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Abstract: In this work, a data-driven approach for the identification of a piece-wise linear model
for nitrogen oxide daily concentration simulation is presented and applied. The model has been
identified by using daily measured concentrations, meteorological variables, and emission levels
estimated starting from the results contained in suitable emission databases. We propose an innova-
tive methodology that jointly optimizes clustering and parameter identification. The procedure has
been applied considering data from the Milan (Italy) metropolitan area. The methodology has been
compared with two state-of-the-art approaches based on a two-step, cluster-based algorithm and
on Hammerstein–Wiener models. The results show how, in the presented application, the devised
approach ensures better performance with respect to the two literature methods, both in terms of
statistical indexes (correlation, normalized mean absolute error) and in terms of problem-specific
metrics (hit ratio, false alarm). For this reason, the approach can be considered suitable to be used in
the definition of optimal emission control strategies.

Keywords: learning-based identification; piece-wise linear model; predictive control; air quality control

1. Introduction

Due to negative impacts on human health [1,2], the exposure to high daily concen-
trations of nitrogen dioxide (NO2) has become one of the most important environmental
problems for regional and local authorities as well as companies (see, for instance, the in-
troduction of optimization strategies to reduce pollution in last-mile delivery [3,4]). In
this context, the European Legislation has defined challenging atmospheric concentration
thresholds that should not be exceeded, both as daily maximum value (200 µg/m3 that
can be violated for at most 18 times in a year) and annual mean (40 µg/m3). Control
theory can grant authorities both theoretical and practical tools to find a set of suitable
short and long-term strategies complying with these constraints due to the fact that the
NO2 dynamic in the atmosphere is driven by complex and nonlinear phenomena involving
chemical reactions, anthropogenic and biogenic emission, and meteorological conditions
(in particular solar radiation and wind speed and direction) [5]. The inter-relationship
among different areas of interest (i.e., chemistry, meteorology) has led the literature to focus
on increasingly complex deterministic systems of systems aimed at the description of the
atmospheric phenomena over a predefined geographical domain [6–11]. Unfortunately,
the complexity of these systems implies computational times that are not compatible with
the phase of control system development, often performed solving optimization problems
through numerical algorithms. For these reasons, it is necessary to identify simplified
models describing the relationships among daily concentrations, emissions, and meteo-
rological conditions. Therefore, the pure use of models obtained through the analytical
simplification of the full model or through a surrogate modeling approach does not ensure
performance compatible to the aforementioned aims [12,13]. In this work, the problem is
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approached by identifying a data-driven model that links the concentrations measured
by the environmental stations, meteorological conditions, and estimated emissions. In the
literature, a number of approaches have been proposed to represent nonlinear complex
systems on the basis of data and/or limited information [13–16], sometimes presenting
applications on the analysis and control of variables in the real world [17–19]. One of
the main points arising from these works and strictly connected to the representation of
complex systems as the natural ones, is related to what can be presented as the curse of
model complexity. In order to represent the complex system a complex model is usually
needed, but this can lead to a very challenging and sometimes not solvable control design
problem. For this reason, in order to take into account the non-linearity of the involved
phenomena and to limit the complexity of the models, a piece-wise linear model (PLM)
approach is often used [20]. In the literature, a number of works about PLM identification
are presented [20–23]. Usually, PLM starts from the identification and use of a linear model
for each region into which the input space can be divided, defined as the cartesian products
of the intervals in which the different model input can be split. This entails a large number
of models when the number of inputs is high, making (1) the solution of the identification
problem very challenging and time-consuming, and (2) the resulting overall model very
complex. Recently, a combined approach of clustering and PLM has been used in [24,25]
for the implementation of a forecasting system.

