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A Comparative Analysis on the use of Autoencoders
for Robot Security Anomaly Detection

Matteo Olivato∗1, Omar Cotugno∗2, Lorenzo Brigato∗2, Domenico Bloisi3, Alessandro Farinelli4, Luca Iocchi2

Abstract— While robots are more and more deployed among
people in public spaces, the impact of cyber-security attacks
is significantly increasing. Most of consumer and professional
robotic systems are affected by multiple vulnerabilities and the
research in this field is just started. This paper addresses the
problem of automatic detection of anomalous behaviors possibly
coming from cyber-security attacks. The proposed solution is
based on extracting system logs from a set of internal variables
of a robotic system, on transforming such data into images,
and on training different Autoencoder architectures to classify
robot behaviors to detect anomalies. Experimental results in
two different scenarios (autonomous boats and social robots)
show effectiveness and general applicability of the proposed
method.

I. INTRODUCTION

The number and importance of decisions delegated to
computers and electronic systems interconnected together
is constantly growing. In this context, systems that control
critical devices operating in the physical world can be
compromised by cyber-attacks. As far as Cyber-Security for
robots is concerned, there are three main groups of problems
to be considered: 1) safety risks related to the physical
actions of the robots; 2) theft of sensitive information; 3)
damages to business or personal reputation. Cyber-attacks
against robots operating in offices, restaurants, shopping
centers, hospitals, etc. can produce business and personal
damages, caused by hacked behaviors of the robots.

In this work, we consider two real autonomous robotic
systems (see Fig. 1) as case studies: a robotic boat for
water quality monitoring and a social robot. We propose
a solution for identifying possible attacks by analyzing the
robot’s behavior. The proposed approach is based on the
analysis of system logs and on the development of an ana-
lyzer module, based on autoencoders, to identify abnormal
behaviors. In more detail, the proposed approach aims at
detecting attacks to a cyber-physical system, in real-time,
by processing system logs containing data related to the
activities of the system (e.g., GPS position, heading, and
velocity). Data are recorded at short time interval (e.g., every
200 ms) hence the logs provide a rich representation of the
behavior of the system that is extremely valuable to identify
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Fig. 1: Autonomous robots used as case studies. (a) Boat
for water quality monitoring. (b) Pepper social robot for
education.

faults and cyber(-physical) attacks. In particular, we propose
a transformation process to convert the different types of
variables included in the log records into a binary pixel
array which resulted to be a sparser and more effective
representation. This process allows to learn specific patterns
of the log data related to normal behaviors and to detect
possible abnormal situations.

In summary, the contribution of this work is two-fold: 1)
the definition of a novel problem that focuses on detecting
robot anomalous behaviors from system logs and 2) a novel
method to analyze robot behaviors based on transforming
system logs in images and on image reconstruction through
autoencoders.

II. RELATED WORK

Clark et al. [1] present a general robot cyber-security anal-
ysis concerning common vulnerabilities and countermeasures
at different levels with an emphasis on the economic impact
of cyber attacks on manufacturing and supply chains. An
Hidden Markov Model (HMM) based approach is used by
Park et al. [2] to identify anomalies in robot manipulation
tasks. They show that multimodal anomaly detection outper-
forms unimodal detection. The same authors describe in [3]
an improved version of their detector based on a long short-
term memory variational autoencoder (LSTM-VAE). The de-
tector estimates the negative log-likelihood of the multimodal
input with respect to the distribution as an anomaly score.
Harrou et al. [4] address the problem of anomaly detection in
photovoltaic system arrays using One-class Support Vector
Machine (SVM). They built a simulation model of the system
to describe the normal behaviour and generate residuals for
fault detection. Gautam et al. [5] propose Localized Multiple
Kernel Learning for anomaly detection (LMKAD) as one-
class classification problem. LMKAD provides a localized



formulation for multi-kernel learning method by local assign-
ment of weights to each kernel. Kirschgens et al. [6] analyze
the consequences of insecure policies in robot development.
They show alarming cases with the aim to create awareness
about enforcing strong security in robotics.

