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The data on the proton form factors in the time-like region from the BaBar, BESIII

and CMD-3 Collaborations are examined to have coherent pieces of information

on the proton structure. Oscillations in the annihilation cross section, previously

observed, are determined with better precision. The moduli of the individual form

factors, determined for the first time, their ratio and the angular asymmetry of the

annihilation reaction e+e− → p̄p are discussed. Fiits of the available data on the

cross section, the effective form factor, and the form factor ratio, allow to propose

a description of the electric and magnetic time-like form factors from the threshold

up to the highest momenta.

I. INTRODUCTION

The understanding of the proton electromagnetic form factors (FFs), called electric

GE(q2) and magnetic GM(q2) Sachs FFs is the aim of theoretical and experimental stud-

ies since decades, in the frame of a unified view of the scattering and annihilation regions.
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Much progress has been done recently, due, on one side, to new experiments that collected

information with better precision and/or in a wider kinematical range and, on the other

side, to theoretical efforts that extend models and parametrizations built in the space-like

(SL) region to the time-like (TL) region (for a review, see Ref. [1]). We discuss here the

data on the e+e− → p̄p cross section, σe+e−→p̄p, from the BaBar, BESIII and CMD-3 Collab-

orations, obtained either by direct measurements of the annihilation process, or by means

of the so-called initial state radiation (ISR) technique, i.e., by exploiting the three-body

process e+e− → p̄pγ, where the photon is radiated by one of the initial leptons.

The emission of a real hard photon, leaving the radiating lepton in a “quasi-real” state,

allows extracting the cross section for the process e+e− → p̄p from the differential cross

section of the three-body process e+e− → p̄pγ. In such a kinematic domain, σe+e−→p̄p

factorizes out in the expression of the ISR differential cross section. In collinear kinematics,

the ISR cross section manifests a logarithmic enhancement as a consequence of the small

mass of the virtual electron that is almost on mass shell [2]. At fixed energy colliders the

ISR technique allows to extract values of the σe+e−→p̄p cross section at different transferred

momenta, i.e., different values of q2 (being q the four-momentum of the virtual photon in

the annihilation reaction e+e− → p̄p) by tuning the kinematics of the real photon. The cost

is a reduction of a factor of α = e2/(4π) ' 1/137 (the electromagnetic fine constant) of

the number of events, that, however, can be compensated by the high luminosity recently

achieved at the experimental facilities.

By means of the ISR technique and detecting the radiated hard photon, the BaBar

Collaboration obtained data on the e+e− → p̄p cross section with an error lower than 10%

in a wide energy region, from the production threshold
√
s = 2mp up to

√
s ' 6 GeV [3],

where s = q2 is the total energy squared in the center of mass (CM) frame of the p̄p-system

and mp is the proton mass. Recently, using the same technique but with undetected initial

photon, the BESIII Collaboration extracted 30 values of σe+e−→p̄p in the range (2 ≤
√
s ≤

3.8) GeV [4]. The ISR photon is undetected, i.e., it is mostly emitted at small polar angles

in a kinematical region uncovered by BESIII acceptance. This method was also used by the

BaBar Collaboration, where the hard condition of the photon was insured by high energy

of the colliding beams [5].

The individual determination of the moduli of the FFs in the TL region was done by

the BESIII Collaboration, using the energy scan method [6], with a precision comparable to
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that of the data obtained in the SL scattering region. The data in the SL region were mostly

collected by the JLab GEp Collaboration and published in a series of papers, summarized

in Refs. [7, 8]. The BESIII Collaboration has made the individual measurement of |GE| and

|GM |, separately, in the TL region for the first time ever.

In fact, before such a pioneering measurement, the few information on the FF moduli

in the TL region concerned a composed observable, namely their ratio R = |GE|/|GM |,

extracted from angular distribution measurements. Due to luminosity limitations, only an

’effective form factor’ could be extracted from the total cross section.

Let us stress that only the moduli of the FFs, which, in principle, have a non-vanishing

imaginary part in the TL region, can be extracted from a precise large-statistics measurement

of the angular distribution of the final-state nucleons in the e+e−-CM frame. The underlying

assumption is that the reaction occurs through the one-photon exchange mechanism [9]. No

measurement of the relative phase between GE and GM , accessible through polarization

observables [10], is available yet for protons and neutrons .

Focussed on the threshold region, the CMD-3 Collaboration [11] measured the cross

section for the reactions e+e− → p̄pγ and e+e− → n̄nγ. The scan of the nucleon-antinucleon

threshold energy region is done by measuring the beam energy at 0.1 MeV precision by back-

scattering laser light system. The energy spread due to radiation and energy resolution is

small enough to differentiate the proton and neutron thresholds.

