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We present a coupling framework for Stokes-Darcy systems valid for arbitrary flow direction 
at low Reynolds numbers and for isotropic porous media. The proposed method is based 
on an overlapping domain decomposition concept to represent the transition region between 
the free-fluid and the porous-medium regimes. Matching conditions at the interfaces of the 
decomposition impose the continuity of velocity (on one interface) and pressure (on the other 
one) and the resulting algorithm can be easily implemented in a non-intrusive way. The numerical 
approximations of the fluid velocity and pressure obtained by the studied method converge to 
the corresponding counterparts computed by direct numerical simulation at the microscale, with 
convergence rates equal to suitable powers of the scale separation parameter 𝜀 in agreement with 
classical results in homogenization.

1. Introduction

Fluid flow systems formed by a free fluid region and an adjacent porous material through which the fluid can filtrate are of 
utmost relevance for a wide range of environmental, industrial and biomedical applications such as, e.g., membrane filtration for 
water purification, geophysical flows, neotissue growth in perfusion bioreactors, blood flow in biological tissues, water-gas flow in 
fuel cells, binary alloy solidification. In general, due to the difficulty of reproducing the complex geometrical features of the porous 
medium at the microscale, mathematical models for filtration processes are not entirely based on the Navier-Stokes equations, but 
they rather include averaged macroscale models to represent the motion of the fluid inside the porous material.

A widely used upscaled modelling framework is the so-called two-domain approach, where the free-fluid region and the porous 
region are treated as two non-overlapping subdomains separated by an artificial sharp interface. Two different sets of governing 
equations are then used within each region, typically, the (Navier-)Stokes equations in the free fluid part and the Darcy equation 
[16] or the Forchheimer equation [26] in the porous medium. Specific coupling conditions must be imposed between the two sets 
of equations to correctly match the different fluid regimes. A classical two-domain model is defined by the Stokes and the Darcy 
equations coupled by the Beavers–Joseph–Saffman (BJS) conditions to impose mass conservation, balance of normal forces, and a 
slip condition on the interface [30,35,21]. These conditions, obtained experimentally by Beavers and Joseph [5], and simplified by 
Saffman [48] to neglect the contribution of the smaller porous-medium tangential velocity at the interface, have also been given 
mathematical justification via homogenization theory and asymptotic analysis by Jäger and Mikelić in [30,31]. Although largely 
used in the literature, the BJS conditions were obtained in the case of a porous medium with quite large porosity and for cross-
flow filtration, i.e., for a fluid flow parallel to the surface of the porous medium. Therefore, they could not be valid and are not 
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justified in the case of arbitrary flow directions, for which finding suitable interface conditions is an active research area (see, e.g., 
[53,36,42,23,49]). Models based on the BJS conditions are dependent on the position of the sharp interface (see, e.g., [39,22]) 
and they involve arbitrary coefficients that should be determined either by a detailed study of the physical characteristics of the 
porous medium or, within a mathematical context, by solving a set of auxiliary ad-hoc problems across the interface. Alternative sets 
of interface conditions for systems of Stokes-Darcy type have also been obtained by methods of volume averaging and asymptotic 
expansion, e.g., in [3,4,13,14,44].

The sharp interface two-domain setting is obtained as the limiting case of collapsing to zero the width of the transition region 
that exists between the free fluid and the porous medium subregions, although physical quantities such as velocity and pressure 
undergo strong but still continuous variations inside such region [37,42]. As a result of this process achieved by volume averaging 
or homogenization techniques, the transition region itself is replaced by the sharp interface and the associated coupling conditions. 
Accurately accounting for the fluid variations within the transition region is crucial to ensure a reliable representation of the fluid 
flow. Indeed, despite the very small thickness of the transition region, typically of the size of the pores that characterize the porous 
material, the fluid behaviour therein significantly impacts both the free fluid and the porous regions. While in the two-domain 
approach, this is attempted by carefully selecting the position of the interface and by calibrating the coefficients appearing in the 
coupling conditions, other approaches are found in the literature.

The so-called one-domain method uses a single set of equations throughout the domain (typically, the Navier-Stokes-Brinkman 
equations [8]) which rely on ad-hoc space-dependent physical parameters, like the effective fluid viscosity, the permeability and 
the porosity of the porous medium [13–15,29,51], that must be carefully defined to model the transition layer. The characterization 
of these parameters is usually performed by matched asymptotic expansion methods, but their correct definition is far from being 
straightforward and this constitutes the principal limitation of the one-domain approach.

Recently, multi-domain methods have been proposed in [47] and [33]. In these works, the transition region is treated as an 
additional intermediate domain between the free fluid and the porous medium where the Brinkmann equations are used to model 
the fluid at the intermediate regime that occurs before the bulk region of the porous medium is reached. Coupling conditions at the 
two interfaces with the free fluid domain and the inner porous domain are then proposed. In [33], the first interface is placed on 
the upper surface of the porous medium, while the second one is set at depth equal to the square root of the permeability below the 
first one. This agrees with results in [37], where the authors also concluded that the Darcy regime in the porous medium holds only 
below a depth proportional to a few pore lengths.

The modelling framework that we propose in this paper is also based on the idea of including a transition region of suitably 
small but positive thickness, but, differently from [47,33], we do not introduce any additional model therein. More precisely, we 
consider the case of laminar flow at low Reynolds numbers so that the Stokes equations and the Darcy equations can be used in 
the free fluid region and in the porous medium, respectively. Then, following [37], we consider the Stokes equations to be valid at 
leading order inside the whole transition layer that, in our framework, forms an overlapping region between the free fluid domain 
and the porous medium domain. Simple leading-order matching conditions imposing the continuity of the velocity on the upper 
interface and of the pressure on the lower one are set to complete the definition of the model. The resulting coupled problem does 
not rely on any assumption concerning the flow direction, and it does not require the solution of auxiliary ad-hoc problems to identify 
coupling parameters. Despite its simple setting, we show that, from a physical point of view, the proposed coupling concept provides 
a leading-order approximation of the Stokes-Darcy velocity and pressure that respectively converge to the microscale velocity and 
pressure computed by direct numerical simulation. The estimated orders of convergence agree with classical theoretical results from 
homogenization theory as proved in, e.g., [39] for the cross-flow filtration case.

From a computational point of view, our coupling framework leads to a robust overlapping domain decomposition method, the 
so-called Interface Control Domain Decomposition (ICDD) method that was first introduced in [18] and then analyzed for the Stokes-
Darcy problem in [17]. The algorithm can be formulated in a completely non-intrusive way and it can be easily implemented using 
existing CFD software.

The paper is organized as follows. Section 2 introduces the ICDD approach for the Stokes-Darcy problem and it details its 
computer implementation. Section 3 focuses on the physical interpretation of the overlapping approach and it gives a practical 
strategy to define the interfaces between the fluid region and the porous medium domain. Finally, Section 4 provides numerical 
evidence of the effectiveness and accuracy of the ICDD method by comparing the numerical results computed by this strategy with 
those obtained by direct numerical simulations at the microscale. Error estimates in line with existing literature in homogenization 
theory are finally presented and discussed.

2. Macroscale Stokes-Darcy model with overlap: the ICDD approach

In this section, we formulate a macroscale model by considering the Stokes equations and the Darcy equations in two overlapping 
regions and by imposing suitable matching conditions between the fluid velocity and pressure at the boundary of the overlapping 
domain. To this aim, let Ω be the computational domain split into two overlapping subdomains Ω𝑓 and Ω𝑝 as shown in Fig. 1. The 
internal boundaries of Ω𝑓 and Ω𝑝 are denoted by Γ𝑓 and Γ𝑝 and they are called interfaces.

We assume that Ω is filled by an incompressible fluid characterized by low Reynolds number so that, in the fluid domain Ω𝑓 , the 
fluid behaviour can be modelled by the Stokes equations

−𝜇Δ𝐮𝑓 +∇𝑝𝑓 = 𝐟 in Ω𝑓 , (1a)
2

∇ ⋅ 𝐮𝑓 = 0 in Ω𝑓 , (1b)
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Fig. 1. Schematic representation of the macroscale domain Ω.

𝐮𝑓 = 𝐮𝐷 on 𝜕Ω𝑓 ⧵ Γ𝑓 , (1c)

where 𝐮𝑓 and 𝑝𝑓 are the fluid velocity and pressure, respectively, 𝜇 is the fluid dynamic viscosity, f = 𝜌b is an external force per unit 
volume, with 𝜌 the density of the fluid and b a suitable acceleration field, and 𝐮𝐷 is an assigned boundary velocity field.

In the porous medium domain Ω𝑝, the fluid is described by Darcy’s equations

𝜇 𝐮𝑝 = −𝐊(∇𝑝𝑝 − 𝐟) in Ω𝑝 , (2a)

∇ ⋅ 𝐮𝑝 = 0 in Ω𝑝 , (2b)

𝐮𝑝 ⋅ 𝐧 = 0 on 𝜕Ω𝑝 ⧵ Γ𝑝 , (2c)

where 𝐮𝑝 and 𝑝𝑝 are the Darcy’s velocity and pressure, 𝐊 is the permeability tensor and 𝐧 is the unit normal vector on 𝜕Ω𝑝 directed 
outwards of Ω𝑝.

To complete the definition of the macroscopic model, we need to identify a suitable location of the interfaces Γ𝑓 and Γ𝑝 and the 
matching conditions between the Stokes and the Darcy variables to impose therein.

The position of the interface Γ𝑝 coincides with the top surface that delimits the microscale solid inclusions that form the porous 
material in Ω𝑝 (see Fig. 2, Sect. 3). The matching condition on Γ𝑝 plays the role of a boundary condition for Darcy’s problem (2). 
Considering that Darcy’s regime is mainly driven by the fluid pressure and its gradient, we set a condition on Darcy’s pressure 𝑝𝑝
that imposes that this is equal to the Stokes pressure:

𝑝𝑝 = 𝑝𝑓 on Γ𝑝 , (3)

under the reasonable assumption that the pressures 𝑝𝑓 and 𝑝𝑝 remain bounded in the neighbourhood of the interfaces Γ𝑓 and Γ𝑝.
In our modelling framework, the overlapping region Ω𝑓 ∩ Ω𝑝 is used to account for the well-known presence of a transitional 

regime between a free flow and a porous medium, as we will discuss in detail in Sect. 3. Therefore, the interface Γ𝑓 must be 
accurately placed below Γ𝑝 in order to capture the reduction of the magnitude of the Stokes velocity occurring when the fluid enters 
the porous material, but it must not be too low inside Ω𝑝 to avoid reaching the bulk region of the porous medium where Darcy’s 
regime holds and the velocity magnitude is very small. A practical way to correctly define Γ𝑓 will be discussed in Sect. 3.

