
MAR5cm 7.01 2.07 9.07

M+35

0°C 2.34 3.19 5.53

6.83
-1°C 1.83 4.5 6.33
-2°C 1.37 6.35 7.72

MAR1m 5.5 1.83 7.33
MAR5cm 4.78 2.48 7.26

M+40

0°C 1.73 3.98 5.72

6.84
-1°C 1.3 5.37 6.68
-2°C 0.93 7.32 8.25

MAR1m 4.49 2.23 6.72
MAR5cm 3.88 2.98 6.87

MEMLS

0°C 2.7 2.38 5.08

6.66
-1°C 2.13 3.62 5.76
-2°C 1.63 5.44 7.07

MAR1m 6.33 1.49 7.81
MAR5cm 5.52 2.04 7.56

245K

0°C 0.63 5.38 6.01

6.92
-1°C 0.46 7.02 7.48
-2°C 0.31 9.19 9.51

MAR1m 2.58 2.95 5.53
MAR5cm 2.23 3.83 6.06

25 km

Mote (2014)

0°C 1.74 4.06 5.80

7.10
-1°C 1.37 5.35 6.72
-2°C 1.02 7.12 8.15

MAR1m 4.74 2.72 7.46
MAR5cm 4.11 3.28 7.39

Table 4.5: Performance of the PMW melt detection algorithms studied with AWS and MAR
data. Five thresholds are used to detect melt at a 3.125 km resolution, and the Mote (2014)
melting dataset is used as a 25 km resolution comparison. For each case, three thresholds (0, 1
and 2 ◦C) are applied to the AWS data and two approaches (MAR1m and MAR5cm) are applied
to the MAR-simulated LWC to detect melt. The performance of the respective PMW melting
products is computed in terms of commission and omission errors averaged for all of the AWS
sites considered. C+O refers to the total error considering both commission and omission. The
average of the C+O of each melting dataset (C+O Mean) is reported as a synthetic index of
performance.
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Figure 4.6: Melting maps obtained using the (a) M + 30, (b) M + 35, (c) M + 40, (d) 245 K
and (e) MEMLS algorithms over the Greenland ice sheet on 13 July 2008. An example of an
area presenting the false detection problem is shown in the red circle.

following Fettweis et al. (2007). In order to be consistent with the minimum LWC to which the

MEMLS algorithm is sensitive, we set the threshold on the LWC values to which we assume

melting is occurring to 0.2% for both depths. We selected two different depths for our analysis

so we could study two types of melting events: (1) sporadic surface melting, affecting the first

few centimeters of the snowpack, and (2) persistent subsurface melting, affecting the snowpack

from the surface up to around the first meter. For consistency with the AWS analysis, we report

the results averaged over those MAR pixels containing the AWS stations discussed in the section

above in Table 4.5. The comparison between the results obtained from the PMW and modelled

LWC indicates that the more conservative approaches (i.e., 245K) perform better when consid-

ering the case of MAR5cm. In fact, the 245K threshold shows the lowest overall error for this

case (C+O = 6.06%). The coarse resolution dataset shows a C+O error equal to 7.39%, slightly

lower than in case of MEMLS (7.56%). In the case of the top 1 m, all the algorithms present

similar performances on average, with the best performance obtained again in the case of the

245K (C+O=5.53%). However, all the M + ∆Tb algorithms present the same issue of larger

commission error than MEMLS and 245K (e.g., from 0.99% for MEMLS and 0.26% for 245K

to 4.62% for M + 30) in North-East Greenland (e.g., Humboldt and GITS stations, see Table

S2 and Table S3 in the supplementary material). This confirms the results we obtained from

the comparison with AWS data, pointing out the overestimation of melting in some dry areas

by M + ∆Tb. For both the MAR1m and MAR5cm cases, for all the considered algorithms, we

find a high commission error in the cases of the JAR-1, JAR-2 and Swiss Camp sites (between

10% and 22%).

In order to better understand the origins of these errors, we show in Figure 4.7 further insights

into the differences between the PMW Tb and MAR outputs. Figure 4.7a and b show, respec-

tively, the timeseries of LWC averaged over the first 5cm (MAR5cm) and 1m (MAR1m) obtained

from MAR at the Swiss Camp site. In Figure 4.7c we report the Tb timeseries and the daily

average air temperature (threshold values reported as horizontal lines). We first note an early

melt event (labeled LWC=0.046% in Figure 4.7b for the 108th day of the year) detected by

PMW MEMLS algorithm and at the AWS station but apparently undetected in MAR1m. A

closer look to the time series shows that in fact MAR1m does estimate a LWC of 0.046% on this
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Figure 4.7: LWC fromMAR averaged in the first 5 cm (a) and the first 1 m (b) of the snowpack.
(c) Time series of the 37 GHz horizontally polarized Tb (3.125 km, blue), air temperature from
AWS (black) and 245 K (dashed magenta line), M + ∆Tb (solid magenta lines) and MEMLS
(dot-dashed magenta line) thresholds for the Swiss Camp site in the year 2001. Melting days
according to MAR are marked as vertical light blue lines in panels (a) and (b).

day while MAR5cm a LWC of 0.6%. This suggests that in some cases (before the main melt

season) the MEMLS algorithm is actually sensitive to the LWC in the first 5 cm of snowpack,

as a consequence of the approximation of the electromagnetic outputs imposed by the linear

fitting. We also note a melt event (labeled with LWC=0.5% in Figure 4.7b) at the end of the

melting season detected by both AWS data (air temperature larger than -1°C) and MAR (both

in the first 5 cm and 1 m of snow) but not by any PMW algorithm. The Tb timeseries reveals

a small peak, but the signal is not strong enough to exceed any threshold. This corresponds to

a rainfall event (simulated by MAR) suggesting that the sensitivity to liquid clouds of the 37

GHz channel could mask some melt events. Moreover, at the end of the melting season the Tb

appears to be slightly lower than January/February average, possibly because of an increment

in grain size after refreezing, leading to a lower emissivity.

The results discussed above (together with results from the comparison with AWS data) sug-

gest that 245K is the most conservative among the approaches we tested, providing the lowest
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(highest) commission (omission) error but being unable to detect sporadic melt events. On the

contrary, the MEMLS and M + ∆Tb algorithms can detect sporadic melt events and present

lower omission error compared to 245K. However, M + ∆Tb algorithm overestimate melting

in some dry areas (North West of the ice sheet), suggesting melting when it is not actually

occurring. Contrarily, MEMLS algorithm is not affected by the large commission error in dry

areas, presents the lowest omission error in Swiss Camp area (together with M + 30) and is

still sensitive to low levels of LWC. Considering the average error (C+O Mean in Table 4.5),

the MEMLS algorithm shows the best performance (6.66%). In view of the presented analysis

and the different sensitivity to surface and subsurface melting, in the following we focus on the

245K and MEMLS algorithms to study the extent of persistent and sporadic surface melting,

respectively.

As a further analysis, we compared the PMW-retrieved melt extent with that estimated from

MAR outputs. In Figure 4.8 we show the timeseries of melt extent integrated over the whole

ice sheet for two selected years ( (a) 1983 and (b) 2005, selected randomly to present an ex-

ample of SMMR and SSM/I cases) estimated according to MAR1m and MAR1m together with

the timeseries of the melt extent from the PMW data. The analogous figure for the coarse

resolution dataset is reported in the supplementary material (Figure S2). For each year, we

compute the daily melt extent for the period 1 May to 15 September and use the Nash-Sutcliffe

Efficiency (NSE) coefficient (Nash and Sutcliffe, 1970), described in Section 3, for a quantita-

tive analysis. Here, we remind the reader that NSE coefficient can assume values in the interval

(−∞, 1]. A perfect match between the two timeseries is achieved when the NSE coefficient is

1. NSE coefficient in the [0,1] interval indicate that the modelled variable is a better predictor

of the measurements than the mean. If NSE coefficient is a negative number, the mean of the

measured data describes the timeseries better than the modelled predictor. Here, we chose

NSE=0.4 as efficiency threshold, considering that we compute melt extent at daily timescale

and from datasets at two different resolutions (i.e., resulting in an intrinsic bias related to the

different pixel size). We compared the timeseries of melt extent obtained using the 245K algo-

rithm with MAR1m (245K vs. MAR1m) and the MEMLS melt extent with MAR1m (MEMLS

vs. MAR1m) due to the expected differences in sensitivity to detect persistent and sporadic

melting between 245K and MEMLS, respectively. We compare the melt extent obtained from

the coarse resolution dataset with MAR1m, according to the similarity with MEMLS in terms

commission/omission error. We report NSE coefficients computed for the 41-year (34-year in

case of the coarse resolution dataset) period in Table 4.6. At first, we notice that for the

1979-1992 period the comparison between 245K and MAR1m produces large negative NSE co-

efficients, indicating an unsatisfactory match between PMW and MAR derived melt extents.

The comparison between MEMLS and MAR1m presents negative values of NSE coefficient as

well (unsatisfactory results). Similarly, the coarse resolution dataset shows negative values of

NSE coefficient, larger than MEMLS but smaller than 245K. Between 1987 and 1992, we found

larger but still negative NSE coefficients presenting smaller absolute values. Between 1993 and

2019, we found for every year negative values of NSE coefficient for 245K and positive values for

MEMLS, indicating satisfactory results only for the latter algorithm. However, the coarse reso-

lution dataset presents positive (but not satisfactory) values of NSE coefficient only in 2003 and
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Figure 4.8: Melt extent estimation from PMW 37 GHz horizontally polarized Tb (red) and
the MAR (blue) regional climate model. Time series were obtained using the 245 K algorithm
and the LWC average in the first 1 m of the snowpack (left), and the MEMLS algorithm and
the LWC average in the first 5 cm of the snowpack (right), for the years (a) 1983 and (b) 2005.

2012 (0.111 and 0.208, respectively). The timeseries in Figure 4.8a reveals a strong underesti-

mation of 245K-derived melt extent relative to MAR1m (the cause of low NSE= -151.596) and

shows the slightly better matching in case of MEMLS (NSE=-0.540). This result suggests that,

in case of SMMR data, Tb values cannot always reach the 245 K threshold, even if the snowpack

is saturated with liquid water and surface melting is developed, possibly due to a persistent bias

after the intercalibration of the dataset. As a consequence, the 245K threshold might be too

high in the first part of the dataset, resulting in an underestimation of the melt extent. On the

contrary, MEMLS threshold, generally lower, can better capture the spatiotemporal evolution

of surface melting, even if the melt extent is still underestimated. A possible consequence of the

melt extent being underestimated in the first part of the timeseries is a slightly overestimated
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long-term trend. To address this possible implication, in the next section we compute long-term

trends considering both 1979 – 2019 and 1987 – 2019 reference periods. In Figure 4.8b, the

timeseries obtained with 245K appears to better follow the temporal variability of melt extent

from MAR during the melting season but still presenting a strong underestimation (NSE= -

5.250). On the other hand, MEMLS-derived timeseries better matches the MAR-derived one,

showing a largely satisfactory NSE coefficient (0.782). In these two years the NSE coefficient

computed for the coarse resolution case is negative. The magnitude of the errors is lower than

in case of 245K algorithm, indicating a weaker underestimation of the melt extent. This can be

a consequence of the coarser resolution, lacking in capturing melting areas at the edges of the

Greenland ice sheet.

