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� Traffic overloading events on road bridges are predicted to support failure prevention.

� A frequency metric of overloading is proposed as a driver of failure probability.

� Econometric and machine learning frequency models are set-up and compared by 2 million þ weigh-in-motion raw records.

� The machine learning model overperformed the econometric on the considered dataset.
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Load limits,whichappear toberoutinelyexceededby trucks, occasionally result in roadbridge

failures. Therefore, predicting failures is crucial for safeguarding roadsafety. Past studieshave

largely focused on forecasting bridge failure event probability using the reliability analysis

method, whilst occasionally accounting for vehicular overloading effects. Only recently, a

study has investigated design traffic overloading event frequency using generalised linear

regressionmodels (GLRMs), including a power component and negative binomial regressions

(NBRs). However, as far as the authors know, artificial neural network models (ANNMs) have

never been applied to this field. This paper is an attempt to fill in these gaps. First a frequency-

basedmetric of traffic overloading was adopted as a driver of failure probability. Second, two

alternative ‘frequency’ models were specified, calibrated, and validated. The former was

based on a GLRM, the latter on ANNMs. Then, thesemodels were compared using regression

plots (RPs), measures of errors (MoEs) and the ratio between the number of observed vs pre-

dicted design load overcoming events to evaluate their performance. The models analysed

more than 2millionweigh-in-motion (WIM) data records from a pilot station on a bridge on a

heavily used ring road in Brescia (Italy). Results showed that ANNMs outperformed GLRMs.

ANNMs have a higher correlation coefficient (between predicted and target frequencies),

lower MoEs, and a closer-to-unity ratio (between predicted and target frequencies). These

findings may increase prediction accuracy of design traffic overloading events and give road

authorities more effective traffic management to protect bridges from load hazards.
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Nomenclature

ANNMs Artificial neural network models

CoV Coefficient of variation

EMs Econometric models

FP Filtering procedure

GLRMs Generalized linear regression models

GVM Gross vehicle mass

MAE Mean absolute error

MLMs Machine learning models

MoEs Measures of errors

MSE Mean squared error

NBR Negative binomial regression

OIML International organization of legal metrology

PDF Probability density function

PFI Permutation feature importance

QCA Quality control algorithm

RAM Reliability analysis method

RA Road authority

RMSE Root mean squared error

RPs Regression plots

SVM Support vector machine

TC Traffic code

WIM Weigh-in-motion
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conditions at the bridge locations and by the progressive

changes in the surrounding environment, respectively, as

1. Introduction

Apart from hydraulic action, vehicular traffic is the primary

hazard that threatens road bridge safety. Overload and vehicle

collisions are two of the top five most frequent causes of

bridge failures, according to a recent survey accounting for

4500þ bridge collapses worldwide between 2010 and 2016

(Zhang et al., 2022). Focusing on overload hazard, extremely

heavy vehicles represent a crucial threat to bridge integrity

(Ventura et al., 2020). As traffic volumes increase, truck loads

often exceed legal limits and sometimes result in road

bridge failures when design traffic loads are surpassed

(Zhang et al., 2022).

Therefore, adopting promising technologies is relevant to

gathering data about extremely high traffic loads on bridges.

Whilst on the one hand, these data could be stored and ana-

lysed for traffic load monitoring to aid in bridge design and

management, on the other, these data are a valuable resource

for the development of failure prediction models used to

support bridge safety management.

Weigh-in-motion (WIM) technologies have been shown to

be useful for collecting data for traffic load monitoring (Sujon

and Dai, 2021). According to ASTM (2017), aWIM system refers

to “a collection of sensors and supporting devices that

measure the presence of a moving vehicle and the

associated dynamic tyre forces at fixed locations concerning

time”. Besides the total vehicle mass, a WIM system can

measure other parameters such as class, passing speed, axle

number, axle type, type loads, and interaxle. Several WIM

technologies are currently available, such as piezoelectric,

capacitive mats, bending plates, load cells and fibre optic
Please cite this article as: Ventura, R et al., Estimating the frequen
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sensors, among others (Yannis and Antoniou, 2005). The

primary benefit of WIM systems is their capacity to measure

these parameters continuously without needing a human

operator to infer them by choosing among random samples

of vehicles and conducting a manual weighing procedure

(Ventura et al., 2023a). WIM devices are widespread in some

American and Asian countries (e.g., United States, Canada,

and China), where they are used for a variety of

applications, including bridge design and management, road

pavement design and management, weight enforcement,

freight movement analysis and traffic flow simulation

(Fiorillo and Ghosn, 2014; Guo et al., 2011; Hernandez et al.,

2016; Huang et al., 2022; Liao, 2014; Ren et al., 2019; Roh

et al., 2016). In contrast, few studies have been conducted in

Europe, where WIM systems are still regarded as pilot

installations (Schmidt et al., 2016; Ventura et al., 2023a, 2023b).