The aim of the present work is to scrutinize the recent data on proton FFs in TL region,

through the reaction e+e− → p̄p(γ). Two characteristics, earlier predicted or highlighted,

can be confirmed or infirmed by the new data: the finding of regular oscillations of the cross

section [12] and the steeper q2-dependence of the electric FF (GE) compared to the magnetic

FF (GM), as found in the SL region [7, 13]. The suggestion of a similar q2-dependence in

space and TL regions is based on analytical properties of the amplitudes [14] and illustrated

in frame of a generalized definition of FFs [15].

Not all models developed in the SL region have the correct analytical properties to be

extended in the TL region, where FFs are of complex nature [16]. Models based on dispersion

relations [17] or vector dominance [18, 19] have attempted a global description in SL and

TL regions, for a review, see Refs. [1, 20]. In this paper we consider the new data and we

propose a global fit from threshold up to the maximum available transferred momentum.

The individual TL FFs are reproduced from a fit on the ratio R and of the effective FF,
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allowing to extrapolate their behavior at threshold, where R is constrained to unity.

II. THE e+e− → p̄p(γ) CROSS SECTION

As already pointed out, at fixed-energy e+e−-colliders, the e+e− → p̄p cross section, can

be extracted from the data on the differential cross section of the ISR process e+e− → p̄pγ,

where the photon is radiated by one of the initial electrons, over a range of p̄p-energies going

from the threshold,
√
sthr = 2mp, up to the full e+e− CM energy,

√
se+e− . Similar formalism

can be applied for the annihilation e+e− → n̄n.

In Ref. [3], based on the work of Ref. [21], the differential cross section for the radiative

process, integrated over the nucleon momenta, was factorized into a function which depends

on the photon kinematical variables multiplied by the annihilation cross section of interest,

for the process e+e− → p̄p:

d2σe+e−→p̄pγ
d
√
se+e− d cos(θγ)

=
2
√
s

se+e−
W (se+e− , Eγ, θγ)σe+e−→p̄p(s) , Eγ =

s− se+e−
2
√
se+e−

, (1)

where
√
s and

√
se+e− are the invariant masses of the p̄p and e+e− systems, Eγ and θγ are the

energy and the scattering angle of the photon in the e+e− CM frame, while W (se+e− , Eγ, θγ)

represents the so-called radiator function, it gives the probability that an initial photon with

energy Eγ is emitted at the angle θγ. In Eq. (1), the factorization of the photon variables

allows to single out the elementary cross section σe+e−→p̄p and extract the moduli of the TL

proton FFs. However, such a factorization does fail in describing the scattering process when

sin(θγ)→ 0, i.e., when the photon is radiated along the beam direction, because it neglects

terms depending on (m2
e/se+e−), where me is the electron mass, which become important at

small angles [2, 22]. The case of final state radiation (FSR), when the radiative emission

is from the final proton or anti-proton, was discussed in Ref. [23]. It has been found that

also the ISR-FSR interference may spoil the factorization hypothesis, if the detection is not

symmetric around the colliding beams axis.

The differential cross section for the annihilation process e+ + e− → p̄ + p in Born

approximation and in the CM frame is [9]

dσe+e−→p̄p
dΩ

(s, θ) =
α2β C(β)

4s

[(
1 + cos2(θ)

)
|GM(s)|2 +

1

τ
sin2(θ)|GE(s)|2

]
, (2)

where s is the total energy squared of the p̄p system, τ = s/(4m2
p) and β =

√
1− 1/τ is the
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final particle velocity. The function

C(β) =
y(β)

1− e−y(β)
, y(β) =

πα

β

√
1− β2 ,

represents the Coulomb correction that accounts for the p̄p final state interaction [24]. It

becomes effective (� 1) and divergent as β → 0. Such a divergency, that happens exactly

at the production threshold, i.e., at β = 0 or equivalently at s = 4m2
p, does cancel out

the phase-space factor β by making finite and different from zero the cross section at the

threshold.

The even cos θ-angular dependence of the cross section of Eq. (2), in particular the pres-

ence of the powers zero and two only, results directly from the Born approximation, i.e., from

the assumption of one-photon exchange and the invariance of the electromagnetic interaction

with respect to the parity transformation.