The matching condition on Γ𝑓 defines the boundary condition for the Stokes problem (1), and we choose to impose the continuity 
of the whole velocity field, i.e.,

𝐮𝑓 = 𝐮𝑝 on Γ𝑓 . (4)

Since we are imposing Dirichlet conditions on the whole boundary of the subdomain Ω𝑓 , to guarantee the uniqueness of the 
pressure 𝑝𝑓 we complete problem (1) with the null–average condition

∫
Ω𝑓

𝑝𝑓 = 0. (1d)

The coupling conditions (3) and (4) guarantee the well-posedness of the local Stokes and Darcy problems (1) and (2) as well as of 
the global macroscopic model (1)–(4) in Ω. Indeed, this macroscopic model was initially proposed in [17] where it was shown that 
it is equivalent to a well-posed optimal control problem with interface controls corresponding to the trace of the Stokes velocity 𝐮𝑓
on Γ𝑓 and to the trace of the Darcy pressure 𝑝𝑝 on Γ𝑝, and with an interface cost functional that imposes the matching conditions 
(3) and (4) weakly in a suitable trace space.

From a computational point of view, the model defines the Interface Control Domain Decomposition (ICDD) method, an overlap-
3

ping domain decomposition algorithm that requires solving iteratively and independently the Stokes problem (1) (completed with 
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the boundary condition (4)) and the Darcy problem (2) (completed with the boundary condition (3)) (see Sect. 2.1 for an efficient 
solution algorithm). At convergence, we define the global fluid velocity and pressure in Ω as

𝐮 =
{

𝐮𝑓 in Ω𝑓

𝐮𝑝 in Ω𝑝 ⧵ (Ω𝑓 ∩Ω𝑝)
and 𝑝 =

{
𝑝𝑓 in Ω𝑓

𝑝𝑝 in Ω𝑝 ⧵ (Ω𝑓 ∩Ω𝑝) .
(5)

In (5), the Stokes velocity 𝐮𝑓 and pressure 𝑝𝑓 are retained in the overlapping region instead of their Darcy counterparts because the 
overlapping region is purposefully designed so that the Stokes regime remains valid therein.

In the rest of the paper, we will refer to the macroscale Stokes-Darcy model with overlap (1)–(4) as the ICDD model. A thorough 
physical justification of the ICDD model will be provided in Sect. 3, while in the rest of this section we focus on practical aspects of 
its implementation.

2.1. Practical implementation of the ICDD method for Stokes-Darcy

The Interface Control Domain Decomposition (ICDD) method [18–20,17] was designed to solve boundary value problems gov-
erned by partial differential equations using overlapping domain decompositions of the domain of interest. The method is based on 
an optimal control problem that imposes the continuity of selected physical variables at the interfaces of the overlapping region, and 
it can be applied to problems characterized by single or multiple physics. In this section, we explain how to practically implement 
the ICDD method to solve the Stokes–Darcy model with overlap (1)–(4) and we refer to [17] for its theoretical analysis.

Consider two computational meshes, one in Ω𝑓 and one in Ω𝑝 and, for simplicity of exposition, let us assume that the two meshes 
are conformal on the closed overlapping region Ω𝑓 ∩Ω𝑝, so that the nodes on Γ𝑓 (respectively, Γ𝑝) belong to the mesh defined in Ω𝑝

(respectively, Ω𝑓 ). To guarantee that ICDD solves correctly the problem (1)–(4), we require that Γ𝑓 and Γ𝑝 are disjoint (see [17]). 
The Stokes and the Darcy equations are discretized by a suitable mesh-based method such as the Galerkin Finite Element Method 
(FEM) or the Spectral Element Methods (SEM). In this work, we have used stabilized SEM both for Stokes [28] and Darcy equations, 
in the latter case by adapting the stabilized FEM method [40] to SEM. (We refer, e.g., to [45,9,27] for other stabilization methods 
for the FEM discretization of Stokes equations.) The Darcy equations (2) could be reformulated as a second-order elliptic equation 
for the pressure 𝑝𝑝, but since the velocity 𝐮𝑝 on Γ𝑝 is needed at each iteration of the ICDD method, we have chosen to directly use 
the mixed formulation (2) instead of reconstructing the velocity field at each iteration.

At the algebraic level, the Degrees of Freedom (DoFs) associated with the nodes on the interface Γ𝑓 (respectively, Γ𝑝) are 
separated from those associated with the other nodes in Ω𝑓 ⧵ Γ𝑓 (respectively, Ω𝑝 ⧵ Γ𝑝). For the Stokes problem, let u𝑓 and p𝑓
denote the arrays of the DoFs of the discrete velocity and pressure associated with the mesh nodes in Ω𝑓 ⧵ Γ𝑓 , and let g𝑓 be the 
array of the DoFs of the discrete velocity field associated with the nodes on Γ𝑓 . Similarly for the Darcy problem, u𝑝 and p𝑝 are the 
arrays of the discrete velocity and pressure DoFs associated with the mesh nodes in Ω𝑝 ⧵ Γ𝑝, and g𝑝 is the array of the DoFs of the 
discrete pressure at the nodes on Γ𝑝.

Using standard FEM notation (see, e.g., [45]), the algebraic counterpart of problem (1)–(4) reads:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A𝑓 B𝑡
𝑓

0 0 AΓ𝑓 0

B𝑓 C𝑓 0 0 0 0

0 0 A𝑝 B𝑡
𝑝 0 AΓ𝑝

0 0 B𝑝 C𝑝 0 0

0 0 −RΓ𝑓 𝑝 0 I𝑓 0

0 −RΓ𝑝𝑓 0 0 0 I𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u𝑓
p𝑓
u𝑝
p𝑝

g𝑓
g𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f𝑓
0

f𝑝
0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

For ⋆ ∈ {𝑓, 𝑝}, A⋆ is the square stiffness matrix associated with the DoFs in Ω⋆ ⧵ Γ⋆, while AΓ⋆ is the rectangular block of the 
stiffness matrix whose rows are associated with the DoFs in Ω⋆ ⧵ Γ⋆ and whose columns are associated with the DoFs on Γ⋆. The 
matrix B⋆ corresponds to the discretization of the divergence-free term in Ω⋆ , C⋆ could be null depending both on the discretization 
and the stabilization adopted, while I⋆ is the identity matrix whose size is equal to the number of DoFs on Γ⋆. Moreover, RΓ𝑝𝑓

(respectively, RΓ𝑓 𝑝) is a rectangular restriction matrix with entries either 0 or 1 that, for every array of nodal values in Ω𝑓 ⧵ Γ𝑓
(respectively, Ω𝑝 ⧵Γ𝑝), returns the array of nodal values on Γ𝑝 (respectively, Γ𝑓 ). These restriction matrices are well defined because 
Γ𝑓 and Γ𝑝 are disjoint. Finally, the right-hand side arrays f𝑓 and f𝑝 take into account both the external force 𝐟 and the boundary 
conditions (1c) and (2c). Remark that the last two equations in (6) respectively impose the matching conditions (4) and (3) at the 
algebraic level.

When the thickness of the overlapping region Ω𝑓 ∩Ω𝑝 is very tiny, solving system (6) could become quite cumbersome, indeed, 
the number of iterations required to solve this linear system by an iterative method can grow when the overlap thickness decreases. 
To overcome this drawback, we reformulate the coupled system (1)–(4) in an equivalent form as follows (see [17]). Let 𝐠𝑓 denote 
4

the unknown trace of the velocity 𝐮𝑓 on Γ𝑓 and 𝑔𝑝 the unknown trace of the pressure 𝑝𝑝 on Γ𝑝. Then, we consider the system
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Primal problems:

⎧⎪⎪⎨⎪⎪⎩

−𝜇Δ𝐮𝑓 +∇𝑝𝑓 = 𝐟 in Ω𝑓 ,

∇ ⋅ 𝐮𝑓 = 0 in Ω𝑓 ,

𝐮𝑓 = 𝐠𝑓 on Γ𝑓 ,
𝐮𝑓 = 𝐮𝐷 on 𝜕Ω𝑓 ⧵ Γ𝑓 ,∫Ω𝑓
𝑝𝑓 = 0,

⎧⎪⎨⎪⎩
𝜇 𝐮𝑝 = −𝐊(∇𝑝𝑝 − 𝐟) in Ω𝑝,

∇ ⋅ 𝐮𝑝 = 0 in Ω𝑝,

𝑝𝑝 = 𝑔𝑝 on Γ𝑝,
𝐮𝑝 ⋅ 𝐧 = 0 on 𝜕Ω𝑝 ⧵ Γ𝑝;

Dual problems:

⎧⎪⎪⎨⎪⎪⎩

−𝜇Δ𝐰𝑓 +∇𝑞𝑓 = 𝟎 in Ω𝑓 ,

∇ ⋅𝐰𝑓 = 0 in Ω𝑓 ,

𝐰𝑓 = 𝐠𝑓 − 𝐮𝑝 on Γ𝑓 ,
𝐰𝑓 = 𝟎 on 𝜕Ω𝑓 ⧵ Γ𝑓 ,∫Ω𝑓
𝑞𝑓 = 0,

⎧⎪⎨⎪⎩
𝜇𝐰𝑝 = −𝐊∇𝑞𝑝 in Ω𝑝,

∇ ⋅𝐰𝑝 = 0 in Ω𝑝,

𝑞𝑝 = 𝑔𝑝 − 𝑝𝑓 on Γ𝑝,
𝐰𝑝 ⋅ 𝐧 = 0 on 𝜕Ω𝑝 ⧵ Γ𝑝;

Interface equations:

𝐠𝑓 − 𝐮𝑝 +𝐰𝑝 = 0 on Γ𝑓 𝑞𝑓 + 𝑔𝑝 − 𝑝𝑓 = 0 on Γ𝑝.

(7)

System (7) is the optimality system associated with an optimal control problem aiming at minimizing the jump between the 
velocities on Γ𝑓 and the jump between the pressures on Γ𝑝. (If the boundary conditions on 𝜕Ω⋆ ⧵Γ⋆ (with ⋆ ∈ {𝑓, 𝑝}) for the primal 
problems are replaced by other boundary conditions, e.g., Neumann, the corresponding boundary conditions in the dual problems 
must be of the same type but homogeneous, with possible removal of the null average condition for the pressure.) This system is 
solved iteratively (as we will show hereafter) with the dual problems playing the role of preconditioners stabilizing the iterative 
process, especially when the overlap thickness is very tiny. Notice that, at convergence, the solutions of the dual problems are null, 
𝐠𝑓 = 𝐮𝑝|Γ𝑓 , and 𝑔𝑝 = 𝑝𝑓 |Γ𝑝 , thus we recover the equivalence between (1)–(4) and (7). For more details, we refer to [17].