Focusing on bridge design and management applications,

several studies have processed WIM data to compare site-

specific traffic load effects with design traffic load models, as

well as to update national traffic load models (or to build new

ones) by processing site-specific traffic data. These analyses

started from findings that existing bridge design codes (e.g.,

the US AASHTO and the European Eurocodes) were based on

narrow samples of old traffic data (Iatsko and Nowak, 2021).

Hence, it has become essential to propose site-specific traffic

load models based on WIM data that consider the spatial

and temporal uncertainties posed by the specific traffic

well as the increasing number of multi-lane bridges (Kim

and Song, 2019, 2021; Zhou et al., 2020a). Moreover, because

current bridge design codes could fail to represent the

effects of present-day traffic fatigue action, damage

phenomena induced by cyclic traffic loading have often been

incorporated into new traffic load models based on WIM

data (Maljaars, 2020). Additionally, some authors have

focused on long-span cable-stayed bridges, pointing out that

current design traffic load models are primarily conceived

for short to medium-span structures (Hwang and Kim, 2019;

Lu et al., 2018, 2019; Micu et al., 2019). Processing WIM data,

they pointed out that whilst for short bridges it is likely that

a very heavy truck or a few heavy trucks could generate the

maximum load effects, for long-span bridges it is necessary

to consider more complex scenarios (such as traffic

congestion) during the design phase. Furthermore, almost all

previous studies analysed the traffic loads acting on bridges

under conventional serviceability conditions. Conversely,

Zhou et al. (2021) set up traffic microsimulations based on

WIM data to investigate the negative load effects induced by

bridge maintenance works, such as the hostile traffic load

actions generated by lane closures and by the presence of

construction machinery on bridge decks.

As for failure prediction models, previous studies largely

focused on the estimation of the probability of bridge failure

events by applying the reliability analysis method (RAM),

whilst vehicular overloading effects were accounted for only

sometimes (Fiorillo and Ghosn, 2019, 2022). This method

involves the calculation of the reliability index, which is a

parameter related to the likelihood of failure and which is a

conventional tool for evaluating the safety of existing
cy of traffic overloading on road bridges, Journal of Traffic and
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structures according to current standards, e.g., the Eurocodes

(European Committee for Standardization, 2002). This index is

generally computed from the structural performance

function, which is defined as the difference between

structural capacity and structural demand functions: a

negative value of the performance function would denote

the condition of structural failure (Fiorillo and Ghosn, 2018).

Whilst the structural capacity function considers

geometrical and material properties, the structural demand

function considers the maximum traffic load acting on the

bridge for a specific return period. This latter is recurrently

inferred through the extreme value theory by elaborating

experimental WIM data (Zhou et al., 2022; Mandi�c Ivankovi�c

et al., 2019). Some authors have modelled structural demand

in a refined way by accounting for the differences in traffic

loads over multiple lanes, proving that the difference in the

reliability indexes associated with each girder in the same

bridge increases when the number of lanes increases as well

(Zhou et al., 2020b). Nevertheless, estimating the probability

of bridge failure events using RAM requires a structural

model accounting for the geometrical and mechanical

properties of the bridge's components. Since budget

constraints often prevent road authorities (RAs) from

calibration of such a refined structural model, implementing

rapid traffic load management strategies based on RAM

might be tricky.

Predicting the frequency of design traffic overload events

induced by traffic load hazards could provide an addition to

RAM. Indeed, once the design traffic load thresholds have

been identified according to the traffic load schemes pre-

scribed by current structural design codes, a frequencymetric

can be defined as the number of times these thresholds are

exceeded over a specific time frame. This metric could well be

a driver towards the indirect measurement of the probability

of potential bridge failure events prompted by traffic load

hazards. In this study, a “failure event” is not necessarily

intended as a collapse but rather as any circumstance that

could prevent an existing bridge or one of its components

from performing as required by the design and construction

standards. Moreover, this metric could be evaluated using

appropriate mathematical models that link it to several pre-

dictors grouped into exposure, bridge side, temporal context,

and traffic load hazards. Mining WIM datasets, these models

could then enhance the theoretical knowledge of the bridge

overload phenomenon by understanding the effect of pre-

dictors on overload frequency. Practically, these models could

be essential in supporting RAs in improving the safety of their

assets by suggesting trafficmanagement strategies that would

mitigate bridge overload events. Indeed, without the ability to

predict these overload events before they occur, no traffic

management actions can be taken to reduce them. Moreover,

their frequency, together with their severity, is one of the two

primary components of risk prediction models (Ventura et al.,

2024).

