Interaction between soot and stored NO_x during operation of LNT catalysts

N. Artioli, R. Matarrese, L. Castoldi, L. Lietti*, P. Forzatti Dipartimento di Energia, Laboratory of Catalysis and Catalytic Processes and NEMAS, Centre of Excellence, Politecnico di Milano, P.zza L. da Vinci 32, 20133, Milano, Italy *luca.lietti@polimi.it

Introduction

Diesel-equipped vehicles are considered as one of the primary sources of NOx and particulate (soot) emissions in industrialized countries. Accordingly, in the transport sector remarkable research efforts are being made to find viable solutions to limit their emission.

Recently the potential use of LNT catalyst in the simultaneous removal of soot and NO_x has been proposed according to the DPNR (Diesel Particulate-NO_x Reduction) concept [1].

In previous works of our group the potentiality of both Ba- and K-based LNT catalysts in the simultaneous removal of soot and NOx has been investigated. It has been shown that during the lean phase soot oxidation occurs by NO₂ (formed upon NO oxidation), while NO_x are being stored on the catalyst surface [2,3]. More recently it has also been shown that NO_x species stored onto the trapping component of the catalyst may participate in the combustion of soot via the release of NO_x upon nitrate decomposition and/or by directly reacting with soot according to a surface reaction [4].

Aim of this work is to provide new insights on the interplay existing between soot combustion and NO_x storage, and in particular on the interactions between soot and the stored NO_x . The investigation has been carried out over PtBa/Al₂O₃ and PtK/Al₂O₃ catalysts and over the corresponding Pt-free binary samples to evaluate the role of Pt in the reaction.

Materials and Methods

Home made Ba/Al₂O₃ (20/100 w/w), K/Al₂O₃ (5.4/100 w/w), PtBa/Al₂O₃ (1/20/100 w/w) and PtK/Al₂O₃ (1/5.4/100 w/w) catalysts have been prepared by impregnation of γ -alumina. The interaction between soot and the stored NO_x species has been investigated by temperature programmed methods under inert flow (TPD) or in the presence of oxygen (TPO) starting from soot/catalyst mixtures on which.NO_x have been predosed at 350°C.

Results and Discussion

The results of the TPD runs carried out over PtBa/Al₂O₃ catalyst are shown in Figure 1A (absence of soot) and 1B (presence of soot). In the case of the soot-free catalyst (Figure 1A), it clearly appears that most of the nitrate decomposition is observed above 350°C (the adsorption temperature) and the process is not complete at temperatures as high as 500°C, corresponding to the maximum heating temperature. In correspondence of NO_x and oxygen evolution an uptake of CO₂ is observed due to the formation of barium carbonates.

Worth to note that the overall amounts of evolved NO, O₂ and NO₂, estimated by integration of the TPD peaks, are well in line with the stoichiometry of the nitrates decomposition reactions: Ba(NO₃)₂ + CO₂ → BaCO₃ + 2 NO + 3/2 O₂

Ba(NO₃)₂ + CO₂ → BaCO₃ + 2 NO₂ + 1/2 O₂

A completely different situation is apparent in the presence of soot (Figure 1B). In this case the decomposition of nitrates is observed at lower temperature indicating that the presence of soot lowers the stability of stored nitrates. No

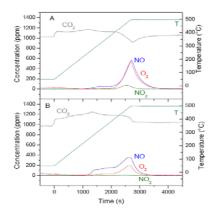


Figure 1. TPD run after NOx adsorption at

350°C over (A) Pt-Ba/Al₂O₃ catalyst; (B)

Pt-Ba/Al₂O₃-soot mixture

detectable amounts of NO₂ an lower amount of O₂ are observed. This suggests that in the presence of soot NO₂ and O₂ produced from the nitrates decomposition are readily consumed in the soot combustion. As matter of fact, in line with the occurrence of soot oxidation, no significant CO₂ uptake is observed.

Notably, below 350°C (i.e. before the onset of nitrate thermal decomposition) the concentration of the evolved products obeys the stoichiometry of nitrate reduction by soot

C + Ba(NO₃)₂ → BaCO₃ + 2 NO + $\frac{1}{2}$ O₂ This suggests the direct interaction between nitrate ad-species and soot which can be explained on the basis of the surface mobility of the adsorbed nitrates. The driving force for this process may be the presence of carbon reductant site, in analogy with the pathway proposed for

nitrate reduction during lean/rich operation of LNT catalysts [5]. Notably, the presence of Pt does not affect the soot-nitrate interaction, as pointed out by dedicated experiments carried out over Pt-free catalyst samples.

Significance

New insights on the interaction between soot and adsorbed nitrates is given. Adsorbed nitrates are able to oxidize soot below the temperature of their thermal decomposition, which implies the direct reaction of the nitrates ad-species with soot. This pathway parallels the oxidation of soot by NO_2 that occurs in the presence of gas-phase NO_2 , i.e. upon the NO_x storage during lean/rich operation of the LNT catalyst.

References

- 1. K. Nakatani, S. Hirota, S. Takeshima, K. Itoh, T. Tanaka, K. Dohmae, *SAE paper* (2002) N. 01-0957.
- L. Castoldi, R. Matarrese, L. Lietti, P. Forzatti, *Appl. Catal. B: Environmental* 64,25 (2006)
- 3. R. Matarrese, L. Castoldi. L. Lietti, P. Forzatti, *Topics in Catalysis* 5,2041 (2009)
- 4. L. Castoldi, N. Artioli, R. Matarrese, L. Lietti, P. Forzatti, Catalysis Today 57,384 (2010)
- 5. R.D. Clayton, M.P. Harold, V. Balakotaiah, C.Z. Wan, *Appl. Catal. B: Environmental* 90,66 (2009)