Following Ref. [14], in order to highlight the angular dependence, the Born differential

cross section given in Eq. (2) can be written as

dσe+e−→p̄p
dΩ

(s, θ) = σ0(s)
[
1 +A(s) cos2(θ)

]
, σ0(s) =

α2β C(β)

4s

(
|GM(s)|2 +

1

τ
|GE(s)|2

)
,

where σ0(s) is the differential cross section at θ = π/2, and the function A(s), as-

suming the one-photon exchange mechanism, depends on the ratio of the FFs moduli

R(s) = |GE(s)|/|GM(s)|, as

A(s) =
τ |GM(s)|2 − |GE(s)|2

τ |GM(s)|2 + |GE(s)|2
=
τ −R(s)2

τ +R(s)2
. (3)

It follows thatA(s) represents an observable which is sensitive to deviations of the differential

cross section from linearity in cos2(θ), in particular, a residual dependence on the scattering

angle θ, i.e., a non null derivative dA/dθ, would mean that, besides the one-photon exchange,

other intermediate states do contribute to the annihilation process e+e− ↔ p̄p. Similar

studies can be made for the scattering processes e−p→ e−p, in the SL region, by considering

the deviation from linearity of the so-called Rosenbluth plots, see Ref. [25] and references

therein.

The total cross section σe+e−→p̄p(s), obtained by integrating the differential cross section

given in Eq. (2) over the solid angle dΩ, namely

σe+e−→p̄p(s) =
4πα2β C(β)

3s

(
|GM(s)|2 +

1

2τ
|GE(s)|2

)
, (4)
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is proportional to an s-dependent combination of the moduli squared of the FFs, which is

commonly defined in terms of the effective FF, Fp(s), whose modulus squared is given by

the normalized combination :

|Fp(s)|2 =
2τ |GM(s)|2 + |GE(s)|2

2τ + 1
. (5)

Using such a unique effective FF is equivalent to consider the protons as a spin-zero particle

and hence, to assume |GE(s)| = |GM(s)| ≡ |Fp(s)| in Eq. (2). As a consequence of their

definitions in terms of the Dirac and Pauli FFs, F1(s) and F2(s) :

GE(s) = F1(s) + τ F2(s) , GM(s) = F1(s) + F2(s) ,

and the assumption of analyticity, the identity GE(s) = GM(s) is strictly valid only at the

production threshold s = 4m2
p, i.e., τ = 1. This phenomenon can be also interpreted as a

consequence of the isotropy of the annihilation process e+e− → p̄p just at the production

threshold, in the p̄p or e+e− CM frame. In fact, having no preferred direction, the amplitude

must be independent on the scattering angle, that implies A(4m2
p) = 0, see Eq. (3), i.e.,

GE(4m2
p) = GM(4m2

p).

Therefore, a measurement of the total cross section gives access to the effective FF. The

extraction of R and/or A requires in addition a precise measurement of the differential cross

section. Even further precision is required for a meaningful extraction of the individual FFs.

It is for this reason that it could be achieved only in the most recent experiments.

III. ANALYSIS OF THE RESULTS

A. Selected data sets

We consider four sets of data on the σe+e−→p̄p cross section.

1. The set from the BaBar Collaboration, labeled as “BaBar”, has three sub-sets:

• 38 points, obtained with the ISR technique and detecting the initial photon,

in the range (1.877 ≤
√
s ≤ 4.50) GeV, together with 6 points for the ratio

R = |GE|/|GM | in the range (1.877 ≤
√
s ≤ 3) GeV [3].
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• 13 points, obtained with the ISR technique and detecting the initial photon, in

the range (1.8765 ≤
√
s ≤ 1.9625) GeV [3]. These data with a larger granularity

overlap with the first four points of the above series, that, therefore, are omitted

in the analysis.

• 8 points, obtained with the ISR technique and not detecting the initial photon,

in the range (3 ≤
√
s ≤ 5.50) GeV [5].

2. Two sets from the BESIII Collaboration:

• 30 points, obtained with the ISR technique, in the range (2.0 ≤
√
s ≤

3.60) GeV [4], labeled as “BESIII-ISR”.

• 22 points, obtained with energy scan, together with 16 points for the ratio R,

and for the disentangled moduli |GE| and |GM |, in the range (2.0 ≤
√
s ≤

3.08) GeV [6], labeled as “BESIII-BS”.

3. A set from CMD-3 of 11 points, obtained with energy scan, in the range 2mp <
√
s ≤

2.006) GeV [11]. They belong to a sub-set of the published data, that includes only

those points lying above the production threshold
√
s = 2mp. Indeed, the complete set

covers an energy interval that, as a consequence of experimental limits of the energy

resolution, extends also below the physical threshold. This is the second measurement

of the σe+e−→p̄p cross section performed by the CMD-3 Collaboration and it improves

the first one [26] by enhancing the precision and extending the energy range. As

numbers are not given in the original paper, the points (red squares in Fig. 4 of Ref.

[11]) have been read from the figure. This set of data is labeled as CMD-3.