Frequency models can be of two different types: econo-

metricmodels (EMs) andmachine learningmodels (MLMs). For

EMs, only Ventura et al. (2024) specified, calibrated, and

validated a generalised linear regression model (GLRM) to

predict the frequency of events where the design load has

been overcome. This model was one of the components that
Please cite this article as: Ventura, R et al., Estimating the frequen
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make up a general framework used to evaluate the risk of

traffic load hazards on bridges. According to ISO 39001 Road

Traffic Safety Management Systems (2012), intermediate

safety factors and risk exposure factors were identified as

predictors of frequency. Results showed that the GLRM had

good predictive ability and that factors related to compliance

with mass limits prescribed by traffic code (TC) were those

with the more significant effect on frequency predictions.

Conversely, no study has yet employed MLMs to predict the

frequency of design load overcoming events induced by

traffic load hazards on bridges. Nonetheless, there are several

applications of MLMs that can aid risk evaluations, such as

elaborating vehicle accident data to forecast crash frequency

or severity, processing textual data to detect key messages in

accident investigation reports to identify combinations of

attributes that contribute to injuries, or detecting anomalies

in structural performance (Marucci-Wellman et al., 2017;

Salazar et al., 2017; Wen et al., 2021; Zeng et al., 2016).

According to Hegde and Rokseth (2020), MLMs could be

classified by the accuracy of their predictions using few or

many data. On the one hand, boosting techniques and

support vector machine (SVM) methods may show the best

options if data are scarce, even though their performance

worsens while dealing with large data sets due to long

training times (Susmita, 2019; Wen et al., 2021). On the other

hand, artificial neural network-based models (ANNMs) are

those that have been adopted most often to forecast risk

components due to their generally strong predictive

performance. Indeed, if there is enough data, even if they

are noisy, ANNMs generally prevail because they can

automatically learn latent features, which are essential to

ensure good prediction accuracy (Wen et al., 2021). This

could easily be the case when applied to large datasets

provided by WIM systems, which usually involve millions of

records yearly (Ventura et al., 2023a).

ANNMs have strengths and drawbacks when compared to

GLRMs. On the one hand, ANNMs have generally higher pre-

dictive performance and greater capacity for modelling non-

linear phenomena (Alqatawna et al., 2021). Moreover, ANNMs

do not require assumptions of underlying relationships

between the predictors and the observed frequencies.

Furthermore, they can more efficiently manage correlation

issues among predictors than the GLRMs. Specifically, when

a high correlation exists among predictors, the variability of

estimated coefficients of a GLRM will be seriously inflated.

This leads to a challenging interpretation of the relationship

between the predictors and the response variables

Conversely, ANNMs do not suffer from multicollinearity

issues (Chang, 2005). On the other hand, ANNMs are viewed

as a “black box” with respect to GLRMs. Black box models

provide for functional relationships between system inputs

and system outputs, whilst these functions' parameters do

not have any physical significance (Zhang, 2010). Hence, it

becomes more difficult to understand the effect that each

predictor has on the response variable. Nonetheless,

techniques based on the feature importance indicator can be

effectively utilised to rank the predictors according to their

significance (Strobl et al., 2007). Therefore, investigating the

applicability of ANNMs for the prediction of the frequency of

design load overcoming events and comparing their
cy of traffic overloading on road bridges, Journal of Traffic and
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Fig. 1 e The case study bridge on the south ring road in the

city of Brescia (Lombardy Region, Italy).

Fig. 2 e Plan of the case study bridge (23.50 m is the span

length of the bridge, whereas 43� represents the width of

the skew angle).
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performance with respect to GLRMs are turning out to be

intriguing challenges.

Summing up, all previous studies have undoubtedly

contributed to the analysis of the threat posed by extremely

high traffic load hazards on bridges from different angles and

have provided valuable findings. Measurement of site-specific

traffic loads, comparison of site-specific and code-design

traffic load effects on bridges, assessment of lifetime extreme

traffic load effects, evaluation of bridge reliability under

complex traffic load effects, and recommendation of specifi-

cation-level traffic load models are key examples. However,

some gaps persist. First, existing failure probability models

might be complex and very expensive when used by RAs.

Therefore, adopting frequency-based models as a driver of

failure probability may be an addition to the RAM. Second,

whilst the frequency design load overcoming events was

estimated by GLRMs, there were no such estimations using

ANNMs. Third, no literature has compared the fitting and

predictive performance of GLRMs and ANNMs.

The objective of this study is to fill these gaps. Specifically,

this study specifies, calibrates, and validates two frequency

prediction models based on GLRMs and ANNMs, respectively.