One of the use cases described in this paper involves a
SoftBank Pepper robot (see Fig. 1) that uses the NAOqi
framework. About NAOqi security, Giaretta et al. [7] per-
formed a set of different security assessments, both auto-
mated and manual, and discussed vulnerabilities that may
enable an attacker to spoof user’s credentials, steal data
stored in the robot, hack other connected devices, etc.

While specific approaches to anomaly detection in robot
security have been presented, to the best of our knowledge,
we are proposing a novel general purpose domain indepen-
dent approach using a machine learning method to identify
attacks and faults based only on robot’s internal system logs.

Our approach is inspired by the work of the winners of the
Microsoft Malware Classification Challenge (BIG 2015)1.
They converted malware binary assembly representations
to greyscale images. This process results in a more dense
features representation, which in turn avoid a degradation in
the performance of the classification algorithm (they used
XGBoost). Even if the idea of visualizing malware images
for classification can be found in previous work [8], [9],
the Microsoft competition evaluated the real effectiveness
of this method on real-world data. In contrast with such
previous work, in this paper we apply this concept to real-
time data coming from robot’s system logs. In addition, we
consider an unsupervised anomaly detection problem and
our experimental results show that sparse representations are
more effective.

III. PROBLEM DEFINITION

Let us consider a general (robotic) system S in which
it is possible to access a set of variables V characterizing
its internal state over time. Let rt be a record, i.e. a tuple
of values of such variables collected at time t, and π =
{r1, . . . , rT } a system log of a behavior containing the values
of variables V recorded from time 1 to time T . Let us denote
with Π the set of all possible logs πi, with R being the
set of all possible records ri. Let us consider a scenario in
which such logs are taken when the system is performing a
nominal (correct) behavior. The problem considered in this
paper, which we call one-class classification of system logs,
can be expressed as follows.

Given a dataset of system logs D = {(πi, normal)mi=1|πi ∈
Π}, capturing the nominal behavior of the system, generate
a class model that will be able to classify new instances as
normal or abnormal.

Notice that, although the output of the system will be
a binary classification (normal vs. abnormal), the training
set contains only samples from the normal class. Practical
importance of this definition of the problem in robot security
is that, in this way, it is not necessary to predict and collect

1Winning team was composed by J. Liu, X. Chen, X. Wang

abnormal situations, which are often very difficult to predict
and to reproduce.

The on-line procedure can be implemented by processing
in real-time the logs captured in a time window that is
calibrated with respect to the duration of the expected
attacks/faults. For example, high frequency attacks, where
the attacker changes the status of the robot at high frequency
(e.g., > 1 Hz), can be detected with a few seconds of log
recording.

IV. LOG-TO-IMAGE AUTOENCODER CLASSIFICATION

We propose a solution to the one-class classification
problem described in the previous section that is based on
learning a class model for the single class normal for which
we have samples in the dataset. Training and classification
phases of our approach are described below.

Training phase. Given a one-class dataset of system logs
for normal behaviors D = {(πi, normal)mi=1|πi ∈ Π}, learn
a class model M.

Classification phase. Given a new log π′ = {r′0, . . . , r′T },
determine using the learned model M if it is normal or
abnormal.

The performance evaluation is obtained by using a test
set TS containing both normal and abnormal records. It is
worth noticing that the records from security attacks or faults
are used for performance evaluation only and they are not
needed in the actual deployment of the system.

A key element in our approach is the transformation of
each record r ∈ R into a squared image I ∈ I (denoting
with I the set of images). To this end, we implemented a
log-to-image transformation function σ : R → I able to
transform log records into images. More precisely, given a
dataset DR containing records rt collected during normal
behaviors of the robot, we define a new dataset of labeled
images DI = {(σ(rt), normal) | ∀rt ∈ DR} computed from
the system logs that will be used for generating the class
model.

The remaining of this section describes the two main
processes of our method: 1) the generation of images from
a system log (i.e., the implementation of the log-to-image
function σ), 2) the solution of the one-class classification
problem.