In summary, 245K threshold, even if presenting acceptable results in terms of commission and

omission error considering both AWS and MAR comparison, is too high to fully capture the melt

extent everywhere over the ice sheet. Contrarily, we found that MEMLS algorithm is suitable

in capturing the evolution of melting over the Greenland ice sheet. The comparison with 25 km

historical surface melting dataset shows the same underestimation issue of 245K. Even showing

lower errors than in case of 245K, we did not find acceptable values of NSE coefficient.

4.3.3 Surface melting trends

Here, we report results concerning trends of melt duration, length of the melting season and melt

extent. We define melt duration (MD) as the total number of days when melting is detected.

We compute trends of MD over the whole ice sheet (mean melt duration, MMD, averaged over

the total ice sheet area) and at a pixel by pixel scale. We also study the maximum melting

surface (MMS, maximum extent of melting area, i.e. the sum of the pixel areas in which melting

has been detected at least once over a period, expressed as a fraction of the total ice sheet area)

and the cumulative melting surface or melting index (MI, the sum of the melting pixel days

multiplied by the area subjected to melting, i.e. the integral of the MD timeseries; Tedesco et.

al, 2007). Lastly, we define melt onset date (MOD) and melt end date (MED) as the first day

when melting occurs for two days in a row and when melting does not occur for at least 2 days in

a row. We report the comparison with the trends computed according to the coarse resolution

dataset with reference to the time period of data availability (1979 – 2012). Figures related with

this analysis can be found in the supplementary material. We report in Figure 4.9 the timeseries

of annual values of MMD, MMS and MI for the 1979-2019 and 1988-2019 reference periods. We

decided to look at two different reference periods in view of the fact that SMMR data is collected

every other day and that the SMMR and SSM/I sensors are fundamentally different from each

other (where this is not true in the case of the remaining SSM/I sensors). We show the results

obtained applying the MEMLS algorithm (the one that presented the highest performances in

all the considered cases) and the 245K threshold (because it presents good performances in the

omission/commission errors analysis, even if it shows the limit of strong underestimation of

melt extent from the comparison with MAR outputs). In the case of MMD (Figure 4.9a), we

obtain a positive statistically significant (p-value¡0.05) trend from both the 245K and MEMLS

algorithms (except for the 245K for the period 1988-2019), being 0.249 d y−1 (0.108 d y−1) in
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Year

NSE
245K
vs.

MAR1m

NSE
MEMLS

vs.
MAR5cm

NSE
MOTE

vs.
MAR5cm

Year

NSE
245K
vs.

MAR1m

NSE
MEMLS

vs.
MAR5cm

NSE
MOTE

vs.
MAR5cm

1979 -128.769 -0.792 -5.644 2000 -5.578 0.879 -0.113

1980 -278.146 -2.917 -15.301 2001 -10.947 0.771 -0.108

1981 -173.495 -0.881 -7.615 2002 -6.553 0.731 -0.537

1982 -176.464 -1.251 -15.989 2003 -13.279 0.727 0.111

1983 -151.596 -0.540 -4.987 2004 -7.827 0.682 -0.476

1984 -144.117 -1.616 -11.158 2005 -5.370 0.782 -0.880

1985 -267.337 -2.639 -12.886 2006 -5.250 0.747 -0.159

1986 -128.639 -1.573 -12.325 2007 -4.858 0.824 0.0628

1987 -39.524 -1.893 -8.267 2008 -9.047 0.701 -0.128

1988 -35.124 -0.299 -2.683 2009 -5.219 0.770 -0.957

1989 -22.782 -0.030 -4.096 2010 -8.352 0.638 -0.506

1990 -41.515 -0.342 -3.331 2011 -4.591 0.882 -1.016

1991 -31.614 -0.422 -4.805 2012 -3.400 0.851 0.208

1992 -10.904 0.893 -0.644 2013 -8.618 0.760 -

1993 -6.456 0.818 -1.494 2014 -9.785 0.646 -

1994 -11.267 0.529 -2.410 2015 -11.418 0.611 -

1995 -7.7644 0.021 -0.839 2016 -11.827 0.505 -

1996 -10.212 0.512 -2.562 2017 -90.906 -0.323 -

1997 -6.449 0.771 -0.648 2018 -35.901 0.485 -

1998 -8.263 0.605 -2.558 2019 -39.983 0.319 -

1999 -4.201 0.865 -5.644

Table 4.6: Nash-Sutcliffe Efficiency (NSE) coefficients computed for the comparison of re-
trieved melt extent using 245K and MEMLS algorithms applied to the enhanced resolution
PMW Tb and MAR liquid water content outputs averaged in the first 1 m and first 5 cm of
the snowpack. Nash-Sutcliffe Efficiency coefficients for the comparison of the coarse resolution
dataset (Mote, 2014) are computed considering MAR5cm.
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the case of the 245K algorithm for the period 1980 – 2019 (1988 – 2019) and 0.451 d y−1 (0.291

d y−1) in the case of the MEMLS algorithm. The trends computed using the coarse resolution

dataset (Figure S3a in the supplementary material) results equal to 0.587 d y−1 for the period

1979 – 2012 and 0.595 d y−1 for the period 1988 – 2012, smaller than MEMLS (0.704 and 0.671

d y−1, respectively) but larger than 245K (0.457 and 0.418 d y−1, respectively). Also for the

MMS (Figure 4.9b), both the 245K and MEMLS algorithm indicate statistically significant

positive trends (p-value¡0.05 for every case, p-value¡0.1 for MEMLS for the period 1988-2019 ).

The computed trends suggest that the MMS has been increasing by 0.69% y−1 in the case of

MEMLS and 0.94% y−1 in the case of the 245K algorithm for the period 1979-2019 (percentage

with respect to the whole ice sheet surface area). For the 1988 – 2019 period, we also found

that the trends are statistically significant but smaller in value (0.36% y−1 for MEMLS and

0.47% y−1 for 245K). The obtained trends computed using the 25 km dataset (Figure S3c in the

supplementary material) are equal to 1.31% y−1.for the period 1979 – 2012 and 0.91% y−1 for

the period 1988 -2012, larger than the trends computed for MEMLS (1.03% y−1 and 0.7% y−1)

but smaller than the ones computed for 245K (1.50% y−1 and 1.23% y−1). In the case of MI

(Figure 4.9c), we also found positive statistically significant trends of 9.166 x 105 km2 d y−1

(MEMLS) and 5.862 x 105 km2 d y−1 (245K) for the complete timeseries. When considering

the reduced reference period, we found a 95% statistically significant trend of 5.726 x105 km2 d

y−1 only in case of MEMLS. The trends computed for the 25 km resolution dataset (Figure S3b

in the supplementary material) results equal to 0.999 x106 km2 d y−1 (1979 - 2012) and 1.019

x106 km2 d y−1 (1988 - 2012), smaller than MEMLS (1.428 x106 km2 d y−1 and 1.325 x106 km2

d y−1, respectively) and 245K for the period 1979-2012 (0.999 x106 km2 d y−1) but larger than

245K for the period 1988 - 2012 (1.019 x106 km2 d y−1). Lastly, we report in Figure 4.9d the

MOD and MED averaged spatially over the pixels with 95% significant trends. We found that

average MOD (crosses in Figure10d) presents similar trends for 245K and MEMLS considering

both the entire and shortened time series equal to -0.546 d y−1 and -0.273 d y−1, respectively,

in case of 245K and -0.404 d y−1 and -0.254 d y−1 in case of MEMLS. For the reference period

1979 – 2012 (1988 – 2012) the trends of the MOD computed from the 25 km resolution dataset

(Figure S4a in the supplementary material) resulted equal to -0.585 d y−1 (- 0.562 d y−1),

respectively equal and larger in absolute value than MEMLS between 1979-2012 (-0.585 d y−1)

and MEMLS between 1988-2012 (-0.494 d y−1) but smaller than 245K for the period 1979-2012

(-0.801 d y−1) and 245K for the period 1988-2012 (-0.568 d y−1). On the contrary, in case

of average MED (in red) we found larger differences when considering the reduced timeseries

with results equal to 0.687 d y−1 for 245K (1979-2019), 0.708 d y−1 for MEMLS (1979-2019)

and 0.396 d y−1 for MEMLS (1988-2019). The 245K algorithm does not present a statistically

significant trend over the period 1988 - 2019. This difference suggests that 245K algorithm may

have stronger limitations in capturing the last portion of the melting season in case of SMMR

data thus confirming the problems observed for the melt detection with this source of data vs.

MAR1m simulations. The trends computed from the coarse resolution dataset (Figure S4b in

the supplementary material) are equal to 0.850 for the period 1979 – 2012 and 0.716 for 1988 –

2012. For the period 1979 – 2012 (1988 – 2012) we found a delay of 0.937 d y−1 (0.621 d y−1)

in case of MEMLS and 1.046 d y−1 (0.521 d y−1).
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Figure 4.9: Time series of annual (a) mean melt duration (MMD), (b) maximum melting
surface fraction (MMS, expressed as fraction of the surface area of the ice sheet), (c) melt
index (MI), and (d) melt onset date (MOD) and melt end date (MED). Regression lines were
computed for the 1979–2019 (solid line) and 1988–2019 (dot-dashed line) periods. The MMD is
averaged over all of the Greenland ice sheet pixels. Red (blue) lines refer to the 245 K (MEMLS)
algorithm; in panel (d), squares (crosses) refer to MED(MOD).

In Figure 4.10 we show the trends of MD, MOD and MED on a pixel-by-pixel basis for the

complete time series (1979-2019). We found that the trend in MD exhibits the highest statistical

significance (in terms of number of statistically significant pixels), being the most stable and
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Figure 4.10: Maps of 95 % significant trends (1979–2019) obtained with the 245 K (a, c,
e) and MEMLS (b, d, f) algorithms for melt duration (MD; panels a and b), melt onset date
(MOD; panels c and d) and melt end date (MED; panels e and f). MOD and MED are defined
as the first and last 2 melting days in a row.

reliable trend among the pixel-by-pixel parameters analyzed. We found mostly positive trends

in MD in all pixels (Figure 4.10a and b), with higher values moving towards the coastline,

maxima in the ablation zone of the Jakobshavn Isbrae (2.40 d y−1) for 245K and 2.66 d y−1 for

MEMLS) and minima in high altitude areas. We averaged the statistically significant trends,

finding an average of 0.468 d y−1 for the 245K algorithm, and of 0.697 d y−1 in the case of the

MEMLS. In case of MOD and MED, we found a lower number of statistically significant pixels.