Using the notations introduced before, the algebraic counterpart of system (7) reads:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A𝑓 B𝑡
𝑓

0 0 0 0 0 0 AΓ𝑓 0

B𝑓 C𝑓 0 0 0 0 0 0 0 0

0 0 A𝑝 B𝑡
𝑝 0 0 0 0 0 AΓ𝑝

0 0 B𝑝 C𝑝 0 0 0 0 0 0

0 0 −AΓ𝑓 RΓ𝑓 𝑝 0 A𝑓 B𝑡
𝑓

0 0 AΓ𝑓 0

0 0 0 0 B𝑓 C𝑓 0 0 0 0

0 −AΓ𝑝RΓ𝑝𝑓 0 0 0 0 A𝑝 B𝑡
𝑝 0 AΓ𝑝

0 0 0 0 0 0 B𝑝 C𝑝 0 0

0 0 −RΓ𝑓 𝑝 0 0 0 RΓ𝑓 𝑝 0 I𝑓 0

0 −RΓ𝑝𝑓 0 0 0 RΓ𝑝𝑓 0 0 0 I𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u𝑓
p𝑓
u𝑝
p𝑝

w𝑓

q𝑓
w𝑝

q𝑝

g𝑓
g𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f𝑓
0

f𝑝
0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Notice that the matrix blocks (1, 1) and (2, 2) in (8) are identical because the dual problems are of the same nature as the primal 
ones, hence no auxiliary matrices must be built and stored for the dual problems. After introducing the matrices

RΓ =

[
0 0 RΓ𝑓 𝑝 0

0 RΓ𝑝𝑓 0 0

]
, IΓ =

[
I𝑓 0
0 I𝑝

]
,

A =

⎡⎢⎢⎢⎢⎣
A𝑓 B𝑡

𝑓
0 0

B𝑓 C𝑓 0 0
0 0 A𝑝 B𝑡

𝑝

0 0 B𝑝 C𝑝

⎤⎥⎥⎥⎥⎦
, AΓ =

⎡⎢⎢⎢⎢⎣
AΓ𝑓 0

0 0
0 AΓ𝑝
0 0

⎤⎥⎥⎥⎥⎦
,

and the arrays

U =
⎡⎢⎢⎢⎣

u𝑓
p𝑓
u𝑝
p𝑝

⎤⎥⎥⎥⎦ , W =
⎡⎢⎢⎢⎣

w𝑓

q𝑓
w𝑝

q𝑝

⎤⎥⎥⎥⎦ , F =
⎡⎢⎢⎢⎣

f𝑓
0
f𝑝
0

⎤⎥⎥⎥⎦ , g =
[

g𝑓
g𝑝

]
,

5

system (8) can be written in the compact form
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⎡⎢⎢⎣
A 0 AΓ

−AΓRΓ A AΓ
−RΓ RΓ IΓ

⎤⎥⎥⎦
⎡⎢⎢⎣

U
W
g

⎤⎥⎥⎦ =
⎡⎢⎢⎣

F
0
0

⎤⎥⎥⎦ . (9)

Instead of solving the global system (9), we solve iteratively its Schur-complement system

S g = b (10)

built with respect to the interface DoFs array g. This approach makes the implementation of the ICDD method completely non-
intrusive and suitable for reusing existing computational codes specifically developed for the Stokes and Darcy problems. Indeed, the 
Schur-complement matrix S and right-hand side b need not be assembled, but the system (10) is tackled by solving iteratively and 
separately the local Stokes and Darcy subproblems and by exchanging information across the interfaces. More precisely, there holds

S = IΓ + RΓ
[

IΓ −IΓ
] [ A 0

−AΓRΓ AΓ

]−1 [
AΓ
AΓ

]
(11)

and

b = (IΓ − RΓA−1AΓ)RΓA−1F. (12)

Since the matrix S is not symmetric, the Schur-complement system (10) is solved by a Krylov method, e.g., GMRES or BiCGStab 
[52] after computing the right-hand side b using formula (12) by solving separately local Stokes and Darcy problems, as detailed in 
Algorithm 2.

Once b is available, each iteration of the Krylov method requires evaluating the action of the operator S on a given array 
g = [g𝑓 , g𝑝]𝑡 containing the DoFs of the Stokes velocity on Γ𝑓 and the DoFs of the Darcy pressure on Γ𝑝, again by solving separately 
local Stokes and Darcy problems; this procedure is outlined in Algorithms 3 and 4. Finally, Algorithm 5 summarizes all the steps 
needed to obtain the solution of the global system (8).

Remark 2.1. For the sake of clarity, Algorithm 1 indicates all the matrices that should be assembled to solve system (10). However, 
notice that Algorithm 1 can be replaced by any user’s code implementing the construction of the required matrices. Moreover, in all 
Algorithms 2–5, instead of inputting the preassembled matrices 𝖠𝑓 , 𝖠Γ𝑓 , 𝖡𝑓 , 𝖢𝑓 , 𝖱𝑓 , 𝖠𝑝, 𝖠Γ𝑝 , 𝖡𝑝, 𝖢𝑝, and 𝖱𝑝, one could provide 
instructions to execute ad-hoc software that solves the specified Stokes and Darcy problems and returns the quantities of interest 𝖻, 
𝗍 or 𝗀. This makes the ICDD method independent of the methodology and software used for the discretization of the Stokes and the 
Darcy problems. The boundary conditions imposed on the interfaces Γ𝑓 and Γ𝑝 are standard, so that they can be easily handled by 
any computational software.

Algorithm 1 Local matrices assembling (by any available code).
1: procedure ASSEMBLE (meshes, data)
2: Assemble the Stokes arrays:

3: A𝑓 , AΓ𝑓 , B𝑓 , C𝑓 stiffness matrices
4: f𝑓 right hand side

5: RΓ𝑝𝑓 restriction matrix from Ω𝑓 ⧵ Γ𝑓 to Γ𝑝
6: Assemble the Darcy arrays:

7: A𝑝, AΓ𝑝 , B𝑝, C𝑝 stiffness matrices
8: f𝑝 right hand side

9: RΓ𝑓 𝑝 restriction matrix from Ω𝑝 ⧵ Γ𝑝 to Γ𝑓
10: return arrays A𝑓 , AΓ𝑓 , B𝑓 , C𝑓 , f𝑓 , RΓ𝑃 𝑓 , A𝑝, AΓ𝑝 , B𝑝, C𝑝, f𝑝, RΓ𝑓 𝑝
11: end procedure

All the numerical tests involving the ICDD method reported in this work have been performed using the BiCGStab method, and 
at most 5 iterations were needed to reduce the norm of the initial residual of the Schur-complement system (10) by 8 orders of 
magnitude. For a detailed study of the convergence properties of the ICDD method for Stokes-Darcy, we refer to [17].

Finally, we observe that problem (1)–(4) could be solved by the Alternating Schwarz Method (ASM) [46,50]. However, we warn 
the reader that the convergence rate of ASM strongly depends on the overlap thickness, say, 𝛿, with the number of iterations needed 
to reach convergence typically behaving like 𝛿−2. On the contrary, solving the Schur-complement system (10) is a very robust 
approach and the convergence rate is independent of 𝛿 provided that the permeability K is small enough, as it is the case in real 
physical situations.

3. Physical interpretation of the Stokes-Darcy model with overlap

In this section, we provide a physical interpretation of the Stokes-Darcy model with overlap described in Sect. 2 and we char-
acterize the interfaces Γ𝑓 and Γ𝑝 where the matching conditions (4) and (3) are imposed, respectively. To this aim, we introduce a 
6

reference microscale Stokes problem that we will also use for numerical validation in Sect. 4.
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Algorithm 2 Computation of the right-hand side b of system (10).
1: procedure SCHURRHS (A𝑓 , AΓ𝑓 , B𝑓 , C𝑓 , f𝑓 , RΓ𝑝𝑓 , A𝑝 , AΓ𝑝 , B𝑝 , C𝑝 , f𝑝 , RΓ𝑓 𝑝)

2: Solve the primal Stokes problem with û𝑓 = 0 on Γ𝑓 :

3:

[
A𝑓 B𝑡

𝑓

B𝑓 C𝑓

] [
û𝑓
p̂𝑓

]
=
[

f𝑓
0

]
4: Extract the nodal values of p̂𝑓 on Γ𝑝 :
5: p̂𝑓 |Γ𝑝 = RΓ𝑝𝑓 p̂𝑓
6: Solve the primal Darcy problem with p̂𝑝 = 0 on Γ𝑝 :
7:

[
A𝑝 B𝑡

𝑝

B𝑝 C𝑝

] [
û𝑝
p̂𝑝

]
=
[

f𝑝
0

]
8: Extract the nodal values of û𝑝 on Γ𝑓 :

9: û𝑝|Γ𝑓 = RΓ𝑓 𝑝û𝑝
10: Solve the dual Stokes problem with ŵ𝑓 = −û𝑝|Γ𝑓 on Γ𝑓 :

11:

[
A𝑓 B𝑡

𝑓

B𝑓 C𝑓

] [
ŵ𝑓

q̂𝑓

]
=
[

AΓ𝑓 û𝑝|Γ𝑓
0

]
12: Extract the nodal values of q̂𝑓 on Γ𝑝 :
13: q̂𝑓 |Γ𝑝 = RΓ𝑝𝑓 q̂𝑓
14: Solve the dual Darcy problem with q̂𝑝 = −p̂𝑓 |Γ𝑝 on Γ𝑝 :

15:

[
A𝑝 B𝑡

𝑝

B𝑝 C𝑝

] [
ŵ𝑝

q̂𝑝

]
=
[

AΓ𝑝 p̂𝑓 |Γ𝑝
0

]
16: Extract the nodal values of ŵ𝑝 on Γ𝑓 :

17: ŵ𝑝|Γ𝑓 = RΓ𝑓 𝑝û𝑝
18: return b = [−û𝑝|Γ𝑓 + ŵ𝑝|Γ𝑓 , q̂𝑓 |Γ𝑝 − p̂𝑓 |Γ𝑝 ]𝑡
19: end procedure

Algorithm 3 Given g = [g𝑓 , g𝑝]𝑡, compute t = Sg.