In this work, a sequential quadratic programming algorithm, as presented in [26],
is used to identify a piece-wise linear model jointly optimizing clustering (centroid co-
ordinates) and parameter values. In this condition, the clustering phase, performed by
k-means [27], is applied only to provide the initial condition of the numerical algorithm.
Table 1 presents a comparison between the presented work and the most related works
available in the literature, as far as is known by the authors. The main contributions pro-
vided by this work are: (i) the use of a joint approach provides a more flexible methodology
not entirely dependent on the clustering procedure. The method allows us to tackle the
piece-wise linear model identification problem using as unique clustering information the
number of regions of the input space (since the centroids are variables of the model) (ii) the
identification based on the optimization of the simulation error while complying with con-
straints caused by the relationship between input and output variables; (iii) the application
of the model to a strong complex and nonlinear real-world system. Moreover, due to the
limited assumption on input and output data, the methodology is general enough to be
applied to Multi-InputMulti-Output (MIMO) systems, even if the presented application is
focused on a Multi-Input-Single-Output (MISO) system. The work can be considered as
the first step needed to develop and implement a suitable pollution control problem. The
methodology is applied and tested to the simulation of nitrogen oxide (NO2) concentration
in the Milan metropolitan area (Lombardy region, Italy), one of the most polluted areas in
Europe.

The paper is organized as follows. In the next section, we introduce the new metho-
dology and we discuss the main implementation details. In Section 3, we compare our
method with other relevant approaches in the literature.
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Table 1. Comparison of this paper with related literature papers.

Paper Approach Model Type Minimized MIMO Real World
Error Applicability Applications

Dolanc and Strmcnik, 2005 [20] Fixed Intervals + RLS with
forgetting factor

Hammerstein Forecasting - -

Ipanaque and Manrique, 2011 [22] 2 step: interval definition
+ Recursive Least Square

Wiener Forecasting - PH control

Westra et al., 2011 [23] Fixed intervals + model
parameter estimation based
on optimization algorithm

State Space + discrete state Forecasting MIMO -

Zhang et al., 2018 [28] Online clustering + Least
Square

Hammerstein Forecasting MIMO Stirred track control

Lassoued and Abderrahim, 2019 [29] Static Clustering based on
SVM reconstruction of re-
gions + least square

PWARX Forecasting MISO -

Yang et al., 2019 [24] Plane clustering (number
of plane selected through
optimization algorithm)

Non dynamical regression Regression er-
ror

- UCI data

Hadid et al., 2020 [21] Static Clustering + Least
Square

PWARX Forecasting MISO River flood

Liu et al., 2022 [25] Time partitioning + opti-
mal identification

PWARX Forecasting MISO Injection Molding

Carnevale et al., this work Full dynamical selection
of cluster centroids + con-
strained optimization

PWARX Simulation MISO Air quality simulation

2. Methodology

The presented methodology is based on the identification of a piece-wise linear model
in the form:

yt =


θ1xt, xt ∈ G1

. . . . . .
θKxt, xt ∈ GK

(1)

where:

• yt is the output of the model at time t;
• xt is the input vector of the model at time t, including both the autoregressive and the

exogenous parts;
• G1, . . . , GK are the regions into which the input space xt is divided and are used to

select the parameters to compute the output of the model at time t;
• θ1, . . . , θK are the parameter vectors to be estimated during the identification phase,

with each vector θi associated with region Gi.

In the real-world phenomena representation through linear systems it can often hap-
pen that, due to non-linearity and time dependency, the estimated parameters change on
the basis of the value of the input xt. From the theoretical and practical point of view,
the identification of this kind of model is very complex if all the possible configurations (dif-
ferent model structure, definition of each region Gi contextually to the parameter vector θi,
i = 1, . . . , K) are considered simultaneously along with the minimization of the simulation
error (output yt at time t is dependent on the model outputs computed at time t̃ < t, thus
leading to a nonlinear optimization problem) and the satisfaction of constraints [20,23].
For this reason, the existing procedures are frequently based on a crude and simple idea
consisting of two steps: in the first one, the regions Gi, i = 1, . . . , K are defined, sometimes
applying clustering techniques to the input data or taking advantage of the knowledge of
the involved phenomena, whereas, in the second phase, the estimation of the parameters
θ1, . . . , θK is performed. This approach generally requires some restricting conditions such
as (i) the number of the regions K is fixed, (ii) the regions are defined before the parameters
estimation, and (iii) all the models have the same structure (the autoregressive order of
the output and of each exogenous input is fixed). In this work, the methodology aims
to address some of these restrictions. Instead of introducing a separated phase for the
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clustering, the approach exploits a mathematical model where, in addition to variables
associated with the parameters to be identified, new variables representing region centroids
are defined. In this case, the only clustering information required by the model is the
number of regions.