Next, it provides a detailed comparison of the related perfor-

mance of each model, which was estimated using 2 million of

WIM raw data collected on an important bridge along a

heavily transited ring road in Brescia (Italy). The remainder of

the paper is organised as follows. Section 2 presents the

materials and methods used to process the WIM data,

identifying frequency predictors, build GLRMs and ANNMs,

and compare their performance. Section 3 shows and

discusses the results, and then last, Section 4 draws some

conclusions and provides a view of some future perspectives.
2. Materials and methods

2.1. Data type and collection

Data for this research were gathered on a currently functioning

bridge along the South Ring Road in the city of Brescia (Lombardy

Region, Italy). Brescia is one of Italy's most significant industrial

and economic hubs and the second-most populous city in the

Region (DeAloe et al., 2022;Martinelli et al., 2022). The SouthRing

Road is one of the city's arterial roads with the highest traffic

volume and quota of commercial vehicles in the province

(Faccin et al., 2011). The case-study bridge is a simply supported

(23.50 m span length) overpass structure with a secondary road

running beneath it (Fig. 1).

The road section on the case study bridge has two separate

carriageways, with two lanes in each direction. AWIM system

was placed on the north side westbound carriageway to

collect experimental traffic load data on the bridge during the

monitoring period (denoted by T). Due to budget restrictions,

instrumentation was installed only in the right lane since

heavy vehicle transit is not permitted in the left lane (Fig. 2).

The WIM system adopted was composed of two stainless

steel plates placed on the road surface, equipped with fibre

optic sensors, and linked to a data logger. The system was

rated as an “accuracy class 10” instrument according to the

OIML standards for WIM devices (OIML, 2006).
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WIM raw data were pre-processed to remove anomalies

and outliers, according to the filtering procedure (FP) and the

quality control algorithm (QCA) proposed by Ventura et al.

(2024). Next, since the vehicular load was time dependent,

the monitoring period (T) was partitioned into equal-width

time frames (referred to as timeslots). This subdivision

enabled the examination of how the features of the vehicles

passing on the bridge and the frequency of design load

overcoming events varied over time.

More formally:

� S is the set of timeslots and TðsÞ is the subset of T in the

timeslot s2S.

� F is the set of frequency predictors, fi2F is the ith predictor

and fiðsÞ (predictor specific) is the value of fi2F observed in

TðsÞ. About the predictor specific, the unit of measurement

varies according to the specific frequency predictor. For

more details, please see Table A1 in the Appendix.

� HðsÞ (events/timeslot) is the frequency of design load

overcoming events observed during TðsÞ.

According to Ventura et al. (2024), the set of frequency

predictors should include intermediate safety factors and

one risk exposure factor. Intermediate safety factors

describe the global geometrical properties of the bridge

(bridge side factors), on the day and at the time when each
cy of traffic overloading on road bridges, Journal of Traffic and
016/j.jtte.2023.11.005
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timeslot was recorded (temporal context factors), and the

traffic load hazard on the monitored bridge (traffic load

hazard factors). Traffic load hazard factors were further

organised into traffic flow characteristics, vehicular

characteristics, interaction between vehicular and bridge

characteristics, compliance with TC prescriptions and

actions induced on the structure. The risk exposure factor

measured the quantity of vehicles that could induce or could

be involved in a design load overcoming event.

To sample the response variable of the frequency model,

the frequency of design overloading events was measured. To

perform this task, the traffic load acting on the monitored

bridge lane in each instant t2T was first computed by pro-

cessing the axle load data provided by the WIM device. It is

noteworthy that disaggregated axle load data were preferred

over aggregated vehicular load data, because non-integer

fractions of vehicles might be present on the bridge lane at

any given instant. Since the bridge deck runs along a certain

length in space and the WIM system only provided records of

axle loads at a single point in space, themotion law analysis of

each axlewas performed to determine the application point of

each axle load at times other than those when it was passing

over the WIM device.

Then, for each instant t2T, the overall traffic load was

computed by summing the loads acting on the axles that were

on the bridge in the lane at t2T. Second, different design

traffic lane load thresholds were defined according to the load

combinations prescribed by the Eurocode 1 standard

(European Committee for Standardization, 2003) for different

limit states (i.e., ultimate limit state, irreversible

serviceability limit state and reversible serviceability limit

state). Finally, for each s2S, the frequency of design

overloading events (HðsÞ) was measured by counting the

number of times in which the traffic load on the monitored

bridge lane exceeded one or more design load thresholds.

More details about the procedure for building the frequency

response variable were reported by Ventura et al. (2024).

2.2. Econometric approach

Once H(s) was computed, the frequency prediction model was

built in a traditional way by adopting an econometric

approach. It was found that Poisson and negative binomial

formulations could be applied to model the frequency of

design load overcoming events. Thesemodels appear to be the

dominant mathematical tools for modelling non-negative

discrete response variables as in the case of such events,

owing to their solid statistical properties. However, exposure

variables refer to a variable, whose frequency of events must

be zero when it is equal to zero. Therefore, the frequency

model of design load overcoming events was estimated by a

generalised linear regression model (GLRM) with a negative

binomial regression (NBR) error structure, as applied in other

engineering fields (Barabino et al., 2021, 2023; Liu et al., 2005).

More formally:

� TR3S and TE3S are the training and testing subsets,

respectively.