1: procedure SCHUREVAL (g = [g𝑓 , g𝑝]𝑡 , A𝑓 , AΓ𝑓 , B𝑓 , C𝑓 , RΓ𝑝𝑓 , A𝑝 , AΓ𝑝 , B𝑝 , C𝑝 , RΓ𝑓 𝑝)

2: Solve the primal Stokes problem with ũ𝑓 = g𝑓 on Γ𝑓 (all other problem data are zero):

3:

[
A𝑓 B𝑡

𝑓

B𝑓 C𝑓

] [
ũ𝑓
p̃𝑓

]
=
[
−AΓ𝑓 g𝑓

0

]
4: Extract the nodal values of p̃𝑓 on Γ𝑝 :
5: p̃𝑓 |Γ𝑝 = RΓ𝑝𝑓 p̃𝑓
6: Solve the primal Darcy problem with ̃𝗉𝑝 = g𝑝 on Γ𝑝 (all other problem data are zero):

7:

[
A𝑝 B𝑡

𝑝

B𝑝 C𝑝

] [
ũ𝑝
p̃𝑝

]
=
[
−AΓ𝑝 g𝑝

0

]
8: Extract the nodal values of 𝗎̃𝑝 on Γ𝑓 :
9: ũ𝑝|Γ𝑓 = RΓ𝑓 𝑝ũ𝑝

10: Solve the dual Stokes problem with 𝗐̃𝑓 = 𝗀𝑓 − 𝗎̃𝑝|Γ𝑓 on Γ𝑓 :

11:

[
A𝑓 B𝑡

𝑓

B𝑓 C𝑓

] [
w̃𝑓

q̃𝑓

]
=
[
−AΓ𝑓 (g𝑓 − ũ𝑝|Γ𝑓 )

0

]
12: Extract the nodal values of q̃𝑓 on Γ𝑝 :
13: q̃𝑓 |Γ𝑝 = RΓ𝑝𝑓 q̃𝑓
14: Solve the dual Darcy problem with ̃𝗊𝑝 = 𝗀𝑝 − 𝗉̃𝑓 |Γ𝑝 on Γ𝑝 :

15:

[
A𝑝 B𝑡

𝑝

B𝑝 C𝑝

] [
w̃𝑝

q̃𝑝

]
=
[
−AΓ𝑝(g𝑝 − p̃𝑓 |Γ𝑝 )

0

]
16: Extract the nodal values of w̃𝑝 on Γ𝑓 :

17: w̃𝑝|Γ𝑓 = RΓ𝑓 𝑝w̃𝑝

18: return t = [g𝑓 − ũ𝑝|Γ𝑓 + w̃𝑝|Γ𝑓 , g𝑝 + q̃𝑓 |Γ𝑝 − p̃𝑓 |Γ𝑝 ]𝑡
19: end procedure

Algorithm 4 Solve the Schur complement system (10).
1: procedure SCHURSOLVE (b, A𝑓 , AΓ𝑓 , B𝑓 , C𝑓 , RΓ𝑝𝑓 , A𝑝 , AΓ𝑝 , B𝑝 , C𝑝 , RΓ𝑓 𝑝 )

2: given g(0) = [g(0)
𝑓
, g(0)

𝑝
]𝑡 :

3: for 𝑘 = 0, …, until convergence do

4: Krylov iteration

5: …
6: Evaluation of t(𝑘) = Sg(𝑘) :
7: t(𝑘) = SCHUREVAL (g(𝑘) = [g(𝑘)

𝑓
, g(𝑘)

𝑝
]𝑡 , A𝑓 , AΓ𝑓 , B𝑓 , C𝑓 , RΓ𝑝𝑓 , A𝑝 , AΓ𝑝 , B𝑝 , C𝑝 , RΓ𝑓 𝑝)

8: …
9: End Krylov iteration

10: end for

11: return g = [g𝑓 , g𝑝]𝑡
12: end procedure
7
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Algorithm 5 Solve system (8).
1: procedure SOLVE(meshes, FE, data)
2: Assemble local matrices using any available code

3: [A𝑓 , AΓ𝑓 , B𝑓 , C𝑓 , f𝑓 , RΓ𝑝𝑓 , A𝑝, AΓ𝑝 , B𝑝, C𝑝, f𝑝, RΓ𝑓 𝑝] ← ASSEMBLE(meshes, FE, data)
4: Compute the right hand side b of the Schur–complement system
5: b ← SCHURRHS(A𝑓 , B𝑓 , C𝑓 , f𝑓 , RΓ𝑝𝑓 , A𝑝, B𝑝, C𝑝, f𝑝, RΓ𝑓 𝑝)
6: Solve Sg = b by a Krylov method

7: g ← SCHURSOLVE(b, A𝑓 , AΓ𝑓 , B𝑓 , C𝑓 , RΓ𝑝𝑓 , A𝑝, AΓ𝑝 , B𝑝, C𝑝, RΓ𝑓 𝑝)
8: Solve the complete Stokes problem:

9:

[
A𝑓 B𝑡

𝑓

B𝑓 C𝑓

] [
u𝑓
p𝑓

]
=
[

f𝑓 − AΓ𝑓 g𝑓
0

]
10: Solve the complete Darcy problem:

11:

[
A𝑝 B𝑡

𝑝

B𝑝 C𝑝

] [
u𝑝
p𝑝

]
=
[

f𝑝 − AΓ𝑝 g𝑝
0

]
12: return u𝑓 , p𝑓 , u𝑝, p𝑝
13: end procedure

×𝓁

𝑌

𝑌𝑠

𝑌𝑓

(0,0)

(1,1)
( 𝐿
2
,0)
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Ω𝜀𝑓
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𝐿
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( 𝐿
2
,𝐻)

𝑌 𝓁

𝓁
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2
,−𝑑)

Fig. 2. Schematic representation of the microscale domain Ω𝜀 .

3.1. Reference microscale model

Let Ω𝜀 be a bounded domain filled by an incompressible viscous fluid and partially formed by a periodic array of solid obstacles 
to represent an isotropic porous medium, see Fig. 2. More precisely, let Ω𝜀 = Ω𝜀𝑓 ∪ Ω𝜀𝑝 with Ω𝜀𝑓 = (−𝐿

2 , 
𝐿

2 ) × (0, 𝐻) and Ω𝜀𝑝 =
(−𝐿

2 , 
𝐿

2 ) × (−𝑑, 0) with 𝐿, 𝐻, 𝑑 > 0, and let Ω𝜀𝑝 contain a periodic arrangement of solid obstacles. In particular, let 𝑌 = (0, 1)2 be a 
dimensionless unit cell including a solid obstacle 𝑌𝑠 centred at (0.5, 0.5), and 𝑌𝑓 = 𝑌 ⧵𝑌𝑠 be the fluid region around the obstacle. The 
cell 𝑌 is scaled by a suitable characteristic microscale length 0 < 𝓁 < 1, and the resulting scaled cell 𝑌 𝓁 is periodically repeated to 
cover the whole region Ω𝜀𝑝 as shown in Fig. 2. The shape of the solid obstacles 𝑌𝑠 is chosen to guarantee that the porous medium 
represented by the domain Ω𝜀𝑝 is isotropic, i.e., the symmetric and positive definite permeability tensor 𝐊 that characterizes the 
porous material is 𝐊 =𝐾𝐈 with 𝐾 > 0 constant. We assume that separation of scales holds between the free-fluid region Ω𝜀𝑓 and the 
region Ω𝜀𝑝 occupied by the solid inclusions, i.e.,

𝜀 = 𝓁
𝐿
≪ 1 ,

where 𝐿 is the characteristic macroscale length in Ω𝜀𝑓 .
Under the hypothesis that the Reynolds number in Ω𝜀 is small, the fluid can be modelled by the dimensional Stokes equations

−𝜇Δ𝐮𝜀 +∇𝑝𝜀 = 𝐟 in Ω𝜀 , (13a)

∇ ⋅ 𝐮𝜀 = 0 in Ω𝜀 , (13b)

where 𝜇 and f are as in (1a), 𝐮𝜀 is the fluid velocity and 𝑝𝜀 is the pressure. (Suitable boundary conditions to ensure the well-posedness 
of (13) will be specified when needed.)

The assumption of low Reynolds number implies that pressure forces are balanced by viscous forces [34, Sect. 9.6] in Ω𝜀, and we 
assume that the pressure 𝑝𝜀 is bounded in the neighbourhood of Ω𝜀𝑓 ∩Ω𝜀𝑝. While the microscopic velocity 𝐮𝜀 and pressure 𝑝𝜀 remain 
continuous in Ω𝜀, their magnitude may significantly vary across the domain, and it is well understood (see, e.g., [24,38,37,36,6,42]) 
that there exists an intermediate transition region Ω𝜀𝑡 of characteristic thickness 𝓁 (see Fig. 2) between the free-fluid region Ω𝜀𝑓 and 
the bulk region of the porous medium Ω𝜀𝑝 where the fluid rapidly changes its behaviour. Moreover, the characteristic magnitude of 
8

the velocity and pressure varies significantly depending on the orientation of the flow near the porous surface as already observed 
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Fig. 3. Computational domain and velocity field for the configurations with pressure gradient (almost) parallel (Test case #1, left), perpendicular (Test case #2, 
centre), and oblique (Test case #3, right) to the porous medium.

in [38]. To study this behaviour at the microscale, we consider three configurations where the pressure gradient is either arbitrary 
(namely, parallel or oblique) or perpendicular to the porous medium as illustrated in Fig. 3.

The case when the gradient of the pressure field 𝑝𝜀 is parallel to the porous medium has been extensively studied in the literature, 
see, e.g., [5,10,30–32,36–38,42].

In general, if the pressure gradient is either parallel or oblique but not perpendicular to the porous medium, in the fluid region 
Ω𝜀𝑓 the balance of viscous and pressure forces implies that the characteristic pressure is 𝑃𝑓 = 𝜇𝑈𝑓∕𝐿, with 𝑈𝑓 and 𝐿 being the 
characteristic velocity and length in Ω𝜀𝑓 . In the transition region Ω𝜀𝑡, the velocity decreases due to the presence of solid obstacles 
and it is generally agreed that therein the characteristic velocity is

𝑈𝑡 = 𝜀𝑈𝑓 (14)

(see, e.g., [7,42]). Therefore, taking 𝓁 as the characteristic length in Ω𝜀𝑡, the balance of viscous and pressure forces (i.e., 𝑃𝑡 = 𝜇𝑈𝑡∕𝓁) 
implies that in Ω𝜀𝑡 the characteristic pressure is

𝑃𝑡 = 𝑃𝑓 , (15)

i.e., the pressure remains of the same order of magnitude as in Ω𝜀𝑓 . Inside the porous medium domain Ω𝜀𝑝, the pressure gradients 
at the macroscale are of the same order as those at the macroscale in Ω𝜀𝑓 close to the porous medium, i.e., 𝑃𝑓

𝐿
= 𝑃𝑝

𝐿
, where 𝑃𝑝 is the 

macroscale characteristic pressure in Ω𝜀𝑝 [24, Sect. 7.1]. As a consequence of the balance of forces and in view of the fact that the 
pressure in the porous domain is governed by the macroscale, it holds 𝜇𝑈𝑝

𝓁2
= 𝑃𝑝

𝐿
= 𝜇

𝑈𝑓

𝐿2 , so that the characteristic fluid velocity in 
Ω𝜀𝑝 is

𝑈𝑝 = 𝜀2𝑈𝑓 . (16)

Therefore, as pointed out in the seminal work [38], in the case of non-perpendicular pressure gradient, there holds 𝑈𝑓 ≫𝑈𝑝, while 
the pressure approximately remains of the same order of magnitude inside the whole domain so that the continuity of pressure can 
be considered as a first-order matching condition to relate the fluid regimes in Ω𝜀𝑓 and in Ω𝜀𝑝.

