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Simple Summary: GAS5 is a lncRNA that was identified decades ago as a key player in arresting
the growth of mouse fibroblasts. GAS5 may fold into an RNA structure that competes with the
intracellular glucocorticoid receptor for binding to DNA targets located on the promoters of apoptosis-
associated genes, thus controlling their expression. GAS5 expression has been examined in a variety
of human cancers, and its levels have been found to be lower in cancer tissues than in adjacent
non-tumor tissues. In breast cancer (BC), GAS5 has mainly been described as tumor suppressor
lncRNA capable of promoting apoptosis and inhibiting cell proliferation. Low expression of GAS5 is
correlated with poor prognosis, and its expression is modulated by certain chemotherapeutic agents
and during the acquisition of drug resistance. Due to its role and expression trend, new experimental
approaches to augment or restore the cellular levels of GAS5 may have important translational
implications in BC as well as in other malignancies.

Abstract: The lncRNA GAS5 plays a significant role in tumorigenicity and progression of breast
cancer (BC). In this review, we first summarize the role of GAS5 in cell biology, focusing on its
expression data in human normal tissues. We present data on GAS5 expression in human BC tissues,
highlighting its downregulation in all major BC classes. The main findings regarding the molecular
mechanisms underlying GAS5 dysregulation are discussed, including DNA hypermethylation of the
CpG island located in the promoter region of the gene. We focused on the action of GAS5 as a miRNA
sponge, which is able to sequester microRNAs and modulate the expression levels of their mRNA
targets, particularly those involved in cell invasion, apoptosis, and drug response. In the second
part, we highlight the translational implications of GAS5 in BC. We discuss the current knowledge
on the role of GAS5 as candidate prognostic factor, a responsive molecular therapeutic target, and a
circulating biomarker in liquid biopsies with clinical importance in BC. The findings position GAS5
as a promising druggable biomolecule and stimulate the development of strategies to restore its
expression levels for novel therapeutic approaches that could benefit BC patients in the future.

Keywords: GAS5; breast cancer; lncRNAs; ncRNAs

1. Introduction
1.1. Breast Cancer

Breast cancer (BC) is the most common malignancy in women worldwide. It is a
heterogeneous disease promoted by different risk factors, including the exposition to
endogenous and exogenous estrogens, lifestyle, excessive food and alcohol consumption,
obesity, and toxic environmental factors (pollutions, heavy metals, and chemicals) [1].
Approximately 15% of breast cancers are due to genetic predisposition and hereditary
factors. Pathogenetic mutations in BRCA1 and BRCA2 (Breast Cancer Associated gene
1 and 2) genes have been extensively described in the literature [2,3], as well as other
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susceptibility genes with high or intermediate penetrance [4,5]. These genes are necessary
for DNA repair, and their deactivation results in chromosomal instability that contributes
to tumor transformation and carcinogenesis. The healthy mammary epithelium consists
of the luminal cells (that produce milk) and basal cells that have contraction ability and
favor milk secretion. BC is histologically classified into invasive ductal carcinoma (IDC),
also known as invasive BC of no special type (NST), which accounts for 50% to 80%
of all invasive cancers, and into “special subtypes” of BC. Special subtypes account for
up to 25% of all BCs and include more than 17 distinct histological special types, with
invasive lobular carcinoma (ILC) being the most common subtype. ILC accounts for
approximately 10% of all invasive carcinomas [6,7]. BC is further classified based on the
status of the intracellular estrogen receptor and progesterone receptor and the cell surface
receptor HER2 (human epidermal growth factor receptor 2). On the basis of the expression
profile, BC is further classified in five subtypes: (1) luminal A (approximately 50–60%
of cases); (2) normal-like, which is a subtype of the luminal A group, but with worse
prognosis (approximately 10% of the luminal A type); (3) luminal B (approximately 10% of
cases); (4) HER2-enriched (approximately 20% of cases); and (5) basal-like triple-negative
(TNBC) tumors (approximately 10% of cases). TNBC has a high risk of recurrence, with
the worst prognosis among the different subtypes [8]. The curative options for BC are
as follows: (a) surgical resection (75% of cases) of the tumor nodule/nodules to preserve
the anatomy of the mammary gland when it is possible, or total removal (mastectomy);
(b) radiotherapy used to destroy the remaining cancer cells after the surgery or to treat
advanced BC (i.e., bone metastasis); (c) the use of hormone therapy for luminal BC with
estrogen receptor antagonists in pre- and postmenopausal women; (d) targeted therapy
such as the monoclonal antibody trastuzumab (Herceptin); and (e) treatment with inhibitors
of CDK4/6 (cyclin-dependent kinase type 4 and 6) to inhibit cell cycle progression [9].
Following-up on patients with BC is essential for the best outcome, to monitor the response
to therapies, and to verify the absence of relapse or metastasis in other organs such as the
bones, lungs, liver, or brain.