The statistically significant pixels exhibit a negative trend for MOD (Figure 4.10c and d) and a

positive trend for MED (Figure 4.10e and f), with the melting season starting on average 0.694

d y−1 earlier and ending 0.680 d y−1 later according to 245K algorithm (0.360 d y−1 earlier and
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0.909 d y−1 later for MEMLS). We point out that the average of the statistically significant

trends is generally higher than the trends computed at ice sheet scale since we computed the

average over the statistically significant pixels only.

4.3.4 Spatial information content

In order to investigate the spatial information content of the enhanced resolution PMW data

with respect to the coarser one, we also performed a variogram-based analysis of MD estimated

from the two products when using either the 245K or the MEMLS algorithms. We point

out that knowledge of scales is imperative for improving our understanding of the observed

changes because processes and related relationships change with scale. Moreover, quantifying

the variability of processes across scales is a critical step, ultimately leading to proper observation

and modeling scale resolution. In this regard, the relationship between processes, observation

and modeling scales controls the ability of a tool to detect and describe the constituent processes.

Here, we show our preliminary results of a variogram-based analysis applied to MD estimated

from the MEMLS and 245K algorithms for the months of May through August of 2012 when

using either the enhanced or the coarse resolution products. We also performed the same

analysis applied to MD estimated using LWC modelled with MAR, according to the same

rationale described in the previous sections. Here, we compute the MD for each month of the

melting season at pixel-scale as the number of days of the month (May, June, July or August)

detected as melting for the specific pixel. The results of our analysis are summarized in Figure

4.11, where we show the empirical (blue crosses) and modelled (red line) semi-variograms for

Greenland MD computed applying the MEMLS and 245K algorithms to both 25 km and 3.125

km resolution data for the months of May through August of 2012, and in Table 7, where

we report the parameters of the spherical fitting of the empirical semi-variogram in case of

MD obtained according to MAR1m and MAR5cm approaches (an analogous representation of

Figure 4.11 is reported in the supplement in Figure S5). At first, we note that R2 values of

the fitting for the modeled variograms are consistently higher in the case of enhanced resolution

data, suggesting that enhanced resolution data might be more suitable for a variogram-based

analysis. For the coarse resolution data, we found R2 values of comparable magnitude with the

enhanced resolution case only in May. When computing the spherical fitting of the empirical

variograms of MD from MAR, we found for each case considered similar R2 values (between

0.118 and 0.484). The values for the range in the case of the 3.125 and 25 km products are

similar in May for the 245K algorithm (on the order of ∼ 200 km) but they appear different in

the case of the MEMLS algorithm, when the enhanced product shows a lower value of ∼ 170

km against ∼ 270 km in the case of the coarse product. This could be due to the fact that the

MEMLS algorithm is more sensitive to sporadic melting and when applied to the enhanced Tb

dataset it allows to detect melting driven by processes whose scale cannot be captured by the

coarser nature of the historical dataset. In case of MAR, the value of the range is lower in case

of MAR5cm (187.70 km) than in case of MAR1m (199.17 km), suggesting again the affinity of

MEMLS algorithm with melting strictly confined in the very first layer of snowpack. As the

melting season progresses, the variograms of the coarse dataset shows either similar values for

the range or a poor fit of the experimental variogram. Instead, in the case of the enhanced
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May June July August
MAR1m MAR5cm MAR1m MAR5cm MAR1m MAR5cm MAR1m MAR5cm

r 199.17 187.70 233.05 207.26 186.16 282.57 211.7 230.32

s 3.97 4.02 18.28 17.78 19.66 5.24 14.08 1.78

n 3.35 4.66 44.97 37.94 79.79 31.86 28.64 5.58

R2 0.2 0.34 0.41 0.48 0.24 0.14 0.38 0.12

Table 4.7: Parameters of the spherical function fitted to the empirical semi-variogram for the
maps of melt duration (MD) obtained cumulating the LWC simulated by MAR over the first
1m and 5 cm of snowpack.

product, the values of the range tend to decrease up to July and increase again in August. We

found the same temporal variability in case of MAR1m, while in case of MAR5cm we found that

the range increases until July and decreases in August (see Figure S5 in the supplementary

material). Moreover, a proper fitting of the experimental variograms is achieved for all cases for

the enhanced resolution PMW and the MAR derived MD. This suggests that the 25 km spatial

resolution might be too coarse to capture the spatial autocorrelation of melting processes. In

terms of nugget effect, we found larger values from the MAR outputs than in case of PMW. The

decrease in the range in the case of the enhanced product may be a consequence of the local

processes that drive melting as the melting season progresses (e.g., impact of bare ice exposure,

cryoconite holes, new snowfall, etc.) and of a more developed network of surface meltwater,

the presence of supraglacial lakes and, in general, the fact that the processes driving surface

meltwater distribution (e.g., albedo, temperature) promote a stronger spatial dependency of

meltwater production at smaller spatial scales. This is even more important when considering

that the width of regions such as the bare ice area (where substantial melting occurs) is of the

same order of magnitude of the resolution of the coarse PMW dataset. In August, the start of

freezing of the surface runoff system and the covering of bare ice, cryoconite holes, together with

the draining of the supraglacial lakes and rivers might justify the increase in the range values

computed for this month. Our preliminary results, therefore, point to an increased information

content of the enhanced spatial PMW product with respect to the historical, coarse one, offering

the opportunity to better capture the spatial details of how surface melting evolved over the

Greenland ice sheet over the past ∼ 40 years. Further analysis will help to shed light on the

processes responsible for the recent acceleration of surface melting.

4.4 Conclusions and future work

We applied threshold-based melt detection algorithms to the 3.125 km resolution 37 GHz hori-

zontal polarization PMW Tb to assess the skills of the PMW enhanced-resolution data to detect

surface melting over the 1979-2019 period over the Greenland Ice Sheet. As the product is com-

posed of data acquired by different sensors onboard of different platforms, we first developed a

cross calibration among all the sensors. Then, we compared surface melting detected from PMW

enhanced-resolution data with that estimated from AWS air temperature data and the outputs

of the regional climate model MAR. We found that the algorithm making use of a fixed thresh-

old value on Tb values (245K) and the one based on the outputs of an electromagnetic model
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Figure 4.11: Empirical (blue crosses) and modeled (red line) semi-variograms for the Green-
land melt duration (MD) computed by applying the (a, b) MEMLS and (c, d) 245 K algorithms
to both the (a, c) 25 km and (b, d) 3.125 km resolution data for each month of the melting
season (May, June, July and August). The range (r), sill (s), nugget (n) and R2 values are
reported.

were the most suitable to detect persistent (245K) and sporadic (MEMLS) melting. Overall,

we found that that MEMLS algorithm showed the best performance (lowest commission and

omission errors). We compared surface melting detected from PMW enhanced-resolution data

with the one estimated by the MAR model when considering the two cases of integrating LWC

over the top 5cm and 1m, respectively. We selected these two depths to study those conditions

when melting occurs sporadically (5 cm) or persistently (1 m). We obtained good matching (i.e.,

NSE¿0.4 or, at least, positive) in most of the years from 1992-2019 when comparing MEMLS
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derived melt extent with MAR LWC in the first 5 cm of snowpack. On the other hand, we found

bad matching in the period 1979-1992, possibly due to differences in sensor characteristics. In

the case of melt extent retrieved by 245K, we found a strong underestimation of melt extent

(largely negative values of NSE coefficient) from 1979 to 1987 likely because of the lower values

of “wet” Tb in case of SMMR data, slightly improving from 1993 to 2019 but still negative.

Accordingly, the results obtained applying MEMLS approach are more reliable than in case of

245K algorithm when considering the period 1979 – 2019. When comparing with the PMW

coarse-resolution dataset (25 km), we found that the melt extent timeseries derived from the

PMW enhanced-resolution data using MEMLS better agree with MAR simulations than the

ones obtained using the 25 km resolution data. After assessing the outputs of the PMW-based

algorithms, we studied the melt onset date, melt end date, mean melt duration and maximum

melting surface for the period 1979 – 2019. According to MEMLS algorithm, we found that the

melting season has begun 0.404 (0.254) days earlier every year between 1979-2019 (1988-2019)

and has ended 0.708 (0.396) days later every year between 1979-2019 (1988-2019). These values

are averaged over the whole ice sheet and the trends are statistically significant at a 95% level

(p-value¡0.05). The mean melt duration has increased every year by 0.451 d y−1 (0.291 d y−1)

during the period 1979-2019 (1988-2019). We found differences in trends computed using the

PMW coarse-resolution with respect to the PMW enhanced-resolution data for the reference

periods 1979 – 2012 and 1988 -2012, possibly because of the different rationale behind the melt

detection algorithms and the higher level of detailing of the PMW enhanced-resolution dataset.

When we performed a spatial analysis of the trends for the melt onset dates and duration, we

found that the areas where the number of melting days has been increasing are mostly located

in West Greenland. The maximum melting surface presents positive trends as well, with an

increment of 0.69% (0.36%) every year respect to the Greenland ice sheet surface since 1979

(1988). Finally, we explored the information content of the PMW enhanced-resolution dataset

with respect to the one at 25 km and the MAR outputs through a semi-variogram approach.

The results obtained showed a better fitting of the modelled spherical function to the empirical

semi-variogram in case of the enhanced-resolution data and MAR maps of melt duration. Our

analysis suggests that the enhanced resolution product is sensitive to local scale processes, with

higher sensitivity in case of MEMLS algorithm. This offers the opportunity to improve our un-

derstanding of the spatial scale of the processes driving melting and potentially paves the way for

using this dataset in statistically downscaling model outputs. In this regard, as a future work,

we plan to extend the analysis of spatial scales to the atmospheric drivers of surface melting,

such as incoming solar radiation, surface temperature and longwave radiation and complement

this analysis with our previous work focusing on understanding the changes in atmospheric pat-

terns that have been promoting enhanced melting in Greenland over the recent decades (Tedesco

and Fettweis, 2020). Assessed the capability of this dataset and method in observing tempo-

ral trends, a further development can include a combination of the PMW enhanced-resolution

dataset with higher resolution satellite data (optical sensors or lower frequencies) in order to

investigate the evolution of the surface meltwater networks and the application of similar tools

to other regions, such as the Canadian Arctic Archipelago, the Himalayan Plateau and the

Antarctic Peninsula, where the enhancement in spatial resolution can be fully exploited.
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Abstract

The Greenland Ice Sheet (GrIS) has been contributing directly to sea level rise and this contri-

bution is projected to accelerate over next decades. A crucial tool for studying the evolution

surface mass loss (e.g., surface mass balance, SMB) consists of regional climate models (RCMs)

which can provide current estimates and future projections of sea level rise associated with such

losses. However, one of the main limitations of RCMs is the relatively coarse horizontal spatial

resolution at which outputs are currently generated. Here, we report results concerning the

statistical downscaling of the SMB modeled by the Modele Atmosphérique Regional (MAR)

RCM from the original spatial resolution of 6 km to 100 m building on the relationship between

elevation and mass losses in Greenland. To this goal, we developed a geospatial framework that

allows the parallelization of the downscaling process, a crucial aspect to increase the computa-
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tional efficiency of the algorithm. The results obtained in the case of the SMB, assessed through

the comparison of the modeled outputs with in-situ SMB measurements, show a considerable

improvement in the case of the downscaled product with respect to the original, coarse output.