This way, the mathematical model jointly performs the parameters estimation and
the clustering, guaranteeing more flexibility and (potentially) better performance with
respect to the aforementioned two-step approaches with fixed clustering. Issues (i) and
(iii) are treated by performing different tests varying K and the structure of xt. Then, the
identification phase is performed through the following optimization problem:

min
[θi ,ci ]

N

∑
t=1

(yt − yt)
2 (2)

s.t.

yt =
K

∑
i=1

g(xt, ci) · θi · xt, t = 1, . . . , N; (3)

xt = [yt−1, . . . , yt−na ; ul
t, . . . , ul

t−nl
, l = 1, . . . , L] t = 1, . . . , N; (4)

LBθi < θi < UBθi (5)

LBci < ci < UBci (6)

where:

– K is the number of regions;
– N is the number of considered time instants (tuples in the identification dataset);
– yt is the measured data of the output model at time t;
– ul

t is the value of the exogenous input l at time t;
– na is the autoregressive order of the linear systems;
– nl is the exogenous order of the l-th input of the linear systems;
– L is the number of the exogenous inputs of the different models;
– LBθi , UBθi , LBci , UBci are the lower and upper bound for the decision variables;
– yt is the output at time t;
– xt is the input vector of the model, including both the previous output values

(yt−1, . . . , yt−na) and the measured input values (ul
t, . . . , ul

t−nl
, l = 1, . . . , L);

– θi are the parameters of the i-th model to be estimated;
– ci are the centroids of the different clusters (to be optimized during the identification);
– g(xt, ci) is a check function that determines if xt belongs to region i, based on a distance

measure.

In the presented problem, the objective function (2) minimizes the Euclidean distance
between the output of the overall model and the measured data. Equations (3) and (4)
represent the model dynamic. It has to be stressed that each model identified per region is
linear (Equation (3)) and that, thanks to check function g(xt, ci), only one model θixt (the
model associated with the centroid ci closest to the input xt) is “active” for the computation
of the output at time t. More precisely, check function g(xt, ci) can be defined as follows:

g(xt, ci) =

{
1, D(xt, ci) < D(xt, cj) ∀j 6= i
0, otherwise

where D(xt, ci) represents the distance of xt from the centroid ci. The region associated
with the minimum distance value identifies which model has to be activated.
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When dealing with the mathematical model (2)–(6) some issues arise: (a) the problem
aims to minimize the simulation error (see the presence of the previous output values,
and not the previous output measurement, in xt), thus the problem is intrinsically nonlinear.
Since the classic least-square approach cannot be used, the problem can be solved through
the use of numerical algorithms [26] that usually need an initial condition, i.e., the starting
value of the decision variable vector [θi, ci]. The latter is particularly critical for centroids
optimization. A possible way to find a good initial condition could be through the use of a
clustering algorithm. In this case, the clustering phase assumes a different role with respect
to what happens in a classical two-step approach, where the resulting cluster procedure
statically defines the regions Gi of the piece-wise linear model [21]. (b) The distance D(xt, ci)
of xt from the centroid ci can be computed using the Euclidean distance or any other, more
complex, distance such as the Mahalanobis or the Pearson one.