� eHðsÞ (events/timeslot) is the predicted value for the

observed HðsÞ.
Please cite this article as: Ventura, R et al., Estimating the frequen
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� a, b, gfi (predictor specific) are the coefficients of the fre-

quency model.

� EðsÞ (veh/h) is the exposure factor observed during s2S.

� pH (e) is the p-value associated with the model, i.e., global

statistical significance of the model according to the Chi-

square test.

� pfi (e) is the p-value associated with the frequency predic-

tor fi, i.e., the significance of every single predictor ac-

cording to the t-test.

� dr (e) is the deviance ratio, i.e., the ratio between the

regression deviance and the degree of freedom.

Hence, the frequency was predicted according to the

following functional form Eq. (1).

eHðsÞ¼aEðsÞbe
P

fi2F:fisE
gfi

fiðSÞ
c s2S (1)

To implement a model validation technique, which relies

on unbiased out-of-sample evaluations, the dataset was

randomly split into training (TR) and testing (TE) subsets

before performing the fitting procedure. Hence, the fitting

procedure started with the identification of the predictors (fi)

to be included in the model. As for the exposure factor (EðsÞ),
the hourly flow was chosen to impose null frequency pre-

dictions for those timeslots with a null vehicular flow. As for

the other predictors, thesewere extracted from F by applying a

straightforward selectionmethod. First, a preliminary filtering

procedure was performed to prevent multicollinearity issues

by removing high-correlated predictors, as follows.

1) Compute the correlation matrix related to each predictor

fi2F and the response variable HðsÞ.
2) Individuate the couples of high correlated predictors (i.e.,

correlation index greater than 0.8, according to Shrestha

(2020)).

3) Eliminate the predictor which had the lower correlation

index with the response variable HðsÞ, for each couple of

high correlate predictors.

Next, an automated stepwise technique based on forward

selection and backward elimination was adopted to indi-

viduate the best set of predictors from the list obtained

through the preliminary filtering procedure. According to the

highest dr and pH of the estimated model, either a backward

or a forward stepwise technique was preferred. Once the

model was fitted, the sign of each coefficient and the sig-

nificance of each predictor (pfi ) were assessed to understand

the influence that each factor would have on the predicted

frequency.
2.3. Machine learning approach

The frequency prediction model was also built in a more

innovative way by using a machine learning approach. Ac-

cording to the literature, an ANNM was chosen above other

machine learning algorithms.

More formally:

� TR3S, VA3S and TE3S are the training, validation, and

test subsets, respectively.
cy of traffic overloading on road bridges, Journal of Traffic and
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� IN2RjSj;jFj (predictor specific) is the input matrix for the

ANNM fitting process, i.e., the matrix of the frequency

predictors (i.e., F) observed during each TðsÞ2S.

� TG2RjSj (events/timeslot) is the target vector for the ANNM

fitting process, i.e., the vector of the frequencies of design

load overcoming events (i.e., HðsÞ) observed during each

TðsÞ2S.

� fTG2RjSj (events/timeslot) is the predicted value for TG.

� u is a mathematical function, which relates the input

matrix IN to the target vector TG.

� eu is an approximation of the function u.

� P is the set of ANNM hidden layer perceptrons and p2 P is

the generic perceptron. The perceptron is the basic struc-

ture of the network and is a simplifiedmodel of a biological

neuron.

� q2RjFjjPjþ2jPjþ1 (predictor specific) is the generic vector con-

taining the parameters of the ANNM and q02 RjFjjPjþ2jPjþ1 is

the specific vector obtained through the learning phase.

� PFIfi (events/timeslot) is the permutation feature impor-

tance associated to the predictor fi2F.

� e2RjSj (events/timeslot) is the vector of residual values, i.e.,

the difference between the target vector TG and the pre-

dicted one fTG.
� MSEðqÞVA (events/timeslot) is the mean squared error

computed on the validation subset (VA) as a function of the

parameter vector (q).

Then, assume the existence of a mathematical function u,

which relates the input matrix IN to target vector TG, such

that TG ¼ uðINÞ. If this function exists, it can be interpreted as

a computation model that links the causes (IN) with their

observed effects (TG). The ANNM defines a mapping TG ¼
eu ðIN; qÞ þ e and learns the value of the parameter vector q that

leads to the best approximation (Ian et al., 2016).

A two-layer feed-forward network was selected to perform

this mapping, being the more straightforward among the

ANNMarchitectures (Schmidhuber, 2015). In this architecture,

the information moves only forward direction from the input

nodes, across the hidden nodes and towards the output nodes.

This network has two layers of perceptrons: a hidden layer of

jPj perceptrons and an output layer on one perceptron. A

hyperbolic tangent sigmoid activation function was selected

for the hidden layer, which was recommended due to its

antisymmetric shape (Romero Reyes et al., 2013; Sramka

et al., 2019). A linear activation function was chosen for the

output layer since the response was an integer variable.

