
Artificial Intelligence 318 (2023) 103883
Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Width-based search for multi agent privacy-preserving

planning ✩

Alfonso E. Gerevini a,∗, Nir Lipovetzky b, Francesco Percassi c,a,
Alessandro Saetti a,∗, Ivan Serina a

a Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy
b School of Computing and Information Systems, The University of Melbourne, Australia
c School of Computing and Engineering, University of Huddersfield, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 December 2021
Received in revised form 15 January 2023
Accepted 12 February 2023
Available online 21 February 2023

Keywords:
Planning
Multi-agent planning
Privacy-preserving planning
Distributed planning

In multi-agent planning, preserving the agents’ privacy has become an increasingly popular
research topic. For preserving the agents’ privacy, agents jointly compute a plan that
achieves mutual goals by keeping certain information private to the individual agents.
Unfortunately, this can severely restrict the accuracy of the heuristic functions used while
searching for solutions. It has been recently shown that, for centralized planning, blind
search algorithms such as width-based search can solve instances of many existing domains
in low polynomial time when they feature atomic goals. Moreover, the performance of
goal-oriented search can be improved by combining it with width-based search. In this
paper, we investigate the usage of width-based search in the context of (decentralised)
collaborative multi-agent privacy-preserving planning, addressing the challenges related to
the agents’ privacy and performance. In particular, we show that width-based search is a
very effective approach over several benchmark domains, even when the search is driven
by heuristics that roughly estimate the distance from goal states, computed without using
the private information of other involved agents. Moreover, we show that the use of width-
based techniques can significantly reduce the number of messages transmitted among the
agents, better preserving their privacy and improving their performance. An experimental
study presented in the paper analyses the effectiveness of our techniques, and compares
them with the state-of-the-art of collaborative multi-agent planning.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

A number of real-world applications require that different agents collaborate without sharing all the knowledge they
have about the task to solve. For instance, in a logistic domain a customer wants to buy goods from a retailer without
the courier knowing the content of the packages that he manages. The problem that raises this issue takes the name of
collaborative multi-agent privacy preserving planning (CMAPP) [3,9]. Indeed, in CMAPP planning agents may have private
knowledge that they do not want to share with others during the planning process and plan execution, and an important
issue is related to how the search of a solution handles the agents’ privacy. This issue prevents the straightforward usage of

✩ This paper is a revised and extended version of [2,13,14].

* Corresponding authors.
E-mail addresses: alfonso.gerevini@unibs.it (A.E. Gerevini), alessandro.saetti@unibs.it (A. Saetti).
https://doi.org/10.1016/j.artint.2023.103883
0004-3702/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

https://doi.org/10.1016/j.artint.2023.103883
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2023.103883&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:alfonso.gerevini@unibs.it
mailto:alessandro.saetti@unibs.it
https://doi.org/10.1016/j.artint.2023.103883
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
most of the modern techniques developed for centralized (classical) planning, which are based on heuristic functions that
use the knowledge of all the involved agents.

Recent work in classical planning has shown that width-based search algorithms can solve planning problem instances
of many existing domains in low polynomial time when they feature atomic goals. Width-based search relies on the notion
of “novelty”. The novelty of a state s has been originally defined as the size of the smallest tuple of facts that hold in s
for the first time in the search, considering all previously generated states [19]. For instance, a state search with novelty
equal to 1 is such that it achieves for the first time in the search some single literal; a state search with novelty equal to
2 is such that it achieves for the first time in the search some pair of literals and all the single literals in the state have
been previously achieved during the search. The novelty measure has been used to both prune search states and guide
the search, by defining heuristics that combine it with different estimates of the goal distance [20,21]. Search states with
smaller novelty correspond to states that have higher priority to be expanded. For instance, the achievement of a new literal
is considered more important than the achievement of a new pair of literals formed by two single literals already achieved
in the search.

In this paper, we investigate the usage of width-based search algorithms for CMAPP planning. The effectiveness of width-
based search for CMAPP planning can be affected by the need of treating the privacy of the involved agents. In order to
preserve the privacy, the private knowledge shared among agents can be encrypted: an agent αi shares with the other
agents a description of each reached search state in which all the private facts of αi that are true are substituted with a
single identifier. This encryption has an impact on the measure of novelty, and hence for CMAPP planning it can also affect
the effectiveness of the width-based search algorithms.

The first algorithms that we consider for CMAPP planning are Iterative Width search (IW) and Serialized Iterative Width
search (SIW) [19]. Essentially, IW consists of a sequence of breadth-first searches with an increasing integer value k for
which all states with novelty greater than k are pruned. The success of this simple pruning technique derives from the
fact that usually actions in optimal plans achieve tuples of facts of size smaller than or equal to k for the first time on
the solution path [19]. For planning problems featuring multiple goal propositions, IW is less effective, but there are some
variants of this search algorithm that perform well for a number of planning benchmarks [19]. One of these variants is
SIW, which restarts the Iterative Width search from each reached state that achieves at least one more goal since the last
restart. The usage of IW and SIW for CMAPP-planning problems is not straightforward, as it raises some synchronization
issues to overcome. For instance, a state generated by an agent after the restart of the search may be received by another
agent before that agent restarts its own SIW search.

Algorithms IW and SIW are pure exploration methods that are not goal oriented. With the aim of computing plans that
are not necessarily optimal, the performance of goal oriented search can be improved by combining it with width-based
search. The combination yields a search algorithm, called best-first width search (BFWS), that for classical planning domains
outperforms the state-of-the-art planners even when the estimate of the distance to the problem goals is inaccurate [21].
For this reason, the third width-based search algorithm that we consider for CMAPP planning is BFWS. While in classical
planning the heuristic used to guide BFWS uses all the knowledge of the problem specification, in the setting of CMAPP
planning, computing search heuristics using the knowledge of all the involved agents should be avoided because it might
compromise the agents’ privacy. In order to preserve the privacy of the involved agents, in each agent’s search the distance
to the problem goals is estimated using the knowledge of a single agent. On the other hand, this estimate is much more
inaccurate than the estimation obtainable using the knowledge of all the agents. Since for classical planning best-first width
search performs very well even when the estimate of the goal distance is inaccurate, such an algorithm is a good candidate
to effectively solve CMAPP-planning problems without compromising the agents’ privacy.

This paper has the following contributions. First, we propose a search algorithm, CMAPP-SIW, which is a variant of SIW
for CMAPP planning, and a new definition of novelty that overcomes the synchronization issue of IW and SIW. Then, we
propose a new search algorithm CMAPP-BFWS, which uses width-based exploration in the form of novelty-based prefer-
ences to provide a complement to goal-directed heuristic search for CMAPP planning. We adapt the definition of classical
width [19] to CMAPP planning, and propose a definition of state novelty for which CMAPP-BFWS can be complete when
states are pruned only if their novelty is higher than the width of the problem. Then, we define a number of heuristics
for which the preferred states in the open list are the ones with the smallest novelty and, among those, the ones with the
lowest goal distance. For this purpose, we define the novelty in a different way, taking the heuristics used to estimate the
goal distance into account [21]. Finally, we investigate the use of novelty to filter the messages sent by each agent, propose
different methods to exploit such filtering within forward search CMAPP planning, and discuss its properties in terms of
privacy.

Moreover, we theoretically examine and classify a number of existing CMAPP-planning domains according to the agents’
capability of distinguishing among instances of a planning problem which differ only for the private parts of an agent in
the problem. Finally, we experimentally evaluate the effectiveness of the proposed search algorithms and heuristics, and
compare the proposed techniques with state-of-the-art planners. Such planners exchange more and different information
with respect to our approaches. On one hand, this may imply that these planners preserve the agents’ privacy in a form
weaker than ours, but on the other hand, it may also make their search heuristics and techniques more effective. However,
the results of our experimental study show that best-first width search is competitive with the state-of-the-art also for
CMAPP planning, even if less information is exchanged. Moreover, we evaluate the robustness of our approach, considering
2

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
different delays in the transmission of messages as they would occur in overloaded networks, due for example to massive
attacks or critical situations.

The remainder of the paper is structured as follows. Section 2 gives the necessary background on the MA-STRIPS planning
problem, on the notion of privacy in MA-STRIPS planning, and on the width-based search algorithms IW, SIW, and BFWS
(originally proposed for classical planning). Section 3 explores the usage of width-based search for CMAPP planning and,
specifically, it formalizes new definitions of novelty for CMAPP planning, and investigates the usage of these definitions for
pruning the search, guiding the search, and filtering the messages exchanged among the agents. Section 4 gives a taxonomy
of a number of exiting CMAPP-planning domains which is based on the admitted privacy. Section 5 reports on a set of
experiments that demonstrate the effectiveness of width-based search for CMAPP planning in practice. Finally, in Sections 6
and 7, we discuss related work and draw our conclusions.

2. Background

In this section first, we present the MA-STRIPS planning problem, then we discuss a number of issues concerning the
agents’ privacy, and finally we describe some prominent width-based search algorithms developed for classical planning.

2.1. MA-STRIPS planning

Our work relies on MA-STRIPS, a “minimalistic” extension of the STRIPS language for multi-agent (MA) planning [10],
that is the basis of the most popular definition of CMAPP-planning problem, see, e.g., [9,24,27,29,31].

Definition 1. A MA-STRIPS planning problem � for a set of agents � = {αi}m
i=1 is a 4-tuple 〈{Ai}m

i=1, P , I, G〉 where:

• Ai is the set of actions that agent αi can execute, and such that for every pair of agents αi and α j Ai ∩ A j = ∅;
• P is a finite set of propositions;
• I ⊆ P is the initial state;
• G ⊆ P is the set of goals.

Each action a consists of a name, a set of preconditions, Prec(a), representing facts required to be true for the execution of
the action, a set of additive effects, Add(a), representing facts that the action makes true, a set of deleting effects, Del(a),
representing facts that the action makes false, and a real number, Cost(a), representing the cost of the action. A fact is
private for an agent if other agents can neither achieve, destroy nor require it [10]; otherwise the fact is public. An action is
private if all its preconditions and effects are private; otherwise the action is public. A state obtained by executing a public
action is said to be public; the initial state is also said to be public; any other state is said to be private. We use Public(s)
to denote the public part of a state s. Moreover, in the remainder of the paper the planning problems encoded by the
MA-STRIPS language are called CMAPP planning problems.

We assume that the set of goals is public, so that any agent can distinguish goal states from other states. A solution plan
is a sequence of actions whose application over the initial state I leads to a state that satisfies the problem goals G . Each
action in the plan is labeled with the step at which it is executed. A solution single-agent plan is the part of the solution plan
including the actions (with their steps) of a given agent. The cost of a plan is the sum of all the costs of the actions in the
plan. A solution plan is said to be optimal if there exists no other solution with lower cost.

A popular algorithm for solving CMAPP planning problem is MAFS [31], the distributed variant of forward best-first
search. Essentially, in MAFS each agent considers a separate search space, and maintains its own open list of states that are
candidates for expansion as well as its own closed list of already visited states. Each agent expands the state among those
in its open list which is estimated to be most promising for reaching the problem goals. When an agent expands a state, it
uses only its own actions. If the action used for the expansion is public, the agent sends a message containing the expanded
public state to other agents. When an agent receives a state via a message, it checks whether this state appears in its open
or closed lists. If it is not contained in these lists, the agent inserts the state into its open list.

2.2. Agents’ privacy

Privacy in CMAPP planning is concerned with guaranteeing that the private information of an agent αi remains known
only by agent αi . Such private information consists of the agent’s private propositions, as well as the existence, structure and
cost of its private actions. To maintain the agents’ privacy, the private information shared among agents can be encrypted.
An agent can share with the other agents a description of a search state in which each private fact that is true in the state
is substituted with a (different) identifier [7,8]. While this encryption does not reveal the names of the private facts of each
agent αi to other agents, an agent can realize the existence of a private fact of agent αi and monitor its truth value during
search. This in turn allows the other agents to infer the existence of private actions of αi , as well as to infer their causal
effects. Another way of sharing a state containing private information during the search is to substitute, for each agent αi ,
all the private facts of αi that are true in the state with a single identifier [31]. Such an identifier denotes a new dummy
private fact of αi , which is treated by other agents as a regular fact. The work presented in this paper uses this latter
3

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
method for the state encryption. With this method, the other agents can only infer the existence of a group of private facts
of αi , since the dummy identifier contained in the state exchanged by αi substitutes an arbitrary number of private facts of
αi .

Brafman (2015) [9] defines an algorithm as weakly privacy preserving if no private propositions is shared with other
agents, and the information shared among agents consists of public projections of public actions, i.e., private preconditions
and effects are dropped from public actions. The existing algorithms for CMAPP planning typically achieve weak privacy
by encrypting the private propositions of a state together before sending it. Weakly privacy-preserving algorithms allow
agents to track changes in states sent by one agent and infer the existence of a group of private propositions. In contrast,
an algorithm is strongly private if no agent αi can deduce the existence of a variable private to another agent α j , a possible
value of a private variable, and the model of a private action of α j , beyond (1) what the actions Ai of αi reveal, (2) the
public projection of the actions A j of α j , and (3) the public projection of the actions in the solution plan.

Brafman (2015) [9] also proposes secure-MAFS, a complete and sound forward search algorithm that achieves strong
privacy when the heuristic used to guide the search is independent from the private part of the problem and all actions
have unary cost. The key insight relies on making sure that an agent sends a state s to other agents iff the public projection
of state s has never been sent before. This ensures that agents never receive two states with the same public projection
from the same source agent, which is sufficient to guarantee that agents cannot distinguish between the executions of
secure-MAFS with problems �, �′ ∈ C P ub

� , where C P ub
� is an equivalence class containing all problems that share the same

public solution space as the original problem � being solved [9,50]. Another notion of privacy proposed by Maliah et al.
(2016b) [26] is the cardinality privacy, which prevents an agent from inferring the number of private objects of the same
type managed by other agents.

The amount of private information leaked by agents during the planning process can be measured by appropriate metrics.
The leakage metric proposed by van der Krogt (2009) [18] is based on the number of plans of an agent which are compatible
with the exchanged information. More recently, Stolba et al. (2019) [34] use a leakage metric based on the difference
between the number of transition systems of the agent compatible with the information available from an adversary agent
before and after the planning process.

2.3. Width-based search for classical planning

Lipovetzky and Geffner (2012) [19] introduced the notion of width for a classical planning problem. Specifically, given a
natural number i, they define a set Si of tuples such that each tuple t′ in Si is formed by at most i atoms and the presence
of t′ in Si indicates that either t′ is true in the problem initial state or there is another tuple t in Si such that all the
optimal plans π achieving t yield optimal plans achieving t′ , once a suitable action a is appended to π . They define the
notion of width of a formula φ as the minimum natural number w such that S w contains a tuple that implies φ. Finally,
they define the notion of width of a planning problem as the minimum natural number w such that the conjunction of the
problem goals is implied by a tuple in S w .

Pure width-based search algorithms explore the search space without any guidance to the problem goals, i.e. they
are blind search algorithms. The simplest of such algorithm is known as bounded iterative width, IW(1), which is just a
breadth-first search extended with the following pruning rule: a generated state s is kept in the queue only if it contains a
proposition p ∈ s that has not been seen so far in any other state in the search, i.e., p /∈ s′ for any previously generated state
s′ . Algorithm IW(2) is similar except that a state s is kept in the queue if there is either 1) a single proposition p ∈ s that
has not been seen so far, as in IW(1), or 2) there is a pair of propositions p, q ∈ s that has not been seen before, i.e., p, q /∈ s′
for any state s′ generated before s. More generally, bounded iterative width, IW(k), is a standard breadth-first search except
that each newly generated state s is pruned when its novelty is greater than k. The next definition states the notion of
novelty for a state of the search.

Definition 2 (Novelty). Given a search procedure, the set T of states generated by the procedure so far, and a new generated
state s, the novelty of s, w(s), is the size of the smallest tuple t of propositions in s such that t is achieved for the first
time during the search procedure [19], i.e., w(s) = min

t⊆s, t�s′, s′∈T
|t|.

While IW(k) is relatively simple, it has been shown that IW(k) manages to solve arbitrary instances of many of the
standard benchmark domains in low polynomial time provided that the goal states of the planning problem are defined
with a single proposition, i.e., |G| = 1. Such domains can be shown to have a small and bounded width w = 1 or w = 2 that
does not depend on the instance size, which implies that they can be solved (optimally) by running IW(w). Interestingly,
IW(k) runs in time and space that are exponential in k and not in the number of problem propositions P [19].