In the case of the downscaled MAR product, the coefficient of determination (R2) increases from

0.868 for the original MAR output to 0.935 for the downscaled product. Moreover, the value

of the slope and intercept of the linear regression fitting modeled and measured SMB values

shifts from 0.865 for the original MAR to 1.015 for the downscaled product in the case of the

intercept and from the value -235mm (original) to -57 mm (downscaled) in the case of the slope,

considerably improving upon results previously published in the literature.

5.1 Introduction

The Greenland Ice Sheet (GrIS) has been contributing directly to sea level rise since the begin-

ning of the century through meltwater runoff and ice mass loss. Hörhold et al. (2022) found

that modern temperatures are 1.5 °C warmer than the twentieth century and that meltwater

run-off, a major contributor to sea level rise, has been consequently enhanced. Surface melting

has also been increasing since 1979, as measured by passive microwave satellite observations in

terms of extension and persistency (e.g., Tedesco et al. 2013, Colosio et al., 2021). Moreover,

Hanna et al. (2021) found that over the 1972-2018 period each 1°C of summer warming cor-

responds to 116 Gt of surface mass loss and 26 Gt of solid ice discharge increase. A key tool

for studying the evolution surface mass loss (e.g., surface mass balance, SMB) over the GrIS is

represented by (polar) regional climate models (RCMs), which, differently from remote sensing

observations can provide information on the actual mass loss and represent an irreplaceable tool

to provide future projections of such losses. A widely used model in this regard is the Mod-

ele Atmospherique Regional (MAR, Fettweis et al., 2013, 2017, 2020; Tedesco et al., 2013)., a

coupled surface-atmospheric model forced at its boundaries with reanalysis data. However, one

of the limitations of MAR (and of RCMs in general) lies in the horizontal spatial resolution at

which outputs can be generated. This is due to computational considerations as well as to the

physics behind the models. Currently, MAR simulations over Greenland are generated at a hor-

izontal spatial resolution of 6 km (e.g., Colosio et al., 2021). Such spatial resolution guarantees

a sufficiently fine mesh for ice-sheet-wide climatological studies, but it does not allow capturing

fine-scale processes occurring in areas characterized by complex topography (e.g., glaciers ter-

minating in fjords) or small glaciated surface (e.g., ice caps). Moreover, the knowledge of mass

loss at a horizontal spatial resolution higher than the one currently available (e.g., 100s of me-

ters) would allow to better constrain the relationships between the surface and sub-surface and

englacial hydrological systems as well as would allow a better characterization of the meltwater

fluxes into the ocean surrounding the GrIS.

To address the limitations associated to the current horizontal spatial resolution of the MAR

model, statistical downscaling can be used to enhance the spatial resolution of the modeled

outputs. For example, Hanna et al. (2005, 2008, 2011) statistically downscaled reanalysis data

over the GrIS. A statistical downscaling technique based on elevation correction was also applied

by Franco et al. (2012) to the 25 km MAR outputs to reconstruct GrIS SMB at 15 km spatial
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resolution. Following that, Noël et al. (2016) applied an elevation dependent statistical down-

scaling technique to SMB components simulated by the Regional Atmospheric Climate Model

(RACMO2) at 11 km resolution to reconstruct a daily dataset of SMB over the GrIS over a 1 km

resolution grid. Here, we build upon the approach proposed by Noël et al. (2016) to generate a

100 m, statistically downscaled output of MAR SMB over the whole GrIS. Beside applying the

approach to a different set of modeled outs (MAR instead of RACMO) and the enhanced spatial

resolution with respect to Noël et al. (2016), we developed a geospatial framework that allows

the parallelization of the downscaling process which increases the computational efficiency of

the algorithm. In the following, we first describe the datasets used for our approach (Section

2), then we introduce the methodology (Section 3), followed by the results (Section 4) and our

conclusions and future work (Section 5).

5.2 Datasets

5.2.1 MAR model

Modeled quantities to be downscaled are obtained from the regional climate model MAR (Colo-

sio et al., 2021; Alexander et al., 2014; Fettweis et al., 2013; Fettweis et al., 2017; Tedesco et al.,

2013). MAR is a modular atmospheric model that uses the sigma-vertical coordinate to simu-

late airflow over complex terrain and the Soil Ice Snow Vegetation Atmosphere Transfer scheme

(SISVAT) (e.g., De Ridder and Gallee, 1998) as the surface model. The snow model in MAR,

which is based on the CROCUS model of Brun et al. (1992), calculates albedo for snow and ice

as a function of snow grain properties, which in turn depend on energy and mass fluxes within

the snowpack. Lateral and lower boundary conditions are prescribed from reanalysis datasets.

Sea-surface temperature and sea-ice cover are prescribed over ocean using the same reanalysis

data. The atmospheric model within MAR interacts dynamically with SISVAT. MAR outputs

have been assessed over the Greenland ice sheet by many authors (e.g., Fettweis et al., 2017,

2020; Alexander et al., 2014).

In this study, we use the output from MAR version v3.11.5 characterized by an enhanced com-

putational efficiency and improved snow model parameters (Fettweis et al., 2020; Delhasse et

al., 2020). The model is 6-hourly forced at the boundaries from 1950 using ERA5 reanalysis

(Hersbach et al., 2020), the newest generation of global atmospheric reanalysis data that super-

seded ERA- Interim (Dee et al., 2011), and output is produced at a horizontal spatial resolution

of 6 km. Specifically, we focus our attention on daily air temperature (TT variable), surface

temperature (ST variable) and surface mass balance (SMB) outputs.

5.2.2 Digital Elevation Model

For the Digital Elevation Model (DEM), we adopt the ArcticDEM data product (Porter et al.,

2018, Figure 5.1). ArcticDEM is a National Geospatial-Intelligence Agency (NGA) and Na-

tional Science Foundation (NSF) public-private initiative to produce high-quality DEM of the

Arctic applying stereo auto-correlation techniques to high-resolution optical satellite images and

adopting the SETSM open-source photogrammetric software (Noh and Howat, 2015). Further
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information about the dataset can be found at https://www.pgc.umn.edu/guides/arcticdem/introduction-

to-arcticdem/. Specifically, we use a DEM provided at the spatial resolution of 100 m. The data

are projected to the National Snow and Ice Data Center (NSIDC) Sea Ice Polar Stereographic

North and referenced to WGS84 datum. The overall dataset is composed of 403,920,000 cells

and is distributed as a GeoTIFF with a total size of approximately 1.6 Gb.

5.2.3 PROMICE Surface Mass Balance measurements

The main objective of this work is to obtain a high-resolution SMB dataset from the downscaling

of the MAR model suitable for local (i.e., glacier scale) studies. Consequently, we carried out

a validation of our results by comparing the original SMB outputs from MAR at a spatial

resolution of 6 km and the downscale outputs at 100 m with in-situ SMB measurements. For this

purpose, we used the dataset collected by Machguth et al. (2016), containing 2955 measurements

from 46 sites, reported in Figure 5.1 as blue dots. The dataset is available on GEUS Dataverse

portal (Machguth, 2022; last access 16/02/2023). Such comprehensive dataset spans from 1892

to 2015. From the 123 years, we focused our attention to the period 1980 - 2015 when the

largest portion of the dataset is temporally located and the MAR outputs are available. From

the 2955 measurements we obtained 1982 suitable SMB measurements to be used for validation.

The SMB measurements are carried out by computing the difference of stake readings between

two dates. The observations are identified by the measuring site (i.e., the area or location,

containing at least one measuring point), measuring pint (i.e., specific stakes, associated with

multiple readings) and the actual readings (i.e., the SMB measurement). In Table 5.1 we report

the number of readings for each measuring site considered, together with its coordinates (WGS

84) and time period when the measurements were collected. Measurement periods are various,

covering specific seasons (summer or winter SMB) or an entire year (annual SMB). In some

cases, also short-term (at least one month) and multi-year measurements are present. We

reconstructed the SMB in correspondence of the measurement location as algebraic sum of the

daily simulated SMB between the start and end dates of the measurement. In order, as a metric

to assess the performance of the downscaled product, we compute the root mean squared error

(RMSE) and the least-square linear regression parameters (slope and intercept) between model

outputs (SMB variable, original and downscaled) and measurements.

5.2.4 GC-Net air temperature

To test the results of the applied downscaling procedure at local scale we also compare the values

of surface temperature obtained from MAR with in-situ measurements. We use data from

the Greenland Climate Network (GC-Net; Steffen et al., 1996), a set of Automatic Weather

Stations (AWS) located all around the Greenland ice sheet and continuously measuring air

temperature, wind speed, wind direction, humidity, pressure, and other parameters. Since

direct measurements of surface temperature are not available as continuous records at multiple

sites around Greenland, we use the air temperature records measured at 3 m above ground level.

Specifically, we consider 17 selected stations reported in Figure 5.1 as red triangles. Specific

location and elevation for each station are also reported in Table 2 in the Results section. The

AWS thermometers collect air temperature measurements at sub-daily temporal scale while
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Figure 5.1: Map of Greenland ice sheet. The digital elevation model (DEM) at 100 m res-
olution is represented in greyscale, the GC-Net air temperature locations are plotted as red
triangles and the PROMICE surface mass balance measurements locations are reported as blue
dots.

MAR outputs are provided at daily temporal resolution. Consequently, we compute daily

average air temperatures for the comparison with the modelled and downscaled near-surface

temperatures (TT variable).