1.2. Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) belong to the non-coding RNAs (ncRNAs) category.
Based on their size, Mattick et al. recently suggested dividing the ncRNAs into three
classes: (a) small RNAs less than 50 nucleotides in length (i.e., microRNAs and siRNAs);
(b) ncRNAs generally 50–500 nucleotides in length, including RNA polymerase III (Pol
III) transcripts such as tRNAs and 5S rRNA, small RNAs transcribed by RNA polymerase
(Pol II) (i.e., small nuclear, snRNAs), and intron-derived small nucleolar RNAs (snoRNAs);
(c) lncRNAs more than 500 nucleotides in length that are generally transcribed by Pol II [10].
GENCODE [11] and FANTOM consortium [12] identified ~20,000 and ~30,000 human
lncRNA genes, respectively. More than 100,000 human lncRNAs transcripts have been
annotated and catalogued in these databases. LncRNAs are transcribed by RNA polymerase
I, Pol II, and Pol III, and are also processed from introns. With respect to protein-coding
genes, lncRNAs can be classified into sense lncRNAs, antisense lncRNAs, bidirectional
lncRNAs, intron lncRNAs, intergenic lncRNAs, and enhancer lncRNAs. The majority
of lncRNAs are spliced and polyadenylated, but unlike mRNAs, they lack translational
potential. While many lncRNAs are localized in the nucleus, a significant portion functions
in cytoplasmic processes, and their expression is often cell and tissue-specific [13,14].
Numerous studies have described the involvement of lncRNAs in many physiological
and pathological contexts. They participate in chromatin architecture and gene expression
by regulating the transcription, RNA splicing, RNA stability, and protein translation [15].
LncRNAs play pivotal roles in numerous malignancies, and the aberrant expression of
tumor-suppressive and/or oncogenic lncRNAs is frequently found in cancer cells. They
are involved in carcinogenesis processes, such as proliferation, cell migration, invasion,
epithelial–mesenchymal transition (EMT), and apoptosis [16,17].
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1.3. GAS5

The growth arrest-specific 5 (GAS5) gene encodes for a lncRNA that was identified
using a subtraction library approach to clone cDNA from growth-arrested NIH 3T3 mouse
fibroblasts cells [18]. The human GAS5 gene is located at 1q25.1, and it encodes for more
than 20 different transcript variants with lengths of 510–725 nucleotides. The GAS5 gene
includes up to 13 exons (transcript variant NR_152521.1), as well as 10 small nucleolar
RNA-coding sequences (snoRNA) in its introns (Figure 1).
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differentiation [22] and regulates the expression of insulin receptors in adipocytes [23]. 
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(h ps://commonfund.nih.gov/GTEx, accessed on 26 April 2023), GAS5 is ubiquitously 
expressed in human tissues (Figure 2). Interestingly, high levels of GAS5 expression were 
detected in female tissues and organs (breast, cervix, uterus, ovary), with the highest 
expression found in the ovary. This suggests its key role in the physiology and pathology 
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Figure 1. Human GAS5 gene locus, structure, and transcript variants. GAS5 is a lncRNA encoded
by a sequence located at 1q25.1. In The Genome Browser database, 15 different RNA isoforms have
been annotated with lengths of 510–725 nucleotides. GAS5 transcript isoforms include up to 13 exons.
GAS5 is a gene harboring 10 small nucleolar RNA genes (snoRNA) in its introns (SNORD genes).
(From Genome Browser; https://genome.ucsc.edu modified, accessed on 2 May 2023).