A. Log-to-image Transformation

The log-to-image transformation function σ : R → I is
implemented in two steps, such that σ(rt) ≡ ρ(τ(rt,T)),
where the τ transforms a record rt into a transformed
sequence kt depending on the applied transformation T. The
function ρ transforms kt into an image It.

In order to transform log records into binary images, we
represent a binary image as a matrix of pixels, where each
pixel is either 0 or 1. To obtain such an image, we proceed in
two steps: 1) we encode all the values (of different types) in
their standard binary representation, 2) we generate a binary
image from such a sequence of binary chunks.

Binary record transformation. As previously mentioned,
the first transformation represents each value as a binary



Algorithm 1 Procedure τ to convert a log record r applying
transformation T

1: function τ (r,T) → k
2: k ← [ ]
3: if T = B then . binary representation
4: for i← 0 to |r| − 1 do
5: bits← [ ]
6: v ← r[i]
7: if type(v) = int ∨ type(v) = double then
8: bits← getBitRepresentation(v, 64)
9: k.concat(bits)

10: else
11: · · · . possible extension to other types
12: end if
13: end for
14: else if T = N then . normalized representation
15: k ← Normalize(r,Max,Min)
16: else
17: · · · . other representations
18: end if
19: return k
20: end function

array. In order to properly organize the record data, variables
(and thus the corresponding values) are ordered in a specific
way: 1) first, all the fixed-size variables are considered in
lexicographical order; 2) then, all the variable-size variables
(i.e., strings) are considered in lexicographical order. This
order will produce a shallow semantic grouping of variables
i.e. the variables referred to the same sensor use the same
prefix so, after sorting, they will compare near each other. In
the following, we assume that every record r ∈ R is a tuple
of values ordered in this way. The encoding of each record
into a binary sequence (τ function with T = B) is obtained
through the procedure described in Algorithm 1.
Normalized record transformation. We use a second data
representation which corresponds to the normalization of the
log records in the range [0− 1]. In such manner, the images
that will be generated are grayscale. This representation is
obtained in Algorithm 1 by setting T = N . Max and Min
are vectors that contain maximum and minimum values for
each feature in the training dataset.
Image generation. The second process transforms the se-
quences produced in the first process in a fixed-size square
image. The adopted solution is based on calculating the
largest log record and on defining the size of the image with
respect to such a value. All samples with a lower size are
properly padded, while data entries obtained at run-time that
are larger of the selected size are truncated, as explained
below. More specifically, given a log dataset D, the desired
size W×W of the images is computed as:

W = d
√

max
π∈D
{length(τ(rt,T)) | rt ∈ π}e

where length denotes the length of a sequence returned by
the function τ .

Algorithm 2 Procedure ρ to convert a sequence k into a
W ×W image I

1: function ρ(k,W ) → I
2: for i← |k| to W 2 − 1 do . Padding if needed
3: k.append(Zero(T))
4: end for
5: k′ ← k[0 : W 2 − 1] . Truncating if needed
6: I ← toSquaredMatrix(k′,W )
7: return I
8: end function

Fig. 2: Example of a binary (left) and grayscale (right) image.

With this choice and by properly padding all the chunks
of smaller size, all the images in the dataset DI have the
same dimensions and convolutional autoencoders might be
trained on them.

Once the size W×W of the images has been computed,
the procedure to transform sequences into images (ρ func-
tion) can be implemented as described in Algorithm 2. The
function Zero(·) executes a padding depending on the type
of transformation that has been applied. Some resulting
binary and grayscale images are shown in Fig. 2.

B. Class Modelling

Class modelling is performed through two different
phases. First, one or multiple autoencoders are trained over
the majority of the one-class dataset DR to learn its latent
representation. Then, the affiliation to the normal class
follows a decision rule based on a threshold. It is computed
through the loss function and estimated on a smaller sample
of DR. We decided to compare the previous class modeling
method with a standard One-class SVM solution.