5.2.5 Landsat-8 surface temperature

As in situ measurements are only available at point scale, it is not possible to assess the potential

improvement of the downscaling approach on spatially distributed fields. In the absence of

spatially distributed, high spatial resolution SMB outputs, we use seven different Landsat-8

scenes covering the Jakobshavn and the Helheim Glaciers, acquired on 5 June 2015, 30 June

2015 (two images), 9 July 2015 (two images), 16 July 2015, and 18 July 2015. The Landsat-

8 surface temperature product is available at 30 m spatial resolution since April 2013 and

is generated from Landsat Collection 2 Level-1 thermal infrared bands and other parameters

obtained from satellite observations and reanalysis data. The images were downloaded from the

USGS Earth Explorer data portal (https://earthexplorer.usgs.gov/, last access 17/01/2023).
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ID Glacier/Site name Latitude [°] Longitude [°] Measurement
years

Points Readings

126
Qaanaaq
Ice cap

77° 30’ 36” N 69° 9’ 0” W 2012-2015 6 12

128 Petermann 80° 41’ 2” N 60° 17’ 35” W 2002-2013 2 4

130
Hans Tausen

Ice Cap
82° 29’ 24” 37° 30’ 0” W

1995
and earlier

5 13

140 Hare Glacier 82° 50’ 24” N 36° 40’ 12” W 1994-95 29 62

170
Kronprins

Christian Land
79° 46’ 48” N 25° 11’ 24” W

1993-1994,
2008-2013

20 62

180 Nioghalfvjerdsfjorden 79° 30’ 0” N 21° 36’ 0” W 1996-1997 13 13

215 Storstrømmen 77° 30’ 0” N 23° 0’ 0” W 1989-1994 22 113

220 A.P. Olsen Ice Cap 74° 38’ 24” N 21° 26’ 60” W 2008-2013 17 56

230 Freya Glacier 74° 22’ 48” N 20° 49’ 12” W 2008-2013 29 93

232 Violin Glacier 72° 20’ 60” N 26° 58’ 48” W 2008-2013 2 12

254 Helheim 66° 24’ 36” N 38° 20’ 24” W 2008-2010 21 118

270 Isertoq 65° 42’ 0” N 38° 53’ 24” W 2007-2013 2 15

315 Nordbo Glacier 61° 30’ 0” N 45° 22’ 12” W 1977-83 41 200

412 Isortuarssup Sermia 63° 47’ 60” N 49° 47’ 60” W 1983-1988 3 9

414
Qamanarssup

Sermia
64° 30’ 0” N 49° 23’ 60” W

1979-1988,
2007-2013

20 164

416
Kangilinnguata

Sermia
64° 52’ 48” N 49° 17’ 60” W 2010-2013 1 3

420 Qapiarfiup 65° 34’ 48” N 52° 12’ 36” W 1980-1989 5 75

440 Amitsuloq Ice Cap 66° 8’ 24” N 50° 19’ 12” W 1981-1990 26 422

450 Tasersiaq 66° 15’ 36” N 51° 23’ 60” W 1982-1989 6 111

454 K-Transect 67° 5’ 60” N 48° 51’ 36” W 1990-2013 11 193

456 Paakitsoq, JAR 69° 29’ 24” N 49°51’ 36” W
1982-1992,
1996-2013

22 220

458 Swiss Camp/ST2 69° 33’ 53” N 49° 19’ 51” W 1990-2014 2 12

Table 5.1: PROMICE surface mass balance measurements information for the selected Glaciers
and measurements sites.

We compared the Landsat-8 observations with the original and downscaled MAR outputs of

surface temperature (ST variable).

5.3 Methods

5.3.1 Downscaling methodology

We adopted the methodology proposed by Noël et al. (2016) applied to the MAR regional

climate model (instead of RACMO). Differently from Noël et al. (2016), however, we push

the horizontal resolution of the downscaled product to 100m (instead of 1 Km). The method

exploits the potential dependency of the modelled variables (e.g., surface temperature, runoff)

with elevation. In order, to overcome the large number of cells and reduce the computational

time, we parallelized the procedure through a combination of geospatial tools (in the software

R) so that our approach can also be used for near-real time generation of downscaled maps over
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a specific region of the Greenland ice sheet.

The first step involves the calculation of the local dependency of the MAR outputs with respect

to the elevation. For this step we refer to the methodology proposed by Noël et al. (2016).

Accordingly, we compute the local linear regression (least squares) between the specific variable

and the elevation (obtained from the MAR DEM) obtaining the values of slope (m6km) and

intercept (q6km). The linear regression is carried out for each pixel of the MAR 6 km resolution

DEM using the values of the adjacent pixels with a minimum of 6 points used for the regression.

In the case of pixels with less than 5 adjacent pixels, we compute m and q for that pixel by

interpolation. Such regression is carried out for every day and pixel of the region of interest.

Figure 5.2 provides an example of such procedure. The local linear regression sample consists

of the red pixel (5) and the surrounding green pixels (1,2,3,4,6,7,8 and 9), for a total of 9

pixels (Figure 5.2a). The dashed red line in Figure 5.2b represents the linear regression curve

obtained fitting the numbered points. Parallelizing such procedure for each MAR pixel, we

obtain the daily maps of m6km and q6km for the considered MAR output variable. Then, the

m6km and q6km maps are reprojected to the Polar Stereographic coordinate system which is

used by the DEM. The original MAR data are distributed by providing only the coordinates

for the centre of each grid cell. To create a continuous grid, and avoid introducing errors, the

coordinates for the four corners of each MAR grid are computed, and then they are transformed

into the Polar Stereographic coordinate system. The result is a shapefile that contains a polygon

for each MAR grid. Additionally, the new shapefile contains metadata to ease computations,

such as a unique MAR grid ID, the Polar Stereographic coordinates for the centre of the grid,

the corresponding coordinates in longitude and latitudes for the centre of the grid. The next

step consists in fragmenting the high-resolution DEM into a series of smaller files, specifically

one for each polygon of the reprojected MAR cells generated in the previous steps. There are

a total of 55,144 files generated through each step, which are less than the total number of

cells in the original MAR output. This discrepancy is due to the fact that the DEM is limited

to only areas covered by the ice sheet, and it thus does not cover all the locations of where

MAR output is generated. While it might seem counterintuitive that maintaining over 55,000

small files is more efficient than maintaining a single file, the answer lies in the fact that this

pre-processing step enables the downscaling to be an embarrassingly parallel problem which

can be efficiently solved using multi-core and multi-node infrastructure. Because the DEM is

required for downscaling each grid cell, which are computed simultaneously in parallel, each

task needs to read only a small file of a few kb, rather than one larger file, and it also avoids file

system bottlenecks when multiple processes try accessing the same file. Most file systems do not

allow for concurrent access to the same file, and therefore if hundreds of tasks try to read the

same file, each task would have to idle in a queue for the file access to become available. This

problem is prevented by generating a DEM file for each MAR grid, so that both I/O transfer

rate and file access are optimized. Furthermore, because the DEM are segmented using the

original Polar Stereographic projection, which matches the reprojected MAR grid, no further

transformation is required, further speeding up the downscaling process. The final step consists

in obtaining the high-resolution maps of slope and intercept (m100m and q100m) by bilinear

interpolation of m6km and q6km over the high-resolution DEM grid. While this process was not
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parallelized in the current version, it is possible to speed it up using a parallel solution. Finally,

the downscaled variable is obtained by applying the high-resolution linear regression coefficients

to the high-resolution DEM as

V AR100m = m100mH100m + q100m (5.1)

where VAR is the generic downscaled variable computed as linear function of high-resolution

elevation of the DEM (H100m) through the coefficients previously obtained (m100m and q100m).

In Figure 5.2a, we show a random ensemble of points of the 100 m grid (black dots within

the red pixel) around the high-resolution pixel centred in the original MAR grid (blue dot).

The values of the downscaled variable (in this example surface temperature) of such points

are reported as grey dots (blue for the central pixel) in Figure 5.2b, distributed along the

linear regression curve. Since the origin of the MAR DEM and the high-resolution DEM is

different, errors in terms of mass conservation can arise. For example, within a MAR pixel the

average elevation of the high-resolution DEM might be higher than the original MAR elevation,

possibly leading to the previously mentioned mass conservation error (e.g., the original MAR

pixel suggests for a day a lower mass loss than the ensemble of the high-resolution pixels). For

this reason, differently from Noël et al. (2016), we decided to provide physical constrains to be

satisfied as very final step of the downscaling procedure.

In this research, we apply the downscaling methodology to daily near-surface temperature (TT),

surface temperature (ST) and SMB MAR outputs.

5.3.2 Spatial autocorrelation analysis and variograms

Beside RMSE and slop and intercept, we also focus on evaluating the potential improvements of

the downscaled product with respect to the original coarser resolution MAR outputs in terms of

capability to describe the spatial distribution of the considered variable. To this aim, we perform

a spatial autocorrelation analysis using variograms. Variogram analysis is generally adopted in

geostatistical analyses to evaluate autocorrelation of spatial data (Edward et al., 1989). Auto-

correlation and variogram analysis are geostatistical tools that can be used to quantify spatial

variability using metrics such as the spatial correlation length (simply correlation length here-

after). Though these techniques were mainly designed to support the prediction of values at

locations where measurements are not available, they can be used for characterizing processes

across the scale spectrum (Herzfeld, 1993). Once process scales are known, the scale ranges

over which process relationships (and thus spatial pattern) are consistent must be determined.

The knowledge of these scaling ranges will identify scales at which the process interactions

change, being such scales critical for measurement or model interests (Mark and Aronson, 1984;

Vedyushkin, 1994). Geostatistical methods such as spatial covariance, variogram analysis, and

spectral analysis (Webster and Oliver, 2001) quantify the spatial pattern of variability of an ob-

served property over a scale range from the minimum sample separation to the distance at which

the variable becomes spatially independent. This quantified variability can, then, be used for

spatial estimation based on a finite number of data points. In geostatistical approaches, spatial

variation is treated as having both deterministic and stochastic components, with the determin-
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Figure 5.2: Elevation downscaling procedure example for a generic variable. In panel (a)
the considered MAR pixel (red) and the surrounding pixels (green) adopted for the local linear
regression are represented. In panel (b) the variable value of each considered pixel is reported as
numbered circle. The dashed red line represents the linear regression computed for such pixels
and the grey circles represent the downscaled variable for a group of 100 m pixels randomly
picked within the considered MAR pixel.

istic component modeled using a trend surface, for example, while the stochastic component

modeled as random deviations from that surface, whose spatial structure can be characterized

by the variogram (Webster and Oliver, 2001). In this specific case, we fit the experimental

variogram with a circular model, as it has shown to be the one that provides the highest R2

when fitting the experimental data. The experimental variogram is computed as

γ(δ) =
1

2N(δ)

∑
i,j∈N(δ)

(xi − xj)
2 (5.2)

where γ is the semi-variance, N(δ) is the number of data pairs (i-th and j-th) distanced by δ

while xi and xj are the corresponding variable values. The fitting spherical function is, then,

used to compute the three main parameters characterizing the variogram: the sill, the range

and the nugget effect. The sill is defined as the maximum value at which the fitted curve

becomes flat; such variance value is reached at a certain distance called range, beyond which

the data are no longer autocorrelated. The nugget corresponds to γ(0) and it is a result of
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measurement errors or highly localized variability. Here, following Colosio et al. (2021), we

focus our attention on the range, the descriptor of the correlation length, comparing the range

values computed for the original MAR temperature outputs, the downscaled temperature and

the surface temperature observed by Landsat-8.

To further investigate and quantify possible improvements in terms of spatial description of the

variable of interest by th downscaled product, we also compute the so-called Structural Similarity

Index Measure (SSIM). Such index has been introduced by Wang et al. (2004) to provide a

similarity measure between two images. This index can objectively quantify a qualitative aspect

such the similarity between two images. Considering a pair of images (X,Y ) to be compared,

the values assumed by the SSIM are bounded by a unique maximum (SSIM(X,Y ) = 1) in

case X = Y , otherwise SSIM(X,Y ) < 1. We compute such similarity index for both original

and downscaled MAR ST outputs, considering as reference the Landsat-8 surface temperature

image.