The database LncBook 2.0 (integrating human long non-coding RNAs with multi-
omics annotations) [19] provides conservation features of human lncRNA genes across
40 vertebrates. The conservation levels are expressed as Q50 = low conservation, Q75 = in-
termediate conservation, and Q90 = high conservation. According to the database, the level
of GAS5 conservation varies between Q50 and Q90 in apes (Q50 in Gorilla gorilla gorilla,
Q75 in Pan troglodytes, and Q90 in Nomascus leucogenys). In rodents, GAS5 shows Q50
conservation in Mus musculus and Rattus norvegicus, but Q90 in Heterocephalus glaber. In
birds such as Gallus gallus, it exhibits Q50 conservation, while in the fish Danio rerio and the
amphibian Xenopus tropicalis, it is not conserved. These data confirm an intermediate level
of sequence conservation of GAS5 across different species. Human GAS5 is a well-studied
lncRNA that widely contributes to various cell biology functions. GAS5 acts as a decoy for
a glucocorticoid receptor (GR) by mimicking the glucocorticoid response element (GRE)
present on target DNA. The binding of GAS5 with the GR blocks the binding between GR
and GRE, inhibiting the transcription of genes modulated by GR that are involved in cell
survival and apoptosis [20,21]. In addition, GAS5 promotes osteoblast differentiation [22]
and regulates the expression of insulin receptors in adipocytes [23]. According to the
NIH Genotype–Tissue Expression (GTEx) project (https://commonfund.nih.gov/GTEx,
accessed on 26 April 2023), GAS5 is ubiquitously expressed in human tissues (Figure 2).
Interestingly, high levels of GAS5 expression were detected in female tissues and organs
(breast, cervix, uterus, ovary), with the highest expression found in the ovary. This suggests
its key role in the physiology and pathology of these anatomical districts.

https://genome.ucsc.edu
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Figure 2. GAS5 gene expression from GTEx (Release V8). The NIH Genotype–Tissue Expression
(GTEx) project (https://commonfund.nih.gov/GTEx, accessed on 26 April 2023) was created to
establish a sample and data resource for studies on gene expression in multiple human tissues. This
track shows the median gene expression levels in 52 tissues and two cell lines (EBV-transformed
lymphocytes and cultured fibroblasts) based on RNA-seq data from the GTEx final data release (V8,
August 2019) obtained from UCSC genome browser (https://genome.ucsc.edu, accessed on 26 April
2023). This release is based on data from 17,382 tissue samples obtained from 948 adult post-mortem
individuals.

2. GAS5 Expression and Functions in BC
2.1. GAS5 Expression Is Dysregulated in BC Tissues

A growing number of studies have suggested that lncRNAs are abnormally expressed
in human cancer. The expression patterns of certain lncRNAs, both in solid biopsies and
biological fluids, are highly cancer-specific and can be strongly associated with clinico-
pathological characteristics, including the overall survival of cancer patients. All these
features address the potential of lncRNAs as promising tools useful in cancer diagnosis,
disease monitoring, and prognosis [24,25]. Concerning GAS5, several studies have reported
that its expression is typically reduced in different cancer types, including hepatocellular
carcinoma (HCC) [26,27], head and neck squamous cell carcinoma, glioblastoma, bladder,
and non-small cell lung cancer (NSCLC) [28]. In BC, GAS5 is generally downregulated in
solid biopsies, as indicated by the bioinformatics analysis that we performed by consulting
the OncoDB [29], UALCAN [30], and TANRIC [31] databases (Figure 3A). These publicly
available online databases provide analyses of RNA-seq data from TCGA by considering
the breast-invasive carcinoma (BRCA) dataset. The downregulation of GAS5 has been
further observed among the major BC subclasses (Luminal A and HER2 positive) and in the
predominant histological subtype (IDC, invasive ductal carcinoma) of the BRCA dataset
(Figure 3B). Different published works have determined the GAS5 levels in solid biopsies
using qRT-PCR analysis and confirmed GAS5 downregulation in tumor tissues from BC
patients. Arshi et al. showed that GAS5 expression in BCs is associated with the age of
patients. GAS5 levels were lower in the tissues of younger group (<45 years) compared
with the older group (>45 years) [32]. Li et al. showed that GAS5 levels were significantly
decreased in HER2-positive BC specimens compared to corresponding non-tumor tissues
(n = 20) [33]. Furthermore, low levels of GAS5 were significantly associated with advanced
TNM stages and grading, as well as poor overall survival (OS) and disease-free survival
(DFS) [33,34]. Interestingly, GAS5 expression was found to be positively correlated with
unc-51 like autophagy activating kinase (ULK) 1/2 mRNA in BC clinical samples [35]. The
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over-expression of GAS5 in BC cells up-regulated ULK1 and ULK2 protein expression,
but not other autophagy-related proteins (Atgs), and led to autophagosome formation
suggesting that the involvement of GAS5 in autophagy should be further explored. Finally,
GAS5 was significantly downregulated in primary triple-negative BC (TNBC). In this BC
type, the expression of GAS5 was associated with tumor size, clinical stage, lymph node
metastasis, and survival, suggesting that a high level of tissue GAS5 could favor a good
clinical outcome for BC patients [35–37]. Together, these results strongly support that the
evaluation of GAS5 expression in solid biopsies may have potential prognostic relevance in
BC patients.
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(A) GAS5 expression levels in primary BC tissues and normal tissues from TCGA datasets, evaluable
in OncoDB, UALCAN, and TANRIC databases. (B) GAS5 expression levels in the BRCA dataset from
UALCAN based on BC subclasses, cancer stages, and histological subtypes. IDC, infiltrating ductal
carcinoma; ILC, infiltrating lobular carcinoma; Mixed, mixed histology; INOS, infiltrating carcinoma
not otherwise specified. * p < 0.05.