1) Architecture of the Autoencoders: We used three differ-
ent autoencoders: a Convolutional Neural Network (CNN), a
Shallow and a Deep Feed-Forward Neural Network. We will
refer to them as ConvEnc, Enc and DeepEnc. The ConvEnc
is composed by five convolutional layers with kernel size of
dimensions (3, 3). The first two are followed by Max-pooling
layers whereas the central two layers with Up-sampling. The
final convolutional layer is directly connected to the network
output. The Enc has a single hidden layer of dimension 32
units, while the DeepEnc has in total five hidden layers with
the first and central layers of dimension, respectively, 128
and 32. To train each network, Binary Cross-Entropy Loss
and Adam optimizer have been used. We fixed the number
of epochs to 30. We have used ReLUs for all hidden layers



and Sigmoids for the output layers. The Enc and DeepEnc
were trained with records transformed in sequences (i.e., the
output of τ function) whereas the ConvEnc in images.

2) Loss and Losses Variance based Classification: Since
autoencoders are unsupervised models, a second step is
needed to allow the detection of abnormal behaviours. The
loss value is a straightforward metric to evaluate the one-
class membership. Indeed, abnormal samples are expected
to have a greater loss with respect to normal samples. Let
us define a subset of logs from the normal dataset Dthr ⊂
DR. The samples in Dthr are not used during the network
training. Given Dthr and the loss function L of a trained
network, we compute l = L(Dthr), with l being a vector
containing the loss values for each record rt ∈ Dthr. It is
then possible to compute the range of expected normal losses
which might be calculated in different ways. We chose to set
these bounds as δu, δl = µ(l) ± z · σ(l), where µ is the
mean and σ is the standard deviation of the values in l, with
the possibility to change the value of z in order to vary the
interval. A testing sample is classified as normal if the value
of its loss lt is in between δu and δl.

This classification framework could be generalized to the
case of multiple networks by using the variance of the
prediction losses. The basic intuition is that the losses of
easily detectable normal records have similar values, conse-
quently a low variance, even though networks parameters are
different. On the contrary, abnormal samples are expected
to produce a higher loss variability. Let us assume to train
n different networks. In this way, given the set Dthr, it
is possible to compute n vectors of prediction losses ln
(where li corresponds to the losses of records as predicted by
network i). Then, the losses variance is computed over the
n network predictions, obtaining one value for each record
belonging to Dthr. If we refer to this vector as lσ2 , we can
compute the upper threshold as δu = µ(lσ2) + z · σ(lσ2).
Therefore, a testing record classified by n networks is
considered normal if the losses variance lσ2,t satisfies the
inequality 0 = δl < lσ2,t < δu. We keep δl = 0 because the
variance of the prediction losses is by construction always
greater than 0 therefore, it is not worth to take into account
a lower bound δl = µ(lσ2) − z ·σ(lσ2) < 0 for many values
of z.

C. General Applicability and System-dependent Choices

Observe that the proposed method could be applied to
several different situations and it is not thought to be specific
of any system. It can apply to a large variety of robotic
applications, where system logs may help in monitoring
security conditions. However, when applied to a specific
domain, the implementation of the proposed method requires
to consider the following design choices.

1) Selecting the system variables suitable for characteriz-
ing the system and the task under analysis.

2) Collecting data during normal operation of the robot.
3) Optionally refine the configuration of the networks to

get best performance (e.g., modify the hidden layers
of DeepEnc and Enc depending on the input size).

4) Training the networks using the collected dataset and
the transformation functions described above.

In the next section, we describe two different application
scenarios in which the proposed method has been tested.

V. CASE STUDIES AND RESULTS

In this section, we present experimental results2 in two
different domains: autonomous boats for environmental mon-
itoring and social robots in public environments.

As described in the previous sections, we are interested
in anomaly detection by using a classifier trained only on
normal instances. The record datasets DR used in these
experiments are composed by a set of log files captured
during normal operation of the robots in the two scenarios.
All implemented models have been tested on both represen-
tations, binary and normalized sequences. Then we created
a binary test set formed by normal and abnormal situations
(simulating different kinds of security attacks) that is only
used for performance evaluation. We collected a greater
number of abnormal samples in order to effectively test the
detection ability of the proposed models.