Before performing the training phase, the set of timeslot

observations (i.e., S) was randomly divided into three subsets:

training, validation, and test. The training set (i.e., TR) was

presented to the network during training, and the network

parameters were calibrated to fit the training data. The vali-

dation set (i.e., VA) was used to measure network general-

isation to prevent overfitting and halting training when

generalisation stopped improving. The testing set (i.e., TE) did

not affect training and so provided an independent measure

of network performance during and after training. During the

training phase, q was adjusted to minimise a certain cost

function computed on the validation subset (Brownlee, 2019).

Particularly, the MSEðqÞVA was selected as cost function, being
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the most popular for regression problems where a quantity

has been predicted (Reed and Marks II, 1999). Thus, the

training procedure was formalized as follow in Eq. (2).

q0 ¼arg min
q

MSEðqÞVA (2)

A backpropagation algorithmwas selected being one of the

most widely used for training feedforward neural networks

(Ian et al., 2016). At the end of the training phase, the best

parameter vector q0 was determined and, thus, the

functional form of the ANNM for frequency prediction was

obtained, which is shown in Eq. (3).

eHðsÞ¼ eu��fiðsÞ2F
�
; q0

�
c s2S (3)

It is noteworthy that training multiple times generated

different results due to diverse initial conditions and random

splitting. Thus, several training instanceswere issued, and the

best model was selected according to the lower MSE.

Next, the significance of each predictor was evaluated to

understand its influence on the forecasted frequency. To

perform this task, the permutation feature importance (i.e.,

PFIfi ) was adopted because it is recognised as an indicator

that produces reliable results, especially for non-linear or

opaque estimators (Strobl et al., 2007). The PFIfi is defined as a

decrease in a model score when a single factor value is

randomly shuffled (Breiman, 2001). The technique destroys

the link between the factor and the target, and the

decrease in the model score reflects how much the model

depends on the factor. This method has the advantage of

being model-independent and can be calculated many

times with various permutations of the characteristic. In

this paper, the test dataset rather than the training dataset

was used to fit the indicator, since this way, the

significance of features in an out-of-sample prediction can

be emphasized even more.

� N is the set of random permutation instances and n2N is

the generic instance.

� INn;fi2RjSj;jFj (predictor specific) is the corrupted version of

the input matrix at the permutation n2N, which was ob-

tained by randomly shuffling the column associated to fi2

F of the uncorrupted input matrix IN.

� MSEðq0ÞTE (events/timeslot) is the MSE of the trained ANN

model, calculated on the test dataset TE, considering the

uncorrupted input matrix IN.

� MSEðq0ÞTEn;fi (events/timeslot) is the MSE of the trained

ANN model, calculated on the test dataset TE, considering

the corrupted input matrix INn;fi .

� s ¼ �MSEðq0ÞTE (events/timeslot) is the reference score of

the trained ANN model on the uncorrupted input matrix

IN.

� sn;fi ¼ �MSEðq0ÞTEn;fi (events/timeslot) is the score of the

trained ANN model on the corrupted input matrix INn;fi .

Then,multiple permutation instances (jNj) were performed

for each explanatory factor fi2F and the associated permu-

tation feature importance was calculated by considering the

average of the scores relating to the different corrupted

datasets shown in Eq. (4).
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PFIfi ¼ s� 1

jNj
X
n2N

sn;fi c fi2F (4)

2.4. Comparison between econometric and machine
learning performances

Once the GLRM and ANNM were estimated, they were

compared to find the best model in fitting and predicting the

frequency of design overloading events. To make this choice,

three comparison strategies were employed as follows.

I Regression plots (RPs).

II Some measures of errors (MoEs).

III The ratio among the number of observed vs predicted

events.

As for I, RPs were a useful way to visually assess the fitting

and forecasting performance of a model. These were graphs

showing the pairs' target frequency-vs-predicted frequency

on a Cartesian plane. More formally, for a specific subset (i.e.,

TR, VA and TE) andmodel (i.e., GLRM and ANNM), each RPwas

obtained by putting the pairs ðHðsÞ; eHðsÞÞ on a Cartesian plane

and by determining the correlation coefficient (denoted as R)

between the target variable (i.e., HðsÞ) and the predicted vari-

able (i.e., eHðsÞ). Next, RPs associated with GLRM and ANNM

were compared considering the following items. 1) The closer

to the first quadrant bisector are the ðHðsÞ; eHðsÞÞ points, the

greater the performance will be, because a point on the first

quadrant bisector corresponds to a perfect fitting or prediction

(i.e., eHðsÞ ¼ HðsÞ). 2) The closer to 1 that R is, the greater the

model performance will be, since when R ¼ 1 it indicates a

perfect correlation between observed and predicted values.