2.2. Different Mechanisms Are Involved in the Downregulation of GAS5 in BC

As for other lncRNAs, the expression of GAS5 can be regulated by different mecha-
nisms at the transcriptional or post-transcriptional level (Figure 4). Among these, DNA
methylation that occurs in the CpG islands located in the promoter region of the gene
can affect the expression of the lncRNA. As indicated in UCSC Human Genome Browser
(GRCh38/hg38; consulted in March 2023) [38], the GAS5 gene is located on human chromo-
some 1q25.1 (chr1:173,858,997–173,867,989), and a CpG island has been identified upstream
of the GAS5 gene (chr1:173,868,035–173,868,779). Li et al. evaluated the DNA methylation
of GAS5 in TNBC tissues and cells using a methylation-specific PCR (MSP) assay [39].
They showed a significant increase in DNA methylation levels in TNBC tissues versus
adjacent normal tissues. Regarding BC cell lines, they found that GAS5 was methylated
and poorly expressed in TNBC cell lines (MDA-MB-231, MDA-MB-468, HCC1937, and
MDA-MB-453), but partially demethylated and up-regulated in non-malignant human
breast epithelial cells, MCF10A. Treating TNBC cells with the demethylating agent 5-
Aza-2′-deoxycytidine (5-aza) was shown to determine the decrease in DNA methylation
levels and the restoration of GAS5 levels [39]. These data, also obtained in other cancers
(such as melanoma [40] and cervical cancer [41]), support the finding that aberrant DNA
methylation is one of the mechanisms involved in the downregulation of GAS5. At the post-
transcriptional level, the expression of GAS5 is modulated by the interplay between the
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mTOR and the nonsense-mediated decay (NMD) pathways. The mTOR pathway takes part
in the regulation of 5′TOP-containing mRNAs through its downstream effectors (p70S6K
and eIF4E/4E-BP1) [42]. The NMD pathway is involved in the degradation of transcripts
containing stop codons in early exons. As reported in the literature, GAS5 is considered a
5′-terminal oligopyrimidine tract (5′-TOP) gene [43], and is characterized by a short reading
frame terminating with a stop codon within exon 3 (of 12) that is recognized by the NMD
pathway. In actively growing cells, the activation of the mTOR signaling pathway regulates
GAS5 expression [44]. In support of this, the inhibition of mTOR activity by rapamycin
determines the increase in cellular GAS5 in different cell types, including BC cells [45,46].
Two additional well-known oncogenic pathways, Notch-1 and MYC, seem to be involved
in the regulation of GAS5 in BC cells. Pei et al. reported that the silencing of Notch-1 using
siRNAs significantly increased the level of GAS5 in the T47D cell line [47]. Similarly, the
lentiviral vector-mediated siRNA knockdown of MYC led to a decrease in GAS5 expression
levels in MCF7 cells [48]. Thus, GAS5 expression may be regulated depending on the
modulation of Notch-1 and MYC levels. Further in vitro and in vivo studies are required
to elucidate the type of regulation, direct or indirect, exerted by Notch-1 and MYC on the
expression of GAS5 in BC.
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Figure 4. Schematic representation of mechanisms involved in the regulation of GAS5 expression in
BC. (A) GAS5 expression can be downregulated by DNA methylation (left). MYC silencing (right)
induced by siRNA molecules can decrease GAS5 expression. Black circles indicate methylated
cytosines. (B) Different pathways, including mTOR, NMD, and NOTCH-1, can be involved in the
post-transcriptional regulation of GAS5 in BC. Nonsense mediated decay, NMD.