B. Confirmation of the oscillations

In Ref. [12] it was pointed out that the cross section of e+e− → p̄p measured by the

BaBar Collaboration [3] shows evidence of structures. These structures become regular

when plotted as a function the 3-momentum p of one of the two hadrons in the frame where

the other one is at rest and it is proportional to the relative velocity β =
√

1− 1/τ .

The BaBar data on the modulus of the proton effective FF [3], extracted from the e+e− →

p̄p total cross section by means of the formulae given in Eq. (4) and (5), in the range
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Table I: Fit parameters from Eq. (7)

Ref. Exp. N F0 m2
a (GeV2)

[3, 5, 12] BaBar 85 7.7 ± 0.3 15 ± 1

[3–6] BaBar,BESIII-ISR,BESIII-SC 107 8.9± 0.2 8.8± 0.6

(2mp <
√
s < 6) GeV, are well reproduced by the function [12]

F fit
p (s) = F3p(s) + Fosc(p(s)) . (6)

It is the sum of two contributions: a dominant three-pole (3p) F3p(s), and a damped oscil-

latory component Fosc(p(s)), whose expressions are

F3p(s) =
F0(

1 + s
m2

a

)(
1− s

m2
0

)2 , (7)

Fosc(p(s)) = Ae−Bp cos(Cp+D) . (8)

The explicit expressions of the variables p = s(p) and p = p(s), as well as of the functions

in terms of s and p are explicited in the Appendix.

The 3p function F3p(s), that describes the smooth behavior (ignoring small-scale os-

cillations) of the effective FF, is the product of a free monopole, depending on two free

parameters: the adimensional F0 and the mass ma, and the standard dipole with m2
0 = 0.71

GeV2.

The oscillatory contribution Fosc(p(s)), reproduces the GeV-scale oscillations in the p

variable. These irregularities are treated as small perturbations of the dominant smooth

behavior, i.e., |Fosc(p(s))| � |F3p(s)|. Moreover, due to their regular periodic nature, they

have a vanishing mean effect

〈Fosc(p(s))〉∆p −→
∆p≥1 GeV

0 .

Here we show that the recent data on FP from the BESIII Collaboration [4, 6] are

compatible with those from the BaBar Collaboration [3, 5] and confirm the previous findings

of Ref. [12]. This is proved by the consistency of the fit parameters, obtained by including the

data sets BESIII-ISR and BESIII-SC, besides the BaBar one, compared to the parameters

obtained by fitting the BaBar data only (Table I).

In Fig. 1a the cross section data are plotted as a function of p. The result of the fit

using Eq. (7) is then subtracted from the data. The obtained residue D (data minus F3p(s))
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Table II: Fit parameters from Eq. (8) and corresponding values of the normalized χ2.

Ref. Data set A±∆A B ±∆B C ±∆C D ±∆D χ2/n.d.f

(GeV−1) (GeV−1)

[3, 5, 12] BaBar 0.05± 0.01 0.59± 0.2 5.6± 0.1 0.2± 0.2 57/(55-4)= 1.1

[3–6] BESIII-ISR,SC,BaBar 0.07± 0.01 0.93± 0.09 5.9± 0.1 0.1± 0.2 227/(107-4)=2.2

0 1 2 3 p [GeV]

0.1

0.2

0.3

0.4

p
   

F

(a)
 

0 1 2 3 p [GeV]
0.05−

0

0.05

 D

(b)

 

Figure 1: (a): TL proton generalized FF as a function of p from the data of BaBar, Ref. [3]

(black circles), BESIII-ISR [4] (blue squares) and BESIII-SC [6] (green triangles), with the regular

background fit with Eq. (7) (black solid line ); (b): data after subtraction, fitted with Eq. (8)

(black solid line). For comparison the fit from Ref. [12] (red dashed lines) is also shown.

displayed in Fig. 1 shows a damped and periodic oscillatory behavior, that has been fitted

with the four-parameter function of Eq. (8). The values of the parameters are reported in

Tables I, II, together with those obtained by fitting the BaBar data only.

As shown in Fig. 1, even with a slightly worse normalized χ2, the new fit (black solid line)

follows closely the one on the only BaBar data [12] (red dashed line). Let us note that the

consistency of the data obtained with different methods, beam scan and ISR, rules out the

possibility that the oscillations could be an artefact of the ISR technique or of the photon

detection.
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IV. GLOBAL FIT OF THE DATA

The cross section or the effective FF data can also be directly fitted with the six-parameter

function F fit
p (p) of Eq. (6). The parameters are reported in Table III and the fit is illustrated

in Fig. 2 as a function of the relative momentum p (black solid line), together with the result

from Ref. [12].