More in detail, in this work, a Euclidean distance is used for the definition of D(xt, ci)
and the resulting optimization problem is solved by means of the sequential quadratic
programming algorithm for nonlinear constrained problems [26] implemented as in [30].
The Algorithm 1 is used to compute the objective function each time new values for
the decision variables θi (models parameters) and ci (centroid positions) are defined by
the adopted numerical algorithm. Finally, the clustering algorithm used to compute the
algorithm’s initial condition for the centroids is the k-means approach [27]. We name
clusterOpt the full joint methodology that includes the mathematical model and the algo-
rithm used for its solution. In the next section, the described approach is applied to the
Milan metropolitan area, in order to model the daily average concentration of NO2. We
decided to compare clusterOpt with two different state-of-the-art procedures based on (i) a
two-step procedure (named cluster) where regions definition is provided by the clustering
technique at hand, and a simplified linear model is solved for each of them and (ii) a set of
Hammerstein–Wiener models [20].

Algorithm 1 Objective function

y1 ← y1
y2 ← y2
. . .
yna ← yna
for t = na + 1 : N do

xt ← [yt−1, . . . , yt−na ; ul
k, . . . , ul

k−nl
, l = 1, . . . , L]

yt ← 0
for i = 1 : K do

g← g(xt, ci)
yt ← yt + g · θi · xt

end for
end for

3. Experimental Results

The methodology clusterOpt has been applied to model the daily average concentra-
tion of nitrogen oxides (NO2) in the Milan metropolitan area. The daily mean concentration
(the model output) is computed as the average of the daily values measured by 12 moni-
toring stations placed in the area under study. The input dataset includes nitrogen oxides
(NOx) daily total emissions (estimated starting from the INEMAR regional emission in-
ventory [31]) and the measured daily mean temperature, humidity, and solar radiation.
The data have been collected for the years 2014–2020. The data-driven model parameters
are estimated using the data from 2014 to 2018 (i.e., N is equal to 1826), while the years
2019–2020 have been used for the validation. Five different solution methods have been
compared:
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cluster-mse: the model parameters are computed firstly applying the cluster analysis
to the model input, then splitting the data on the basis of the different clusters and
finally computing a model for each cluster minimizing the mean square error;
cluster-mse35: is a variant of cluster-mse, where only the tuples with NO2 concentra-
tions higher than 35 µg/m3 are considered in the objective function. The idea is to
focus only on the highest (most critical) concentration values;
clusterOpt-mse: the model parameters are computed by the proposed methodology,
thus, jointly optimizing the centroid positions and the model parameters and dy-
namically splitting the dataset on the basis of the distance of the input data from the
optimized centroids;
clusterOpt-mse35: is a variant of clusterOpt-mse considering only the tuples with
NO2 concentrations higher than 35 µg/m3 in the objective function.
Hammerstein–Wiener: the model is a state-of-the-art Hammerstein-Wiener model [20]
whose parameters are computed by means of the sequential quadratic programming
algorithm presented in [26].

All the previous approaches receive as input a predefined number K of regions. To
this aim, different tests have been performed, with K ranging from 1 (no clustering) to 10.
Moreover, we have conducted some preliminary tests on the classic ARX model to define
the xt structure, by evaluating different combinations of autoregressive (na) and exogenous
(nl) part orders.

The validation and comparison of the described five methods have been performed
on the basis of two statistical indexes taking into account the corresponding output value
yt and its average value µy:

• Normalized Mean Absolute Error

NMAE =
∑N

t=1 |(y(t)− ȳ(t))|
∑N

t=1 y(t)
(7)

• Correlation Coefficient

Corr =
∑N

t=1(y(t)− µy)(ȳ(t)− µȳ)√
∑N

t=1(y(t)− µy)2 ·
√

∑N
t=1(ȳ(t)− µȳ)2

(8)

and on the basis of 3 specific indexes: the daily exceedances of the threshold of
35 µg/m3 correctly reproduced (Hit Ratio), the false alarm (with the same threshold) and
the True Skill Score. The last three indexes are computed through the contingency Table 2,
where TP (true positive) is the correctly reproduced exceedances, FP (false positive) is
the wrong exceedances, TN (true negative) is the correctly reproduced values under the
threshold and FN is the exceedances not produced by the model. The three indexes can be
calculated as:

• Hit Ratio:

HR =
TP

TP + FN
(9)

• False alarm fraction:

FA =
FP

TP + FP
(10)

• True Skill Score:
TSS = HR− FA (11)
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Table 2. Contingecy table for the daily exceedances of the threshold of 35 µg/m3.