5.4 Results and discussion

5.4.1 Surface and near-surface temperature

We first tested the downscaling algorithm with the MAR near-surface temperature outputs. We

compared the results obtained with air temperature measurements from 17 AWS of the GC-Net.

We performed the comparison by computing RMSE and R2 between the modelled (original and

downscaled) and the observed variable. The results obtained for the original MAR and the

downscaled temperatures are reported in Table 2. Both R2 and RMSE obtained for the down-

scaled temperatures do not exhibit significant improvements or worsening with respect to the

original coarser resolution output. The difference between the 6 km and 100 m resolution is in

the order 10−3 for R2 and 10−2 °C for RMSE, with improvements in some stations (Swiss Camp,

Crawford Pt. 1, NASA-U, Summit, Crawford Pt. 2, KAR, JAR2 and KULU) and worsening in

others (Tunu-N, JAR1, South Dome and NASA-E). However, such small differences appear to

be randomly distributed in space, without any clear correlation with elevation or latitude/lon-

gitude. Such results demonstrate that the applied downscaling methodology does not introduce

errors in case of the TT variable at point scale.

To evaluate the results over a wider area, we considered two Landsat-8 surface temperature

images collected over two different areas of the ice sheet. The two selected areas are located on

the eastern and western coasts of Greenland and show a variable topography. In Figure 5.3

we report the surface temperature image from Landsat-8 (Figure 5.3a), the original ST output

at 6 km spatial resolution (Figure 5.3b) and the downscaled ST at 100 m resolution (Figure

5.3c) for one of the selected Landsat-8 scenes. We compare the original MAR and downscaled

high-resolution ST by computing the difference of these maps with the Landsat-8 image for the

sole pixels common to all three maps. In Figure 5.4 we report the histograms of the difference

between Landsat-8 surface temperature and the original ST (Figure 5.4a) and the downscaled

one (Figure 5.4b) for the same image. The results show no differences in terms of mean differ-

ence (µ), with an average difference of 2.7°C in both cases, similarly to the AWS comparison.
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Station
Latitude

[°]
Longitude

[°]
Elevation

[m]
R2

6km
R2

100m
RMSE
6km

RMSE
100m

Swiss Camp 69° 34’ 06” 49° 18’ 57” 1149 0.945 0.945 2.37 2.36

Crawford Pt.1 69° 52’ 47” 46° 59’ 12” 2022 0.872 0.873 3.95 3.95

NASA-U 73° 50’ 31” 49° 29’ 54” 2369 0.788 0.789 5.35 5.34

GITS 77° 08’ 16” 61° 02’ 28” 1887 0.915 0.915 3.4 3.4

Humboldt 78° 31’ 36” 56° 49’ 50” 1995 0.801 0.801 5.64 5.64

Summit 72° 34’ 47” 38° 30’ 16” 3254 0.837 0.84 4.62 4.58

Tunu-N 78° 01’ 0” 33° 59’ 38” 2113 0.937 0.936 3.17 3.2

DYE2 66° 28’ 48” 46° 16’ 44” 2165 0.94 0.94 2.72 2.72

JAR1 69° 29’ 54” 49° 40’ 54” 962 0.787 0.786 4.37 4.38

Saddle 66° 00’ 02” 44° 30’ 05” 2559 0.935 0.935 2.77 2.77

South Dome 63° 08’ 56” 44° 49’ 00” 2922 0.915 0.915 2.76 2.77

NASA-E 75° 00’ 00” 29° 59’ 59” 2631 0.882 0.881 3.94 3.97

Crawford Pt.2 69° 54’ 48” 46° 51’ 17” 1990 0.893 0.894 3.62 3.61

NASA-SE 66° 28’ 47” 42°30’ 00” 2425 0.86 0.86 3.83 3.83

KAR 69° 41’ 58” 33° 00’ 21” 2579 0.935 0.936 2.6 2.57

JAR2 69º 25’ 12” 50º 03’ 27” 568 0.706 0.709 4.79 4.76

KULU 65° 45’ 30” 39° 36’ 06” 878 0.59 0.595 5.22 5.19

Table 5.2: Root-mean-square error and R2 computed comparing MAR6km and MAR100m with
air temperature measurements from the GC-Net considered stations. Longitude, latitude and
elevation of the station are also reported.

Also, the standard deviation (σ) remains unvaried, being equal to 2.6°C. Similar results have

been obtained for all the compared Landsat-8 images, with mean differences ranging between

-0.59°C and 3.44°C for the downscaled product (2.09°C on average) and between -0.62°C and

3.43°C for the original MAR data (2.07°C on average). We expected a similar result in terms of

average difference considering the physical constrain imposed for the ST to maintain the average

ST constant for each MAR pixel as final step of the downscaling procedure. These results indi-

cate that in case of ST the downscaling algorithm does not introduce significant improvements

or errors in terms of overall difference with observed temperature (expressed as RMSE for the

AWS case and spatial average difference for the Landsat-8 image).

Considering such results in terms of difference at point scale and spatially averaged differ-

ence, we evaluated possible improvements in terms of spatial information content and spatial

description obtained in the downscaled product. We report in Figure 5.5 the results of the

semi-variogram analysis performed for two sub-regions of interest within the same Landsat-8

image shown in Figure 5.3. The two areas have been selected because of the strong differences

in topography and elevation gradients. Concerning the results obtained over the topographically

more complex area, we observe that the scale break of the downscaled temperature (blue line)

is 13.5 km, better capturing the one from Landsat-8 data (11.5 km, red line) with respect to the

original MAR outputs (24.1 km, black line). On the other hand, the same analysis performed

over an area in a more interior region of the ice sheet, where downscaling might lead to less

improvement in view of the reduced topography, does not present improvements in terms of spa-

tial autocorrelation (Figure 5.5b) and that all three datasets do not reach the semi-variogram
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Figure 5.3: Maps of temperature from (a) Landsat-8, (b) MAR6km and (c) MAR100m over the
area covered by the Landsat 8 selected image on 30 June 2015. The blue dot reported to every
map represents the 6 km pixel of the original MAR grid reported in red in Figure 5.2a.

plateau within the considered distance.

In order to extend the comparison to another area of the ice sheet, we performed the same

variogram based analysis for another Landsat-8 scene in the surroundings of Jakobshavn glacier

collected on 11 June (Figure 5.6a). The map also shows the two regions of interests (ROI)

selected for the analysis. We selected ROI1 as this area is characterized by a large topographic

gradient within a relatively small distance and to understand the potential improvement of the

downscaling procedure over regions that are outside the main ice sheet (e.g., smaller glaciers).

On the other hand, ROI2 contains both strong and mild elevation gradients (e.g., nunataks and

ice sheet elevation gently increasing as moving towards the interior). This area is covered by

most of its portion containing the ice sheet (right portion of ROI2) by the DEM, being this ab-

sent in the case of the left portion of the ROI, where fjords and ocean features are dominating.

In case of ROI1 (Figure 5.6b), the variogram analysis indicates that the break scale distance for

Landsat-8 when considering only the pixels where the DEM is available is 7.5 km. This value

becomes 14.6 km for the high-resolution map of ST and 24.7 km in the case of the original MAR

outputs, suggesting that the downscaled product is able to perform better than the original one

in terms of spatial scale similarity with respect to the Landsat-8 data. The mean difference

between Landsat-8 and the downscaled (original MAR) surface temperature, considering only

the pixels where the DEM is available, are 1.69°C (1.7°C) with a standard deviation of 2.02°C
(2.14°C), with differences of the same order of magnitude obtained in the previous analysis for

the other Landsat-8 image. When considering all pixels within the ROI (e.g., also where no

DEM is available), the mean differences between Landsat-8 and downscaled (original) MAR

surface temperature become 1.89°C (2.12°C) with a standard deviation of 2.15°C (2.23°C). In
this case, the scale breaks for the original and the downscaled MAR versions are similar, ∼25

km (∼16km in the case of Landsat-8). We point out that the scale breaks are sensitive to

the different physical processes driving the spatial properties. The ROI2 contains both strong

and mild elevation gradients given the presence of nunataks and the slow ice sheet increasing

elevation after the ice cliff begins. The area is covered by most of its portion containing the ice

sheet (right of the image) by the DEM, which, however, is absent in the case of the left portion
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Figure 5.4: Histograms of the difference (a) between the 6 km MAR temperature and Landsat-
8 temperature and (b) between 100 m MAR temperature and Landsat-8 temperature.

of the ROI, containing fjords and the ocean. The scale breaks for the Landsat-8, downscaled

and original MAR cases for the portion of the ROI2 where the DEM is available are close to

each other, on the order of ∼25 km. We observe an improvement in the SSIM in the case of

the downscaled data by 30% (from 0.33 in the case of the original MAR resolution to 0.43 in

the case of downscaled MAR). Also, despite as expected the mean and standard deviation of

the distribution of the differences between the Landsat-8 data and the simulated quantities re-

mains similar, we notice a reduction in both the mean (from 0.86ºC for original MAR to 0.83ºC
for the downscaled product) and of the standard deviation (from 0.71ºC for original MAR to

0.63ºC for the downscaled product) when downscaling the MAR output. We further note that

when considering all pixels (including those where no DEM), the SSIM of the two products

improves from 0.11 (original) and 0.14 (downscaled) and that the scale break of the original

MAR products is larger (∼63km) than the one of the Landsat-8 data (∼21 km). In synthesis,

the downscaling does not introduce any considerable bias on the original value, preserves the

total integrated quantity of energy within each area and improves, from a quantitatively point

of view, the spatial performance of the MAR outputs by generating a product that has a spatial

structure that is closer to the one of the observed remote sensing dataset.

5.4.2 Surface Mass Balance

After applying the downscaling algorithm to surface temperature, we applied it to MAR SMB

outputs of SMB and assessed the results obtained with in situ measurements from the dataset

collected by Machguth et al. (2016). As mentioned, we compared 1982 SMB measurements

carried out between 1980 and 2015 and localized in the ablation area of the GrIS (Table 5.1).

Figure 5.7 shows the scatterplots of the comparison of modelled SMB from the original MAR

(Figure 5.7a) and the downscaled product (Figure 5.7b) with in situ measured SMB. Our

results show that the downscaled product better estimates the measured SMB, exhibiting an
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5.4. Results and discussion

Figure 5.5: Modelled semi variograms for the Landsat-8, MAR6km and MAR100m computed
over two regions of interest reported in the inset.

increased R2 from an already relatively high value of 0.868 for the original MAR to 0.935 for

the downscaled product. As a comparison, Noël et al. (2016) obtained an increase of R2 from

the downscaling of SMB outputs of the RACMO regional climate model from 0.47 in the case

of the original 11 km spatial resolution outputs to 0.78 in case of the downscaled SMB (1 km

resolution). We point out that, in our case, the starting value of R2 for the original MAR

product already exceeds the value obtained in the case of the downscaled RACMO outputs.