On the other hand, if the gradient of the pressure 𝑝𝜀 is perpendicular to the porous medium, [38] observed that the characteristic 
velocities 𝑈𝑓 and 𝑈𝑝 are both of the same order of magnitude ∼ 𝜀2 in Ω𝜀. The normal component of the velocity is larger than the 
tangential one in the free-fluid domain, they are of the same order of magnitude inside the transition layer, then the difference is 
again evident in the bulk region of the porous medium where the tangential component rapidly decreases. Moreover, the pressure 
undergoes a much larger gradient inside Ω𝜀𝑝 than in Ω𝜀𝑓 but, to the first order, it remains continuous in Ω𝜀 and almost constant 
along the upper row of solid inclusions in Ω𝜀. The continuity of the pressure was also noticed in [10,11] in the presence of an 
isotropic porous medium.

These observations are also confirmed by the numerical results at the microscale that we performed considering the three configu-
rations of Fig. 3 described below. In all three test cases, the fluid has dynamic viscosity 𝜇 = 10−3 kg/(m s) and density 𝜌 = 103 kg/m3. 
The Stokes problem (13) is solved using stabilized SEM [28] as in Sect. 2.1 with local polynomial degree 6 in Ω𝜀 on a structured 
9

mesh of size ℎ ≈ 𝓁 in Ω𝜀𝑝 and ℎ =max(𝓁, 120 ) in Ω𝜀𝑓 . An example of the computational mesh on a subregion of Ω𝜀 is shown in Fig. 4.
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Fig. 4. Example of computational mesh for the spectral element discretization of (13).

Test case #1: lid–driven cavity We consider a lid–driven cavity setting similar to the one proposed in [36] for which the flow is almost 
parallel to the upper row of solid obstacles of Ω𝜀𝑝. In particular, the computational domain is Ω𝜀 = (−0.5, 0.5) × (−0.5, 1) m (𝐿 = 1 m, 
see also Fig. 2 for the notation) and we impose a null external force f = 𝟎 and boundary conditions 𝐮𝜀 = ((1 − 4𝑥2)10−6, 0) m/s at 
Γ𝑡𝑜𝑝 = (−0.5, 0.5) × {1} m and 𝐮𝜀 = 𝟎 on 𝜕Ω𝜀 ⧵Γ𝑡𝑜𝑝, together with the constraint ∫Ω𝜀

𝑝𝜀 = 0 to ensure the well-posedness of the Stokes 
problem (13). The Dirichlet boundary condition on Γ𝑡𝑜𝑝 makes the characteristic velocity be 𝑈𝑓 = 10−6 m/s so that the Reynolds 
number is 𝑅𝑒 =𝐿 𝜌 𝑈𝑓∕𝜇 = 1.

The velocity and pressure computed in Ω𝜀 with circular obstacles characterized by 𝓁 = 1
20 and radius 𝑟 = 0.2 𝓁 are shown in Fig. 5, 

while Fig. 6 reports the dimensionless velocity and pressure profiles for 𝓁 = 1
10 , 

1
20 , 

1
40 and 𝑟 = 0.2 𝓁 at different vertical locations: 

𝑦 = 0.2 (in the free-fluid region), 𝑦 = 0 (on top of the first row of solid inclusions) and 𝑦 = −0.2 (among the solid obstacles).
The numerical results for Test case #1 confirm that both components of the velocity are continuous in Ω𝜀 and that they undergo a 

significant change of regime especially in the neighbourhood of the top row of solid inclusions. This is visible both in Fig. 5 (bottom 
row) and in Fig. 6 where it can be seen that the two components of the velocity decrease by up to five orders of magnitude moving 
from Ω𝜀𝑓 to Ω𝜀𝑝. Fig. 6 also shows that when 𝓁 is halved, the magnitude of the velocity at 𝑦 = 0.2 (in Ω𝜀𝑓 ) does not change, while 
this is approximately divided by 2 at 𝑦 = 0 (in Ω𝜀𝑡) and by 4 at 𝑦 = −0.2 (in Ω𝜀𝑝). Notice that in this test case 𝐿 = 1 m and 𝓁 = 𝜀, so 
that the numerical results validate estimates (14) and (16), see also, e.g., [5,24,38,43]. In particular, since only at the Darcy regime 
the velocity scales like 𝜀2 (see, e.g., [2,41]), similarly to [37,43] we can also conclude that the Stokes regime remains valid until a 
depth proportional to 𝓁 below the ideal upper surface that delimits the porous region (in our case, 𝑦 = 0).

As concerns the pressure, significant fluctuations can be observed around the solid obstacles of the upper row at length scale 𝓁, as 
also pointed out, e.g., in [10], and they become more localized around the obstacles as 𝜀 → 0. However, the pressure remains overall 
continuous in the domain, in agreement with theoretical results (see, e.g., [37,38,43]) and with numerical experiments performed 
for isotropic porous media [10]. Moreover, the pressure maintains the same order of magnitude in Ω𝜀𝑓 and in the transition region 
Ω𝜀𝑡 (see also (15)).

Test case #2: normal forced filtration We consider the computational domain Ω𝜀 = (−0.25, 0.25) × (−0.5, 1) m (𝐿 = 0.5 m) filled by 
solid obstacles in the lower region Ω𝜀𝑝 = (−0.25, 0.25) × (−0.5, 0) m. We impose null external force 𝐟 = 𝟎, homogeneous Dirichlet 
boundary conditions 𝐮𝜀 = 𝟎 m/s on the vertical lateral sides, homogeneous normal stress (𝜇∇𝐮𝜀 − 𝑝𝜀𝐈) 𝐧 = 𝟎 kg/(m s2) at Γ𝑡𝑜𝑝 =
(−0.25, 0.25) × {1} m, and (𝜇∇𝐮𝜀 − 𝑝𝜀𝐈) 𝐧 = (0, −10−7) kg/(m s2) at Γ𝑏𝑜𝑡𝑡𝑜𝑚 = (−0.25, 0.25) × {−0.5} m. This set of data makes the 
characteristic velocity be 𝑈𝑓 ∼ 10−6 m/s and 𝑅𝑒 ∼ 1. The fluid is forced to move from the top to the bottom of the domain and the 
horizontal component of the velocity is almost null in the whole domain, see Fig. 3 (middle).

The velocity and pressure computed in Ω𝜀 with circular obstacles characterized by 𝓁 = 1
20 and radius 𝑟 = 0.4 𝓁 are shown in Fig. 7, 

while Fig. 8 reports the dimensionless velocity and pressure profiles for 𝓁 = 1
10 , 

1
20 , 

1
40 (equivalently, 𝜀 = 1

5 , 
1
10 , 

1
20 ) and 𝑟 = 0.4 𝓁 at 

three different vertical locations: 𝑦 = 0.4 (in the free-fluid region), 𝑦 = 0 (on top of the first row of solid inclusions), and 𝑦 = −0.4
(among the solid obstacles). (Remark that in the dimensional setting, the three vertical coordinates coincide with those of Test case 
#1 and Test case #3 since here 𝐿 = 0.5 m instead of 𝐿 = 1 m as in the other two cases.)

In Test case #2, the horizontal (tangential) component of the velocity is much smaller than the vertical one, except inside 
the transition region where they become comparable, and the vertical (normal) component of the velocity keeps the same order of 
magnitude in the whole domain Ω𝜀 where it behaves like 𝜀2 as discussed earlier in this section. The pressure 𝑝𝜀 increases significantly 
inside the porous medium and Fig. 7 shows that this occurs in a continuous way inside a thin region around the upper row of solid 
inclusions where the pressure also displays the expected constant profile (see Fig. 8) except for the oscillations due to the presence 
of the obstacles.

Test case #3: oblique forced filtration In this test, the computational domain is Ω𝜀 = (−0.5, 0.5) × (−0.5, 0.5) m (𝐿 = 1 m) and we 
impose f = (10−8, −10−7) kg/s2, homogeneous Dirichlet boundary conditions on the vertical sides of the domain, homogeneous 
normal stress (𝜇∇𝐮𝜀 − 𝑝𝜀𝐈) n = 𝟎 kg/(m s2) at Γ𝑡𝑜𝑝 = (−0.5, 0.5) × {0.5} m and (𝜇∇𝐮𝜀 − 𝑝𝜀𝐈) 𝐧 = (0, −10−7) kg/(m s2) at Γ𝑏𝑜𝑡𝑡𝑜𝑚 =
(−0.5, 0.5) × {−0.5} m. The characteristic velocity is 𝑈𝑓 ∼ 10−6 m/s and the Reynolds number 𝑅𝑒 ∼ 1. The fluid moves from the 
top–left corner of the domain towards the bottom–right corner of the domain, but it finds the resistance of the porous media, see 
10

Fig. 3, right.
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Fig. 5. Test case #1. From left to right: horizontal and vertical components of the dimensionless microscale velocity and pressure with 𝓁 = 1
20

and circular obstacles 
with 𝑟 = 0.2 𝓁. (Top) The full solution where only the macroscale behaviour is visible; (bottom) solutions plotted with a different colour scale to highlight small 
variations both in the transition region and in the porous region. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

The velocity and the pressure computed in Ω𝜀 with circular obstacles characterized by 𝓁 = 1
20 and radius 𝑟 = 0.4 𝓁 are shown 

in Fig. 9, while Fig. 10 reports the dimensionless velocity and pressure profiles for 𝓁 = 1
10 , 

1
20 , 

1
40 and 𝑟 = 0.4 𝓁 at different vertical 

locations: 𝑦 = 0.2 (in the free-fluid region), 𝑦 = 0 (on top of the first row of solid inclusions) and 𝑦 = −0.2 (among the solid obstacles).

Test case #3 presents an intermediate behaviour with respect to the two previous configurations. Indeed, the results in Figs. 9
and 10 show that the horizontal component of the velocity decreases throughout the domain Ω𝜀 similarly to its counterpart in Test 
case #1. On the other hand, the vertical component of the velocity keeps the same order of magnitude in the domain as it does the 
corresponding velocity in Test case #2. The pressure 𝑝𝜀 keeps the same order of magnitude in Ω𝜀 as it also does in Test case #1 
without the significant variations of Test case #2 between Ω𝜀𝑓 and Ω𝜀𝑝.

The physical observations and the numerical results of this section lead us to conclude that the matching conditions (3) and (4)
that impose the continuity of pressure and velocity are physically justified. Also the definition of the global velocity and pressure (5)
is reasonable due to the observation that the Stokes regime still holds in the thin transition region and it is replaced by the Darcy 
regime only deeper into the porous region.