2.3. GAS5 Functions as ceRNA of miRNAs in BC

The main biological function described in BC for GAS5 is as competitive endogenous
RNA (ceRNA). ceRNAs are ncRNAs which competitively bind microRNAs (miRNAs)
and sequester miRNAs from their original target transcripts. Consequently, they avoid
the degradation or expression inhibition of target transcripts induced by miRNAs at the
post-transcriptional and translational levels. As in other cancers, GAS5 can interact with
different miRNAs and thus weaken the effect of miRNAs on mRNA targets. At the
time of writing this review, we found five studies on BC reporting that GAS5 acts as a
ceRNA for four miRNAs with oncogenic functions (onco-miRs), including miR-21-5p,
miR-221-3p, miR-196a-5p, and miR-378-5p [36,37,49,50], and the tumor-suppressor miR-
216b [51]. miR-21-5p is the most commonly upregulated miRNA in solid and hematological
malignancies and exerts its function by regulating tumor suppressor genes, like PTEN,
TPM1 and PDC4. Zhang et al. verified the interaction between GAS5 and miR-21-5p
using RNA immunoprecipitation and RNA-pulldown assays [49]. Furthermore, in vitro
experiments demonstrated the down and upregulation of GAS5 after transfection with
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miR-21-5p mimics and anti-miR-21-5p, respectively. These data suggested the reciprocal
regulation of miR-21-5p and GAS5 in BC cells. In triple-negative BC cells, GAS5 has been
shown to act as a ceRNA of miR-196a-5p, which targets FOXO1 [36]. The upregulation of
GAS5 in TNBC cells (i) increases FOXO1 expression, (ii) inhibits downstream PI3K/AKT
activation, and (iii) decreases cell invasion. The over-expression of miR-196a-5p partially
rescued the effects induced by the ectopic expression of GAS5 in TNBC cells. In the same
cell lines, Zheng et al. reported that GAS5 promoted apoptosis by acting as a ceRNA of
miR-378-5p which negatively regulated SUFU [37]. It is known that SUFU functions as a
negative regulator of the Hedgehog signaling pathway and has a key role in promoting
apoptosis. In BC cells resistant to adriamycin treatment, direct binding between GAS5 and
miR-221-3p was verified using a luciferase reporter assay and an RNA immunoprecipitation
assay [50]. GAS5 competed for miR-221-3p binding to regulate the expression of its target,
dickkopf 2 (DKK2). The role of the GAS5/miR-221-3p/DKK2 axis in adriamycin resistance
is explained in detail below. Finally, GAS5 may also interact with miR-216b in BC cells, as
suggested by the results of the dual-luciferase assay. In the same work, the authors showed
that the inhibition of GAS5 using siRNA determined (i) the decrease in the invasion ability
of BC cells, and (ii) inhibition of E-cadherin, as well as the up-regulation of N-cadherin and
Vimentin in cervical cancer cells (SiHa cells) [51]. These data suggest that GAS5 may be
involved in epithelial–mesenchymal transition (EMT) in cancer, and further studies will be
fundamental in determining the role of GAS5 in metastasis formation in BC.