Bounded IW(k) with k < w can terminate without returning a solution as it may prune all the states leading to a solution.
Therefore, Lipovetzky and Geffner (2012) [19] proposed a complete Iterative Width (IW) procedure that sequentially calls
the bounded IW(k) with increasing k = 1, . . . , |P | until the problem is solved. This is especially useful when the width w of
a problem is not known in advance but it is likely to be low, e.g., w = 1 or w = 2, as it renders IW a quadratic algorithm.

The width of problems where goal states are defined with a goal formula containing more than a single proposition
(|G| > 1) tend to be larger than the width of problems with a single atomic goal formula (|G| = 1). Serialized Iterative
4

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Width (SIW) was proposed to solve problems with |G| > 1 while keeping a low maximum bound k needed in IW(k) [19].
To that end, SIW calls IW to achieve one atomic goal at a time. More precisely, SIW is a sequence of |G| − 1 calls to IW,
where the j-th call of IW stops when IW generates a state s j achieving G j ⊆ G such that G j−1 ⊂ G j , i.e., at least one extra
goal proposition is achieved with respect to the goals G j−1 achieved in the last call of IW. The new state s j then becomes
the initial state for the next (j + 1) IW search. The well-known heuristic hmax introduced by Bonet and Geffner (2001) [5]
is used to avoid committing to states G j ∈ s where G j cannot lead to states achieving the remainder goals in G \ G j . This
last condition is checked by testing whether hmax(s j) = ∞ is true once the actions that delete propositions from G j are
excluded. While SIW is an incomplete blind search algorithm (if dead-ends exist), it turns out that is performs better than
a greedy best-first search guided by standard delete relaxation heuristics [19].

Width-based exploration in the form of novelty-based soft preferences, changing the expansion order of search algo-
rithms instead of pruning generated states, can provide an effective complement to goal-directed heuristic search without
losing completeness [21]. Most standard goal-directed heuristic search algorithms are based on a best-first search strategy.
Best-first search uses an evaluation function f to rank the nodes in the open list, defining which is the node to expand
next in the search. A widely used evaluation function is f = h, where h can be any suitably defined goal-directed heuristic,
giving preference to expand nodes closer to the goal. The combination of width-based search and goal-directed heuristic
search is called best-first width search (BFWS). Differently from classical best-first search procedures, BFWS(f) adopts an
evaluation function f = 〈w, h1, ..., hn〉 that uses w to rank the nodes in the open list, preferring nodes with best novelty
(smaller value of w), and breaking ties lexicographically with n goal directed heuristic functions h1, . . . , hn . The primary
evaluation function w is given by the novelty measure of the node. To integrate novelty with the goal directed heuristics,
the definition of novelty used by BFWS is different from that used for the breadth-first search IW.

The next definition of novelty integrates both the structure of the states in terms of their propositions, and the goal
directed heuristics used to guide the search [21].

Definition 3 (Goal Directed Novelty). Given a search procedure, the set T of the states generated by the procedure so far, a new
generated state s, and a series of heuristic functions H = 〈h1, . . . , hn〉, let C(s, T , H) = { s′ | ∀hi ∈ H, hi(s′) = hi(s), s′ ∈ T }
be the set of states s′ ∈ T with the same heuristic value of state s. The novelty w(s) of a state s is the size of the smallest
tuple t of propositions in s such that t is achieved for the first time with respect to the partition of states C(s, T , H) induced
by the heuristic functions hi ∈ H , i.e., w(s) = min

t⊆s, t�s′, s′∈C(s,T ,H)
|t|.

In the remainer of the paper, novelty measure w is sometimes denoted as w(h1,...,hn) in order to make the functions
h1, . . . , hn used in the definition and computation of w explicit.

3. Width-based search for CMAPP planning

In CMAPP planning, the private information of an agent remains known only to the agent. Most of the search algorithms
for CMAPP planning preserve the privacy of the involved agents by encrypting the private information shared among agents.
Indeed, an agent αi shares with the other agents a description of every reached search state in which all the private facts
of αi that are true in a state are substituted with a single identifier.

The encryption of the private knowledge has an impact on the novelty measure, and hence it can also affect the ef-
fectiveness of the width-based search algorithms developed for classical planning. E.g., consider states s1 = {p}, s2 = {q},
s3 = {p, q}, where p and q are private facts of an agent different from αi . Let [x] denote the dummy identifier represent-
ing one or more private facts x of an agent different from αi . The descriptions of s1, s2, and s3 received by αi are {[p]},
{[q]}, and {[p, q]}, respectively. Assume that the order with which these states are processed by αi is s1, s2, s3. For the
determination of the novelty of a state, we consider a dummy identifier substituting one or more private facts as a regular
proposition. Then, without the encryption, for αi the novelty of s1 and s2 is 1, and the novelty of s3 is 2, while with the
encryption the novelty of each of these states is 1, because in s3 the dummy identifier representing encrypted facts [p, q]
is true for the first time in the search. Assume that, as for classical planning, states with novelty greater than a certain
threshold k are pruned from the search tree, and let k be equal to 1. Then, the search without the encryption prunes s3
from the search, while the search encrypting private facts does not.

In this section we present a collection of width-based search techniques for CMAPP planning. First, we adapt the defini-
tion of classical width [19] to CMAPP planning, we study the usage of iterative width search for CMAPP planning, and
we point out some synchronization issues to address for CMAPP planning. Then, we propose a new search algorithm
CMAPP-BFWS, which uses width-based exploration in the form of novelty-based preferences to provide a complement
to goal-directed heuristic search, and we give a definition of state novelty for which CMAPP-BFWS can be complete when
states are pruned only if their novelty is greater than the width of the problem. Then, we define several heuristics for which
the preferred states in the open list are the ones with the smallest novelty and, among those, the ones with the lowest goal
distance. For this purpose, we define the novelty in a different way, taking the heuristics used to estimate the goal distance
into account [21]. Finally, we investigate the use of novelty to filter the messages sent by each agent, we propose different
methods to exploit such filtering within forward search CMAPP planning, and we discuss its properties in terms of privacy.
5

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
3.1. Serialized IW for CMAPP planning

The search procedure of SIW for solving a CMAPP problem, as well as for classical planning problems, can be understood
as casting the problem into a sequence of planning problems, each of which requires reaching one more goal with respect
to the previous one. Each of these sub-problems is solved by running an IW search. Each run is called an episode of the
search.

Algorithm 1 shows the multi-agent version of SIW search for an agent αi of the CMAPP-planning problem. Each agent
considers a separate search space, since each agent maintains its own list of open states, open, and, when an agent expands
an open state, it generates a set of states using only its own actions.

During the search, each agent αi sends two types of messages to other agents, restart messages and state messages. A
restart message contains the encrypted description of a state s to start a new episode, an identifier of the episode, and the
number of episodes required to achieve s from the problem initial state. Similarly, a state message contains the encrypted
description of a search state s for the current episode, the depth of s in the episode search tree of αi , and the identifier of
the current episode.

Each agent αi maintains its own list of received messages to process, open_msgs. Given a message m, State(m),
Episode(m), and Depth(m) respectively denote the search state in m, the episode identifier in m, and the depth of State(m)

in the episode search tree of αi . Algorithm 1 assumes the presence of a separated thread listening for incoming messages
sent from other agents. Each time a message is received, it is added to the open_msgs list. More precisely, the restart mes-
sages are added at the beginning of received_msgs, while the state messages are added at its end. In Algorithm 1, both
open and open_msgs are global variables. An agent iteratively processes the messages received in the open_msgs list (steps
4–20) and expands the states in the open list (step 21–40). Loop 4–40 is repeated until the lists open and open_msgs are
not empty.1

Each time a state s is extracted from open, first agent αi checks if the state satisfies the goal of the planning problem. If
it does, αi , together with the other agents, reconstructs the plan achieving s and the solution plan is returned (steps 22–24).
Once an agent expands a goal state s, algorithm ReconstructPlan(s) performs the trace-back of the solution plan. Agent αi
begins the trace-back, and when it reaches a state received via a message m, it sends a trace-back message to the agent
that sent m. This continues until the initial state is reached. The MA-plan derived from the trace-back is a solution of the
CMAPP planning problem. Finally, at step 23 Algorithm 1 returns the part of the solution plan regarding a (single) agent
computed by ReconstructPlan(s).

If s is not a goal state, function IsStateBetter(s, sI) evaluates whether s is a final state of the current episode (steps
25–29). This is the case when s contains more goals than the initial state sI of the current episode, and the number of goals
reachable from s by αi using actions Ai is the same as those reachable from s using set Ai minus the set of actions deleting
the goals in s that are not in sI . The set of goals reachable from a given state is estimated by constructing a relaxed planning
graph from the state using the set Ai of actions. A relaxed planning graph is a planning graph [4] constructed by ignoring
deleting effects of actions. Intuitively, the second part of the condition checked by IsStateBetter estimates if the remaining
unachieved goals are reachable without destroying the new goals achieved by s. The condition used in the version of SIW
for classical planning considers whether any goal among the remaining ones becomes unreachable, not only the goals in s
that are not in sI . The reason why our restart condition is different is that in CMAPP planning the hmax value that an agent
computes for a state s using its own actions gives no valuable information about the solvability of the planning problem
from s, since in CMAPP planning each agent is capable of executing only a subset of the problem actions. Essentially, hmax(s)
can be infinite each time reaching the problem goals from s requires the (joint) work of more than one agent.

Then, agent αi checks if state s is the result of the application of a public action, and in this case it sends a state message
containing state s, its depth, and the identifier of the current episode e to other agents (steps 30–32). Finally, αi expands
state s by applying the actions executable in s and, for each successor state s′ of s, αi decides whether to include s′ in its
IW search according to the novelty of the state. CMAPP-SIW uses the following definition of novelty.

Definition 4 (Episode Cost Novelty). The novelty w(g,e)(s) of a state s is the size of the smallest tuple t of propositions in s
such that: (1) t is achieved for the first time during the search of episode e, or (2) for every other state s′ containing t , s′
was previously generated in the search tree of episode e through paths with greater accumulated cost, i.e., g(s′) > g(s).

If w(g,e)(s′) is lower than the novelty bound k, αi adds s′ to its open list (steps 33–39).
In classical planning, a state s produces a new tuple of propositions t iff s is the first state generated in the episode

search that makes t true, i.e., only condition (1) is used for the definition of the novelty of a state. In the context of
CMAPP planning, the computation of the novelty is more difficult because, at a given time, the depth in episode search
trees constructed by each agent can be quite different. This happens because in CMAPP planning each agent is capable of
executing a different set of actions, and hence the searches conducted by two different agents can have a different branching

1 More precisely, when the open and open_msg lists of an agent become empty, the agent sends a special message to the other agents representing
the fact that its own lists are empty. Similarly, the agent sends another special message to the others when its own open list is not empty anymore. The
algorithm terminates when the lists of all the agents are empty.
6

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Algorithm 1: SIW search run by agent αi from an initial episode state sI to achieve goals G using only set of actions
Ai of αi . The output is a single-agent solution plan πi for αi , or failure.

1 Algorithm CMAPP-SIW(sI , G, Ai , k, E, e)
Input: An initial episode search state sI , the set G of goals, the set Ai of actions that agent αi can execute, a novelty bound k, a (initially

empty) set E of episode identifiers, an (initially null) episode identifier e;
Output: A single-agent plan πi for agent αi , or failure.

2 open ← sI

3 while open is not empty or open_msg is not empty do
4 received_msgs ← Dequeue(open_msgs) /* Receive messages */
5 foreach m ∈ received_msgs do
6 if m is a restart message then /* Process restart msg */
7 E ← E ∪ Episode(m)

8 if IsEpisodeBetter(State(m), sI) then
9 return CMAPP-SIW(State(m), G, Ai, k, E, Episode(m))

10 end
11 else /* Process state msg */
12 if Episode(m) = e then
13 Enqueue(State(m), open)

14 else
15 if Episode(m) /∈ E then
16 Enqueue(m, open_msgs) /* Process later */

17 end
18 end
19 end
20 end
21 s ← Dequeue(open)

22 if G ∈ s then /* Plan found */
23 return ReconstructPlan(s)
24 end
25 if IsStateBetter(s, sI) then /* Restart */
26 e ← GenerateNewEpisodeIdentifier()
27 SendRestartMessage(〈s, e〉)
28 return CMAPP-SIW(s, G, Ai, k, E ∪ {e}, e)
29 end
30 if s is public then /* Send state */
31 SendStateMessage(〈s, Depth(s), e〉)
32 end
33 foreach a ∈ Ai s.t. Prec(a) ⊆ s do /* Expand */
34 s′ ← s \ Del(a) ∪ Add(a)

35 g ← Depth(s′)
36 if w(g,e)(s′) ≤ k then
37 Enqueue(s′, open)

38 end
39 end
40 end
41 return failure

factor. Therefore, in CMAPP planning state s′ with search depth d produces a new tuple of propositions t for agent αi iff s′
is the first state with depth lower than or equal to d in the episode search tree of αi that makes t true. A similar novelty
definition was exploited recently in the context of online planning with rollout-IW [1], as well as in alternative formulations
of the novelty for classical planning [16].

In Algorithm 1, the episode of each agent αi terminates if it achieves a state with a new goal, as well as if it receives
a restart message from another agent. Consider now this latter case. When a restart message is received, αi has to assess
whether the new restart state is better than the starting state of the current episode. Therefore, each time a restart message
m is received, function isEpisodeBetter(State(m), sI) evaluates whether a new episode starts using State(m) as the initial
state (steps 6–11). This happens if the restart state State(m) contains more goals than the initial state sI of the current
episode. If both achieve the same number of goals, we break ties choosing State(m) if it has been achieved with less
episodes than sI , and finally we break ties if needed by choosing the state generated by the process running on a network
node whose IP is alphanumerically smaller.

The usage of SIW for CMAPP planning raises some issues about the synchronization of the IW search: when an agent αi

reaches a state achieving a new problem goal, all the agents should restart a new IW search from that state, but accidentally
a state s generated by α j after the restart may arrive to another agent αi before that agent restarts its own IW search. In
7

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Algorithm 2: k-CMAPP-BFWS run by agent αi from the initial state I to achieve goals G using only the action set
Ai of αi . The output is a single-agent solution plan πi for αi , or failure. Parameter k ∈ N is an upper bound for
the novelty of expanded states. Function g(s) is the accumulated cost from I to s, and function f is the heuristic
function used to sort the open list.

1 Algorithm k-CMAPP-BFWS(I, G, Ai , f)
Input: The initial state I , the set G of goals, the set Ai of actions that agent αi can execute, a heuristic function f ;
Output: A single-agent plan πi for agent αi , or failure.

2 open ← I
3 gI ← 0
4 while open is not empty or open_msg is not empty do
5 foreach s ∈ open_msg do
6 open ← open ∪ s
7 open_msg ← open_msg \ s
8 end
9 s ← SelectBest(f , open)

10 open ← open \ s
11 if G ∈ s then /* Plan found */
12 return ReconstructPlan(s)
13 end
14 if s was generated by agent αi and s is public then
15 SendStateMessage(〈s, g(s)〉)
16 end
17 foreach a ∈ Ai s.t. Prec(a) ⊆ s do /* Expand */
18 s′ ← s \ Del(a) ∪ Add(a)

19 g(s′) ← g(s) + Cost(a)

20 if w(g)(s′) ≤ k then
21 open ← open ∪ s′
22 end
23 end
24 end
25 return failure

such a case, αi needs to postpone the expansion of s until it restarts its own search from the same episode during which s
was expanded. This kind of synchronization issues happens when messages are received in a different order than they were
transmitted, and it can often occur if the agents reside on interconnected machines through a networked infrastructure.

We treat this synchronization issue as follows. When a state message m is received, agent αi checks if State(m) belongs
to the current episode (steps 12–14). If it does, αi includes State(m) in its IW search by adding the state to its open list.
Otherwise, if State(m) belongs to another episode, αi checks if the episode it belongs to has already been marked as worst,
and simply ignores the message. If the episode identifier associated to m has not been evaluated yet, i.e., Episode(m) /∈ E ,
then αi re-inserts the new state into the open_msgs list in order to process it later, once the restart message with the same
episode identifier arrives (steps 15–17).