Observed Values

≥35 µg/m3 <35 µg/m3

Model
≥35 µg/m3 TP FP

<35 µg/m3 FN TN

3.1. ARX Model Validation

In this section, the validation of the classical ARX models (K = 1) based on the order
of the autoregressive (na) and exogenous (nl) parts, is presented. Only the tests with
na = nl , ∀l are shown.

Figure 1 presents the statistical and threshold indexes described before for the orders
ranging from 1 to 4. As shown by the sub-figures, the impact of the order is quite limited,
with a slight improvement of the statistical indexes and false alarm (NMAE, Figure 1a:
from 0.227 to 0.22, Correlation, Figure 1b: from 0.772 to 0.784, false alarm, Figure 1d: from
0.285 to 0.255) and no impact on the exceedance fraction (Figure 1c constant around 0.86).
Finally, the true skill score (TSS, Figure 1e) highlights the trade-off between the ability
to correctly reproduce the exceedances and the capability to avoid false alarms, which is
stable at around 0.6. It can be stated that, even if limited, the impact is greater when the
order moves from na = nl = 1 to na = nl = 2: for this reason, from now on we will only
consider these two values.

3.2. Validation and Comparison of Solution Methods

Figure 2 shows the performance in terms of the selected indexes for the tested methods
when an ARX model, with na = nl = 1, ∀l and the number of regions K ranging from 1 to
10, are set. For the Hammerstein-Wiener models, a number of the input unit and output
unit equal to na have been considered.

We start comparing the methods with the classic ARX model analyzed in Section 3.1.
As far as static or optimized approaches that consider all the data in the training set
(cluster-mse, clusterOpt-mse) are considered, the tests show a clear improvement, with
NMAE dropping from 0.227 to 0.19, Correlation increasing from 0.77 to 0.81, Hit Ratio
increasing from 0.86 to 0.88 and a quite strong improvement in false alarm, from 0.27 to 0.19.
In these cases, the better performance obtained with the optimization of the centroids can
be noticed for K > 2. When testing the methods using only the values over the threshold
of 35 µg/m3 (cluster-mse35, clusterOpt-mse35) the behavior is less clear probably due
to the effect induced by the threshold in the objective function. Moreover, as expected,
the hit ratio performance are better when the tests cluster-mse35 and clusterOpt-mse35
are performed, reaching values over 0.94 and 0.99 for K = 9, respectively. Notice that,
for clusterOpt-mse and clusterOpt-mse35, the True Skill Score shows an increasing trend
with values oscillating from 0.6 to around 0.7, although performance of clusterOpt-mse
is better. This is due to the fact that the optimized distribution of the centroids allows
ClusterOpt to define a set of dedicated models according to the different dynamics and
characteristics of the system itself.

All the “cluster-based” tested approaches outperform Hammerstein–Wiener models
with the same number of input/output units, with the exception of the Hit Ratio (Figure 2c).
This behavior is caused by a tendency of the Hammerstein-Wiener model to overestimate
the output variable, thus leading to a high value of the Hit Ratio but also of the False Alarm
ratio, causing a low value of the True Skill Score. Figures 3–7 show the distribution of the
different coordinates of the centroids in the different tests. It can be noticed that with a low
number of regions (K ≤ 4) the coordinates of the centroids identified by clusterOpt-mse
and clusterOpt-mse35 are similar to the ones found by the initial clustering method used
by the static approaches.
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(a) (b)

(c) (d)