Table III: Six-Parameters fit, Eq. (6), of the annihilation cross section σe+e−→p̄p as a function of

relative momentum p for the BaBar, BESIII and CMD-3 data.

Ref. F0

m2
a

A
B C

D
χ2

n.d.f.
(GeV2) (GeV−1) (GeV−1)

[3–6, 11] 9.7 ± 0.3 7.1 ± 0.5 0.073 ± 0.007 1.05 ± 0.07 5.51± 0.09 0.04 ± 0.1
278

118− 6
= 2.5

Extending the data sets does not change essentially the fit, worsening the χ2. The

inclusion of the CMD-3 data heightens the curve in the near threshold region. The blue

dash-dotted line corresponds to a constant fitted in the range 0.1 <
√
s < 0.9 GeV, that

gives the average value of the cross section σ̄ = 0.87± 0.02 nb. Such a value is close to the

cross section at the production threshold for a structureless fermions [27], as for instance

that of the reaction e+e− → µ+µ−.

Fig. 3 shows the data on the effective FF together with the curves that represent the

corresponding fit functions.

A. Analysis of the form factor ratio R

The comparison between the absolute values of the electric and magnetic FFs in the

TL and SL regions can be more easily done by considering their ratio. Exploiting the

Akhiezer-Rekalo recoil proton polarization method [28, 29], that represents a unique and

very powerful technique to extract directly the FF ratio GE/GM from the longitudinal

to transverse recoil proton polarization in the elastic scattering process ~e−p → e−~p, the

JLab-GEP Collaboration obtained very precise values of R in a wide region of transferred

momenta [7, 8]. Note that the individual FFs can not be determined by this method.

Therefore it is assumed that the magnetic FFs is well known from the unpolarized cross
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0.5 1 1.5 2 2.5 3 3.5 4
p [GeV]

0.2

0.4

0.6

0.8

1

1.2

[n
b]

σ

Figure 2: Born cross section for e+ + e− → p + p̄ as a function of the momentum p. The data

are from CMD-3 [11] (red stars), BaBar [3, 5] (black circles) BESIII-ISR [4] (blue squares) and

BESIII-SC [6] (green triangles) are shown together with the six-parameter fit from Eqs. (6,7,8)

and Table III(black solid line), compared to the fit from Ref. [12] (red dashed line). The blue

dash-dotted line corresponds to a constant, fitted in the range 0.1 <
√
s < 0.9 GeV.

section measurements.

In the TL region, the present data from the BESIII Collaboration bring new information

on the ratio of the FFs moduli with comparable precision as in the scattering region. The

data from BaBar and BESIII are plotted in Fig. 4 as a function of |q2|. The choice of this

variable does allow to show on the same graph SL and TL values of the FF ratio and of

their moduli respectively [14].

While the SL data (red squares in Fig. 4) show a monotone decrease, the TL ones (green

triangles in Fig. 4) [6], decrease too, but show the presence of oscillations, not contradicting
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0 0.5 1 1.5 2 2.5 3 3.5 4

p [GeV]

2−10

1−10

1
F
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0 0.1 0.2 0.3 0.4 0.5 0.6

p [GeV]

0.2

0.4

0.6

0.8

1

1.2

F
p

Figure 3: Same as Fig. 2 but for the TL proton generalized FF. The blue dash-dotted line is the

expectation for a constant cross section σ = 0.87 nb.

the results from BaBar [3] (black circles in Fig. 4). One can see a minimum in the TL range

(5− 6) GeV2, in correspondance to a little dip in the SL region, that should be confirmed,

because it lies just at the square momentum transfer corresponding to the kinematical limits

of two experiments of the JLab-GEP Collaboration.

The SL and TL values of the FF ratio, move away with a smooth decrease from 1/µp

(µp is the proton magnetic moment in units of the Bohr magneton) at q2 = 0, and from

unity at the production threshold q2 = 4m2
p, respectively. These are the values expected

from the definitions given above, as well as, at large transferred momenta, from the QCD

quark counting rules [30, 31]. This is an indication that the perturbative domain has not

been reached and corroborates the predictions from Ref. [15]. Following a similar approach

as for the effective FF, we fit the ratio in the TL region with a function FR reproducing a
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monopole decrease and a damped oscillation:

FR(ω(s)) =
1

1 + ω2/r0

[
1 + r1e

−r2ω sin (r3ω)
]
, ω =

√
s− 2mp , (9)

where the unitary normalization at the production threshold, FR(4m2
p) = 1, is imposed.

The curve representing the fit function, Eq. (9), obtained with the parameters reported in

Table IV, is shown as a black line in Fig. 4, together with the corresponding data on the TL

ratio R (black circles and green triangles). The monopole and the oscillatory components

are also shown.