As for II, some MoEs were evaluated, being common in-

dicators to measure the differences between the values pre-

dicted by a model and the corresponding values observed in

the real world. MoEs include: the mean absolute error (MAE),

the root mean squared error (RMSE), and the coefficient of

variation (CoV) among them. The MAE measures the average

magnitude of the errors in a set of predictions, without regard

to their direction. It is defined as the arithmetic mean of the

absolute errors. Since the MAE is a linear score, it gives equal

weight to each individual error in the sample. The RMSE is a

quadratic scoring rule that measures the average magnitude

of error. It is computed by squaring the difference between the

prediction and the corresponding observed value, and then

averaging these values over the sample. Next, the square root

is calculated. Since the RMSE is a nonlinear score, it gives

relatively great weight to large errors. This is because errors

are squared before they are averaged. This means that the

RMSE is particularly helpful when large errors are unwanted.

The CoV describes themodel fit in terms of the relative sizes of

the squared errors and the values taken by the response var-

iable. It is defined as the ratio of the RMSE to the mean of the

response variable. Hence, it can be interpreted as a normal-

ized version of the RMSE indicator. More formally, let eðsÞ be
the residual of the prediction during TðsÞ, i.e., the component

of the vector e associated to TðsÞ, which is shown in Eq. (5).
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es ¼HðsÞ � eHðsÞ c s2S (5)

Therefore, as for the training subset (TR), MoEs were

calculated according to Eqs. (6)e(8).

MAE¼
P

s2TR
jeðsÞj

jTRj (6)

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s2TR

eðsÞ2

jTRj

vuut
(7)

CoV¼ RMSEP
s2TR

jHðsÞj

jTRj

(8)

As for VA and TE subsets, MoEs were computed according

to the previous equations where TR was replaced with VA and

TE, respectively. Next, the MoEs associated with GLRM and

ANNM were compared considering that lower values are

better.

As for III, the sum of the observed and predicted number of

design load overcoming events (denoted as SUM and gSUM)

was first computed throughout the entire monitoring period.

Next, the ratio between gSUM and SUM (denoted as p) was

determined. More formally, as for the TR, these quantities

were calculated according to Eqs. (9)e(11).

SUM¼
X
s2TR

HðsÞ (9)

gSUM¼
X
s2TR

eHðsÞ (10)

p¼
gSUM
SUM

(11)

As for the VA and TE subsets, SUM, gSUM and SUM and p

were computed according to the same previous equations

where TR was replaced with VA and TE, respectively. Next, p

ratios were compared considering that the closer to 1 that the

p ratio is, the greater the fitting performance will be, because

p ¼ 1 means that the total number of predicted events co-

incides with the observed number.
3. Results and discussion

3.1. Descriptive statistics

A total of 2 million WIM raw records were collected during a

four-month observation period (T). After performing the pre-

processing procedure, 0.9 million vehicular records (around

45% of the entire passing traffic flow) were maintained on the

validated traffic dataset (Table 1). Although a high percentage

of data was excluded, these mainly referred to light and fast

vehicles (i.e., cars and vans) for which the WIM was unable

to measure certain parameters. The reason for this was that

WIM systems have been primarily conceived for weighing
cy of traffic overloading on road bridges, Journal of Traffic and
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Table 1eDetails about theWIM rawdata collected during
the monitoring period.

Description Detail

Start date 1st January 2022

End date 30th April 2022

Number of raw vehicular records 2,002,320

Number of validated vehicular records

(after FP and QCA)

904,980

Duration of each timeslot (s) 3600

Number of timeslots 2696
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heavier vehicles rather than lighter ones. Hence, the reliability

of the consequent frequency analyses was not impaired, since

lighter vehicles give only a slight contribution in determining

the load acting on a bridge.

Seven vehicular classes were recognized by the WIM sys-

tem (Table 2). In Table 2, the fraction of vehicles inside each

class refers to the validated traffic database. Although cars
Table 2 e Vehicular classes recognized by the WIM device.

Class ID Class name Symbolic illustration Limit
th

1 Cars and vans 3500

2 Single-unit

trucks and buses

18,0

25,0

3 Articulated

trucks up to 6

axles

30,0

40,0

44,0

4 Road trains up to

6 axles

24,0

40,0

44,0

5 More than 6 axle

vehicles

44,0

6 Isolated trailers 6000

22,0

26,0

7 Unknown

vehicles

? 44,0

Note: * refers to the ratio of the number of vehicles in the specific class to

to the ratio of the number of vehicles in the specific class with a GVM ab
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and vans were shown to be the most frequent vehicle types,

as expected, a relatively high percentage (7.22%) of

commercial vehicles (i.e., classes from 2 to 6) was observed,

confirming the high quota of such vehicles in the South Ring

Road. Notably, a relevant fraction of vehicles was found to

have been overloaded, with class 5 (i.e., vehicles with more

than 6 axles) and class 2 (i.e., single unit trucks and buses)

being in the greater proportion (about 90% and 83%,

respectively). To visualize the GVM distribution associated

with each vehicular class, probability density functions

(PDFs) were graphed (Fig. 3(a)e(g)). Multimodal shapes were

also observed for several vehicular classes, suggesting the

presence of vehicles with different load ratios (e.g., empty,

partially loaded, or fully loaded), which was an expected

outcome (Lu et al., 2018; Ren et al., 2019).