The other synchronization issue arising in CMAPP planning is that at a given time the depth reached by agent αi in
its own episode search tree can be different from the depth reached by other agents because, as mentioned before, the
searches conducted by two different agents can have a different branching factor (each agent has its own set of actions).
If αi extracted the first state in the open list, it could happen that a state is expanded before another state achieved with
fewer actions. To overcome this issue, given an incoming message m, Algorithm 1 adds State(m) in its own open list using
Depth(m). I.e., it manages the open list as a priority list in which the priority of a state is the depth of the state in the
episode search tree of the agent that expanded the state; if the state is expanded by an agent different from αi , the depth of
the state comes from the same message with which the state is communicated to αi . Thereby, agent αi iteratively extracts
a state s from open selecting the first state in it that has the lowest depth.

3.2. Best-first width-based search for CMAPP planning

A problem of algorithms SIW and CMAPP-SIW is that they are incomplete, i.e., they do not guarantee to find a solution
even if the problem is solvable. This is despite the fact that the search procedure of SIW and CMAPP-SIW consist of a
succession of breadth-first state expansions and breadth-first search is a complete algorithm. Indeed, the pruning of SIW
and CMAPP-SIW may compromise the completeness. For instance, assume that all the paths from the initial state to any
goal state include the sequence of states 〈s1, s2, s3〉, where s1 = {p}, s2 = {q}, and s3 = {p, q}. Then the novelty of s1 and s2
is (at least) 1, while the novelty of s3 is (at least) 2. Therefore, if the novelty bound used by SIW and CMAPP-SIW is equal
to 1, s3 is pruned, and no solution can be found. In this section, we study another approach to using width-based search for
CMAPP planning that is complete.
8

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Algorithm 2 shows a search algorithm for an agent of the CMAPP-planning problem combining width-based search and
goal-directed search, that we call k-CMAPP-BFWS. Parameter k ∈N is an upper bound for the novelty of states that can be
expanded, i.e., states with novelty greater than k are pruned from the search space.

Like in CMAPP-SIW, in k-CMAPP-BFWS each agent αi maintains its own list of open states (open) and its own list of
received messages to process (open_msgs). Agent αi iteratively expands the states in the open list and those contained in
the received messages. Loop 4–23 of k-CMAPP-BFWS(I, G, Ai, f) is repeated until open and open_msg are empty. Agent αi

extracts all the states in open_msg , computes the novelty according to the states generated or received by αi , computes the
given heuristic function f , and adds the states to the open list. Then, αi extracts the best state s from open according to f
(steps 5–9). Function f is defined as a sequence of n arbitrary heuristics 〈h1, . . . , hn〉 that are applied consecutively to break
ties. Each time a state s is extracted from open, first αi checks if the state satisfies the goals of the planning problem. If it
does, agent αi , together with the other agents, reconstructs the plan achieving s, and returns its solution single-agent plan
(steps 11–13). Otherwise, agent αi checks if state s is the result of its own public action, and in this case it sends a message
to all other agents containing state s together with its accumulated cost g(s) from the initial state up to s (steps 14–16).
Finally, αi expands state s by applying the executable actions and, for each successor state s′ of s, αi evaluates the novelty
and function f , and decides whether to add s′ in its open list according to the novelty of state s′ (steps 17–23).

k-CMAPP-BFWS prunes a state s according to a novelty measure akin to the novelty heuristics introduced by Katz et al.
(2017) [16], but defined instead on the basis of the cost g(s) accumulated through the trajectory from the problem initial
state to s (steps 20-21).

Definition 5 (Accumulated Cost Novelty). The novelty w(g)(s) of a state s is the size of the smallest tuple of propositions t in
s such that: (1) t is achieved for the first time during search, or (2) every other previously generated state s′ where t holds
has higher accumulated cost, i.e., g(s′) > g(s).

The accumulated cost g of the states that are at the same time in the open list of agent αi can be very different, because
k-CMAPP-BFWS does not necessarily extract the state from open with the lowest accumulated cost, and open may contain
states incoming from other agents, which search in different search spaces and may visit states with much greater g-values.

To guarantee the agents’ privacy, the private information contained in the visited states is encrypted. As stated before,
the encryption affects the measure of novelty, and this consequently also affects the pruning of the search space.

Lemma 1. The novelty w(g)(s) of a state s computed over states with encrypted information is lower than or equal to the novelty of s
computed over states without encrypted information.

Proof. For simplicity, we consider a CMAPP-planning problem with only two agents αi and α j , and we focus on the com-
putation of the novelty for αi . The argumentation for agent α j and for problems with more than two agents is similar.
Consider a state s and a tuple t ⊆ s such that, without the encryption, w(g)(s) = |t|. With the encryption, we distinguish
three cases.

(1) Tuple t is formed by public or private facts of αi (no other fact of other agents). In this case, since only the private facts
of α j are encrypted for αi , the facts forming tuple t are the same as without the encryption, and hence even with the
encryption w(g)(s) = |t|.

(2) Tuple t includes at least n ≥ 1 private facts of agent α j , and the tuple t′ of private facts of α j that are true in s is
different from those of previously generated states such that their accumulated cost is lower than or equal to g(s).
With the encryption, the tuple t′ is substituted by a new dummy identifier. Such an identifier denotes a dummy fact
that is false in all the previously generated states. Hence, by definition, with the encryption we have w(g)(s) = 1, which
is lower than or equal to |t|.

(3) Tuple t includes at least n ≥ 1 private facts of agent α j , the tuple t′ of private facts of α j that are true in s is the same
as in a state s′ , s′ has been previously expanded, and g(s′) ≤ g(s). With the encryption, the tuple t′ is substituted by an
identifier u, which denotes a dummy fact that, in this case, is true in both s and s′ . Therefore, the smallest tuple in s
that is true for the first time in the search is formed by public or private facts of αi in t plus u. By definition, with the
encryption w(g)(s) = |t| − n + 1 and, since n ≥ 1, the value of w(g)(s) is lower than or equal to |t|. �

The definition of width given by Lipovetzky and Geffner (2012) [19] for the state model induced by STRIPS applies
directly to the state model induced by MA-STRIPS.

Definition 6 (CMAPP Width). The width w(�) of a CMAPP-planning problem � = 〈{Ai}|�|
i=1, P , I, G〉 is the lowest w ∈ N

for which there exists a sequence of tuples 〈t0, . . . , tn〉 such that: (1) ti ⊆ P and |ti | ≤ w for i = 0, . . . , n, (2) t0 ⊆ I , (3) all
optimal plans achieving ti can become optimal plans achieving ti+1 by adding an action a ∈ {Ai}|�|

i=1, and (4) all optimal
plans achieving tn are also optimal plans achieving the set of propositions in G .
9

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
In the previous definition, some actions that extend optimal plans achieving a tuple ti into optimal plans achieving tuple
ti+1 can be private. Note that k-CMAPP-BFWS does not send states generated by private actions to other agents. In the
following theorem, the novelty w(s) of a state s is computed with respect to the search space of the agent α that generated
s. The visited search space of α includes states that α generates as well as all the states received from other agents.

Theorem 1. Given k ∈N , k-CMAPP-BFWS using f = 〈w, h1, . . . , hm〉 is complete for every problem � with width w(�) ≤ k when
w = w(g) and every action cost is non-negative.

Proof. By Definition 6, if a CMAPP planning problem � has width w(�) = k, it implies that there is an optimal plan
trajectory πopt = 〈s0, . . . , sn〉 where every state si along the plan trajectory has novelty w(si) ≤ k, inducing a sequence of
tuples 〈t0 ⊆ s0, . . . , tn ⊆ sn〉 that complies with the conditions in Definition 6, i.e., t0 ⊆ s0, |ti | ≤ w(�), all optimal plans
achieving ti can become optimal plans achieving ti+1 by adding a single action, and all optimal plans achieving tn are also
optimal plans achieving G .

By Definition 5, if w = w(g) , then it follows that there is at least one tuple t ∈ si , where |t| ≤ k, such that no other state s′
can be generated with t ∈ s′ and g(s′) < g(si). We need to show that k-CMAPP-BFWS is complete, when k = w(�), novelty
is computed with w(g) , and negative action costs are not allowed. Therefore, we show by induction that k-CMAPP-BFWS
with k = w(�), w = w(g) is guaranteed to generate each state si in πopt , where all w(si) ≤ w(�), no matter the order in
which states are generated, assuming negative action costs are not allowed.

The base case for i = 0 is trivially true, as s0 is the initial state, and a tuple t0 ⊆ s0 trivially satisfies |t0| ≤ k, and no other
state in the search tree generated by k-CMAPP-BFWS can have a cheaper plan than the empty plan, given that g(s0) = 0
and negative cost actions are not allowed. Let us show that for i = 0, . . . , n − 1, if it holds true for step i, then this must also
be true for step i + 1. From the inductive hypothesis, it follows that k-CMAPP-BFWS generates a state si containing a tuple
ti , and no other state s′ exists with g(s′) < g(si) containing ti , which means that si achieves ti optimally with cost g(si), and
must be part of an optimal plan trajectory πopt . It also follows that the optimal plan trajectory πi = 〈s0, . . . , si〉 for ti must
be extendable with a single action into an optimal plan trajectory πi+1 = 〈s0, . . . , si, si+1〉 for ti+1, where |ti+1| ≤ k, resulting
in the state si+1 containing ti+1. Since si+1 is generated through an optimal plan, no other state s′ containing ti+1 can be
generated through a cheaper plan. By Definition 5, k-CMAPP-BFWS does not prune si+1, as the novelty w(g)(si+1) ≤ k. It
is possible that k-CMAPP-BFWS generates state s′ containing ti+1 before si+1 through a sub-optimal plan, but once si+1 is
generated, si+1 will be marked as novel and added to the open list because it achieves ti+1 optimally through a cheaper
plan.

State expansion order is determined breaking ties by a sequence of search heuristics h j , but the heuristics do not make
k-CMAPP-BFWS algorithm prune any state, even if h j = ∞, since h j cannot be proved to be safe, i.e., it may give an infinite
value even when the goal is reachable, as h j does not have access to the private actions of other agents.

When a state in an optimal plan has been generated by another agent and sent to other agents, the private facts are
encoded as a new fluent. Given Lemma 1, the novelty of such states is guaranteed to be lower than or equal to k, hence
they are not going to be pruned by k-CMAPP-BFWS. From the arguments above, it follows that k-CMAPP-BFWS generates
the sequence of states 〈s0, . . . , sn〉 of an optimal plan trajectory πopt , when the bound is k = w(�), the novelty function is
w = w(g) , and costs are positive real numbers, as w(g)(si) ≤ k, i = 0, . . . , n. �

The next theorem gives an upper bound of the number of states expanded by k-CMAPP-BFWS. Such an upper bound is
quantified by using the combination of a number of facts taken k at a time with repetitions, where k is the given novelty
threshold. We consider repetitions because we allow combinations to include a tuple of size smaller than k, when a fact is
repeated in the combination. The number of n elements taken at a time with k repetitions, also called k-combinations, is (n+k−1

k

)
.

Theorem 2. Let k be the maximum novelty allowed by k-CMAPP-BFWS, P pub be the set of public facts, and P pr
i be the set of private

facts of agent αi ∈ � such that the total number of facts P is P pub ∪αi∈� P pr
i . Let ni = ∑

αi∈�, j �=i

(|P pr
j |+k−1

k

)
be the number of

possible k-combinations with repetition of private facts that result in new identifiers, i.e., dummy fluents, that can be sent to agent αi .
k-CMAPP-BFWS using heuristic f terminates after expanding at most

1.
∑

αi∈�

(|P pub |+|P pr
i |+ni+k−1
k

)2
states if all action costs are 1,

2.
∑

αi∈�

(|P pub |+|P pr
i |+ni+k−1
k

)
states if all action costs are 0,

3.
∑

αi∈�

(|P pub |+|P pr
i |+ni+k−1
k

)2
× |A| states when no action has negative cost,

where |�| is the number of agents, and |A| is the total number of available actions for all agents.

Proof. Let f i = |P pub| + |P pr
i | + ni be the number of possible state facts for an agent αi of the CMAPP planning problem �.

We distinguish three cases.
10

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Table 1
Number of instances, and coverages of 1-CMAPP-BFWS and 2-CMAPP-BFWS guided by f = 〈w(g)〉 w.r.t. CMAPP-BFWS guided by f = 〈hFF〉 computed by
each agent using its own actions for problem instances with a single goal.

Domain #Instances 1-CMAPP-BFWS 2-CMAPP-BFWS hFF

Blocksworld 214 100.0% 100.0% 100.0%
Depot 155 85.81% 91.61% 100.0%
DriverLog 185 95.68% 100.0% 100.0%
Elevators 255 82.75% 66.27% 99.22%
Logistics 172 0.0% 93.6% 100.0%
Rovers 277 98.92% 100.0% 99.28%
Satellites 488 20.9% 98.36% 100.0%
Sokoban 61 54.1% 93.44% 98.36%
Taxi 95 90.53% 98.95% 98.95%
Wireless 160 51.88% 36.88% 58.75%
Woodworking 1084 98.89% 99.17% 97.05%
Zenotravel 258 99.22% 79.84% 100.0%

Overall 3404 77.59% 91.63% 96.94%

(1) When all action costs are 1, the longest path π an agent αi can expand has length πmax = (f i+k−1
k

)
. For π to be

expanded, every state s1, . . . , s|π | along the path needs to have novelty w(g)(si) ≤ k. Therefore, each state si either makes a
tuple t of size k true for the first time, or it achieves a tuple t with a lower g(si) < g(s′) than other previously generated
states s′ with t ∈ s′ . A path |π | > πmax cannot be expanded as the state sπmax+1 in the path has novelty w(g)(sπmax+1) > k.
For a path to reach length πmax , each state s1, . . . , sπmax must have added at most one new tuple or improved the g-value
of at most one tuple to pass the novelty pruning criteria w(g)(si) ≤ k. Since g grows monotonically, the g-value of a tuple
t cannot be improved more than once along the same path π . Once state sπmax is expanded in the path, all tuples have
been generated with smaller g-values. Given that the longest possible plan has length πmax , the g-value of a tuple can be
improved at most πmax times across different paths, therefore each tuple t can let πmax states to be expanded with novelty
w(g)(si) ≤ k. As the number of tuples is at most

(f i+k−1
k

)
, in total we can expand

(f i+k−1
k

) × πmax = (f i+k−1
k

)2
states. In the

worst case, each agent αi ∈ � can expand the state space independently, yielding the overall
∑

αi∈�

(|P pub |+|P pr
i |+ni+k−1
k

)2
.

(2) In case all action costs are zero, the g-value can never be improved once a tuple has been made true by a state.
Therefore each tuple t can let just one state to be expanded with novelty w(g)(si) ≤ k, and the total number of expanded

states is at most
∑

αi∈�

(|P pub |+|P pr
i |+ni+k−1
k

)
.

(3) If the cost function maps actions A to positive real numbers including zero, then each tuple t can be improved πmax

times with |At | actions, the number of actions with different cost that add tuple t , which in the worst case is |A|. Therefore

the total number of states that can be expanded is
∑

αi∈�

(|P pub |+|P pr
i |+ni+k−1
k

)2
× |A|. �

Consider now the version of algorithm k-CMAPP-BFWS without the state pruning (i.e., without line 20 in Algorithm 2).
We call such a version of the algorithm CMAPP-BFWS. Basically, in this version the notion of novelty is used only in the
definition of the search heuristic f to extract the best state from the open list.

Theorem 3. CMAPP-BFWS is complete.

Proof. CMAPP-BFWS does not prune the search space according to the novelty of search states. In CMAPP-BFWS, each
agent αi expands all the search states reachable from the problem initial state except the private states of agents different
from αi . This is the same set of search states expanded by MAFS. Since MAFS is a complete search algorithm [31], even
CMAPP-BFWS is complete. �
Theorem 4. Let m be the maximum novelty of a state expanded by CMAPP-BFWS when CMAPP-BFWS finds a plan and terminates.
The number of states expanded by CMAPP-BFWS is bounded by the worst-case time complexity of k-CMAPP-BFWS with k = m.