However, it is crucial that the interfaces Γ𝑝 and Γ𝑓 are suitably located so that, at the macroscale, the microscopic behaviour of 
the fluid is correctly captured. This aspect is discussed in the next section.

3.2. Location of the interfaces Γ𝑝 and Γ𝑓

In this section, we provide a practical and physically significant strategy to position the interfaces Γ𝑝 and Γ𝑓 in such a way that, 
at the macroscale, the overlapping region between Ω𝑓 and Ω𝑝 delimited by the interfaces plays the role of the microscale transition 
11

region Ω𝜀𝑡 where the sharp variations of velocity and pressure occur.
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Fig. 6. Test case #1. Velocity and pressure profiles of the dimensionless microscale solution at three vertical locations and for three different values of 𝜀 = 𝓁. Circular 
obstacles with 𝑟 = 0.2 𝓁.

Fig. 7. Test case #2. From left to right: horizontal and vertical components of the dimensionless microscale velocity and pressure with 𝓁 = 1
20

and circular obstacles 
with 𝑟 = 0.4 𝓁.

To this aim, first we set the interface Γ𝑝 so that, at the microscale, this coincides with the ideal top surface that delimits the solid 
obstacles of Ω𝜀𝑝 as shown in Fig. 11, and then letting 𝜀 → 0. While from a mathematical point of view, this choice guarantees the 
periodicity of the microscale representation of the porous medium, from a physical viewpoint, it ensures that the overlapping region 
12

is not too low inside the porous region with the risk of getting outside of Ω𝜀𝑡 .
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Fig. 8. Test case #2. Velocity and pressure profiles of the dimensionless microscale solution at three vertical locations and for three different values of 𝜀 = 2 𝓁. Circular 
obstacles with 𝑟 = 0.4 𝓁.

Fig. 9. Test case #3. From left to right: horizontal and vertical components of the dimensionless microscale velocity and pressure when 𝓁 = 1
20

and the circular 
obstacles have radius 𝑟 = 0.4 𝓁. The two components of the velocity in the second row are plotted after changing the colour scale to highlight the small variations of 
the solution in the porous domain.

To identify a correct location for the interface Γ𝑓 , we consider Test case #1 (lid–driven cavity problem) as our ‘model problem’ 
because in this case the variations of the magnitude of the characteristic velocity across Ω𝜀 are much more significant than in 
the other test cases of Sect. 3.1. The interface Γ𝑓 must be accurately placed sufficiently below Γ𝑝 to capture the reduction of the 
magnitude of the velocity up to order 𝜀 𝑈𝑓 inside the transition region Ω𝜀𝑡. However, it must not be set too low to avoid reaching the 
bulk region of the porous medium where the Darcy regime characterized by velocity of order 𝜀2 𝑈𝑓 is present. Therefore, we look 
for a rule to characterize the best position of Γ𝑓 as a function of known physical parameters (e.g., the porosity and the characteristic 
13

microscale length), to guarantee that the ICDD solution approximates the microscale solution with the best possible accuracy.
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Fig. 10. Test case #3. Velocity and pressure profiles of the dimensionless microscale solution at three vertical locations and for three different values of 𝜀 = 𝓁. Circular 
obstacles with 𝑟 = 0.4 𝓁.

Γ𝑓
𝑦 = −𝛿∗

Γ𝑝
𝑦 = 0

Fig. 11. Schematic representation of the location of the interfaces Γ𝑓 and Γ𝑝 . The obstacles are only drawn to provide a reference of where the interfaces are located 
relative to the microscale domain Ω𝜀 .

𝑟̂

𝑠̂ 𝑎

Fig. 12. From left to right: reference unit cell 𝑌 with circular, square and octagonal obstacles 𝑌𝑠 of radius 𝑟̂, side 𝑠̂ and apothem 𝑎, respectively.

To be able to compare the microscale solutions of the lid–driven cavity problem with its ICDD counterpart, we first characterize 
the permeability tensor 𝐊 = 𝐾𝑖𝑗 (𝑖, 𝑗 = 1, 2) for the Darcy problem (2) following a standard procedure (see, e.g., [41]). Namely, let 
𝐰𝑖 = (𝑤𝑖1, 𝑤𝑖2)𝑇 , for 𝑖 = 1, 2, be the velocity solution of the auxiliary dimensionless Stokes problem

−Δ𝐰𝑖 +∇𝑞𝑖 = 𝐞𝑖 in 𝑌𝑓
∇ ⋅𝐰𝑖 = 0 in 𝑌𝑓

𝐰𝑖 periodic at 𝜕𝑌
𝐰𝑖 = 𝟎 at 𝜕𝑌𝑠

∫
𝑌𝑓

𝑞𝑖 = 0 ,

(17)

where 𝐞𝑖 is the canonical unit vector in ℝ2. Then, we define the permeability tensor related to the reference cell 𝑌 as

𝐾𝑖𝑗 = ∫
𝑌𝑓

𝑤𝑖𝑗 .

We consider solid obstacles of three different shapes as illustrated in Fig. 12 that characterize an isotropic porous medium for which 
𝐾11 =𝐾22 > 0 and 𝐾12 =𝐾21 = 0, and we set 𝐾 =𝐾11.

The computed values of the permeability 𝐾 for various shapes and sizes of the obstacles 𝑌𝑠 are reported in Table 1 together with 
the corresponding porosity 𝜗 = |𝑌𝑓 |, being |𝑌 | = 1.
14

Then, let (𝐮̃𝜀, 𝑝̃𝜀) denote the trivial extension of the solution (𝐮𝜀, 𝑝𝜀) of (13) from Ω𝜀 (with obstacles) to Ω (without obstacles).
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Table 1

Computed permeability 𝐾 and porosity 𝜗 for circular, square and octagonal obstacles of different radius 𝑟̂, side 𝑠̂ and 
apothem ̂𝑎, and optimal 𝛿∗ , where 𝛿∗ are computed by solving (19) on the Test case #1.

circular obstacles square obstacles octagonal obstacles

𝑟̂ 𝐾 𝜗 𝛿∗ 𝑠̂ 𝐾 𝜗 𝛿∗ 𝑎 𝐾 𝜗 𝛿∗

0.2 3.295e−2 0.874 0.355 0.4 2.358e−2 0.840 0.323 0.2 3.561e−2 0.887 0.362
0.3 1.098e−2 0.717 0.249 0.6 6.326e−3 0.640 0.210 0.3 1.289e−2 0.745 0.263
0.4 1.828e−3 0.497 0.145 0.8 7.231e−4 0.360 0.102 0.4 2.128e−3 0.547 0.161
0.45 3.173e−4 0.364 0.093 0.9 8.651e−5 0.190 0.050 0.45 4.378e−4 0.427 0.113

Fig. 13. Test case # 1. Comparison between the dimensionless microscale velocity and pressure profiles at Γ𝑝 (𝑦 = 0) and the ICDD ones obtained with three values of 
𝛿.

To understand how the position of the interface Γ𝑓 affects the accuracy of the ICDD solution, we perform numerical simulations 
for Test case #1 considering the boundary conditions indicated in Sect. 3.1 and circular obstacles. At the microscale, we take 𝑟 = 𝑟̂𝓁
with ̂𝑟 = 0.3 and 𝓁 = 1

20 so that the porosity is 𝜗 = 0.717 (see Table 1). At the macroscale, we consider the corresponding permeability 
𝐾 = 𝓁2𝐾 m2 and we set the interface Γ𝑓 at 𝑦 = −𝛿 for three different values of 𝛿: 𝛿 = 0.005, 0.01245, 0.015 m. In Fig. 13, we compare 
the dimensionless ICDD velocity and pressure profiles with the microscale solution (𝐮̃𝜀, 𝑝̃𝜀) on the interface Γ𝑝 (𝑦 = 0), while in Fig. 14

we show the dimensionless profiles along a vertical line at 𝑥 = −0.1. Finally, in Fig. 15 we plot the 𝐿2 errors

𝑒𝑢𝑖(𝑦) =
⎛⎜⎜⎝

0.5

∫
−0.5

(𝑢̃𝜀,𝑖(𝑥, 𝑦̄) − 𝑢𝑖(𝑥, 𝑦̄))2 𝑑𝑥
⎞⎟⎟⎠
1
2

for 𝑖 = 1,2, and

𝑒𝑝(𝑦) =
⎛⎜⎜⎝

0.5

∫
−0.5

(𝑝̃𝜀(𝑥, 𝑦̄) − 𝑝(𝑥, 𝑦̄))2 𝑑𝑥
⎞⎟⎟⎠
1
2

,

for 𝑦̄ ∈ {−0.4, −0.3 − 0.2, −0.1, 0, 0.1, 0.2, 0.5}.
The numerical results reported in Figs. 13 and 14 show that if 𝛿 is too large, the ICDD Stokes velocity at 𝑦 = 0 is underestimated 

with respect to the microscale one, while the former is overestimated if 𝛿 is too small. This confirms that if the interface Γ𝑓 is placed 
too low inside the porous medium, the ICDD Stokes velocity is incorrectly affected by the Darcy regime 𝜀2 𝑈𝑓 , while if Γ𝑓 is not 
low enough, imposing (4) does not allow to capture the transitional regime of Ω𝜀𝑡. Moreover, the errors plotted in Fig. 15 indicate 
that the choice of 𝛿 impacts the behaviour of the Stokes solution more than of the Darcy one so that we aim to determine the best 
value 𝛿∗ of 𝛿 in order to minimize the difference between the ICDD and the microscale solutions in the free-fluid region. A possible 
criterion to achieve this is

find 𝛿∗ = argmin
𝛿

(‖𝐮̃𝜀 − 𝐮(𝛿)‖𝐿2(Ω𝑓 ) + ‖𝑝̃𝜀 − 𝑝(𝛿)‖𝐿2(Ω𝑓 )) , (18)

where by 𝐮(𝛿) and 𝑝(𝛿) we denote the dependence of the ICDD solution on 𝛿. To avoid numerical artifacts due to the pressure 
becoming infinite at the top corners of the fluid domain for the lid–driven cavity problem, and also considering that condition (4) is 
imposed on the velocity rather than on the pressure, instead of (18) we adopt the criterion

find 𝛿∗ = argmin
𝛿

‖𝐮̃𝜀 − 𝐮(𝛿)‖𝐿2(Ω∗
𝑓
) (19)

where Ω∗
𝑓
⊂Ω𝑓 is the restricted fluid domain

Ω∗
𝑓
= {(𝑥, 𝑦) ∈ Ω𝑓 ∶ −𝛿∗ ≤ 𝑦 < 0.5} . (20)

By an exhaustive method, we compute 𝛿∗ satisfying (19) considering circular obstacles with radius 𝑟 = 𝑟̂𝓁, square obstacles with 
15

side 𝑠 = 𝑠̂𝓁, and octagonal obstacles of apothem 𝑎 = 𝑎𝓁, for the values of ̂𝑟, ̂𝑠 and 𝑎 reported in Table 1 and for 𝓁 = 1
10 , 1

20 , 1
40 .
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Fig. 14. Test case #1. (Top) Dimensionless ICDD velocity and pressure profiles at 𝑥 = −0.1 for three values of 𝛿 and (middle and bottom) zoom of the boxed regions, 
compared to the microscale solution.