(e)

Figure 1. Index values (ordinate axis) of ARX model for (K = 1) with na = nl = 1 . . . 4 (abscissa axis).
(a) Normalized Mean Absolute Error (NMAE); (b) Correlation Coefficient; (c) Hit Ratio; (d) False
Alarm; (e) True Skill Score (TSS).
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(a) (b)

(c) (d)

(e)

Figure 2. Index values (ordinate axis) of the 5 compared methods for K = 1 . . . 10 (abscissa axis)
when na = nl = 1. (a) Normalized Mean Absolute Error (NMAE); (b) Correlation Coefficient; (c) Hit
Ratio; (d) False Alarm; (e) True Skill Score (TSS).
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Figure 3. Boxplot of coordinate 1 (y(t− 1), NO2 concentration at time t− 1) of the centroid [µg/m3].

Figure 4. Boxplot of coordinate 2 (u1(t), NOx emissions at time t) of the centroid [kg/d/m2].
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Figure 5. Boxplot of coordinate 3 (u2(t), daily mean temperature at time t) of the centroid [C].

Figure 6. Boxplot of coordinate 4 (u3(t), daily mean humidity at time t) of the centroid [%].
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Figure 7. Boxplot of coordinate 5 (u2(t), daily solar radiation at time t) of the centroid [kw/h].

Finally, we briefly discuss the impact of the proposed solution methods when na =
nl = 2, ∀l (Figure 8). When no clustering is applied (case K = 1), it seems that setting
na = nl = 2 provides results slightly better than when na = nl = 1. When clusterOpt-mse
and cluster-mse are considered, it can be noticed that, independently of the number of
regions K, the methods perform better with na = nl = 2. A similar performance is not
clear for the other approaches. The most important impact is related to the True Skill Score.
In this case, the performance of clusterOpt-mse is better than the one provided by any other
approach for K ≥ 3, reaching values greater than 0.7 and close to 0.75 for K = 10. Instead,
the performance of the standard Hammerstein–Wiener model is quite far from that of the
approaches based on clustering.

To conclude, the results confirm the ability of clusterOpt to better mimic the true
output of the time series, without frequent over- or under-estimation errors, due to the use
of focused models for each region and optimized centroids.

(a) (b)

Figure 8. Cont.
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(c) (d)

(e)

Figure 8. Index values (ordinate axis) of the 5 compared methods for K = 1 . . . 10 (abscissa axis)
when na = nl = 2. (a) Normalized Mean Absolute Error (NMAE); (b) Correlation Coefficient; (c) Hit
Ratio; (d) False Alarm; (e) True Skill Score (TSS).

4. Conclusions and Future Works

In this paper, a data-driven piece-wise modeling is presented to simulate and predict
the concentration of nitrogen oxides over the municipality of Milan, a heavily polluted city
in the north of Italy. The methodology is based on the identification of a model from daily
measured concentrations, meteorological variables, and emission levels estimated from
results presented in special emission databases. To tackle this complex problem, we propose
a new approach that involves the joint optimization of clustering and model parameters
identification while minimizing the simulation error on the real case data. The methodology
has been compared with two state-of-the-art approaches based on a two-step, cluster-
based algorithm and on Hammerstein–Wiener models. The results show that the devised
approach ensures better performance with respect to these two methods, both in terms of
statistical indexes (correlation, normalized mean absolute error) and in terms of problem-
specific metrics (hit ratio, false alarm) due to the capability of the identification phase to
identify models representing the different model behavior through a jointly optimized
methodology. Although, the goal of the work, intended as the identification of models
allowing good performance in the representation of complex phenomena with limited
complexity, can be considered as achieved, a detailed comparison with fully nonlinear
models (artificial neural network and support vector machine to name a few) will be
performed in the next future. Moreover, this work can be considered the starting point
needed for the development and implementation of an emission control problem that aims
at selecting optimal actions to reduce the impact of pollutants in the atmosphere.
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