In addition to its ceRNA role, GAS5 has been recently described as mitochondria-
associated lncRNA. Sang et al. reported that GAS5 localizes in mitochondria, where it
modulates tricarboxylic acid (TCA) flux by suppressing the formation of the metabolic
enzymes complex formed by canonical members of the TCA cycle (fumarate hydratase,
FH; malate dehydrogenase, MDH2; citrate synthase, CS) [34]. In BC cells, GAS5 levels are
decreased by glucose deprivation. A decreased availability of mitochondria-associated
GAS5 results in the formation of the CS-MDH2-FH complex, promoting the TCA cycle.
These data indicate an important functional role for GAS5 as a regulator of metabolism in
BC cells.

3. GAS5 as a Potential Biomarker and Therapeutic Target in BC
3.1. GAS5 Levels Modulate the Response to Apoptosis-Inducing Agents in BC Cells

In breast and other cancer cell lines, GAS5 plays an important role in affecting cell
growth and determining apoptosis [52]. As previously described, in BC cells, GAS5 sponged
miR-21 [49] and miR-196a-5p [36], determining the upregulation of the tumor suppressors
PTEN, PDCD4, and FOXO1, which are key factors in the induction of apoptosis. By consid-
ering the close relationship between the activation of apoptosis and cancer therapy (i.e.,
radiotherapy and chemotherapy), the intracellular levels of GAS5 may have important im-
plications for cancer therapy responses due to its apoptosis-promoting activity. Consistent
with this observation, Pickard et al. demonstrated that low GAS5 levels attenuated the
effects of chemotherapeutic agents (5-FU and docetaxel) and UV-C irradiation in terms of
apoptosis induction, cell viability, and colony formation ability in in vitro BC models [46].
Particularly, reductions of 50–70% in GAS5 levels in MCF7 and T-47D cells were strongly
associated with attenuated cell death in response to treatment with 5-FU, docetaxel, or
UV-C irradiation [46]. Conversely, MCF-7 cells transfected with the GAS5-overexpressing
vector pCMVSPORT6 were more sensitive to UV irradiation and cisplatin-induced apopto-
sis [53]. However, it has been observed that, in the same cell line, the effect on apoptosis
caused by TKI imatinib is independent of the cellular GAS5 level. Taken together, these
data suggest that GAS5 is able to modulate the action of anti-cancer treatments in a selective
way, likely due to the mechanisms of action of the different drugs. These findings could
have important implications from a therapeutic point of view. Indeed, the increase in
intracellular levels of GAS5 before the administration of chemo- or radio-based therapies
may represent an innovative approach to improve the action of the treatments. Importantly,
this goal could be achieved by acting on the mechanisms involved in GAS5 regulation, such
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as DNA methylation and/or the mTOR pathway. As previously described, the demethy-
lating agents, as well as the mTOR inhibitors, restore GAS5 levels in BC cells. Therefore,
functional studies should be addressed to prove the efficacy of innovative anti-cancer tools
based on the combination of epigenetic drugs (i.e., the demethylating agent 5-aza) or mTOR
inhibitors (i.e., rapalogues) with conventional treatments.

3.2. GAS5 Levels Are Modulated by Different Anticancer Drugs

GAS5 expression levels are expected to impact the treatment response of BC cells.
However, relevant studies have reported that different anti-cancer drugs alter the GAS5
levels of BC cells. Among these, treatment with TKI sorafenib results in a significant
increase in GAS5 levels in HCC-1937 and MCF-7 cells. The authors hypothesized that the
increased GAS5 levels may be an indirect downstream effect of the sorafenib treatment [26].
Jiang et al. demonstrated that metformin, a lipophilic biguanide with discussed antitumor
effects, increases GAS5 levels in BC cells. The authors demonstrated that the levels of
mTOR, phospho-m-TOR, and mitogen-activated kinase p-P70S6K proteins decreased after
metformin treatment of breast cancer cells resistant to tamoxifen. The upregulation of GAS5
resulted in growth inhibition of BC cells and increased apoptosis [54]. Similarly, natural
compounds with antitumor properties have been found to modulate GAS5 levels, including
curcumin, a chemo-protective natural agent extracted from the rhizome of Curcuma longa.
The exposure of three BC cell lines to dendrosomic-delivered curcumin significantly affected
the increase in GAS expression as well as certain anti-cancer effects such as a decrease in
cell viability, migration, and apoptosis induction. Interestingly, knocking down GAS5 using
siRNAs limited the effects on cell proliferation, apoptosis, and migration, suggesting that it
might play a role in the anticancer action of curcumin in BC [55].