Proof. k-CMAPP-BFWS with k = m does not prune every state expanded by CMAPP-BFWS when m is the maximum
novelty of a state in the search tree of CMAPP-BFWS. Therefore, the search tree of CMAPP-BFWS has the same size as the
search tree of k-CMAPP-BFWS with k = m given by Theorem 2. �

Note that, if a problem is solved by 1-CMAPP-BFWS, this does not imply that the problem has width 1. Indeed, sub-
optimal solutions may be discovered with a novelty bound lower than the true width of the problem. Still, it provides
an estimate on how hard it is to solve a CMAPP planning problem. As shown in Table 1 also for the CMAPP setting,
for atomic goals all domains but Wireless generally have width lower than or equal to 2, since for all these domains the
coverage of 2-CMAPP-BFWS is quite high. For this analysis, we considered the domains from the distributed track of the first
11

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
international competition on distributed and multi-agent planning. For each instance with m goal propositions, we created m
instances with a single goal. The total number of instances is 3404. Then, we ran 1-CMAPP-BFWS and 2-CMAPP-BFWS over
each generated instance. The search heuristic used for 1-CMAPP-BFWS and 2-CMAPP-BFWS is very simple: the best state
in the open list is selected among those with the lowest novelty measure w(g) , breaking the ties with the accumulated cost
g . For each considered domain, Table 1 shows that the total number of generated instances, and the percentage of instances
solved with width equal to 1 and lower than or equal to 2. We considered action costs unitary. Therefore, by Theorem 2,
this table shows that 77.59% of the considered instances can be solved with a quadratic time O (n2) where n = |P | is the
number of propositions in the problem. These blind and bounded planners perform well with respect to a baseline goal-
directed heuristic search planner, CMAPP-BFWS guided by hFF [15] computed by each agent using only its own actions.
However, problems with multiple goals have in general a higher width. In the next section we explore how to deal with
multiple goals.

3.2.1. On the use of Novelty for heuristic estimates
In the context of CMAPP planning, the search heuristic computed using only the knowledge of one single agent can be

quite inaccurate. In this section we propose some new search heuristics for CMAPP planning that combine the measure of
the novelty of search states with the estimated distance to reach the problem goals. The goal distance is estimated using the
knowledge of a single agent. Our conjecture is that, in the CMAPP setting, width-based exploration in the form of novelty-
based preferences can provide a complement to goal-directed heuristic search, so that the search can be effectively guided
towards a goal state even if the goal-directed heuristics are inaccurate.

The computation and memory cost of determining that the novelty w of a state s is k is exponential in k, since all the
tuples of size up to k but one may need to be stored and processed. For efficiency, we restrict the computation of novelty
w(s) to only 3 levels, i.e., w(s) is limited to be equal to 1, 2, or greater than 2.

For our heuristic functions, we used the measure of novelty introduced by Lipovetzky and Geffner (2017) [21].

Definition 7 (Heuristic Cost Novelty). Given an arbitrary sequence of heuristic functions h1, . . . , hn , the novelty w(s′) of a
newly generated state s′ is k iff there is a tuple of k propositions and no tuple of smaller size, that is true in s but false in
every previously generated state s′ such that h1(s′) = h1(s), . . . , and hn(s′) = hn(s).

In the remainder of the paper, w(h1,...,hn) denotes the novelty measure w using functions h1, . . . , hn .
The first heuristic that we study is f1 = 〈w(hFF), hFF〉, where hFF denotes the goal-directed heuristic of the well-known

planner FF. The goal distance of an agent αi from a search state s is estimated as the number of actions of αi in a relaxed
plan constructed from s to achieve the problem goals. The plan is relaxed because it is a solution of a relaxed problem
in which the negative action effects are removed. Substantially, the best state s in open according to f1 is selected not
among those with the lowest estimated goal distance, but among those with the lowest novelty measure w(s) = w(hFF) , and
heuristic hFF is only used to break the ties. The same heuristic was proposed for classical planning surprisingly obtaining
good results [21]. A main difference with respect to classical planning is that in the context of CMAPP planning the distance
estimated to reach the problem goals can be much more inaccurate, because for an agent αi the relaxed plan is extracted
using only the actions of αi . When an agent evaluates the search states using only its own set of actions, it is possible that
at least one of the problem goals is evaluated as unreachable. In this case, the extraction of the relaxed plan fails, and the
estimated distance is evaluated as infinite. This is due to the agent not being able to solve the problem alone, needing to
cooperate with other agents.

We consider other types of information for the definition of the search heuristic, in order to overcome the problem of
the inaccuracy of the goal-directed heuristics computed using only the knowledge of a single agent. In the following, given a
search state s, G⊥ and Gu denote the number of goals that are false in s and the number of goals that are unreachable from
s, respectively. For an agent αi , the number of goals unreachable from s is estimated by constructing a relaxed planning-
graph (RPG) from s using only the actions of αi ; specifically, the goals that are not contained in the last level of this RPG
are considered unreachable.

Planner CMAPP-BFWS with heuristic function f2 = 〈w(G⊥,hFF), G⊥, hFF〉, denoted as CMAPP-BFWS(f2), selects the next
state s to expand among those in open with the lowest novelty measure w(s) = w(G⊥,hFF) , breaking ties according to the
number of goals that are false in s. Heuristic hFF is then used to break ties when there is more than one state in open with
the same lowest measure of novelty and the same lowest number of false goals.

Similarly, CMAPP-BFWS with heuristic function f3 = 〈w(Gu ,G⊥,hFF), Gu, G⊥, hFF〉 selects the next state s to expand among
those in open with the lowest novelty measure w(s) = w(Gu ,G⊥,hFF) , breaking ties according to the number of goals that are
unreachable from s. If there is more than one state in open with the same lowest measure of novelty and the same lowest
number of unreachable goals, ties are broken according to the number of goals false in s. Finally, heuristic hFF is used only
if there are still ties to break.

The drawback of hFF for CMAPP planning is that often the estimated goal distance from a search state s is infinite, even
though s is not a dead-end. As stated before, the reason for this is that from s the planning problem cannot be solved by
an agent alone. With the next proposed search heuristic, we study a method to overcome this problem, for which an agent
αi extracts a relaxed plan from s to the (sub)set of problem goals that are reachable from s. The estimated distance from s
to all the problem goals is the number of actions in the relaxed plan plus the number of problem goals unreachable from
12

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
s multiplied by a constant. In our experiments, such a constant is equal to the maximum number of levels in the RPGs
constructed so far. This variant of hFF is denoted as hP

FF . Essentially, the information about the unreachable goals is used to
refine the estimated goal distance. We report experiments with CMAPP-BFWS(f4), where function f4 is obtained from f3
using hP

FF in place of hFF as goal-directed component of the evaluation function.
Components Gu and hP

FF of heuristic f4 are computationally expensive, since for each expanded state Gu requires the
construction of a RPG, and hP

FF additionally requires the extraction of a relaxed plan from the RPG. The last two heuristics
that we study consider the tradeoff between the accuracy of the estimated goal-distance and its computational cost. For
this, the construction of the RPG and the extraction of the relaxed plan are not performed for each expanded state, but
only for the initial state of the planning problem and the search states incoming from other agents. The facts that are
preconditions of the actions in the relaxed plan are called relevant facts. Let s′ be the last incoming state in the way to
state s for which the relaxed plan was extracted. For evaluating the goal distance of state s, we consider the number #r of
relevant facts that have not been made true in the way from s′ to s. This measure is similar to that proposed by Lipovetzky
and Geffner (2017) [21] for classical planning. The difference with respect to classical planning is that a relaxed plan is
extracted for each incoming state, rather than for the states that decrement the number of achieved problem goals in
relation to their parent. This is needed as the relevant fluents are not sent among agents in order to avoid compromising
privacy. Planner CMAPP-BFWS(f5) with f5 = 〈w(G⊥,#r), G⊥, #r〉 considers counter #r in place of the more computationally
expensive components Gu and hP

FF .
The drawback of heuristic f5 is that, when the number of exchanged messages is high, it still requires the construction of

the RPG many times. The construction of the RPG is computationally much more expensive than extracting the relaxed plan
and, when such a construction is performed many times, it can become the bottleneck of the search algorithm. Thereby, we
propose another heuristic f6 which, for each agent αi , requires the construction of the RPG from only the initial state of
the problem. With the aim of maintaining the agents’ privacy, the RPG is still constructed using only the actions of a single
agent. Nevertheless, when the CMAPP-planning problem cannot be solved by an agent alone, the last level of the RPG does
not contain the problem goals. For this, the construction of the RPG from the initial state is special, and it is done in two
steps. The first step is the construction of the RPG from I . Then, in the second step, the facts p ∈ pre(a) of actions a ∈ Ai of
agent αi that are not additive effects of any action of αi and are not true in the last level of the RPG are made true in the
last level of the RPG. Finally, the construction of the RPG continues from the last level of the RPG constructed so far.

Consider a state s to be expanded. For heuristic f6, counter #r is defined as the number of relevant facts in the RPG
constructed from the problem initial state I that have not been made true in the state trajectory from I to s. In the following,
counter #r for f6 is denoted by #rI . The computation of #rI for f6 differs from that of #r for f5, because an agent αi alone
can reconstruct only the portion of trajectory from the last incoming state s′ to s; it cannot reconstruct the entire trajectory
from I to s′ . The trajectory from I to s′ can contain other actions of agent αi that should be taken into account in the
definition of the set of relevant facts that have not been made true by αi in the way from I to s. For this, the presence
of these actions of αi is estimated by solving a super relaxed planning problem, i.e., a planning problem with the same
initial state of the planning problem, the set of facts that are true in s′ as goals, and a set of actions obtained from the set
of actions of αi by ignoring the action preconditions that are unreachable from I , as well as negative action effects. The
algorithm for the extraction of the super-relaxed plan is similar to the one used by FF. The positive effects of the actions
in such a super-relaxed plan are facts that we estimate have been made true in the way from I to s′ . Therefore, for f6 we
define counter #rI as the number of relevant facts that have not been made true in the super-relaxed plan from I to s′ and
in the state trajectory from s′ to s.

3.2.2. On the use of Novelty for message transmission
A large amount of search states exchanged among agents may slow down the search for a solution of the CMAPP planning

problem, specially when the agents’ processes run on different network nodes. The notion of novelty can also be used to
reduce the number of search states exchanged among agents during the search phase. Therefore, each agent retains, i.e.,
does not send to other agents, the search states whose novelty value, called outgoing novelty, exceeds a given threshold. The
outgoing novelty is computed considering the public part of the search states previously transmitted to the other agents.

Definition 8. The outgoing novelty of a state s given m functions h1, . . . , hm , denoted as wout
(h1,...,hm)

(s), is k iff there is a
tuple (conjunction) of k propositions and no smaller tuple that is true in the public part of s and false in the public part of
all states s′ previously transmitted with the same function values, i.e., with hi(public(s′)) = hi(public(s)) for 1 ≤ i ≤ m. If no
such tuple exists, then wout

(h1,...,hm)
(s) = ∞.

Based on the outgoing novelty value, we define the notion of withheld state as follows.

Definition 9. The withheld states of an agent are the states that have not been sent to the other agents because their
outgoing novelty exceeds a given threshold.

In order to preserve the completeness of the algorithm, withheld states can be transmitted to the other agents under specific
conditions. To describe these conditions, it is necessary to introduce the notion of locally empty search.
13

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Definition 10. The search of an agent α is locally empty when the following conditions hold:

1. the open list of α is empty;
2. α has no other entry message to process;
3. α has at least one withheld state.

If condition 1 and 2 hold and condition 3 does not hold, then the search of α is empty.

An agent whose search phase is empty or locally empty is in a status called waiting. When an agent α is waiting, it can
send part of, or even all, its withheld states (if any) to the other agents in order to “enlarge” the search process of the other
agents, or it can ask the other agents to send their withheld states to it in order to resume its search process. In contrast,
α could wait that at least a given number of agents, indicated with num_waiting , are in the same condition before sending
its withheld states or asking the withheld states of the other agents. With this purpose, the agents communicate if their
own search is empty or locally empty to the others; when the number of waiting agents exceeds value num_waiting , the
agents transmit their withheld states.2 In particular, we distinguish three situations:

• num_waiting = 1, agents transmit/request their withheld states when at least one agent is waiting;
• num_waiting = half, agents transmit/request their withheld states when at least half the agents in the problem are

waiting;
• num_waiting = all, agents transmit/request their withheld states when all the agents in the problem are waiting.

When a condition for the transmission is met, one or more agents can decide to transmit their withheld states. We
considered three configurations, indicated with who_send, in order to define which agents send the withheld states:

• who_send = waiting , the waiting agents send their withheld states;
• who_send = not waiting , the not waiting agents send their withheld states;
• who_send = all, all the agents send their withheld states.

The rationale behind configuration who_send = not waiting is that the waiting agents are idle and need states from the
other agents to resume their search. On the other hand, with configuration who_send = waiting , the waiting agents can
take advantage of the period of inactivity to send their withheld states.

When the previous conditions are verified, the agents can send all their withheld states or only a portion of them.
Specifically, we considered four different configurations, indicated with num_withheld_states, that specify which states,
among the withheld ones, have to be sent when requested:

• num_withheld_states = none, no state is sent (in this case completeness is not guaranteed);
• num_withheld_states = 1, one state at the time is sent (the one with lowest heuristic value);
• num_withheld_states = group, all withheld states with the lowest heuristic value are sent;
• num_withheld_states = all, all withheld states are sent.

Finally, we study the theoretical properties of novelty-based message filtering for sound and complete CMAPP forward
search planners. Without loss of generality, we focus on CMAPP-BFWS, which is weakly privacy preserving: it does not
require sharing the public projection of public actions, and it sends messages containing only descriptions of states with the
private facts encrypted.

Theorem 5. CMAPP-BFWS with novelty messages filtering is sound and complete iff
num_withheld_states �= none.

Proof. By Theorem 2 we know that CMAPP-BFWS is complete. Novelty filtering can make CMAPP-BFWS incomplete if
upon termination it removed sent messages.
If num_withheld_states �= none, then eventually all public states are going to be sent. num_waiting and who_send only
change the order of the exchanged messages, and do not preclude that messages will be sent later in the search. Therefore,
CMAPP-BFWS is complete as long as num_withheld_states �= none. �

Following previous definitions of strong privacy [9], given a problem �, C P ub
� is the set of problems that share the same

public solution space as �, and hence it is the set of problems such that their public projection is equivalent, i.e., � and
�′ differ only in their private parts for every π ′ ∈ C P ub

� . Tožička et al. (2017b) [50] show that it is not possible for a MAP

2 The transmission of the message “empty search space” among the agents is necessary in order to allow the agents to terminate their search before the
timeout.
14

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
planner to be strong privacy preserving, complete and efficient at the same time. The next theorem gives certain conditions
under which CMAPP-BFWS is incomplete but strong privacy preserving for the problems in set C P ub

� , which share the same
public solution space as �.

Theorem 6. Let P pub be the set of public facts of a CMAPP problem �. When the following conditions hold, CMAPP-BFWS is incom-
plete but strong privacy preserving for the problems in C P ub

� , for any threshold k ∈ {1, .., |P pub|} used to withhold the messages:

1. num_withheld_states = none, namely pruning messages with outgoing novelty greater than threshold k;
2. no function hi is used for the definition of the outgoing novelty;
3. the heuristic functions used to guide the search are agnostic of the cost and private propositions of the agents.

Proof. We assume CMAPP-BFWS encrypts the private part of s and no information is leaked from the communication. By
Definition 8, for any value of outgoing novelty, a state s is sent iff no other state s′ with the same public projection has
been sent before. The number of sent messages depends only on the public part of the problem, as the private part is not
taken into account in the computation of outgoing novelty. Since any problem �′ ∈ C P ub

� shares the same public part of the
problem and the reachable public state space of �, the number of messages sent is equivalent for � and �′ . Therefore, the
search algorithm is strong privacy preserving. �

The state expansion order of CMAPP-BFWS is independent from the private part of the problem if the search is guided,
for example, by f = 〈w(#g), d〉, where w(#g) is the novelty over the public projection of the states using a goal count-
ing heuristic #g , breaking ties with the depth d of the public actions leading to the current state. CMAPP-BFWS with
num_withheld_states = none is incomplete if a state whose public projection has been sent before needs to be sent again
in order to find a solution. This version of CMAPP-BFWS can be made complete by using a strategy similar to that
proposed for secure-MAFS [9]. We call the strong-privacy preserving version of CMAPP-BFWS with f = 〈w(#g), d〉 and
num_withheld_states = none secure-CMAPP-BFWS.