The values of slope and intercept of the best-fitting line improve as well when considering the

downscaled product. The value of the slope shifts from 0.865 for the original MAR to 1.015

for the downscaled product; similarly, the intercept increases from the value -235 mm of the

coarse resolution outputs to -57 mm of the downscaled SMB, closer to its optimal value (i.e.,

null intercept). As a comparison, the downscaling algorithm of Noël et al. (2016) applied to

RACMO improved the estimate of SMB in terms slope from 0.72 to 1.03, with a slight increase

of the intercept (from 70 mm to 100 mm). The RMSE between modelled and measured SMB
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Chapter 5. Downscaling of the MAR model in Greenland

Figure 5.6: (a) Landsat-8 temperature captured on 11 June 2015 over areas around the Jakob-
shavn Glacier and (b, c) modelled semi variograms for the Landsat-8, MAR6km and MAR100m

computed over (b) the first region of interest (ROI1) and (b) the second region of interest
(ROI2).

Figure 5.7: Comparison between measured and modelled surface mass balance from (a) original
6 km MAR and (b) downscaled 100 m MAR.

also decreases in the case of the downscaled product from 669 mm for the 6 km outputs to 511

mm for the 100 m case, significantly improving the estimate of SMB at local scale. Noël et

al. (2016) obtained a reduction of the RMSE passing from a value of 1200 mm for the 11 km

RACMO outputs to a value of 740 mm for the 1 km case. Fettweis et al. (2020) compared

MAR and RACMO, among 13 models of four types (positive degree day models, energy bal-

ance models, regional climate models and general circulation models), SMB estimates with the

same PROMICE in situ measurements within the GrIS SMB model intercomparison project

(GrSMBMIP). They considered only the measurements collected between 1980 and 2012 and

with measurement period longer than 3 months. They also excluded the records located outside

the 1 km ice mask they used for the intercomparison of the models, for a total of 1438 SMB

measurements. The model versions in this case are MARv3.9.6, an older version than the one

we adopted and at the spatial resolution of 15 km, and RACMO2.3p2 (Noël et al., 2019), a

new version of the one adopted in Noël et al. (2016) and with a spatial resolution of 5.5 km.
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5.4. Results and discussion

Figure 5.8: Difference between original and downscaled MAR modelled surface mass balance
RMSE with respect to the measured surface mass balance data (RMSE100m-RMSE6km) by (a)
glacier, (b) elevation, (c) latitude and (d) longitude. In the bubble chart map the contour lines
are plotted every 500 m (original MAR6 km DEM), positive values (worsening) of ∆RMSE are
reported in magenta while negative values (improvement) in cyan.

From the comparison, they obtained a RMSE of 480 mm for MAR and 630 mm for RACMO.

In both cases, the RMSE is lower than the one obtained in this work for MAR (both original

and downscaled) and by Noël et al. (2016) for RACMO. The difference can be related to the

differences in spatial resolution and model versions and, most probably, to the sub-sampling of

the SMB measurements discarding short-term records (i.e., measurement period lower than 3

months), suggesting that the bias might be dissipated for longer observation periods.

To further investigate our results, we compute the variation in RMSE between the 6 km

spatial resolution MAR outputs and the downscaled product for different elevation classes,

longitude and latitude ranges and for each specific glacier/location (i.e., for each station ID,

Table 5.1) of the PROMICE in situ SMB dataset. The RMSE difference is computed as

∆RMSE = RMSE6km − RMSE100m (i.e., improvements are characterized by negative val-

ues of ∆RMSE) and the results obtained are reported in Figure 5.8 grouped by location

(Figure 5.8a), elevation (Figure 5.8b), latitude (Figure 5.8c) and longitude (Figure 5.8d).

The results exhibit improvements in the estimate of SMB at all the altitudes besides the 100-

200 m asl, 200-300 m asl and 1300-1400 m asl elevation classes, with the best performance

obtained at 700-800 m asl and 800-900 m asl elevation classes. The results grouped by latitu-

dinal bands show the highest improvements in south Greenland; a decrease in performance has

been recorded in the latitudinal band 67.5-70 °N where the only Paakitsoq JAR (∆RMSE= 181

mm, worst result obtained) and Swiss Camp/ST2 (∆RMSE= -127 mm) measurement sites are

located, and the improvement obtained in case of Swiss Camp is strongly counterbalanced by

the reduced performances in Paakitsoq JAR. However, the longitudinal classes do not present
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Chapter 5. Downscaling of the MAR model in Greenland

any decrease of the performances, indicating that the worsening in the spotted critical stations

is counterbalanced by the improvements measured in the others. We obtained a decrease in

performances in 6 out of 22 considered cases with the worst result obtained for the already

presented Paakitsoq JAR case. In the 5 other cases (i.e., Hans Tausen Ice Cap, Nioghalfvjerds-

fjorden, Isertoq, Nordbo Glacier and K-Transect) we recorded an average ∆RMSE of 26 mm

(ranging from 6 mm to 80 mm). On the other hand, we obtained an improvement in 16 out

of 22 measurement sites with the best performances in case of A.P. Olsen Ice Cap (∆RMSE=

-611 mm). In the other 15 cases (i.e., Qaanaaq Ice Cap, Petermann, Hare Glacier, Kronprins

Chistian Land, Storstrømmen, Freya Glacier, Violin Glacier, Helheim, Isortuarssup Sermia, Qa-

manarssup Sermia, Kangilinnguata Sermia, Qapiarfiup, Amitsuloq Ice Cap, Tasersiaq and Swiss

Camp/ST2) we found an average decrease in RMSE of 183 mm (ranging between 59 mm and

371 mm). Even if such reduction of performances in terms of SMB estimate accounts for 27% of

the considered stations, it does not compromise the overall improvement, being smaller in terms

of average, minimum and maximum absolute values of ∆RMSE than the results obtained for

the stations were improvement occurred.

5.5 Conclusions and future work

We applied a statistical downscaling technique to increase the horizontal spatial resolution of

the outputs of the MAR regional climate model from 6 km to 100 m for the surface temperature

and SMB quantities. The approach builds on the dependency of such quantities on elevation, as

originally proposed in Noël et al. (2016). Here, however, the technique was applied to the out-

put of a different climate model (RACMO) and the spatial resolution of the downscaled product

was 1 km, rather than 100 m. Moreover, differently from Noël et al. (2016), we imposed a mass

conservation so that the overall mass obtained for each pixel at high resolution nested within

a coarse resolution one is preserved. To address the computational issues associated with the

relatively high spatial resolution, we developed a geospatial, parallelized framework that allows

to perform the downscaling over the whole ice sheet in an efficient way.

We, first, tested our approach by applying it to surface and near-surface temperature data

and assess the outputs using both in-situ ad satellite data. Our results showed no significant

improvement nor deterioration of the downscaled product with respect to the original MAR

outputs. This confirms that our approach was not introducing any bias and was properly

implemented. However, we found improvement of the downscaled surface temperature when

analyzing the skills of the downscaled product to capture the spatial scales (e.g., scale breaks)

of the observed surface temperature fields. The results obtained in the case of the SMB, as-

sessed through the comparison of the modeled outputs with in-situ SMB measurements, show

a considerable improvement in the case of the downscaled product with respect to the original,

coarse output, evaluated through the analysis of the RMSE, R2 and the slope and intercept of

the modeled vs. measured values. In the case of the downscaled MAR product, the R2 value

increases from 0.868 for the original MAR to 0.935 for the downscaled product with the value

of the slope and intercept shifting from 0.865 for the original MAR to 1.015 for the downscaled

product in the case of the intercept and from the value -235 mm of the coarse resolution outputs
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to -57 mm of the downscaled SMB in the case of the slope. As a reference, Noël et al. (2016)

obtained an increase of R2 from the downscaling of SMB outputs of the RACMO regional cli-

mate model from 0.47 in the case of the original 11 km spatial resolution outputs to 0.78 in

case of the downscaled SMB (1 km resolution) and a shift in the slope and intercept from 0.72

to 1.03 (slope) and from 70 mm to 100 mm (intercept). An analysis of the performance of the

downscaled product for different elevation classes, longitude, and latitude ranges and for each

specific glacier/location where SMB in-situ data is available shows that for 27% of the stations,

the downscaled product does not perform as expected. However, this does not compromise the

overall improvement, being the deterioration of the performance smaller in terms of average,

minimum and maximum absolute values of ∆RMSE than the results obtained for the stations

were improvement occurred.

The next step is to implement a similar approach for downscaling MAR outputs over both the

Greenland and Antarctica ice sheet using machine learning (ML) based approaches. Indeed, the

approach here proposed cannot be easily extended to Antarctica, where surface melting does not

exhibit a strong dependency from elevation, as most of it occurs over ice shelves, at the sea level

and where little elevation gradients exist. Moreover, improvements to the downscaling of the

SMB can be obtained by either considering complementary inputs that can improve estimates

of losses (e.g., remotely sensed albedo) or of mass gains (e.g., accumulation). ML tools can

help in this regard. ML tools have, indeed, been used for improving predictions beyond that

of state-of-the-art physical models or for improving parameterization in models. In particular,

conditional generative adversarial networks (C-GANs or simply GANs in the following) can

be successfully applied to the problems discussed above (Goodfellow et al., 2014). GANs is a

class of ML tools in which two neural networks compete with each other in a min-max opti-

mization problem. The first network, called generator, aims to generate new data samples that

are indistinguishable from the training data (e.g., high-resolution melting maps obtained from

the remote sensing observations) by the other network, called discriminator. In our case the

GAN aims to generate high-resolution melting maps that are indistinguishable by the second

network from high-resolution remote sensing observations or numerical model outputs. We have

already started to build the architecture for this framework and are in the phase of collecting

the necessary datasets and build the proper data framework to perform such work.
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Chapter 6

Conclusions

Now this is not the end. It is

not even the beginning of the

end. But it is, perhaps, the end

of the beginning.

W.S. Churchill,

10 Novembre 1942

We studied different aspects of the cryosphere from global, through regional to local scale.

The specific conclusions of each paper are reported at the end of every chapter. In the following

a summary of the main findings is reported.

From the analysis of snow depth and snow density measurements, we studied the climatology

of snow depth and SWE in six groups of catchments in the Italian Alps between 1967 and

2020. We investigated changes and variability in snow depth and SWE due to climate modi-

fications, especially temperature increase, in the past century. We found that snow depth has

been decreasing of about 12 cm every decade and SWE of about 37 mm every decade. On

average, during the monitoring period 1994-2020 maximum snow depth has been 33% lower

than between 1967 and 1993, with stronger differences at low elevations, up to 63% below 1500

m asl. Similarly, we found a decrease of 36% of maximum SWE. For the second half-period we

also obtained higher snow line elevation, confirming that snow is retreating and disappearing at

low elevations. We found that the strongest decrease is recorded in spring, suggesting a strong

impact of global warming on spring snowmelt, potentially impacting the hydrological regime

of the considered catchments, flood magnitude and timing, and water availability in summer.