Table IV: 4-parameters fit for R as a function of q2.

r0

r1

r2 r3 χ2

n.d.f
(GeV2) (GeV−1) (GeV−1)

3 ± 2 0.5 ± 0.1 1.5 ± 1.2 9.3 ± 0.5
14

22− 4
= 0.8

The red long-dashed line in Fig. 4 visualizes a one-parameter monopole function, con-

strained to 1/µp at q2 = 0. Let us remind that in the space-like region the electric FF is

normalized to 1 (in unit of electric charge) and the magnetic FF is normalized to µp at

q2 = 0 .

In Ref. [15] it was suggested that a faster decreasing behavior of the electric FF compared

to the magnetic FF in the SL, as well as in the TL region, is expected as a consequence of the

presence of an inner volume inside the nucleon that is electrically neutral (short distances

corresponding to large transferred momenta). The consequence is a dipole behavior for the

magnetic FF and an additional monopole decrease for the electric FF, so that the ratio

decreases like a monopole.

B. Zero crossing of the angular asymmetry A

A further possibility to illustrate these results, knowing the ratio R and the fit function,

is to calculate the angular asymmetry, A(s), from Eq. (3). By definition, it assumes values

in the range [−1, 1], being null at the production threshold, i.e., A(4m2
p) = 0. The data and

the fit on A are shown in Fig. 5.
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Figure 4: Ratio R = |GE |/|GM | as a function of |q2| (left) and p (right) from BaBar (black circles)

[3, 5] and BES-SC (green triangles) [6]. The solid black line is the fit from Eq. (9), decomposed

in the monopole component (green dashed line) and the oscillatory component (black dotted line -

shifted up by 0.5). The SL ratio from the JLab-GEp Collaboration [7] is also shown (red squares),

together with its constrained monopole fit (red long-dashed line).

It has been previously pointed out that, when extracted directly from the cross section,

the relative error on this variable is equivalent to an error on R2, being therefore preferable

for the extraction of the individual FFs [32, 33].

One can see that A(s) crosses zero at s = (4.62 ± 0.07) GeV2, meaning that, also at

this squared momentum transferred, the modulus of the ratio is equal to one, and hence,

|GE| = |GM |. The uncertainty is obtained by varying the function in a ±5% range (dashed

black lines). The determination of the zero crossing gives a precise experimental constrain

on FF models.

C. Individual form factors |GE | and |GM |

The monopole background, used to fit the FF ratio is consistent with Ref. [15] where it

was suggested that the magnetic FF would follow a dipole dependence, whereas an additional

monopole factor would induce a faster decrease of the electric FF in both SL and TL regions.
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Figure 5: Angular asymmetry as a function of |q2| (left) and of p (right) from BaBar (black circles),

BESIII-SC (green triangles). The dash-dotted blue curve corresponds to a constant and unitary

ratio, i.e., |R| = 1, while the solid black curve is related to the fit function FR(s), with the dashed

black curves representing a ±5% variation of the function.

Overlapping the data for |GE| and |GM |, extracted separately for the first time by the

BESIII Collaboration [6], from e+e− → p̄p differential cross section data, the different behav-

ior of the two FFs becomes visible and sizeable, as shown in Fig. 6. Surprisingly, |GE| and

|GM | are also different at smaller q2, (even though they should coincide at the production

threshold) and seem to converge towards small values or to zero at large q2.

One may inquire if the oscillations that are present in the cross section and in the effective

FF are also visible in the individual FFs, and, in this case, if they have to be attributed

to the electric or the magnetic FF, or to both of them. The modulus of the electric FF,

|GE|, shows larger deviations from a smooth behaviour, in particular it has a dip around

5-6 GeV2, whereas |GM | follows closely a (q2)−2 decrease. The relations between the pairs

of functions (|GE|, |GM |) and (R, Fp) are:

|GE(s)| = Fp(s)

√
1 + 2τ

R2(s) + 2τ/R2(s)
|GM(s)| = Fp(s)

√
1 + 2τ

R2(s) + 2τ
. (10)

By means of these expressions, the moduli of the electric and magnetic FFs can be calculated

using for the ratio R and the effective FF Fp their fit function FR, Eq. (9), and F fit
p , Eq. (6),
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Figure 6: |GE | (red circles) and |GM | (blue squares) from BESIII. The dashed red (dash-dotted

blue) line is the calculation of |GE | and |GM | from the fits of the effective FF Fp and the ratio R.

respectively. The resulting curves are shown in Fig. 6. This procedure gives by construction

a smooth description of the individual moduli of the two FFs, from threshold up to the

highest experimentally accessible values of s and represents a particular interest to illustrate

the near threshold behavior, as the extrapolation of the FF data is constrained by the

condition R(s = 4m2
p) = 1.