When strong privacy cannot be preserved, reducing the number of exchanged messages may be a good strategy to
decrease the possibility that other agents can infer private information. This can be accomplished by filtering messages
according to the notion of novelty. Indeed, this filtering makes sure that messages with different state variable values are
sent first, before sending states with repeating values that can lead to information leakage.

4. A planning domain taxonomy based on the admitted form of confidentiality

In this section we classify CMAPP planning problems according to agents’ capability of distinguishing between different
instances of a problem, which differ only for the private parts of an agent, and we summarize the results in the form of a
planning domain taxonomy. For our analysis, we assume that all problem goals are public. We consider two different classes
of planning problems.

Definition 11. A class C of CMAPP planning problems is problem equivalent w.r.t. problem � for every agent but αi iff for
each �′ ∈ C the projection of �′ over the public and private facts of any agent other than αi is the same as for �, i.e.,
� = �′ or the difference between � and �′ consists of only private actions, private preconditions/effects, and private initial
facts of agent αi .

In the rest of the section, the largest class of CMAPP planning problems that is problem equivalent w.r.t. problem � for any
agent other than αi is denoted by CProb

�,αi
.

For instance, consider the CoDMAP version of the Blocksworld domain. For this domain agents are robot arms. The
public information in this domain consists in (a) which blocks are clear, (b) which blocks are on the table, and (c) whether
a block is on another block. The private information is whether an arm is empty or is holding a certain block. Consider two
problems � and �′ , and assume that, for both these problems, there are two agents α1 and α2, two blocks A and B, agent
α1 controls two arms, say Arm1 and Arm2, and � differ from �′ in the private initial fact of α1 that either Arm1 or Arm2
is holding a block. Let’s say that Arm1 is holding A in �, while Arm2 is holding A in �′ . Then, problem �′ is problem
equivalent w.r.t. � for agent α2, because the problem definition of �′ available to α2 is the same as for �.

For the next class of problems, we consider the forward search tree associated with an agent αi of a CMAPP planning
problem � as the tree containing all and only the following states: (a) the initial state, (b) the public states sent by agents
other than αi , (c) the goal and dead-end states as leaf nodes, and (d) for every state s but the goal and dead-end states in
the tree, the successor of s that are obtained by applying all actions of αi applicable to s. Basically, such a tree includes the
search states that can be possibly expanded by a forward-search state-based CMAPP algorithm. These states can be expanded
in any topological order; the usage of a specific resolution algorithm determines such an order.

Definition 12. A class C of CMAPP planning problems is forward-search-tree equivalent w.r.t. problem � for every agent but
αi iff for each �′ ∈ C the forward search tree of �′ associated with any agent other than αi is the same as for �.
15

Table 2
Guarantee of privacy for different types of algorithms and problems.

Algorithm
Problem

Limited confidentiality admitted Partial confidentiality admitted Complete confidentiality admitted

Weak privacy admitted Privacy leaked from problems and the algorithm Privacy leaked from problems and the algorithm Privacy leaked from the algorithm
Strong privacy admitted Privacy leaked from problems Privacy leaked from problems Privacy is kept

In the rest of the section, the largest class of CMAPP planning problems that is forward-search-tree equivalent w.r.t. problem
� for any agent other than αi is denoted by CTree

�,αi
.

Consider the previous example of the CoDMAP Blocksworld domain. The forward search trees of α1 for the problems �
and �′ defined above are in Fig. 1. The search states sent by agent α2 to α1 are the same for both the problems; they are
omitted in Fig. 1 for simplicity. All the states in the trees are public and the public part of all these states is the same. Since
the initial states of � and �′ is the same for α2, and the set of public messages sent by agent α1 to α2 is the same for
� and �′ , the forward search tree of α2 is the same for � and �′ . Thereby, problem �′ is forward-search-tree equivalent
w.r.t. � for α2. Consider now two other problems �′′ and �′′′ which differ from � in the number of the arms controlled
by agent α1. Let’s say that for �′′ and �′′′ α1 controls 1 and 3 arms, respectively. Like for �′ , both these problems differ
from � in their private initial facts (about the initial availability of the controlled arms), but in addition they contain a set
of private actions different from �. �′′′ is again forward-search-tree equivalent w.r.t. � for agent α2. This is not the case
for �′′ , because the forward search tree of agent α2 in �′′ does not contain the (public) state for which both blocks A and
B are not on the table (and α2 is not in possession of any block), while such a state is part of the forward search trees of
α2 for �.

Theorem 7. CTree
�,αi

⊆ CProb
�,αi

.

Proof. Since the initial state is public and goal states are also public (assuming that goals are public), it holds that the
initial state and the goal states are shared among agents; hence they are part of the forward search tree of each agent, and
hence CTree

�,αi
⊆ CProb

�,αi
. �

The following definition distinguishes three types of problems on the basis of further relations between CProb
�,αi

and CTree
�,αi

.

Definition 13. A CMAPP planning problem � admits

• limited confidentiality if, for each agent αi , |CTree
�,αi

| = 1;

• partial confidentiality if, for each agent αi , |CTree
�,αi

| > 1 and CTree
�,αi

⊂ CProb
�,αi

;

• complete confidentiality if, for each agent αi , |CTree
�,αi

| > 1 and CTree
�,αi

≡ CProb
�,αi

.

Given a problem � that admits limited confidentiality, during the planning phase any agent other than αi can distinguish
between � and any other problem �′ that differs from � in private parts of agent αi . Indeed, with |CTree

�,αi
| = 1, any change

in the private part of agent αi determines a change in the forward search tree of any agent other than αi . Thereby, the
resolution algorithm and/or the solution itself may explore the parts of the tree that have been changed. In this case, the
change in the private part of agent αi would reveal to other agents information about its own private knowledge. When �
admits partial confidentiality, an agent other than αi may have the chance to distinguish between � and at least another
problem �′ in the set of problems that differ from � in only private parts of agent αi , but there is at least another problem
�′′ in this set such that any agent other than αi cannot distinguish between � and �′′ . On the contrary, when � admits
complete confidentiality, any agent other than αi cannot distinguish between � and any other problem �′ that differs from
� in only private parts of agent αi .

Brafman proposes to distinguish algorithms for CMAPP problems depending on whether an agent can infer the private
knowledge of other agents [9]. As mentioned before, he defines an algorithm as weakly private if no agent communicates
a private fact (in the initial state, the goal, or any other intermediate state) to another agent during a run of the algorithm,
and if the only description of its own actions that it needs to communicate to another agent is their public projection. An
algorithm achieves weak privacy by just encrypting private facts. An algorithm is strongly privacy preserving if during the
run it does not reveal any information other than what can be derived from the public part of the input problem or the
solution.

It is worth noting that the amount of private information an agent can leak does not depend only on the nature of the
resolution algorithm used to solve the CMAPP planning problems, but also on the nature of the instance of the CMAPP
planning problem. More precisely, the definition provided by Brafman 2015 concerning strongly private search algorithms is
related to the only problems admitting complete confidentiality. Indeed, when the confidentiality admitted by the planning
domain is limited or partial, multiple runs of the resolution algorithm for problem instances in the domain that have
different private parts of agent αi might allow agents other than αi to leak an amount of private knowledge of αi , even if for
different planning domains the resolution algorithm admits strong privacy. On the contrary, let’s consider the confidentiality
A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
16

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883

Fig. 1. Search trees of agent α1 for two instances of Blocksworld with two agents α1 and α2 and two blocks A and B. α1 controls both Arm1 and Arm2.
The search states sent by agent α2 are omitted for simplicity. The private fact that an arm is either empty or holding a block is depicted in red, while
depicted in blue the public part of the search state is. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)
17

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
admitted by the planning domain as complete. If agent αi changes its own private knowledge, the forward search tree of
agents other than αi remains the same, and hence the behavior of any resolution algorithm would remain the same for
these agents. In this case, no further private knowledge of αi can be leaked by multiple runs of the resolution algorithm
with instances which differ from each other because of the private parts of αi . Table 2 provides a sketch of the privacy
kept/leaked for different problems and algorithms.

For the remainder of this section, we theoretically evaluate the form of confidentiality admitted by the twelve do-
mains proposed by Štolba et al. (2016b) [40] for the distributed track of the first international competition on distributed
and multi-agent planning (CoDMAP), and by the four domains MA-Blocksworld, MA-Blocksworld-Large, MA-Logistics, and
MA-Logistics-Large proposed by Maliah et al. (2017) [23]. The difference w.r.t. the CoDMAP domains Blocksworld and
Logistics is that for the domains of Maliah et al. (2017) [23] many private actions need to be executed between two con-
secutive public actions, and agents must choose among several paths for achieving goals. These twelve domains are used in
our experiments to evaluate the efficacy of the proposed procedures, one of which, secure-CMAPP-BFWS, strongly preserves
the agents’ privacy over the domains in our benchmark that admit complete confidentiality. One of the contribution of this
section is to identify such a set of domains.

Theorem 8. The problems of CoDMAP domain Blocksworld admit limited confidentiality, if each agent controls only one (robot) arm.
Otherwise, they admit partial confidentiality.

Proof. Assume that each agent αi controls exactly one arm. The only information that αi can keep private is whether the
arm controlled by αi is empty or is holding a certain block. There is no problem �′ with the same initial public facts
and private parts of any agent other than αi , such that �′ differs from � in whether the arm controlled by αi is empty
or is holding a certain block. It follows that |CProb

�,αi
| = 1, and since CTree

�,αi
⊆ CProb

�,αi
also |CTree

�,αi
| = 1 holds and hence these

Blocksworld problems only admit limited confidentiality.
Assume that each agent αi can control more than one arm, and consider two problems � and �′ with the same set

of blocks, the same initial arrangement of blocks, the same set of arms for any agent other than αi , and such that for �′
αi controls one arm more than for � and the additional arm is initially empty. Then, �′ ∈ CProb

�,αi
, but �′ /∈CTree

�,αi
if the total

number of arms is lower than the number of blocks. Indeed, the set of blocks that the arms can hold is larger in �′ than
in �, the set of blocks that at a certain time are holding is the complement of the set of blocks that at that time are either
on the table or on another block, and such a set of blocks is part of the public information. This can result in additional
states sent to agents other than αi , which are part of the forward search tree associated with these agents. Therefore, the
search trees associated with an agent other than αi for � and �′ can be different, and hence CTree

�,αi
�=CProb

�,αi
; thus, this class

of problems does not admit complete confidentiality. On the contrary, consider another problem �′′ with the same set of
blocks as �, the same set of arms such that the number of arms controlled by αi is two, say Arm1 and Arm2, and the
same initial arrangement of blocks except that a certain block is held by Arm1 in � while it is held by Arm2 in �′′ . Then
any agent other than αi cannot distinguish between � and �′′ . Fig. 1 illustrates such an example with two blocks A and
B. All the actions of Blocksworld are public, and hence all the search states in the figure are public as well. The blue color
indicates the public part of the search state. In this example, the blue part of the two depicted search tree of � and �′′ is
the same. Since {�, �′′} ⊆ CTree

�,αi
, then |CTree

�,αi
| > 1; given also that CTree

�,αi
�=CProb

�,αi
, we have that this class of problems admits

partial confidentiality. �
Although, in general the problems of the CoDMAP Blocksworld domain admit partial confidentiality, it is worth noting that,
for the Blocksworld problems used in the competition, each agent controls exactly one arm, and hence these problems
admit only a very limited form of confidentiality.

The other CoDMAP domains admitting limited confidentiality are Depot, Sokoban, Woodworking, Wireless, and Taxi. In
Depot, the agents are hoists, and the private information includes the driver who guides a truck, and whether a hoist is
available or is lifting a crate. Stacking crates by hoists in Depot is similar to stacking blocks by arms in Blocksworld. The
confidentiality admitted in Depot is the same as in Blocksworld when each agent controls only one hoist, and this is the
case for all the Depot problems of the competition. In Sokoban the agents are players, and the private information consists
in the location of players. When a player or a crate is at a location, such a location is not clear, and this is part of the
public information. If each agent controls only one player (this is the case for all the Sokoban problems of the competition),
then the confidentiality admitted by Sokoban is limited. In Woodworking, the agents are machines for wood processing
equipment, and the private information is the property of these machines. Machines with different properties make true
different public facts, and this limits the confidentiality of the Woodworking problems. In Wireless, the agents are network
nodes, and for this domain the energy of the node is the only private information. The level of the energy is modeled by
propositional fluents. There are three energy levels, and energy is consumed when the node generates new data or sends
a message. Energy cannot be produced. The confidentiality for the CoDMAP problems is limited because the number of
messages that can be transmitted is higher than the capability of transmission determined by the initial energy level of
network nodes, and the set of exchanged messages is public. Finally, in Taxi the agents are taxis and passengers. Taxis
have no private information, while the only private information for passengers is their final location (encoded by an initial
static private proposition). A different final location for a passenger implies that at some time the passenger is at different
18

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
locations, which is part of the set of public facts. States where passengers are at different locations are public, shared
among agents, and part of the forward search tree of each agent. This implies that |CTree

�,αi
| = 1, as the forward search trees

of problems with different private parts of αi include different public states.

Theorem 9. The problems in CoDMAP domain Elevators admit partial confidentiality.

Proof. In domain Elevators, the agents are elevators, and the public information concerns in whether or not a person is at
a “public floor”, i.e., a floor that is reachable by more than one elevator. The private information is the floor where each
elevator is located, the capacity of each elevator, the floors that are reachable by each elevator, and the initial floors for
persons that are initially in a “private floor”. Consider two planning problems � and �′ that have the same set of persons,
the same set of floors, and the same set of initial public and private facts for every agent other than αi . Then, �′ ∈ CProb

�,αi
.

We prove that �′ ∈ CTree
�,αi

if these two problems have the same set of elevators, and the set of floors that are reachable by
each elevator e in � is the same as in �′ . In this case, every floor where elevator e can be located is reachable from any
other possible floor for elevator e and, in spite of the capacity of the elevator, every person who is initially at a floor that is
private for elevator e can be moved at any other floor private for elevator e. Confidentiality is not always complete because,
e.g., the floors that are reachable by elevator e is a private information, and �′ /∈CTree

�,αi
if the set of (public) floors that are

reachable by each elevator e in � is not the same as in �′ . �
The other CoDMAP domains which admit partial confidentiality are DriverLog, Rovers, Satellites, MA-Blocksworld, and

MA-Blocksworld-Large. The agents of DriverLog are drivers and the private knowledge includes the position of drivers.
Confidentiality is partial for the CoDMAP problems of DriverLog because drivers can walk to more than one location, but
they cannot reach every location in the problem by walking, and reaching different locations allows to achieve different
public facts. The agents of Satellites are satellites, and the private information for this domain includes the properties of
instruments equipping satellites. The use of different instruments makes achievable different public facts. Confidentiality for
the CoDMAP problems is partial because satellites can be equipped by more than one instrument, each of which makes
achievable the same public facts. The agents of Rovers are rovers, and their private information concerns the waypoints
they can reach, their equipment, as well as the images and the rock samples they can take according to their equipment.
The confidentiality of the domain is partial because, for problems with a different private part, rovers may communicate
different data, the communicated data is public, and hence it is part of the forward-search tree. However, if each rover can
reach any waypoint and for each instrument there is at least one rover that is equipped with the instrument, then all the
data can be communicated, and problems with a different private part results in the same forward-search tree. The agents
of MA-Blocksworld and MA-Blocksworld-Large are stacks of blocks. Each agent controls one or more stacks. Confidentiality
for the problems of MA-Blocksworld and MA-Blocksworld-Large would be complete if all the agents had more than three
stacks so that the order in which blocks are stacked can be arbitrarily changed without moving blocks to public stacks.
However, for all the problems of MA-Blocksworld and MA-Blocksworld-Large there is at least one agent that control less
than three stacks.

Theorem 10. All the problems in domain Zenotravel admit complete confidentiality.