Fig. 15. Test case # 1. 𝐿2 errors between the ICDD solutions computed with three values of 𝛿 and the microscale solutions at fixed values of 𝑦. The interface Γ𝑝 is at 
𝑦 = 0.

We observe that the computed optimal values 𝛿∗ are proportional to 𝓁, hence we make them dimensionless by the scaling

𝛿∗ = 𝛿∗

𝓁
.

The resulting optimal values 𝛿∗ are reported in Table 1 and plotted in Fig. 16 versus the porosity 𝜗. We notice that the pairs (𝜗, ̂𝛿∗)
describe the same curve independently of the shape of the obstacles and, using least–squares fitting, we obtain the relationship

𝛿∗(𝜗) = 0.3847𝜗2 + 0.0255𝜗+ 0.0344 , (21)

whose dimensional counterpart becomes

𝛿∗(𝜗,𝓁) = 𝓁 𝛿∗(𝜗) . (22)

The formula (22) provides a practical way to determine the vertical coordinate

𝑦𝑓 = −𝛿∗(𝜗,𝓁) (23)

of the interface Γ𝑓 as it only depends on easily computable quantities such as the porosity 𝜗 and the characteristic size 𝓁 of the 
pores of the porous medium. The rule (23) is independent of the shape of the obstacles, and it permits to identify a macroscopic 
overlapping region of thickness proportional to 𝓁, in agreement with theoretical estimates of the dimension of the transition region. 
16

Relationship (22) was obtained considering the lid-driven cavity problem as a model problem because we observed that this was the 
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Fig. 16. Computed optimal values of 𝛿∗ (symbols) versus the porosity 𝜗 for various shapes and sizes of the solid obstacles. The continuous line is the least–square 
fitting curve (21).

test case featuring the most complex flow behaviour (see Sect. 3.1). However, in Sect. 4, we show that formula (22) permits to obtain 
an accurate representation of the flow field in Ω when 𝓁→ 0 also for the other test cases previously considered.

4. Validation of the ICDD method against direct numerical simulations at the microscale

In this section, we validate the ICDD model with Γ𝑝 and Γ𝑓 chosen as described in Sect. 3.2 and 𝛿∗ given by (21)–(22) versus the 
solutions obtained from direct numerical simulations at the microscale considering the three test cases introduced in Sect. 3.1 with 
the same problem data (force and boundary conditions) specified therein. We compare the velocity and the pressure fields computed 
by these two approaches and we study how the errors behave when 𝓁 → 0 in the microscale setting.

4.1. Calculation of the errors

To correctly compare the microscale and ICDD velocity fields inside the porous medium, we introduce the affine transformation 
𝐹 𝓁
𝑗
∶ 𝑌 → 𝑌 𝓁

𝑗
that maps the reference dimensionless cell 𝑌 into the generic cell, say 𝑌 𝓁

𝑗
, in Ω𝜀 whose side has length 𝓁. Then, for 

𝑖 = 1, 2, we define the fields 𝐰𝓁
𝑖
∶ Ω𝜀𝑝 →ℝ as

𝐰𝓁
𝑖 |𝑌 𝓁

𝑗
=𝐰𝑖◦(𝐹 𝓁

𝑗 )
−1,

where 𝐰𝑖 are the solutions of the auxiliary microscale problem (17). Finally, the function

𝐮̃𝑝 =
2∑
𝑖=1

𝐰𝓁
𝑖 𝑢𝑖

is the reconstruction of the velocity in the porous domain combining the ICDD Darcy solution 𝐮 = (𝑢1, 𝑢2) defined in (5) in Ω ⧵Ω𝑓

with the microscale fluctuation 𝐰𝓁
𝑖

(see [1,2]).
We can now define the following errors

𝑒𝑢
𝐿2(Ω∗

𝑓
)
= ‖𝐮̃𝜀 − 𝐮‖𝐿2(Ω∗

𝑓
), 𝑒

𝑝

𝐿2(Ω∗
𝑓
)
= ‖𝑝̃𝜀 − 𝑝‖𝐿2(Ω∗

𝑓
), (24)

𝑒𝑢
𝐿2(Ω−

𝑝 )
= ‖𝐮̃𝜀 − 𝐮̃𝑝‖𝐿2(Ω−

𝑝 ), 𝑒
𝑝

𝐿2(Ω−
𝑝 )

= ‖‖𝑝̃𝜀 − 𝑝‖‖𝐿2(Ω−
𝑝 )
, (25)

where Ω∗
𝑓

is defined in (20) while

Ω−
𝑝 =Ω ⧵Ω𝑓 = {(𝑥, 𝑦) ∈ Ω ∶ −𝑑 ≤ 𝑦 ≤ −𝛿∗} .

For each of the test cases described in Sect. 3.1, we evaluate the errors (24) and (25) considering the microscale configurations 
listed in Table 2.

Numerical comparison between ICDD and test case #1 (lid-driven cavity) We compute the ICDD solution for the lid-driven cavity test, 
setting the permeability 𝐾 = 8.237e−5 m2, which corresponds to the case of circular solid inclusions with 𝑟 = 0.2 𝓁 and 𝓁 = 1

20
considered in Sect. 3.1, see Fig. 5. In this case, 𝜗 = 0.874 and 𝛿∗ = 1.754e−2 m. The ICDD solution is plotted in Fig. 17, where 
the values of the colour bar have been chosen to highlight the variations of the solution around the transition region and to easily 
compare it with the microscale solution of Fig. 5 (bottom). We observe a very good agreement between the macroscopic behaviour 
17

of the solutions computed by the two approaches.



Journal of Computational Physics 513 (2024) 113204M. Discacciati and P. Gervasio

Table 2

Configurations for the numerical experiments of Sect. 4.

Configuration Obstacle Side/Radius Porosity 𝜗 𝓁 𝐾 [m2] 𝛿∗ [m]
1
10

7.231e−6 9.344e−3
C1 square 𝑠̂ = 0.8 0.360 1

20
1.808e−6 4.672e−3

1
40

4.519e−7 2.336e−3

1
10

6.326e−5 2.083e−2
C2 square 𝑠̂ = 0.6 0.640 1

20
1.582e−5 1.041e−2

1
40

3.954e−6 5.207e−3

1
10

1.828e−5 1.422e−2
C3 circle 𝑟̂ = 0.4 0.497 1

20
4.570e−6 7.112e−3

1
40

1.143e−6 3.556e−3

1
10

1.098e−4 2.506e−2
C4 circle 𝑟̂ = 0.3 0.717 1

20
2.744e−5 1.253e−2

1
40
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Fig. 17. ICDD solution for Test case #1. From left to right: horizontal and vertical components of the dimensionless velocity and pressure for circular obstacles with 
𝑟 = 0.2 𝓁 and 𝓁 = 1

20
.

Moreover, for configuration C4 (see Table 2) with 𝓁 = 1
40 , Fig. 18 shows the traces of the dimensionless microscale (blue) and 

ICDD (red) solutions on three horizontal lines at 𝑦 = 0.2 (in the fluid domain), 𝑦 = 0 (on the interface Γ𝑝), and 𝑦 = −0.2 (in the porous 
domain). While the microscale solution presents expected oscillations at the pore scale, the ICDD solution only shows variations at 
the macroscale, which is correct because the Darcy solution is independent of the microscale. The agreement between the ICDD and 
the microscale solutions is very good from a qualitative point of view. We can observe that the first component of the ICDD solution 
inside the porous domain (bottom left panel) underestimates the microscale solution. However, the error estimates in Fig. 19 show 
that, provided that the thickness of the overlapping region is chosen using the least–square fitting formula (22), the errors on the 
velocity 𝑒𝑢

𝐿2(Ω−
𝑝 )

and 𝑒𝑢
𝐿2(Ω∗

𝑓
)

decrease like 𝓁2 in the porous domain and like 𝓁3∕2 in the fluid domain, respectively, while both the 

errors on the pressure decrease (at least) like 
√
𝓁.

Numerical comparison between ICDD and test case #2 (normal forced filtration) For this test case, we first compute the ICDD solution 
using the same setting as in Sect. 3.1, see Fig. 7, which corresponds to configuration C3 (see Table 2) with 𝓁 = 1

20 . The numerical 
results reported in Fig. 20 show a good agreement with the corresponding microscale solutions of Fig. 7, and we perform a more 
quantitative comparison in Fig. 21. Here, for configuration C1 with 𝓁 = 1

40 , we plot the dimensionless microscale (blue) and ICDD 
(red) solutions at 𝑦 = 0.4 (in the fluid domain), 𝑦 = 0 (on Γ𝑝), and 𝑦 = −0.4 (in the porous domain). Similarly to the results obtained 
for Test case #1, the ICDD solution only captures variations at the macroscale, but, on average, it accurately represents the behaviour 
of the solutions observed at the microscale at all three vertical levels.

Finally, the numerical study of the errors (24) and (25) reported in Fig. 22 shows that these decay much faster than in Test case 
#1 (refer to Fig. 19). This can be due to the fact that, given the simpler velocity and pressure fields observed for the normal forced 
18

filtration (e.g., the whole velocity field just points downwards), the magnitude of the velocity goes to zero very fast when 𝓁 → 0.
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Fig. 18. Test case #1. Dimensionless velocity and pressure profiles of the ICDD solution (red) and reference microscale solution (blue) at three vertical locations for 
circular obstacles with 𝑟 = 0.3 𝓁 and 𝓁 = 1

40
.

Fig. 19. Test case #1. Errors (24)–(25) versus 𝓁 for configurations C1–C4.

Numerical comparison between ICDD and test case #3 (oblique forced filtration) Finally, we consider the case of the oblique forced 
filtration with the same settings used in Sect. 3.1, which corresponds to configuration C3 with 𝓁 = 1

20 . Fig. 23 shows the two 
dimensionless components of the velocity and the dimensionless pressure computed by the ICDD method in the whole domain Ω, 
and we can observe an excellent agreement with the results at the microscale plotted in Fig. 9 (top).

Then, as in the two previous cases, we compare the velocity and pressure profiles obtained by ICDD and by direct numerical 
simulation at the microscale at the three vertical levels 𝑦 = 0.2 (in the fluid domain), 𝑦 = 0 (on Γ𝑝), and 𝑦 = −0.2 (in the porous 
domain). For this, we consider configuration C3 with 𝓁 = 1

40 , and we plot the computed solutions in Fig. 24. We observe that the 
ICDD solution correctly represents the macroscopic behaviour of velocity and pressure at the selected levels, with only the horizontal 
component of the velocity inside the porous medium being slightly underestimated (see bottom left panel).