The result is shown in Fig. 6. Oscillations characterize both FFs, although they are

more smooth on |GM |. By the definition of the FR(s) fit function, the convergence of the

two electric and magnetic FFs, and hence, also of the effective one, to a common value at

the production threshold is implied and we find: |GE(4m2
p)| = |GM(4m2

p)| = |Fp(4m2
p)| ≡

Fth ' 0.48.

Note that the QCD model fitted to the cross section data [16], when extrapolated back

to the threshold, gives a common value for the FFs equal to Fth ' 0.34. On the other hand,

the vector meson dominance (VMD) model of Ref. [18] gives Fth ' 0.29. The comparison

between the data and these models is shown in Fig. 7. The QCD extrapolation provides, by

definition, the same prediction for the two FFs, as it depends on the number of the quarks

involved in the process. The VDM model of Ref. [18] predicts a steeper behavior for |GM |

and a number of resonances occurring in the unphysical region, i.e., the portion of the TL

region lying below the production threshold. Such a region is accessible through the reaction

p̄p→ e+e−π0 [34] and can be investigated in next future at the PANDA@FAIR facility [35].
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Figure 7: (a) |GE | (red circles) and (b) |GM | (blue squares) from the BESIII Collaboration. The

dashed blue (solid green) curve is the calculation of |GE | and |GM | from the QCD extrapolation

[16] and from the VMD model of Ref. [18].

V. DISCUSSION AND CONCLUSIONS

We have considered the recent data on TL proton FFs from Ref. [4, 6, 11]. These data

confirm the regular oscillations found in Ref. [12, 36]. We present a general fit of these

data, that includes and updates the previous analysis. A more precise determination of

the oscillation parameters has been done. In particular the oscillation period is a relevant

parameter since it has been related to sub-hadron scale processes [12, 36]. A similar behavior

would be shown by the future e+e− → nn̄ data [37], in this case the oscillation parameters

should bring information on the dynamics underlying the formation from the vacuum of

quark-diquark states, the quark having different flavor.

Our analysis does confirm a faster average decrease of the electric FF compared to the

magnetic one, following a similar behavior as in the SL region. It is in agreement with the

predictions of Ref. [15], where such a decreasing behavior was attributed to the existence

of an electrically neutral inner region in the proton. It is also compatible with the VMD

model of Ref. [18], that slightly overestimates the magnetic FF. This appears also from the

fact that the QCD behavior, that does not differentiate the two FFs, overestimates GE,

reproducing better GM .

The new proton data, together with the future neutron data, will require a revision of the

phenomenological models based on fitting procedures, as the parameters were determined

in TL region, from the effective FF only. This will be the object of a future work.
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VI. APPENDIX: EXPRESSIONS OF THE FIT FUNCTIONS

The change of variables s = s(p), as well as p = p(s), follows from the relations

s = 2mp

(
mp +

√
p2 +m2

p

)
, p =

√
s

(
s

4m2
p

− 1

)
. (11)

Therefore Eqs. (7,8) can be rewritten as:

F3p(s) =
F0(

1 + s
m2

a

)(
1− s

m2
0

)2 =

=
F0(

1 +
2mp(mp+

√
p2+m2

p)
m2

a

)(
1− 2mp(mp+

√
p2+m2

p)
m2

0

)2 , (12)

Fosc(p(s)) = Ae
−B

√
s

(
s

4m2
p
−1

)
cos

[
C

√
s

(
s

4m2
p

− 1

)
+D

]
= Ae−Bp cos(Cp+D) . (13)

Equation (9) can be expressed as a function of s as

FR(ω(s)) =
1

1 + (
√
s− 2mp)2/r0

[
1 + r1e

−r2(
√
s−2mp) sin

(
r3

(√
s− 2mp

))]
, (14)

taking into account that ω =
√
s− 2mp.

[1] S. Pacetti, R. Baldini Ferroli, and E. Tomasi-Gustafsson, Phys. Rept. 550-551, 1 (2015).

[2] V. N. Baier, V. S. Fadin, and V. A. Khoze, Nucl. Phys. B65, 381 (1973).

[3] J. Lees et al. (BaBar Collaboration), Phys. Rev. D87, 092005 (2013).

[4] M. Ablikim et al. (BESIII), Phys. Rev. D99, 092002 (2019), 1902.00665.

[5] J. Lees et al. (BaBar Collaboration), Phys. Rev. D88, 072009 (2013).

[6] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 124, 042001 (2020), 1905.09001.

[7] A. J. R. Puckett et al., Phys. Rev. C96, 055203 (2017), [erratum: Phys.