Proof. In Zenotravel, agents are aircrafts, and the public information concerns the initial locations of the persons who are
initially located at cities. The private information is the initial fuel level and locations of the aircrafts, and whether or not
a person is aboard an aircraft. Consider two planning problems � and �′ that have the same sets of persons, fuel levels,
cities, and the same set of initial public and private facts for each agent other than αi . Then, �′ ∈ CProb

�,αi
. We have that

�′ ∈ CTree
�,αi

. Indeed, each fuel level of an aircraft is reachable from every other fuel level by moving the aircraft to decrease
the fuel level or refueling the aircraft to increase the fuel level, and each location can be (directly) reached by an aircraft
from any other location. �
The other CoDMAP domains admitting complete confidentiality are Logistics, MA-Logistics, and MA-Logistics-Large. The
agents of Logistics are trucks and airplanes, and the private information in this domain concerns properties of the trucks
and airplanes, such as their location. Confidentiality in the Logistics problems of the competition is complete because an
airplane can reach each airport from every other airport, and a truck can reach every location inside a city area from every
other location inside the same area. The difference between domains MA-Logistics and MA-Logistics-Large w.r.t. Logistics
is that for these domains there is no airplane, trucks can move among adjacent cities in the same area, instead of among
locations in the same city (like in Logistics), and cities are private. Confidentiality for the problems of MA-Logistics and
MA-Logistics-Large is complete because a truck can move a package from every city to every other city in the same area.
Table 3 gives a summary in the form of a domain taxonomy, in which problems in the considered domains are classified in
terms of the admitted confidentiality.
19

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Table 3
Classification of benchmark domains according to the type of admitted confidentiality.

Limited Partial Complete

Blocksworld DriverLog Logistics
Depot Elevators Zenotravel
Sokoban Rovers MA-Logistics
Taxi Satellites MA-Logistics-Large
Wireless MA-Blocksworld
Woodworking MA-Blocksworld-Large

5. Experimental analysis

We present the results of a large experimental study that has the following four main goals: (a) comparing the per-
formance of CMAPP-BFWS and CMAPP-SIW with the state-of-the-art, (b) testing the effectiveness of CMAPP-BFWS using
the proposed novelty-based heuristics, (c) evaluating the usefulness of using the novelty for filtering messages, and (d)
evaluating the performance of CMAPP-BFWS in a heavily congested distributed network.

5.1. Experimental settings

We implemented the algorithms CMAPP-SIW and CMAPP-BFWS in C++, exploiting the Nanomsg open-source library to
share messages [43]. Each agent uses three threads, two of which send and receive messages, while the other one conducts
the search, so that the search is asynchronous w.r.t. the communication routines. The behavior of both CMAPP-SIW and
CMAPP-BFWS depends on the order with which the messages are received by an agent. Each time a run is repeated,
the agents’ threads can be differently scheduled by the operating system, and so the behavior of the algorithm can also be
different. Thereby, for each problem of our benchmark, we ran CMAPP-SIW and CMAPP-BFWS five times, and we measured
the performance metrics of the algorithm as median values over the five runs. When the algorithm exceeded the CPU-time
limit for more than two of the five runs, we consider the problem unsolved.

The benchmark used in our experiments includes the twelve CoDMAP domains [40], and the four domains MA-Blocksworld
(shortly, MA-BW), MA-Blocksworld-Large (MA-BW-L), MA-Logistics (MA-Log), MA-Logistics-Large (MA-Log-L), which were
derived by the work of Maliah et al. (2017) [23]. In the following, these latter four domains are abbreviated to MBS. For all
considered domains, the action costs were uniformly defined (i.e. all actions have the same cost).

All tests were run on an InfiniBand Cluster with 512 nodes and 128 Gbytes of RAM, where each node has two 8-cores
Intel Xeon E5-2630 v3 with 2.40 GHz. Given a CMAPP-planning problem, for each agent in the problem, we limited the
usage of the available resources to 3 CPU cores and 8 GB of RAM. Moreover, unless otherwise specified, the timeout was 5
minutes, after which the termination of all threads was forced.

In the rest of the paper, for each experiment the average values are computed over the problems solved by all the
compared approaches. Plan quality is measured in terms of total action cost; therefore, the lower the average plan quality,
the better the performance. Time and quality scores are measured by the score functions used for the seventh and ninth
International Planning Competitions, respectively. The score function is defined as follows. Concerning planning speed, if a
planner P solves a problem π within 1 second, it gets time score 1; if it fails to solve π , its score is 0; finally, given 300
seconds as CPU-time limit, if it solves π in t seconds, then its score is 1 − log(t)

log(300)
. Concerning plan quality, if P generates

a plan with l actions solving π , it gets quality score l∗
l , where l∗ is the number of actions in the shortest plan over those

computed by the compared planners for π . If P does not solve π , then it gets zero score (for both speed and quality). The
time (quality) score of planner P is the sum of the time (quality) scores assigned to P over all the considered test problems.
Higher values indicate better performance.

5.2. Performance of CMAPP-SIW and CMAPP-BFWS w.r.t. the state of the art

First, we compare CMAPP-SIW and CMAPP-BFWS w.r.t. other four existing approaches, PSM [48,49], the best performing
configuration of MAPLAN [11], GPPP [24,25], and DPP [26]. Planners PSM and MAPLAN were the best in the CoDMAP
competition, while GPPP and DPP were developed after the competition and show performance competitive with the state
of the art of distributed collaborative multi-agent privacy-preserving planning.

Table 4 shows the results of this comparison. CMAPP-SIW and CMAPP-BFWS solve all the problems for a number of
different domains. The limits of our approach are inherited from the width-based algorithms. Width-based algorithms, such
as IW, perform poorly for problems with high width. Variants such as CMAPP-SIW and CMAPP-BFWS try to mitigate the
high width of the problems by using serialization or heuristics. When the novelty is used for pruning, the algorithms may
become incomplete, while completeness is not compromised if novelty is used as a preference. In general, novelty helps if
the paths to the goal have low width, while problems that require reaching states with high width are more challenging.

The results in Table 4 also show that overall CMAPP-BFWS outperforms CMAPP-SIW and performs better than the
other compared planners. Remarkably, the only type of information that agents share in our approach is related to the
exchanged search states; on the contrary, e.g., MAPLAN also requires sharing the information for the computation of the
20

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Table 4
Number of problems solved by CMAPP-BFWS, CMAPP-SIW, MAPLAN PSM GPPP and DPP for the benchmark problems of CoDMAP and MBS domains.
The domains are grouped according with their level of confidentiality. The best performances are indicated in bold. “–” indicates domains with unsupported
features or where the planner crashes.

Domain CMAPP-BFWS CMAPP-SIW MAPLAN PSM GPPP DPP

Limited conf.
Blocksworld 20 20 20 20 20 16
Depot 18 8 12 17 18 15
Sokoban 14 4 17 16 12 16
Taxi 20 20 20 20 20 20
Wireless 2 0 4 0 3 2
Woodworking 12 1 15 18 10 12

Partial conf.
DriverLog 20 20 16 20 9 18
Elevators 20 20 8 12 20 20
MA-BW 19 6 – – – –
MA-BW-L 15 0 – – – –
Rovers 20 20 20 19 6 20
Satellites 20 20 20 13 20 20

Complete conf.
Logistics 20 18 18 18 20 20
MA-Log 20 20 – – – 19
MA-Log-L 20 17 – – – 19
Zenotravel 20 20 20 10 20 20

Overall (320) 280 214 190 184 178 237

Fig. 2. Coverage as a function of the time for CMAPP-BFWS using seven heuristics for the benchmark problems of the CoDMAP and MBS domains.

search heuristics. In this sense, besides solving a larger set of problems, CMAPP-BFWS exposes less private knowledge to
other agents.

Concerning the relative performance of the two best planners, CMAPP-BFWS and DPP, we observed that CMAPP-BFWS
is usually faster than DPP: the total time score of CMAPP-BFWS and DPP are 235.8 and 183.0, respectively, and
CMAPP-BFWS is on average more than one order of magnitude faster; on the other hand, CMAPP-BFWS computes plans
with quality worse than the plans of DPP: the quality score of CMAPP-BFWS and DPP are 215.0 and 225.0 respectively.
This is not surprising because the main component of the heuristic used by CMAPP-BFWS is substantially agnostic to the
goal distance and hence the search does not prefer to expand states over shorter paths to the goals. The complementarity
of CMAPP-BFWS and DPP indicates that these two planners can be fruitfully combined by running them together, in order
to quickly obtain a first solution from CMAPP-BFWS, and to obtain a better solution from DPP using extra time.

Note that, for every domain CMAPP-BFWS performs consistently better than or equal to CMAPP-SIW, regardless from
the level of confidentiality of the domains used for our analysis. Therefore, in the rest of the experimental analysis we focus
only on CMAPP-BFWS.
21

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883

r〉,
Table 5
Number of problems solved by CMAPP-BFWS with seven different heuristics for the benchmarks problems of the CoDMAP and MBS domains. The domains
are grouped according with their level of confidentiality. The best performance is in bold.

Domain hFF f1 f2 f3 f4 f5 f6

Limited confidentiality
Blocksworld 20 20 20 20 20 20 20
Depot 5 9 17 17 18 19 18
Sokoban 17 17 17 17 17 16 14
Taxi 16 17 20 20 20 20 20
Wireless 2 2 2 2 2 2 2
Woodworking 3 4 11 16 16 10 12

Partial confidentiality
DriverLog 19 20 20 20 20 20 20
Elevators 3 11 20 20 20 20 20
MA-BW 0 1 18 17 17 15 19
MA-BW-L 0 0 7 8 5 3 15
Rovers 15 19 20 20 20 20 20
Satellites 18 19 20 20 20 20 20

Complete confidentiality
Logistics 3 7 20 20 20 20 20
MA-Log 0 0 20 20 20 20 20
MA-Log-L 0 0 20 20 20 20 20
Zenotravel 20 20 20 20 20 20 20

Overall (320) 141 166 272 277 275 265 280

5.3. Performance of CMAPP-BFWS using novelty-based heuristics

The next experiment we conducted regards the usage of six novelty-based heuristics with algorithm CMAPP-BFWS: f1 =
〈w(hFF), hFF〉, f2 = 〈w(G⊥,hFF), G⊥, hFF〉, f3 = 〈w(Gu ,G⊥,hFF), Gu, G⊥, hFF〉, f4 = 〈w(Gu ,G⊥,hP

FF), Gu, G⊥, hP
FF〉, f5 = 〈w(G⊥,#r), G⊥, #

and f6 = 〈w(G⊥,#rI), G⊥, #rI 〉. Planner CMAPP-BFWS(hFF) is the baseline for this comparison, since it does not use novelty-
based preferences to guide the search. Table 5 shows the number of problems solved by CMAPP-BFWS using these
heuristics for the benchmark problems of CoDMAP and MBS. For five out of sixteen considered domains, CMAPP-BFWS
with hFF solves almost all the problems. These are the domains with problems that require less interaction among agents.

CMAPP-BFWS with f1 solves few more problems than hFF , and the domains where CMAPP-BFWS(f1) performs well
are the same as those with hFF . Surprisingly, CMAPP-BFWS with f2 solves many more problems than with hFF and f1.
The main difference between f2 and f1 is that the novelty-based exploration gives preference according to the number of
unachieved goals G⊥ . This clearly results in a positive interplay with the search algorithm. Interestingly, CMAPP-BFWS with
f2 solves many problems of the CoDMAP domains such as Logistics, Depot, and Woodworking, and several problems from
the MBS domains.

CMAPP-BFWS with f3 or f4 solves few more problems than with f2, showing that the information about the number
of unreachable goals from search states can be useful. Heuristic f5 is computationally less expensive than f3 and f4, but
the goal-directed component of f5 is less accurate. The results in Table 5 show that the tradeoff between computational
cost and accuracy of f5 does not pay off. CMAPP-BFWS with f5 is better than both with hFF and with f1, but it solves
fewer problems than with f2, f3, and f4. The reason of this behavior is that, when the number of incoming messages is
high, heuristic f5 is computationally still quite expensive.

The cheapest heuristic function to compute is f6, since the most expensive step in the computation of our heuristics
is the RPG construction, and f6 constructs the RPG only once. The results in Table 5 indicate that f6 is a good tradeoff
between accuracy and computational cost, since CMAPP-BFWS with f6 solves the largest set of problems. It solves several
problems even for domain MA-Blocksworld, which are unsolved by using any other heuristic function.

Fig. 2 shows the coverage of CMAPP-BFWS with the seven heuristic functions using a time limit ranging from 0 to 300
seconds. With a time limit of few seconds, the best heuristic is f4; with a time limit between 5 and 25 seconds, f3 is the
best; with a time limit between 25 seconds and 300 seconds, CMAPP-BFWS using heuristic f6 solves the largest set of
problems. Interestingly, the coverages obtained using a time limit of 150 seconds are substantially the same as using 300
seconds.

Table 6 shows the performance of CMAPP-BFWS with the proposed search heuristics in terms of average time, plan
length, number of exchanged messages, number of expanded states, time score, and quality score. CMAPP-BFWS with f4 is
on average the fastest, and the average numbers of exchanged messages and expanded states of f4 are the lowest, closely
followed by f2. Remarkably, the average number of exchanged messages and expanded states of CMAPP-BFWS with hFF

and f1 are about one order of magnitude greater than with the other heuristics.
22

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Table 6
Average time, plan length, thousands of exchanged messages, thousands of expanded states, time and quality scores of CMAPP-BFWS using seven heuristics
for the benchmarks of the CoDMAP and MBS domains.

Metric hFF f1 f2 f3 f4 f5 f6

Average CPU sec. 10.56 2.81 1.54 2.05 1.47 2.01 2.01
Average quality 61.91 56.49 62.0 61.38 62.31 101.14 69.16
Average k-Mess. 595.74 118.24 13.94 18.69 11.44 23.73 20.03
Average k-States 385.12 97.01 15.92 21.22 13.3 56.06 57.84

Time score 115.28 136.78 237.05 239.98 233.05 235.74 249.24
Quality score 119.55 142.76 224.07 226.62 214.95 187.4 222.44

Table 7
Performance of CMAPP-BFWS with num_waiting (abbreviated with nw) set to 1, half, and all in terms of average CPU
time, plan cost, thousands of sent messages, thousands of expanded states, number of solved problems, time and quality
scores.

Metric nw = all nw = 1 nw = half

Average CPU seconds 5.01 8.57 5.13
Average quality 185.89 185.79 184.75
Average k-Messages 75.32 543.43 76.69
Average k-States 144.26 308.11 144.22

Solved problems 259 279 280
Time score 211.07 220.8 224.44
Quality score 222.81 239.46 240.31

Table 8
Performance of CMAPP-BFWS with num_waiting = half, considering who_send (abbreviated with ws) set to wait ,
not wait , and all in terms of average CPU time, plan cost, thousands of sent messages, thousands of expanded states,
number of solved problems, time and quality scores.

Metric ws = wait ws = not wait ws = all

Average CPU seconds 5.59 6.04 5.5
Average quality 180.0 178.61 179.64
Average k-Messages 88.7 109.72 92.79
Average k-States 227.6 228.48 178.97

Solved problems 279 278 280
Time score 224.6 223.33 224.44
Quality score 238.03 238.58 240.39

5.4. Performance of CMAPP-BFWS filtering messages according to their novelty

In this section we evaluate the usefulness of filtering messages according to their novelty. We experimentally study differ-
ent conditions under which an agent can decide to transmit (a part of) its withheld states. We denote by wout the maximum
value of outgoing novelty a state s can have without being withheld. E.g., wout = 1 means that states with outgoing nov-
elty greater than one are withheld. In our experiments, unless differently specified, CMAPP-BFWS is used with wout = 1,
num_waiting = half, who_send = all, num_withheld_states = group, and heuristic function f = f6 = 〈w(G⊥,#rI), G⊥, #rI 〉.
The novelty measure w(G⊥,#rI) used for guiding the search is also used for filtering messages.

The first experiment we conducted concerns the decision about when an agent sends its withheld states. The results in
Table 7 show that num_waiting = all is the configuration that sends the fewest states, but it is also the one with the far
lowest coverage. This is probably due to the fact that requiring that all agents are in waiting state is a condition that reduces
the transmission of withheld states too much. With num_waiting = 1 many more states than with other configurations are
sent, as every agent sends its withheld states as soon as a single agent is waiting. With num_waiting = half, CMAPP-BFWS
obtains a good tradeoff. Considering all the measures of performance, num_waiting = half is the best configuration except
for the average number of sent messages and the average CPU time. However, for those measures the performance gap with
respect to the best configuration is quite limited.