3.3. GAS5 Has Regulatory Functions in Drug Resistance of BC

Drug resistance remains a clinical challenge in the treatment of BC. An understanding
of the mechanisms involved in the development of resistance is urgently needed to reduce
the side effects of treatments and identify new therapeutic strategies for improving the
outcomes of BC patients. Numerous studies have shown that lncRNAs can be considered
important players in the regulation of drug resistance [56]. GAS5 has been implicated
in the activation of drug resistance through the regulation of different pathways. One
of these pathways involves the membrane-associated protein ABCB1, a member of the
superfamily of ATP-binding cassette (ABC) transporters that is responsible for decreased
drug accumulation in multidrug-resistant cells and often mediates the development of
anticancer drug resistance. Using RNA-seq technology, Chen et al. identified GAS5 as one
of the most downregulated lncRNAs in BC MCF7 cells resistant to adriamycin (ADR), an
anthracycline widely used as a chemotherapeutic drug for BC. The over-expression of GAS5
significantly increased the sensitivity of resistant cells to ADR by reducing cell proliferation
capacity and increasing apoptosis [50]. Moreover, the upregulation of GAS5 affected both
the efflux function of ABCB1 and its expression. Mechanistically, the authors showed that
GAS5 acts as a ceRNA by competing for miR-221-3p binding to regulate its target DKK2,
which is a critical receptor for activating the Wnt/β-catenin signaling pathway. Importantly,
in vivo experiments have confirmed that the upregulation of GAS5 reduces miR-221-3p
and ABCB1 expression, increases DKK2 expression, and confirms the ability of GAS5
to sensitize resistant cells to ADR. These important data suggest that GAS5 could revert
ABCB1-mediated ADR resistance in ER-positive BC cells (MCF7) via the miR-221–3p/DKK2
axis by repressing the Wnt/β-catenin pathway. The role of lncRNA GAS5 in increasing
tamoxifen sensitivity has been demonstrated in MCF-7 resistant cells and in vivo in nude
mice. GAS5 may act as a ceRNA for miR-222, resulting in increased levels of the miRNA
target PTEN. Knocking down miR-222 in tamoxifen-resistant MCF7 cells increased levels
of GAS5, leading to higher sensitivity to the drug [57]. Similarly, GAS5 overexpression
also promoted sensitivity to ADR in triple-negative BC cells (MDA-MB-231 and MDA-MB-
468) [39]. Approximately 13–15% of BCs are characterized by an amplification of ERBB2 that
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results in the activation of the HER2 pathway [1]. The epidermal growth factor 2 (ERBB2,
formerly HER2 or HER2/neu) is a transmembrane receptor tyrosine kinase in the epidermal
growth factor receptor family that correlates with a higher death rate in the absence of
systemic therapy. Patients with HER2-positive BC benefit from HER2-targeted therapy,
including anti-HER2 antibodies (such as trastuzumab) and TKIs (such as lapatinib) [58]. Li
et al. identified GAS5 as one of the most downregulated lncRNAs in HER2-overexpressing
BC SKBR-3 cells made resistant to trastuzumab (SKBR-3/Tr). Since GAS5 functions as a
ceRNA for miR-21, and miR-21 promotes tumor proliferation and invasion by targeting
PTEN, the low levels of GAS5 in SKBR-3/Tr cells are related to low PTEN levels, favoring
the aggressive properties of cancer cells. Interestingly, treatment with the TKI lapatinib
suppressed the proliferation of SKBR-3/Tr cells by upregulating PTEN and GAS5 [33].

3.4. GAS5 May Sensitize BC Cells to Radiation Therapy

Radiation therapy is an integrative component of BC treatment [1]. In early BC,
radiation therapy following surgery reduces locoregional recurrences and improves patient
survival. In advanced BC, radiation therapy plays a crucial role in alleviating symptoms
caused by metastasis, including those affecting the brain and bones [59]. However, cancer
cells can become radioresistant, limiting the clinical benefit of this therapeutic approach.
The role of GAS5 in the radiation response shows promise. As mentioned above, GAS5
was initially shown to impair the effects induced by UV-C irradiation, which was used as
an in vitro apoptotic stimulus for BC cells [46,53]. More recently, Ma et al. reported that
ionizing radiation inhibited GAS5 expression in BC cells. Interestingly, the overexpression
of GAS5 in irradiated BC cells promoted apoptosis and significantly increased unrepaired
DNA damage, which is one of the direct effects induced by ionizing radiation, leading to
cell cycle arrest [60]. The authors also found that the upregulation of miR-21, known to be
sponged by GAS5, reversed the effects of GAS5 on the radiosensitivity of BC cells. These
data suggest the potential role of GAS5 in sensitizing BC cells to ionizing radiation through
miR-21 and support further in vivo experiments to explore this function.