The results described below show a very good classifica-
tion performance in both the scenarios, demonstrating the
effectiveness and the generality of the proposed method in
detecting behaviors affected by security issues.

A. Autonomous Surface Vehicles

Low-cost Autonomous surface vehicles (ASVs) are em-
ployed in the EU-funded project INTCATCH3 to develop
efficient and user-friendly monitoring strategies for facilitat-
ing sustainable water quality management by non-experts.
INTCATCH boats can navigate autonomously using GPS
data. Cyber-attacks and hacking are aspects clearly associ-
ated with the navigation of drones in general and autonomous
boats in our reference application. Moreover, ASVs for water
monitoring transmit the acquired data regarding water quality
(e.g., Dissolved Oxygen, Ph level, Electrical Conductivity
and so forth) using standard networks (a standard WiFi
network and the 3G mobile network in our case) hence such
data could be exposed to tampering.

For this case study, we have collected a training set
DR with 2, 195 normal records taken during the nominal
behavior of the robot (659 of them were used to estimate
the thresholds). On the other hand, the test set TS contained
12, 280 records distributed among six categories as follows:
660 normal and the rest coming from two kinds of security
attacks and faults. The latter were divided in: DoS with no
payload 19%, DoS with 32 bytes payload 27%, GPS down
fault 27% and Vehicle got stuck fault 27%.

B. Social Robot

SoftBank Pepper social robot4 is a robot designed for
human-robot interaction and social robotics and it is com-

2Implementation and datasets will be published to reproduce the results
and compare other methods.

3www.intcatch.eu
4www.softbankrobotics.com/emea/en/robots/pepper



Fig. 3: Test accuracy of the best performing models (design
parameters n and z) for each dataset and data representation.

monly used in public spaces to interact with people (in-
cluding children). As mentioned in Section II, a number of
security issues of this platform are still under investigation.
As already mentioned, a dataset DR with only normal
records (taken from Pepper’s built-in autonomous interactive
behavior) has been collected to train the class model, while
the test set TS contains, in addition to some other normal
records, the following simulated attacks: 1) LedsControl,
where robot’s leds are controlled by a remote program
and activated in a pseudo-random mode; 2) JointsControl,
where robot’s joints are controlled by a remote program
setting joints values to obtain special poses of the robot;
3) WheelsControl, where the robot movement is controlled
by an external program connected to a remote joystick to
navigate in the environment.

As state variables for the logs, we considered 256 real
values from different sensors. We decided to not include in
the logs data coming from microphones and video-cameras
both for privacy concerns and for simplicity in the data
processing. The dataset DR used for training is composed
by a total number of 14, 144 records, divided into 9, 900
samples for training and 4, 244 samples for thresholds eval-
uation, while the test set TS contains 12, 532 samples, 8, 288
are abnormal samples, distributed as follow: WheelsControl
30%, LedsControl 35%, JointControl 3% and the remaining
4, 244 are normal.

C. Results

The results are mainly focused on the ability of the system
to detect anomalous behaviors. Fig. 3 shows a summary of
the results obtained in terms of accuracy in the test datasets
for both the scenarios, comparing the proposed methods
described in this paper, considering the resulted best design
parameters n and z, with OneSVM. The latter has been
trained using both binary and normalized log records and
tuned on the Dthr validation dataset. From this picture, the
advantage of using autoencoder architectures appears clear.
Generally, a more detailed analysis is needed, as a good
balance between recall and precision scores is expected from
a security system, although there may be specific needs that

prefer to maximize one or the other measure. Following
the standard Anomaly Detection nomenclature, we consider
abnormal samples as true positives and normal samples as
true negatives. In order to properly fine-tune the parameters
of a model we need a lot of abnormal data well logged.
This type of data are rare and difficult to obtain in real
conditions, so this could be an obstacle for the fine-tuning
process. For this reason, in Tables I and II, we show the
performance in terms of F1 score to picture the sensitivity
of the tested anomaly detection models considering both the
binary and normalized representations. The results have been
obtained by varying the interval parameter z in the range of
0-3, while for the number of networks n we have considered
four values, namely {1, 3, 5, 10}.