Rev.C98,no.1,019907(2018)], 1707.08587.

[8] A. Puckett et al., Phys. Rev. C 85, 045203 (2012), 1102.5737.

[9] A. Zichichi, S. Berman, N. Cabibbo, and R. Gatto, Nuovo Cim. 24, 170 (1962).

[10] A. Dubnickova, S. Dubnicka, and M. Rekalo, Nuovo Cim. A 109, 241 (1996).

[11] R. R. Akhmetshin et al. (CMD-3), Phys. Lett. B794, 64 (2019), 1808.00145.



19

[12] A. Bianconi and E. Tomasi-Gustafsson, Phys. Rev. Lett. 114, 232301 (2015).

[13] M. Jones et al. (Jefferson Lab Hall A), Phys. Rev. Lett. 84, 1398 (2000), nucl-ex/9910005.

[14] E. Tomasi-Gustafsson and M. Rekalo, Phys. Lett. B 504, 291 (2001).

[15] E. Kuraev, E. Tomasi-Gustafsson, and A. Dbeyssi, Phys. Lett. B712, 240 (2012).

[16] E. Tomasi-Gustafsson, F. Lacroix, C. Duterte, and G. Gakh, Eur. Phys. J. A 24, 419 (2005),

nucl-th/0503001.

[17] M. Belushkin, H.-W. Hammer, and U.-G. Meissner, Phys. Rev. C 75, 035202 (2007), hep-

ph/0608337.

[18] R. Bijker and F. Iachello, Phys. Rev. C69, 068201 (2004).

[19] E. L. Lomon and S. Pacetti, Phys. Rev. D 85, 113004 (2012), [Erratum: Phys.Rev.D 86,

039901 (2012)], 1201.6126.

[20] A. Denig and G. Salme, Prog. Part. Nucl. Phys. 68, 113 (2013), 1210.4689.

[21] G. Bonneau and F. Martin, Nucl. Phys. B27, 381 (1971).

[22] M. Benayoun, S. I. Eidelman, V. N. Ivanchenko, and Z. K. Silagadze, Mod. Phys. Lett. A14,

2605 (1999), [Frascati Phys. Ser.15(1999)], hep-ph/9910523.

[23] V. V. Bytev, E. A. Kuraev, E. Tomasi-Gustafsson, and S. Pacetti, Phys. Rev. D84, 017301

(2011), 1103.4470.

[24] A. H. Hoang, in Electroweak interactions and unified theories. Proceedings, 31st Rencontres

de Moriond, Leptonic Session, Les Arcs, France, March 16-23, 1996 (1996), pp. 129–134,

hep-ph/9606288.

[25] G. Gakh and E. Tomasi-Gustafsson, Nucl. Phys. A 761, 120 (2005), nucl-th/0504021.

[26] R. Akhmetshin et al. (CMD-3), Phys. Lett. B 759, 634 (2016), 1507.08013.

[27] R. Baldini, S. Pacetti, A. Zallo, and A. Zichichi, Eur. Phys. J. A 39, 315 (2009), 0711.1725.

[28] A. Akhiezer and M. Rekalo, Sov. Phys. Dokl. 13, 572 (1968).

[29] A. Akhiezer and M. Rekalo, Sov. J. Part. Nucl. 4, 277 (1974).

[30] V. Matveev, R. Muradyan, and A. Tavkhelidze, Teor. Mat. Fiz. 15, 332 (1973).

[31] S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973).

[32] B. Singh et al. (PANDA), Eur. Phys. J. A 52, 325 (2016), 1606.01118.

[33] E. Tomasi-Gustafsson and A. Dbeyssi (PANDA), EPJ Web Conf. 66, 06024 (2014).

[34] C. Adamuscin, E. Kuraev, E. Tomasi-Gustafsson, and F. Maas, Phys. Rev. C 75, 045205

(2007), hep-ph/0610429.



20

[35] J. Ritman (PANDA), Int. J. Mod. Phys. A 20, 567 (2005).

[36] A. Bianconi and E. Tomasi-Gustafsson, Phys. Rev. C 95, 015204 (2017), 1611.02149.

[37] S.Ahmed (BESIII), in 3th European Research Conference on Electromagnetic Interactions with

Nucleons and Nuclei, 27/10 – 02/11 2019,Paphos, Cyprus (2020).


	I Introduction
	II  The e+ e- p () cross section 
	III Analysis of the results
	A Selected data sets
	B Confirmation of the oscillations

	IV Global Fit of the data 
	A Analysis of the form factor ratio R
	B Zero crossing of the angular asymmetry A 
	C Individual form factors |GE| and |GM|

	V  Discussion and Conclusions
	VI Appendix: expressions of the fit functions
	 References