3.5. GAS5 Levels in Liquid Biopsies from BC Patients

Relevant evidence has indicated that the GAS5 transcript is stable and detectable in
biological fluids (i.e., plasma and serum). Many studies have evaluated the circulating
levels of GAS5 in plasma or serum from cancer patients and the promising results obtained
in this field make circulating GAS5 a potentially interesting non-invasive tool for cancer
diagnosis, prognosis, and treatment response. In NSCLC and HCC, low levels of GAS5 were
found in plasma from cancer patients compared with healthy controls [26,61]. Interestingly,
GAS5 was also detected in exosomes isolated from the serum of NSCLC patients, displayed
a significantly low level compared with healthy controls, and correlated with tumor size
and TNM stage [62]. The circulating levels of GAS5 in patients with solid cancers can be
modulated in response to different anti-cancer therapies, including chemotherapy [63,64]
and TKI [65]. Concerning BC, sparse but promising data have been published regarding
the circulating levels of GAS5. Han et al. reported no significant differences in plasmatic
levels of GAS5 between BC patients and the healthy individuals. However, they found
that GAS5 plasma levels were significantly decreased at the postoperative stage compared
with the preoperative stage in surgery-treated BC patients. A negative correlation was
further shown between lymph node metastasis states and plasmatic GAS5 levels after
surgery [66]. Toraih et al. reported that GAS5 was downregulated in the serum of BC
patients compared with healthy subjects and non-cancer patients at risk of developing BC.
Interestingly, lower GAS5 levels in the serum of BC patients were related to metastasis and
recurrence [67]. These data serve as a starting point for future research aiming to confirm
the clinical significance of circulating GAS5 as a biomarker for BC. The availability of larger
cohorts of patients, as well as the use of standardized and sensitive protocols for lncRNA
analysis (such as droplet-digital PCR [68]), should be considered to achieve this goal.
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4. Conclusions

The lncRNA GAS5 was discovered decades ago and has been predominantly studied
in human cancer, particularly in breast cancer, where its downregulation is correlated with
unfavorable clinical outcomes. Limited information is available on the role of human GAS5
in cell biology and development, and to our knowledge, there is currently no character-
ization of its high expression in normal human female organs (breast, ovary, cervix and
uterus) at a single-cell resolution in a spatial context. This lack of basic knowledge does
not allow for a deep understanding of the role of GAS5 in normal breast tissue and in
BC. Nevertheless, altered expression of GAS5 has been reported in diseases other than
cancer, including neurogenerative disorders (i.e., Alzheimer’s [69]), autoimmune diseases
(i.e., rheumatoid arthritis [70]), knee osteoarthritis [71], and preeclampsia [72]. Concerning
BC, the extensive knowledge of GAS5 expression in all subtypes of BC tissues highlights
real translational implications of the data reported in the literature thus far. Given the
advancements in RNA-based biotechnology, it is worth further exploring the translational
potential of this promising RNA molecule. Several factors contribute to the importance of
GAS5 in breast cancer research: (i) GAS5 downregulation is associated with an unfavorable
clinical outcome of BC patients; (ii) altered GAS5 levels have been detected following
anti-cancer therapies, including chemotherapy and radiotherapy; and (iii) GAS5 plays a
role in sensitizing cancer cells to different types of treatment, promoting apoptosis, and in
inhibiting the proliferation of cancer cells. As a tumor-suppressive transcript, therapeutic
approaches aimed at augmenting GAS5 expression in BC may be crucial in the development
of novel drugs. However, it is important to address key challenges associated with ncRNA
therapeutics, such as specificity, delivery, and tolerability [73].
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