The data also exhibited a change point at the end of the 1980s, with significantly lower snow

depth and SWE in the next decades. This result has been confirmed by the analysis of temper-

ature and precipitation data from the HISTALP dataset. The analysis pointed out the strong

dependance of snow cover in the Alps on air temperature, regulating solid-liquid precipitation

separation and snowmelt onset in spring. We also found a positive correlation with the WeMO

index and a negative correlation with the NAO index. Finally, we provided a SWE model to

estimate the average SWE as function of day of the year and elevation for a given basin. This

study highlighted the impacts of climate change on the cryosphere at regional scale, quantifying

the reduction of water resources in the Alpine region since the end of the 1960s.
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At local scale, we investigated the effects of snow cover in the formation of flood events. Specif-

ically, we studied the snowmelt contribution in case of intense rainfall events in Lombardy,

considering the case study of Aprica and Pantano d’Avio stations. Since 1996, these two sta-

tions collect precipitation, temperature and snow depth measurements. The calibration of a

SWE model provided the degree-day factor used to estimate the snowmelt produced during

rainy days. We reconstructed the cumulated precipitation series (P) for the fixed durations

1, 3, 6, 12 and 24 hours and computed, for the same durations, the combined timeseres of

precipation and meltin (P+M). From the annual maxima analysis (using GEV, EV1 and L-N

distributions) we found that snowmelt can increase the quantiles of precipitation for a given

return period of about 2.2%, on average. We found larger impacts for longer durations, with

snowmelt contributing up to 10% of the precipitation. Consequently, future studies will focus

on investigating longer durations. Finally, we provided the intensity-duration-frequency curves

at the two considered locations, computed considering only precipitation and the combination

of precipitation and snowmelt.

Moving to larger scale, we investigated surface melting over the Greenland ice sheet by using

threshold-based melt detection algorithm applied to high-resolution passive microwave data. We

computed the cross-calibration parameters necessary to reduce the bias within the timeseries.

Then we applied the melt detection algorithms to the 40 years long dataset, assessing the perfor-

mances through the comparison with automatic weather station air temperature measurements

and the output of the regional climate model MAR. We found that the best surface melting

estimate is provided by the algorithm based on the electromagnetic model MEMLS, showing the

lowest commission and omission errors and better capturing the temporal evolution of surface

melt extent. We also found that surface melt extent is largely underestimated by the oldest

sensors, limiting the consistency of the timeseries. From the long-term trend analysis, we found

that the melting season has started about 0.4 days earlier and ended 0.7 days later every year

since 1979. These trends reduce respectively to 0.3 and 0.3 if computed over the period 1988-

2019. The average number of melting days has increased by 0.45 (0.3) days every year since

1979 (1988). The maximum melt extent has been increasing of about the 6.9% of the Greenland

ice sheet total surface every year since 1979 and of 3.6% since 1988. The enhanced resolution

dataset better performed in capturing the spatial distribution of surface melting when compared

with regional climate model outputs than the coarser resolution one.

A further step towards high resolution data for the Greenland ice sheet has been taken ap-

plying a statistical downscaling technique to MAR regional climate model, obtaining 100 m

spatial resolution outputs for air temperature, surface temperature and SMB. In case of air

temperature, our results showed no significant improvement nor deterioration with respect to

the original MAR data, suggesting that we are not introducing errors. We found improvements

in case of surface temperature data, with the enhanced resolution dataset better capturing the

spatial scales in terms of autocorrelation when compared with Landsat-8 observations. The

downscaled product better estimates SMB at local scale. The comparison with in-situ observa-

tions exhibits an increased R2, from 0.868 to 0.935, a reduced RMSE for the majority of the

considered measurement sites and the parameters of the regression line, slope and intercept,

taking values closer to 1 and 0, respectively.
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K., Mottram, R. H., Niwano, M., Noël, B., Ryan, J. C., Smith, A., Streffing, J., Tedesco,

M., van de Berg, W. J., van den Broeke, M., van de Wal, R. S. W., van Kampenhout, L.,

Wilton, D., Wouters, B., Ziemen, F., and Zolles, T.: GrSMBMIP: intercomparison of the

modelled 1980–2012 surface mass balance over the Greenland Ice Sheet, The Cryosphere,

14, 3935–3958, 2020.

[61] Fontrodona Bach, A., Van der Schrier, G., Melsen, L. A., Klein Tank, A. M. G., and

Teuling, A. J.: Widespread and accelerated decrease of observed mean and extreme snow

depth over Europe, Geophysical Research Letters, 45(22), 12-312, 2018.

[62] Franco, B., Fettweis, X., Lang, C., and Erpicum, M.: Impact of spatial resolution on the

modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the

regional climate model MAR, The Cryosphere, 6(3), 695-711, 2012.

[63] Frezzotti, M., Urbini, S., Proposito, M., Scarchilli, C. and Gandolfi, S.: Spatial and tem-

poral variability of surface mass balance near Talos Dome, East Antarctica, Journal of

Geophysical Research, 112(F2), 2007.

[64] Ge, Y., and Gong, G.: North American snow depth and climate teleconnection patterns,

Journal of Climate, 22(2), 217-233, 2009.

[65] Giorgi, F., Hurrell, J. W., Marinucci, M. R., and Beniston, M.: Elevation dependency of

the surface climate change signal: a model study, Journal of Climate, 10(2), 288-296, 1997.

[66] Goodfellow, Ian J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S.,

Courville A., and Bengio Y.: Generative adversarial networks, Commun. Acm, 63(11),

139-144, 2004.

[67] Greenwood, J. A., J. M. Landwehr, N. C. Matalas, and J. R. Wallis.: Probability weighted

moments: Definition and relation to parameters of several distributions expressible in in-

verse form, Water Resour. Res. 15: 1049-1054, 1979.

[68] Grenfell, T. C., and Putkonen, J.: A method for the detection of the severe rain-on-

snow event on Banks Island, October 2003, using passive microwave remote sensing, Water

Resources Research, 44(3), 2008.

[69] Grossi, G., Lendvai, A., Peretti, G., and Ranzi, R.: Snow Precipitation Measured by

Gauges: Systematic Error Estimation and Data Series Correction in the Central Italian

Alps, Water, 9(7), 461, 2017.
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1000-1500 1500-2000 2000-2500 2500-3000 TOT

Oglio
Chiese
Sarca

HS 3036 4144 5007 2041 14228
D 851 860 1710 1109 4530

Adda
HS - 1633 1953 - 3586
D - 591 828 - 1419

Adige
HS 256 1869 1112 1297 4534
D 97 471 90 901 1559

Toce
HS 442 2250 4025 - 6717
D - 236 708 - 944

Piave
Brenta

HS 4307 3712 1266 - 9285
D 1796 1565 842 - 4203

Serio
Brembo

HS 200 4287 1361 - 5848
D - 728 677 - 1405

Table A.1: Number of snow depth and snow density measurements for each macro-basin and
elevation classes.
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In this Supplementary material, we report the additional information we do not show in the

manuscript for the sake of brevity. Specifically, we report the results of the commission/omission

error analysis for all the available stations. We also report here additional figures related to

the coarse resolution dataset analysis. For graphical reasons we assign an ID to the stations as

follows:

Station ID

Swiss Camp 01

Crowford Pt. 1 02

NASA-U 03

GITS 04

Humboldt 05

Summit 06

TUNU-N 07

DYE-2 08

JAR-1 09

Saddle 10

Southdome 11

NASA-E 12

Crowford Pt. 2 13

NASA-SE 14

KAR 15

JAR-2 16

KULU 17
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Figure B.1: Map of the automatic weather stations (AWS) of the Greenland Climate Network
(GCNet) adopted for this study.
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Table B.1: Commission errors computed as percentage of the number of melting days detected
by the specific algorithm (first column) with respect to 365 days for the 17 AWS (only days in
which data are available from all the datasets have been considered).
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Table B.2: Omission errors computed as percentage of the number of melting days detected
by the specific algorithm (first column) with respect to 365 days for the 17 AWS (only days in
which data are available from all the datasets have been).
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Commission Omission

0° -1° -2° MAR1m MAR5cm 0° -1° -2° MAR1m MAR5cm

01 2.21 1.54 0.95 8.53 6.28 6.76 8.53 10.53 3.83 4.25

02 2.19 1.39 0.84 3.07 2.95 5.64 8.51 11.33 5.94 5.96

03 0.97 0.86 0.72 1.2 1.12 0.99 2.34 3.85 0.65 0.97

04 0.53 0.42 0.32 0.72 0.63 0.44 0.91 1.56 0.02 0.13

05 0.53 0.42 0.25 0.65 0.65 0.82 1.64 3.24 0.19 0.32

06 0.08 0.08 0.08 0.08 0.08 0.17 0.29 0.67 0 0.11

07 0.4 0.36 0.27 0.69 0.69 0.88 1.66 3.12 0.29 0.44

08 4.25 2.8 1.73 5.16 4.74 5.66 8.68 11.35 6.42 7.1

09 6.06 4.86 4 20.05 15.98 6.63 8.65 10.68 2.7 3.28

10 2.08 1.66 1.18 2.38 2.27 3.24 4.95 6.89 2.82 4.36

11 0.74 0.63 0.46 0.8 0.8 3.07 4.25 6.23 2.76 3.6

12 0.23 0.23 0.21 0.34 0.34 0.27 0.48 1.01 0.06 0.17

13 0.58 0 0 2.72 2.52 1.36 3.5 6.6 0.78 3.11

14 0.91 0.72 0.46 1.07 0.97 0.91 0.72 0.46 1.07 0.97

15 0.57 0.38 0.19 0.76 0.76 0.38 0.95 2.67 0.19 0.38

16 7.3 6.93 5.75 31.93 28.65 13.23 15.15 17.61 3.38 5.57

17 0 0 0 0.39 0.39 18.6 19.77 23.26 15.12 15.12

Table B.3: Omission errors computed as percentage of the number of melting days of the Mote
dataset (25 km) with respect to 365 days for the 17 AWS (first column, only days in which data
are available from all the datasets have been).

Figure B.2: Melt extent estimation from Mote (2014) dataset and the regional climate model
MAR. Timeseries were obtained using LWC average in the first 5 cm of snowpack for the years
(a) 1983 and (b) 2005.
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Figure B.3: Time series of annual a) mean melt duration (MMD), b) melt index (MI) and c)
maximum melting surface (MMS) fraction. Regression lines computed for the periods 1979-2012
(solid line) and 1988-2012 (dashed-dot line). MMD is averaged over all the ice sheet pixels. Red
lines refer to 245K, blue lines to MEMLS and black lines to the coarse resolution dataset.
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Figure B.4: Time series of annual a) mean melt onset date (MOD) and b) mean melt end
date (MED). Regression lines computed for the periods 1979-2012 (solid line) and 1988-2012
(dashed-dot line). Red lines refer to 245K, blue lines to MEMLS and black lines to the coarse
resolution dataset.

Figure B.5: Empirical (blue crosses) and modelled (red line) semi-variograms for Greenland
melt duration (MD) computed from MAR5cm (a) and MAR1m (b). Table 7 reports range, sill,
nugget and R2 values of these semi variograms.
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