However, the numerical studies of the errors (24)–(25) reported in Fig. 25 confirm once more that the ICDD solution converges 
19

to the microscale solution when the overlap thickness is chosen following the least–square fitting formula (22). More precisely, in 
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Fig. 20. ICDD solution for Test case #2. From left to right: horizontal and vertical components of the dimensionless velocity and pressure for circular obstacles with 
𝑟 = 0.4 𝓁 and 𝓁 = 1

20
.

Fig. 21. Test case #2. Dimensionless velocity and pressure profiles of the ICDD solution (red) and reference microscale solution (blue) at three vertical locations for 
square obstacles with 𝑠 = 0.8 𝓁 and 𝓁 = 1

40
.

this case, the errors decrease like 
√
𝓁 for the pressure (in both the fluid and the porous medium subdomains), while the errors for 
20

the velocity decrease like 𝓁2 inside the porous domain and 𝓁3∕2 in the free fluid domain.
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Fig. 22. Test case #2. Errors (24)–(25) versus 𝓁 for configurations C1–C4.

Fig. 23. ICDD solution for Test case #3. From left to right: horizontal and vertical components of the ICDD velocity and pressure for circular obstacles with 𝑟 = 0.4 𝓁
and 𝓁 = 1

20
.

4.2. Error convergence rates

The numerical study of the errors (24)–(25) between the ICDD and the reference microscale solutions carried out in Sect. 4.1
shows that ICDD solutions converge to the physically correct microscale quantities when 𝓁→ 0. More precisely, the numerical results 
show that at least approximately the following error convergence rates can be expected:

𝑒𝑢
𝐿2(Ω∗

𝑓
)
≲ 𝓁3∕2, 𝑒

𝑝

𝐿2(Ω∗
𝑓
)
≲
√
𝓁, 𝑒𝑢

𝐿2(Ω−
𝑝 )
≲ 𝓁2, 𝑒

𝑝

𝐿2(Ω−
𝑝 )
≲
√
𝓁, (26)

with possible higher convergence rates for some particular configurations. This occurs, e.g., in Test cases #2 and #3 as it can be seen 
on the right panels of Figs. 22 and 25.

Error estimates between a microscale solution and a macroscale (effective) model featuring the Stokes and Darcy problems were 
previously obtained using homogenization theory in, e.g., [30,31,39,12]. (For the sake of clarity, notice that in the cited papers, 
the characteristic pore size is denoted by 𝜀 instead of by 𝓁 as we do in the present work.) However, in these works, the effective 
macroscopic models for the free fluid and the porous medium are coupled in a different way than in the ICDD framework. Indeed, 
for example, [39], that also considers a flow parallel to the porous medium as in our Test case #1, macroscopic Stokes and Darcy 
equations are defined in two non-overlapping subdomains separated by an interface Σ whose location coincides with the one of the 
ICDD interface Γ𝑝. Moreover, the coupling between the two local problems occurs only through the Darcy pressure on Σ which is 
set equal to the Stokes pressure plus a correction term proportional to viscous stresses, while the Stokes normal velocity is zero and 
21

the tangential velocity satisfies a Beavers-Joseph-type condition on Σ. In the ICDD framework, two matching conditions (3) and (4)
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Fig. 24. Test case #3. Dimensionless velocity and pressure profiles of the ICDD solution (red) and reference microscale solution (blue) at three vertical locations for 
circular obstacles with 𝑟 = 0.4 𝓁 and 𝓁 = 1

40
.

Fig. 25. Test case #3. Errors (24)–(25) versus 𝓁 for configurations C1–C4.

on both the pressure and the velocity are imposed at two different interfaces, with the position of Γ𝑓 depending on 𝓁. Despite these 
differences, the numerical estimates (26) well align with the theoretical ones of, e.g., [39] and references therein.

In fact, [39] proved that the interface between the free fluid and the porous medium can be chosen within a layer of pore size 
thickness and that perturbations of the position of the interface of order 𝓁 only lead to higher-order perturbations on the solution. In 
the ICDD framework, the interfaces Γ𝑝 and Γ𝑓 always define a layer of thickness < 𝓁 and the convergence rates observed in all test 
cases show the robustness of the proposed approach, especially considering that for Test cases #2 and #3 we use an optimal value 
𝛿∗ to define the interface Γ𝑓 that was derived for the case of flow almost parallel to the porous medium. Thus, the ICDD method 
provides accurate results for isotropic porous media, independently of the flow direction.

Moreover, in the case of fluid flow parallel to the upper surface of the porous medium, [39,31] proved that errors in 𝐿2 norm √

22

between the microscale and macroscale Stokes solution converge like 𝓁 for the pressure and like 𝓁3∕2 for the velocity. We find 
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Fig. 26. Test case #1. Errors 𝑒𝑢
𝐿2(Ω∗

𝑝
) and 𝑒

𝑝

𝐿2 (Ω∗
𝑝
) versus 𝓁 for configurations C1–C4.

analogous results (see (26)) for all test cases and not only for the case of the lid-driven cavity (where the flow is almost parallel to 
the porous medium), and we remark that, differently from the cited works, we impose the (more realistic) coupling condition (4) on 
the Stokes velocity at Γ𝑓 instead of a no-penetration condition.

Finally, [12,30] proved that the microscale pressure in the porous medium strongly converges to the macroscopic Darcy pressure 
like 

√
𝓁 with respect to the 𝐿2 norm in Ω𝑝 when a boundary condition on the Cauchy stress is imposed on the top boundary of 

the periodic microscale porous medium. This boundary condition converges to a macroscale Dirichlet boundary condition for the 
pressure (see, e.g., [12,25]) analogous to the one that we impose on Γ𝑝, and we numerically observe the correct convergence rate for 
the ICDD Darcy pressure. The order of convergence of the 𝐿2 norm of the error of the fluid velocity also agrees with the theoretical 
estimate in [12].

Notice that for large values of 𝓁, the order of convergence of the ICDD Darcy velocity is slightly less than 𝓁2. This is particularly 
evident in Test case #1 (lid-driven cavity), see Fig. 19 (bottom left). This is likely due to the fact that, because of constraints with 
the computational software, we cannot quantify the boundary layer term of first-order in 𝓁 (see [12, Theorem 1]) which remains 
non-negligible if 𝓁 is not small enough. In fact, if we replace Ω−

𝑝 by

Ω∗
𝑝 = {(𝑥, 𝑦) ∈ Ω ∶ −𝑑 ≤ 𝑦 ≤ −𝓁} , (27)

thus moving away from the boundary layer region close to Γ𝑓 , the error behaviour significantly improves and we recover the 
expected convergence rate especially when 𝓁 becomes sufficiently small. This is shown on the left of Fig. 26, where we plot the error 
𝑒𝑢
𝐿2(Ω∗

𝑝 )
. We also observe that the errors 𝑒𝑝

𝐿2(Ω∗
𝑝 )

computed for the pressure maintain the same behaviour like 
√
𝓁 as their counterparts 

in Ω−
𝑝 (see Fig. 19, bottom right) with only a decrease in magnitude.

4.3. Robustness of the ICCD approach

In this section, we discuss the robustness of the proposed approach. First of all, we remark that the results presented in Sect. 4 for 
Test cases #2 and #3 have been obtained using the overlap thickness in formula (21)–(22) that was optimized using the settings of 
Test case #1. However, all results show that the expected theoretical convergence rates for the errors are achieved, thus indicating 
that computing the optimal 𝛿∗ for each specific problem is not needed.

To highlight this more precisely, we consider Test case #3 which features the most complex flow behaviour near the porous 
medium. If we repeat analogous computations as in Test case #1 to obtain the optimal position of Γ𝑓 , we find

𝛿∗#3(𝜗) = 0.3750𝜗2 + 0.0232𝜗+ 0.0350 , (28)

where we remark that the coefficients are very close to those of formula (21). The resulting parabola is shown in Fig. 27 together 
with the curve (21) for reference.

Now, to assess the sensitivity of the ICDD results to variations of the thickness of the overlapping region, we introduce pertur-
bations of ±1% and ±10% on the value of 𝛿∗ in (21), since we notice that the maximum norm of the difference between the two 
optimal values (21) and (28) is less than 3% for 𝜗 ∈ [0.190, 0.874]. In Fig. 28, we report the errors of ICDD with respect to the refer-
ence microscale solution of Test case #3 for the value of 𝛿∗ provided by the rule (21) and its perturbations. We notice that perturbing 
𝛿∗ does not affect the solution inside the porous domain, while it very mildly affects the results inside the free fluid domain Ω𝑓 , but 
the theoretical convergence orders are anyway observed. This allows us to conclude that the proposed method produces accurate 
numerical solutions even if small perturbations on the position of the interface Γ𝑓 are present.

5. Conclusions

The ICDD method for the coupled Stokes-Darcy problem provides an accurate macroscopic framework for the numerical modelling 
of the filtration of a laminar incompressible fluid through an isotropic porous medium. Indeed, by carrying out extensive comparisons 
23

using reference microscale models, we showed that the macroscale ICDD solution converges to the microscale solution with suitable 
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Fig. 27. Dimensionless optimal values of the overlap thickness (symbols) computed using the data of Test #3 versus the porosity 𝜗 for various shapes and sizes of the 
solid obstacles. The continuous line is the least–square fitting curve (28), while the dashed line corresponds to formula (21).

Fig. 28. Test case #3. Errors (24)–(25) versus 𝓁 for configurations C1 (in blue) and C4 (in red) with 𝛿 = 𝓁 𝛿∗(𝜗) (∗), 𝛿 = 𝓁 𝛿∗(𝜗)(1 −10%) (◦), 𝛿 = 𝓁 𝛿∗(𝜗)(1 −1%) (□), 
𝛿 = 𝓁 𝛿∗(𝜗)(1 + 1%) (▽), 𝛿 = 𝓁 𝛿∗(𝜗)(1 + 10%) (+). 𝛿∗(𝜗) is the value computed with (21).

orders of convergence that depend on the pore scale 𝓁 for both the velocity and the pressure fields, in agreement with available 
theoretical results based on homogenization theory. In particular, the transitional fluid regime that exists between the free-fluid and 
the porous-medium regimes is correctly represented in the ICDD approach by the ad-hoc overlapping region defined by a simple 
formula that only depends on the porosity and the pore scale of the porous medium. This implies that no auxiliary problems must be 
solved to identify the correct positioning of the interfaces between the fluid and porous medium. The coupling conditions imposed on 
the interfaces are also independent of any arbitrary parameters, making the setup of the ICDD method very straightforward. Finally, 
we have shown that the implementation of ICDD is completely non-intrusive so that it can be easily adapted to reusing existing 
computational software for incompressible porous media flows.
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