In Table 8, we experimentally evaluate the performance of CMAPP-BFWS for different configurations of who_send, that
specifies which agents send withheld states. We can see that there is no big gap in the performance of these configurations.
For the other experiments in the paper, we use who_send = all because it performs slightly better in terms of coverage
and average time, while the average number of exchanged states is pretty close to the best value obtained for who_send =
waiting .

Table 9 shows the results for different configurations of num_withheld_states. With num_withheld_states = none, the
withheld states are not sent; the obtained performance is similar to the one obtained with num_waiting = all (in Table 7),
confirming that with this setting too few states are shared. By sending one state at a time, i.e., with num_withheld_states =
23

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Table 9
Performance of CMAPP-BFWS with num_waiting = half, who_send = all, and num_withheld_states (abbreviated with nws)
set to 1, all, and group in terms of average CPU time, plan cost, thousands of sent messages, thousands of expanded states,
number of solved problems, time and quality scores.

Metric nws=none nws=1 nws=all nws=group

Average CPU seconds 5.05 5.28 5.22 5.27
Average quality 186.13 186.11 185.27 186.22
Average k-Messages 79.31 83.74 85.55 82.72
Average k-States 146.67 180.31 151.72 153.73

Solved problems 258 272 275 280
Time score 209.85 219.02 221.48 224.44
Quality score 222.2 231.85 236.78 238.51

Table 10
Performance of CMAPP-BFWS without outgoing novelty filtering, with outgoing novelty wout equal to 1 and 2 in terms of
average CPU time, plan cost, thousands of sent messages, thousands of expanded states, number of solved problems, time
and quality scores.

Metric no filtering wout = 1 wout = 2

Average CPU seconds 16.32 6.14 9.69
Average quality 179.79 174.53 181.26
Average k-Messages 1214.2 100.6 547.18
Average k-States 480.18 236.85 323.74

Solved problems 277 280 285
Time score 201.3 224.44 215.73
Quality score 229.51 240.3 239.25

1, we have an average number of exchanged messages and an average execution time very close to the configuration
for which states are sent in group (num_withheld_states = group), although the average number of expanded states is
higher, and eight fewer problems are solved. Finally, as expected, with num_withheld_states = all we have the high-
est number of exchanged messages; probably more than necessary, given that the solved problems are fewer than with
num_withheld_states = group. This shows that increasing the number of sent messages has a computational cost, since the
average number of expanded states within the time limit used for our experiments is lower than with num_withheld_states
set to 1 or group.

In Table 10 we show the results of CMAPP-BFWS without filtering messages and using values of outgoing novelty wout

equal to 1 and 2. It is important to remark that the computation and memory cost of determining that the outgoing novelty
of a state is k has complexity exponential in k, since all the tuples of size up to k but one may be stored and considered. For
efficiency, we simplify the computation of the outgoing novelty to only 2 levels for wout = 1, and only 3 levels for wout = 2,
i.e., for wout = 2 the outgoing novelty of shared states can be equal to 1, 2, or greater than 2.

Configuration wout = 1 shows the best performance. The benefits of this configuration are:

• A slight improvement of the coverage w.r.t. CMAPP-BFWS without message filtering.
• The overall number of exchanged messages is drastically reduced (by 91%). As previously noted, this reduction improves

the privacy of planners.
• The average execution time is considerably reduced (by more than 50%).
• There is an increase in the plan quality. This is probably due to the fact that, by holding states with outgoing novelty

greater than 1, the priority is given to states that can be reached using a number of actions at most equal to the number
of propositions of the problem, i.e., states that in the worst case can be reached by plans shorter than with outgoing
novelty greater than 1.

Also CMAPP-BFWS with wout = 2 leads to a sharp decrease in the average CPU time compared to CMAPP-BFWS without
novelty filtering. However this is less than with wout = 1 for two reasons: (i) determining that the outgoing novelty for
wout = 1 is computationally much cheaper than for wout = 2; (ii) CMAPP-BFWS with wout = 1 sends fewer states, and
probably fewer superfluous states. Compared to CMAPP-BFWS without novelty filtering, the average number of messages
exchanged by CMAPP-BFWS with wout = 2 is lower, and the number of solved problem is higher (eight more than without
filtering messages).

Fig. 3 shows the percentage of sent messages w.r.t. the maximum total amount of messages generated for all the solved
problems. We can observe that, compared to CMAPP-BFWS without filtering of messages, for CPU-time limits greater than
170 seconds, the use of outgoing novelty equal to 1 reduces the number of exchanged messages by one order of magnitude.

Table 11 shows the performance of secure-CMAPP-BFWS, which corresponds to algorithm CMAPP-BFWS with f =
〈w(#g), d〉 and num_withheld_states = none. Procedure secure-CMAPP-BFWS with wout < ∞ withholds only the states with
the same public projection of a state that has been sent before; secure-CMAPP-BFWS with wout equal to 1 or 2 with-
24

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Fig. 3. Percentage of messages sent by CMAPP-BFWS without outgoing novelty filtering and by CMAPP-BFWS with outgoing novelty wout equal to 1 and
2 using different CPU-time limits (from 0 to 300 seconds).

Table 11
Performance of secure-CMAPP-BFWS with outgoing novelty filtering wout equal to 1, 2, and lower than ∞, in terms of
average CPU time, plan cost, thousands of sent messages, thousands of expanded states, number of solved problems, time
and quality scores.

Metric secure-CMAPP-BFWS with
wout = 1 wout = 2 wout < ∞

Average CPU seconds 5.79 10.42 15.55
Average quality 172.56 181.85 182.3
Average k-Messages 87.15 525.73 1036.47
Average k-States 184.23 304.79 412.9

Solved problems 278 283 277
Time score 223.2 211.57 202.84
Quality score 240.76 239.73 233.76

holds further states. Such a procedure substantially implements the “secure check” proposed by Brafman (2015) [9] for the
exchanged messages. It is incomplete but strong privacy-preserving over domains with complete confidentiality, because
the heuristic function f is independent from the private parts of the problem and the procedure does not send states
whose public projection has been sent before (no withheld state is sent since num_withheld_states = none). As pointed up
in Section 4, the domains in our benchmark for which the privacy can be strongly preserved by secure-CMAPP-BFWS are
Logistics, Zenotravel, MA-Logistics, and MA-Logistics-Large.

Comparing the results in Table 11 with those in Table 10, we can observe a very limited decrease in terms of coverage,
and an improvement in terms of transmitted messages and expanded states. Moreover, procedure secure-CMAPP-BFWS
performs very similar to the other considered version of CMAPP-BFWS, better than the planners in the state of the art, and
most importantly, differently from the other procedures and planners, it preserves the privacy strongly over the domains
with complete confidentiality.

5.5. Performance of CMAPP-BFWS in a heavily congested distributed network

In this section we present an experiment aimed at testing how CMAPP-BFWS with filtering of messages performs in
a heavily congested distributed network, as well as how sensitive is novelty filtering to randomised message ordering.
With this aim, we introduced a mechanism that, by means of an artificial delay applied on each exchanged message, can
simulate arbitrarily network delays during message transmission. These delays are distributed according to the gamma
distribution that is an approximation of the delays in the Internet network [42]. In particular, Table 12 considers 5 different
configurations of delays, with a standard deviation equal to 10% of the average delay.

For average delays smaller than 100 ms, in terms of coverage, we observe no significant performance gap w.r.t.
CMAPP-BFWS with no delay in the transmission of the messages. Instead, with very high delays, as expected the number
of solved problems decreases. However, even with an average delay of 10 seconds applied to each exchanged message, the
number of solved problems does not decrease to few units. The results in Table 13 show that all domains but Depot, Taxi,
MA-Log, and MA-Log-L do not require an intensive cooperation among agents. Only for these four domains, CMAPP-BFWS
25

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
Table 12
Performance of CMAPP-BFWS with no delay in the transmission of messages and with an average delay in the trans-
mission of each message equal to 10 ms, 100ms, 1s, and 10s, in terms of average CPU-time, plan cost, thousands of sent
messages, thousands of expanded states, number of solved problems, time and quality scores.

Metric no delay 10ms 100ms 1s 10s

Average CPU seconds 4.89 5.0 6.56 22.14 162.92
Average quality 153.13 148.28 141.27 138.52 136.26
Average k-Messages 17.94 23.45 19.11 57.82 651.98
Average k-States 62.14 71.59 92.76 365.39 1374.01

Solved problems 279 280 280 246 194
Time score 265.14 261.1 215.12 127.06 68.48
Quality score 234.17 241.08 252.83 218.65 167.95

Table 13
Coverage of CMAPP-BFWS with no delay in the transmission of the messages, with an average delay in the transmission
of each message equal to 10 ms, 100ms, 1s, and 10s. The domains are grouped according with their level of confidentiality.
The best performances are indicated in bold.

Domain no delay 10ms 100ms 1s 10s

Limited confidentiality
Blocksworld 20 20 20 20 19
Depot 18 19 19 9 5
Sokoban 14 13 14 12 12
Taxi 20 20 18 0 0
Wireless 2 2 2 1 0
Woodworking 11 12 13 13 11

Partial confidentiality
DriverLog 20 20 20 20 19
Elevators 20 20 20 20 19
MA-BW 19 19 19 19 19
MA-BW-L 15 15 15 15 15
Rovers 20 20 20 20 20
Satellites 20 20 20 20 20

Complete confidentiality
Logistics 20 20 20 18 15
MA-Log 20 20 20 20 0
MA-Log-L 20 20 20 20 0
Zenotravel 20 20 20 19 20

with no delay, or small average delay, solves all or almost all the problems; while CMAPP-BFWS using 10 seconds as
average delay solves no problem or very few problems.

Furthermore, when the delay increases, we can observe a significant increase of the execution time. The required CPU
time varies from a matter of seconds for CMAPP-BFWS without delay, to hundreds of seconds for the highest average delay
considered in our experiment. The higher number of expended states when the average delay is high is probably due to the
fact that, in this case, the agents can spend more time for the state expansion. Moreover, concerning the plan quality score,
the best value is found with an average delay equal to 100ms; the quality score obtained with 10 seconds as average delay
is drastically lower, showing that without cooperation among agents the plan cost becomes high.

6. Related work

The use of width-based search for CMAPP planning has already been investigated. In particular, IW search was used
for solving a classical planning problem obtained from the compilation of a CMAPP-planning problem [28]. However, this
previous work applies to centralized CMAPP planning, while our work investigates width-based search in the context of the
distributed CMAPP-planning problem.

MAFS [29–31] is a CMAPP-planning algorithm similar to ours. As discussed before, MAFS is a distributed best-first search
that for each agent considers a separate search space. MAFSB is an enhancement of MAFS that uses a form of backward
messages to reduce the number of search states shared by the agents [22]. In contrast, using width-based search techniques,
the number of exchanged states can be limited by pruning the states that have a novelty greater than a given bound.

The work by Torreño et al. on distributed A* for partial-order CMAPP planning has the same motivations on preserving
the agents’ privacy as our work [44–47]. Differently from this approach, our CMAPP-planning algorithm searches in the
space of world states, rather than in the space of partial plans, and it exchanges states among agents rather than partial
plans. Another planner that conducts the search in a state space different from ours is PSM [48,49]. It uses non-deterministic
finite state machines to represent sets of partial multi-agent plans, and exchanges their public projection among agents.
26

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
GPPP is a CMAPP planner that uses two different phases to find a solution plan [24,25]. First, the agents compute a joint
coordination scheme by solving a special relaxed problem using only the public actions of the problem. Then, each agent
searches for a local plan that achieves the preconditions of the public actions in the coordination scheme. If some agent
fails, the process is repeated by computing a new coordination scheme. Similarly, Maliah et al. proposed the DPP system
that uses the regression to build “virtual” preconditions that maintain the dependencies between the actions of the agents
[26]. In this work, each agent identifies when a (public) action is required before another (public) action, even through a
chain of other private actions, then creates a virtual effect in the required action that is consumed as precondition by the
second action: those may be exchanged and used by agents to more effectively produce high level plans. Our approach is
completely different, as it conducts a distributed best-first width search.

Concerning the related work on developing heuristics for CMAPP planning, Štolba and Komenda [35,36] proposed a
distributed algorithm that computes a complete relaxed planning graph and, subsequently, extracts a relaxed plan from
the distributed relaxed planning graph. When computing the heuristic function, in the worst case every agent is involved,
and this can make the computation slow because of a potentially very heavy communication overhead. Further research
has been focusing on avoiding too much (costly) communication among the agents. The most promising heuristics in this
scope are “potential heuristics” [33,38]. Moreover, Štolba and Komenda developed MADLA [39], a CMAPP planner which
exploits a multi-heuristic search which combines the use of a local and a distributed heuristic. Similarly, Torreño et al. [47]
showed that the alternate use of two different heuristics, one of which is computed using the information of a single agent
while the other one is computed using the global information, can pay off the communication cost. Differently from these
techniques, the heuristics presented in Section 3.2 combine the novelty measure of the search states with an estimate of the
cost required to achieve the problem goals, which is computed using the information of a single agent. Such an estimate is
more inaccurate but computationally much cheaper than distributed heuristics.

MAPLAN [11] translates a CMAPP planning problem encoded by the MA-STRIPS language into its corresponding (dis-
tributed) SAS+ representation, and exploits four heuristics based on variants of the LM-cut heuristic [6] and the Fast-Forward
(FF) heuristic [37]. The computation of these heuristics is done either by a single agent using the public projection of public
actions or is distributed among agents. Other search heuristics are proposed in [26,32,46]. They are landmarks-based heuris-
tics, and a heuristic that is based on the domain transition graph, augmented by a special node in the graph that represents
when the agent does not know the whole domain of a variable. In contrast, our heuristics strongly relies on the novelty
measure of the search states. Another important difference between our approach and the existing ones using heuristic
search for distributed CMAPP planning is that with our approach the public projection of public actions is not shared. We
conjecture that without sharing such a projection it is more difficult to infer the private preconditions and effects of the
public actions, since the agents ignore their existence. While sharing the public projection of public actions may be useful
to compute more accurate search heuristic, our approach is competitive with the state-of-the-art planners without using it.

Brafman [9] provided the notion of strongly private algorithm for a set of problems, under the condition that, for each
agent αi , each pair of problems in the set shares the same projection of the forward search tree obtained by removing
the private part of αi from each state in the tree. Moreover, Brafman showed that such a condition holds for the set of
problems in domains Logistics, Satellites, and Rovers. Štolba et al. [41] give a different notion of strongly private algorithm
that is based on the set of problems that share the same public projection as well as the same set of public solutions.
They call such a set of problems a public equivalence class. Our definitions of problem-equivalent class and forward-search-
tree-equivalent class are notions similar to the ones given by Brafman [9] and Štolba et al. [41]. We used them not only
to identify problems admitting complete confidentiality, but also to distinguish problems admitting limited confidentiality.
Finally, we used the introduced notions of problem classes to classify the planning domains of the CoDMAP competition,
which are a set of domains different from those considered by Brafman [9].

7. Conclusions

Goal-directed search is the main computational approach that has been investigated in classical planning and, subse-
quently, in CMAPP planning. In CMAPP planning, the goal of agents is to compute a joint plan that achieves mutual goals by
keeping certain information private to the individual agents. However, during the search each agent exchanges information
with others, and the exchanged information may be used to infer private knowledge [9].

In this paper, we have investigated the width-based search framework, originally developed for single-agent problems,
for effectively addressing the CMAPP planning problems. First we introduced a new search algorithm, CMAPP-SIW, which
solves the synchronization issues arising with the usage of Iterative Width search in CMAPP planning. Differently from the
existing approaches to collaborative multi-agent planning, CMAPP-SIW conducts a “blind” search, and hence it does not
require that agents exchange heuristic values. As a consequence, we claim that the agents’ privacy can be better preserved
by CMAPP-SIW than by other existing approaches to CMAPP planning.