Table I shows the results for the autonomous surface vehi-
cles. All models are able to reach a very high F1 scores with
various configurations of the parameters z and n. The results
of the social robot scenario, showed in Table II, denote
a more challenging task with general lower performance,
due to the higher data dimensionality (256 vs 32 original
variables) and more realistic collected data. The gap between
the normal and abnormal testing sample losses is certainly
narrower in this case study. Indeed, keeping a large nor-
mal confidence interval, corresponding to greater z values,
implies a high number of erroneously classified abnormal
samples. The drop in performance caused by decreasing z
is evident for all models but is much less severe when a
single Enc or DeepEnc is trained with binary representations.
The single DeepEnc reaches a highest F1 score of 0.94
with z = 1 and drops to 0.87 when z = 3 whereas its
corresponding normalized network goes from 0.81 to 0.65.
We suppose that such robustness is due to the higher sparsity
of the binary representation that in turn regularizes the data
reconstruction of feed-forward autoencoders. On average, a
binary log record from this case study is ∼ 50% sparse while
its normalized counterpart is ∼ 10%.5 The use of n > 1
networks and z = 0 improved the ability of recognizing
abnormal samples when the normalized transformation is
applied. The ConvEnc and Enc F1 scores rise from 0.77 and
0.75 to, respectively, 0.82 and 0.87 when using 5 networks.
The DeepEnc from 0.81 to 0.89 when an ensemble of n = 10
autoencoders is used. The ConvEnc model performed better
when input data where normalized. This result is probably
caused by the nature of convolutions that are likely to find
better correlations when input features are more dense. The
ConvEnc was expected to perform worse than the feed-
forward networks since convolutional layers rely on the
assumption that the statistical structure of local patches of
the input is invariant with regard to translation while in our
case the image is artificially built. However, more complex
log-to-image transformations such as 1) semantic represen-
tation of the log value by means of colors or 2) semantic
spatial arrangement of fields values in the image or 3) both
techniques, are expected to improve the classification results
of convolutional autoencoders. Thus, results are promising

5Sparsity is computed as the number of zeros divided by the array size.



TABLE I: Autonomous surface vehicles F1 score results
varying the design parameters n and z on two different log
representation: B (binary) and N (normalized). Top-2 values
for each model are reported in bold.

n
z

0 1 2 3

B N B N B N B N
Enc

1 – – 0.99 0.99 1.00 1.00 1.00 1.00
3 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
5 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00
10 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

DeepEnc
1 – – 0.99 0.99 1.00 1.00 1.00 1.00
3 0.99 0.42 1.00 0.42 1.00 0.42 1.00 0.42

5 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
10 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

ConvEnc
1 – – 0.99 0.99 1.00 1.00 1.00 1.00
3 0.99 0.03 0.99 0.03 1.00 0.03 1.00 0.03

5 0.99 0.42 1.00 0.42 1.00 0.42 1.00 0.42

10 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

but there is still room for improvements.

VI. CONCLUSIONS

In this paper, we have presented a method for detecting
anomalous behaviors of a robot from its system log. We
define the problem as a one-class classification for training
and as binary classification for deployment and performance
evaluation. The advantage in using one-class classification is
that it does not require to collect any example of possible
attack or fault of the robot (which may be very difficult to
predict a priori). The proposed solution contributes to the
research in cyber-security for robot applications by allowing
a real-time on-line analysis of the robot behavior. The exper-
imental results show a very good classification performance
and a high degree of generalization demonstrated by the use
of data coming from two different robotic case studies.

We believe that research in the field of cyber-security for
robots, addressing both solutions to limit vulnerabilities and
on-line analysis of robot behaviors, will have a significant
impact on actual deployments of consumer and professional
robots in public environments.

As future directions, we intend to study other data repre-
sentations based on images, extend the data sources for the
logs by including additional sensors (such as cameras and
microphones), consider the temporal sequence of the records,
and a continuous learning setting with the support of security
operators.
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