Then we investigated width-based exploration in the form of novelty-based preferences. In classical planning, novelty-
based preferences provide an effective complement to goal-directed search. However, in order to preserve privacy, in the
CMAPP-planning setting, the private actions and the private part of the public actions are not shared, and this makes
the goal-directed heuristics less informed than in classical planning. Moreover, the encryption of the private knowledge
that the agents share during the search affects the measure of novelty. Nevertheless, we showed that the combination of
computationally cheap goal-directed heuristics and width-based search is effective also for CMAPP planning.
27

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
A theoretical study presented in this paper classifies the benchmark domains according with the type of admitted privacy.
This study shows that only domains Zenotravel and Logistics, together with the MA-Logistics version of this latter domain,
admit complete privacy; for these domains, any agent cannot distinguish between a pair of problems which differ in only
private parts of another agent.

Finally, we have experimentally demonstrated that the novelty-based techniques are very useful to significantly reduce
the number of messages transmitted among agents, better preserving their privacy levels, and improving performance. The
results of our experiments show the effectiveness of our techniques, especially of CMAPP-BFWS, improving the state of
the art in terms of problem coverage (solved benchmark problems). The secure-CMAPP-BFWS variant of CMAPP-BFWS
has turned out to be competitive with the state-of-the-art planners used in our experiments, while having the significant
advantage w.r.t. these planners that it preserves privacy more strongly. Moreover, we observed that our approach is robust
to delays in the transmission of messages that could occur in overloaded networks.

This opens up the possibility of increasing privacy preserving properties of CMAPP planning algorithms. For instance,
given the success of black-box planning for single agents [12], we plan to investigate the implications of fully protected
models given as black-boxes, and the usage of privacy-preserving set operations for secure multi-party computation [17].
Another direction for future work regards a classification of planning domains according with the chance of maintaining
the private information of agents confidential, considering structural properties of the domains such as the existence of
reversible actions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

We would like to thank the reviewers for their thoughtful comments and efforts towards improving the paper. This re-
search has been carried out with the support of resources from the National Collaborative Research Infrastructure Strategy
(NeCTAR), the Department of Excellence Fund 2018-2022 of the Department of Information Engineering of the Univer-
sity of Brescia, and by AIPlan4EU, a project funded by EU Horizon 2020 research and innovation programme under GA n.
101016442 (since 2021). The work of A. E. Gerevini was supported by the EU ICT-48 2020 project TAILOR (n. 952215) and
by the PRIN project RIPER (n. 20203FFYLK). Nir Lipovetzky has been partially funded by DST group.

References

[1] W. Bandres, B. Bonet, H. Geffner, Planning with pixels in (almost) real time, in: Proc. of AAAI, 2018.
[2] G. Bazzotti, A.E. Gerevini, N. Lipovetzky, F. Percassi, A. Saetti, I. Serina, Iterative width search for multi agent privacy-preserving planning, in: AI*IA

2018 - XVIIth International Conference of the Italian Association for Artificial Intelligence, Springer, 2018, pp. 431–444.
[3] A. Beimel, R.I. Brafman, Privacy preserving multi-agent planning with provable guarantees, arXiv:1810 .13354, 2018.
[4] A.L. Blum, M.L. Furst, Fast planning through planning graph analysis, Artif. Intell. 90 (1997) 281–300.
[5] B. Bonet, H. Geffner, Planning as heuristic search, Artif. Intell. 129 (2001) 5–33.
[6] B. Bonet, M. Helmert, Strengthening landmark heuristics via hitting sets, in: Proc. of ECAI, 2010.
[7] A. Bonisoli, A.E. Gerevini, A. Saetti, I. Serina, A privacy-preserving model for the multi-agent propositional planning problem, in: Proc. of ECAI, 2014.
[8] A. Bonisoli, A.E. Gerevini, A. Saetti, I. Serina, A privacy-preserving model for multi-agent propositional planning, J. Exp. Theor. Artif. Intell. 30 (2018)

481–504.
[9] R.I. Brafman, A privacy preserving algorithm for multi-agent planning and search, in: Proc. of IJCAI, 2015.

[10] R.I. Brafman, C. Domshlak, From one to many: planning for loosely coupled multi-agent systems, in: Proc. of ICAPS, 2008.
[11] D. Fišer, M. Štolba, A. Komenda, Maplan, in: Proc. of the ICAPS Competition on Distributed and Multi-Agent Planners, ICAPS, 2015.
[12] G. Frances, M. Ramírez, N. Lipovetzky, H. Geffner, Purely declarative action descriptions are overrated: classical planning with simulators, in: Proc. of

IJCAI, 2017.
[13] A.E. Gerevini, N. Lipovetzky, N. Peli, F. Percassi, A. Saetti, I. Serina, Novelty messages filtering for multi agent privacy-preserving planning, in: Sympo-

sium on Combinatorial Search, 2019.
[14] A.E. Gerevini, N. Lipovetzky, F. Percassi, A. Saetti, I. Serina, Best-first width search for multi agent privacy-preserving planning, in: Proc. of ICAPS, 2019.
[15] J. Hoffmann, B. Nebel, The FF planning system: fast plan generation through heuristic search, J. Artif. Intell. Res. 14 (2001) 253–302.
[16] M. Katz, N. Lipovetzky, D. Moshkovich, A. Tuisov, Adapting novelty to classical planning as heuristic search, in: Proc. of ICAPS, 2017.
[17] L. Kissner, D. Song, Privacy-preserving set operations, in: Annual International Cryptology Conference, Springer, 2005, pp. 241–257.
[18] R. van der Krogt, Quantifying privacy in multiagent planning, Multiagent Grid Syst. 5 (2009) 451–469.
[19] N. Lipovetzky, H. Geffner, Width and serialization of classical planning problems, in: Proc. of ECAI, 2012.
[20] N. Lipovetzky, H. Geffner, Width-based algorithms for classical planning: new results, in: Proc. of ECAI, 2014.
[21] N. Lipovetzky, H. Geffner, Best-first width search: exploration and exploitation in classical planning, in: Proc. of AAAI, 2017.
[22] S. Maliah, R.I. Brafman, G. Shani, Increased privacy with reduced communication and computation in multi-agent planning, in: Proc. of the ICAPS

Workshop on Distributed and Multi-Agent Planning, ICAPS, 2016.
[23] S. Maliah, R.I. Brafman, G. Shani, Increased privacy with reduced communication in multi-agent planning, in: Proc. of ICAPS, 2017.
28

http://refhub.elsevier.com/S0004-3702(23)00029-2/bib760AD6A0BB8AC360BB1997196A5EF034s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibDEEE1F5B976823B56C382EE0D7D568D3s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibDEEE1F5B976823B56C382EE0D7D568D3s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib6CB8BC43BD6A12F040413AF1CE128DFAs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibC13DF2ACDEB4A4DDBF51EDB00D3B444Bs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibCAC5D60265A111045936E2BF9281C22Cs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib8BE88879B972754AD1851E6FA3F1138Bs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib3A2343ACF28529B0BA91E329B4EEA754s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibBE313DDE72E8BB1857562900CFA915AAs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibBE313DDE72E8BB1857562900CFA915AAs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib6C281BFD588BAB5EDA4427DCAF36BD08s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib4D210D65BFF5BC1353C4BF928B819745s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib4805FE8409D30F0D1A92E959DC73276Ds1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib42BB7EE927695500893414C647E4DE08s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib42BB7EE927695500893414C647E4DE08s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib0946BB56943C9C3AB7D9075320FF3200s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib0946BB56943C9C3AB7D9075320FF3200s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibD660A6A7D736AA1A918BA7D9C2FEF3E0s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibDA69D47868CB467146EF17D503827A1As1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibE95864D29A9349625E5EAA5B1BC643C0s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib98889EE80945C1FA65F98D2432036725s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib104EE5FFAAB756701E38B7207FEF1503s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibB2F856EFFF999CCA2413FD98EBB1C69Bs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib190B8E65C357E9A230EC6B37C15622DCs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibDC1B15AD22DCAE4CD7D9C124DAC31A67s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib94500119B883B987A33538046FD3FD45s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib94500119B883B987A33538046FD3FD45s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib4B654E32BC3A9CC1FD1717A168FCB26As1

A.E. Gerevini, N. Lipovetzky, F. Percassi et al. Artificial Intelligence 318 (2023) 103883
[24] S. Maliah, G. Shani, R. Stern, Privacy preserving landmark detection, in: Proc. of ECAI, 2014.
[25] S. Maliah, G. Shani, R. Stern, Privacy preserving pattern databases, in: Proc. of the ICAPS Workshop on Distributed and Multi-Agent Planning, ICAPS,

2015.
[26] S. Maliah, G. Shani, R. Stern, Stronger privacy preserving projections for multi-agent planning, in: Proc. of ICAPS, 2016.
[27] S. Maliah, R. Stern, G. Shani, Privacy preserving LAMA, in: Proc. of the ICAPS Workshop on Distributed and Multi-Agent Planning, ICAPS, 2016.
[28] C. Muise, N. Lipovetzky, M. Ramirez, MAP-LAPKT: omnipotent multi-agent planning via compilation to classical planning, in: Proc. of ICAPS Competition

on Distributed and Multi-Agent Planning, ICAPS, 2015.
[29] R. Nissim, R.I. Brafman, Multi-agent A* for parallel and distributed systems, in: Proc. of the ICAPS Workshop on Heuristics and Search for Domain-

independent Planning, ICAPS, 2012.
[30] R. Nissim, R.I. Brafman, Cost-optimal planning by self-interested agents, in: Proc. of the ICAPS Workshop on Distributed and Multi-Agent Planning,

ICAPS, 2013.
[31] R. Nissim, R.I. Brafman, Distributed heuristic forward search for multi-agent planning, J. Artif. Intell. Res. 51 (2014) 293–332.
[32] M. Štolba, D. Fišer, A. Komenda, Admissible landmark heuristic for multi-agent planning, in: Proc. of ICAPS, 2015.
[33] M. Štolba, D. Fišer, A. Komenda, Potential heuristics for multi-agent planning, in: Proc. of ICAPS, 2016.
[34] M. Stolba, D. Fiser, A. Komenda, Privacy leakage of search-based multi-agent planning algorithms, in: Proc. of ICAPS, 2019.
[35] M. Štolba, A. Komenda, Fast-forward heuristic for multiagent planning, in: Proc. of the ICAPS Workshop on Distributed and Multi-Agent Planning,

ICAPS, 2013.
[36] M. Štolba, A. Komenda, Relaxation heuristics for multiagent planning, in: Proc. of ICAPS, 2014.
[37] M. Stolba, A. Komenda, Relaxation heuristics for multiagent planning, in: S.A. Chien, M.B. Do, A. Fern, W. Ruml (Eds.), Proc. of ICAPS, 2014.
[38] M. Štolba, A. Komenda, Computing multi-agent heuristics additively, in: Proceedings of the ICAPS Workshop on Distributed and Multi-Agent Planning,

ICAPS, 2016.
[39] M. Štolba, A. Komenda, The MADLA planner: multi-agent planning by combination of distributed and local heuristic search, Artif. Intell. 252 (2017)

175–210.
[40] M. Štolba, A. Komenda, D.L. Kovacs, Competition of distributed and multiagent planners (CODMAP), in: Proc. of AAAI, 2016.
[41] M. Štolba, J. Tožička, A. Komenda, The limits of strong privacy preserving multi-agent planning, in: Proc. of the ICAPS Competition on Distributed and

Multi-Agent Planners, ICAPS, 2015.
[42] A.M. Sukhov, N.Y. Kuznetsova, What type of distribution for packet delay in a global network should be used in the control theory?, arXiv:0907.4468,

2009.
[43] M. Sustrik, Nanomsg, http://nanomsg .org/, 2016.
[44] A. Torreño, E. Onaindia, Ó. Sapena, An approach to multi-agent planning with incomplete information, in: Proc. of ECAI, 2012.
[45] A. Torreño, E. Onaindia, Ó. Sapena, Fmap: a heuristic approach to cooperative multi-agent planning, in: Proc. of the ICAPS Workshop on Distributed

and Multi-Agent Planning, ICAPS, 2013.
[46] A. Torreño, E. Onaindia, Ó. Sapena, Fmap: distributed cooperative multi-agent planning, Appl. Intell. 41 (2014) 606–626.
[47] A. Torreño, Ó. Sapena, E. Onaindia, Global heuristics for distributed cooperative multi-agent planning, in: Proc. of ICAPS, 2015.
[48] J. Tožička, J. Jakubuv, A. Komenda, Generating multi-agent plans by distributed intersection of finite state machines, in: Proc. of ECAI, 2014.
[49] J. Tožička, J. Jakubuv, A. Komenda, Psm-based planners description for codmap 2015 competition, in: Proc. of ICAPS, 2017.
[50] J. Tožička, M. Štolba, A. Komenda, The limits of strong privacy preserving multi-agent planning, in: Proc. of ICAPS, 2017.
29

http://refhub.elsevier.com/S0004-3702(23)00029-2/bibB4D59296DF1FDCF32E5666F70E29D5C5s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib2D4FAB9DE1871096DCB7ED4F2B22F67Ds1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib2D4FAB9DE1871096DCB7ED4F2B22F67Ds1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib8874BEA6CF5DD98826AE189EA8BFA958s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibF33FB47675EC05962D4BB0F5A42F86D7s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibB9893D81CABF4FDE6413537C86608E86s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibB9893D81CABF4FDE6413537C86608E86s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibAF95559C411202C3B652950A977BFCD4s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibAF95559C411202C3B652950A977BFCD4s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibF0165B0DBBA06AA40E5A0231EEBC0A94s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibF0165B0DBBA06AA40E5A0231EEBC0A94s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibA933818F32EB790B94EDEAA5CA033AF4s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibBEA05205999FE428B3422C0E97C49B1Cs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib8D549814FC8650A856923A503BAD2371s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibBC66A38CEBC71716A753131D10121E5Cs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibD9CBAAA310B33E1D56C3527C7F32679As1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibD9CBAAA310B33E1D56C3527C7F32679As1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib27A27DEEAD5A14096833940A5C4ECA79s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib3D0081ECCFAE8CDDEFAE3B3D9AF8759Es1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibE3329822DDCEAB4B7ACFEA46ACB1EE71s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibE3329822DDCEAB4B7ACFEA46ACB1EE71s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibC89BACE922661AF98C6B6EA3A43F0BB1s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibC89BACE922661AF98C6B6EA3A43F0BB1s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib00AD0ADBE174406DA471CA509E5406FDs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibAC193C3A2F05B2623B8B285E663EFF86s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibAC193C3A2F05B2623B8B285E663EFF86s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib46797510586B0E6957343AD31DD0E4AFs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib46797510586B0E6957343AD31DD0E4AFs1
http://nanomsg.org/
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib926D1A0C12C2658B77B58FE24F51F454s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib505AA7AEA8B33DC47C62B7ADAC1527A4s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib505AA7AEA8B33DC47C62B7ADAC1527A4s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib0071BEC2F9C3DEF6F0DE9661B70D18BFs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibBAB8CD20782501106F995B4ACBA7BE09s1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibA3808000B57B8060969F479708C1569Bs1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bib5097268C917BFBCE8B8792F693215B4Es1
http://refhub.elsevier.com/S0004-3702(23)00029-2/bibFBE8EB6AB94EB69B411CF91EF9F98620s1

	Width-based search for multi agent privacy-preserving planning
	1 Introduction
	2 Background
	2.1 MA-STRIPS planning
	2.2 Agents’ privacy
	2.3 Width-based search for classical planning

	3 Width-based search for CMAPP planning
	3.1 Serialized IW for CMAPP planning
	3.2 Best-first width-based search for CMAPP planning
	3.2.1 On the use of Novelty for heuristic estimates
	3.2.2 On the use of Novelty for message transmission

	4 A planning domain taxonomy based on the admitted form of confidentiality
	5 Experimental analysis
	5.1 Experimental settings
	5.2 Performance of CMAPP-SIW and CMAPP-BFWS w.r.t. the state of the art
	5.3 Performance of CMAPP-BFWS using novelty-based heuristics
	5.4 Performance of CMAPP-BFWS filtering messages according to their novelty
	5.5 Performance of CMAPP-BFWS in a heavily congested distributed network

	6 Related work
	7 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