Since frequency modelling was performed monthly, the

timeslot duration was set to one hour. Thus, a set of 2656

hourly timeslots (S) was obtained (Table 1). Next, the set of

frequency predictors (F) was computed for each timeslot.

The list of these predictors, including their definitions and
mass according to
e Italian TC (kg)

Fraction of
vehicles inside the

class (%)*

Fraction of
vehicles

exceeding the
limit mass (%)**

92.889 0.277

00 (2 axles)

00 (3 or more axles)

0.597 82.588

00 (2 axles)

00 (4 axles)

00 (5 or more axles)

5.733 44.978

00 (3 axles)

00 (4 axles)

00 (5 or more axles)

0.469 42.072

00 0.309 89.989

(1 axle)

00 (2 axles)

00 (3 or more axles)

0.003 4.545

00 <0.001 0.000

the total number of vehicles in the validated traffic database. ** refers

ove the TC limit to the total number of vehicles in the same class.
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Fig. 3 e PDFs of GVM associated to seven classes. (a) Class 1. (b) Class 2. (c) Class 3. (d) Class 4. (e) Class 5. (f) Class 6. (g) Class

7.
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some descriptive statistics, is given in Table A1 in the

Appendix, which is otherwise self-explanatory.

Notably, although lane width and span length were con-

stant terms in the bridge at hand, they were considered as

predictors for completeness. Indeed, from a theoretical
Please cite this article as: Ventura, R et al., Estimating the frequen
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viewpoint, if additional bridges were included in the model-

ling, these factors could have different values and, thus, could

be significant predictors. Moreover, several temporal context

factors (e.g., type of day, type of hour, and lighting) might

appear to not be directly related to traffic overloading.
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Table 4 e Results of the best fit GLR frequency prediction
model (econometric approach): summary statistics.

Source Degree of
freedom

Mean
deviance

Parameter Value

Regression 17 253.130 dr 253.130

Residual 2139 0.266 c2 0.001

Total 2156 2.260
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Therefore, it could be argued that if these predictors were

excluded from the modelling, the results could still be true.

Nevertheless, traffic on the bridge is expected to change over

the time. Hence, temporal context factors could have some

influence on the frequency of traffic load overcoming events.

By comparing the overall vehicular load on the monitored

bridge lane during each instant with the design load thresh-

olds prescribed by Eurocode 1, the frequency of design over-

loading events occurred during each TðsÞ, i.e., the response

variable Hs, was determined. Some descriptive statistics on

HðsÞ are given in Table A1 in the Appendix.
3.2. Generalised linear models

Once the WIM raw data had been processed, the frequency

prediction model was first built by adopting the Econometric

approach, as indicated in Eq. (1). A splitting ratio of 80% and

20% was employed to identify TR and TE, respectively

(Fertlitsch, 2021). The coefficient estimates and significances

for each component of the best-fit model are shown in Table

3, whereas Table 4 reports some summary statistics.

From a general perspective, this model fits the data well.

Indeed, the statistical c2 test on dr produced a small pGL-value

for goodness-of-fit (<0.001). Therefore, the null hypothesis

that all the regression coefficients were zero could be rejected.

As for predictors, the results confirmed that most of these

were highly significant (i.e., pfi < 0:05), which showed a strong

regression effect. Focusing on each highly significant predic-

tor separately, the following considerations arose.

As for the exposure risk factor, the results showed that the

exponent (i.e., b) is positive as expected. Therefore, a 1 veh/h

increase in the hourly flow would increase the number of

overloading events as well, while keeping all other variables

constant at their means. This result confirmed previous

research because it has been widely recognised that the

bridges subjected to the greatest traffic flows have the highest
Table 3 e Results of the best fit GLR frequency prediction mod

Parameter Related pr

logðaÞ e

b Hourly flow (exposure fac

gf4 Type of day-weekend wrt

gf8 Vehicular fraction-class 2

gf11 Vehicular fraction-class 5

gf14 Speed-mean

gf29 Length-minimum

gf40 Axle imbalance ratio-mea

gf43 Axle imbalance ratio-max

gf44 Interaxle-mean

gf55 GVM-length ratio-maximu

gf60 GVM limit ratio-mean-cla

gf68 GVM limit ratio-maximum

gf70 GVM limit ratio-maximum

gf77 Overloaded vehicles fracti

gf78 Overloaded vehicles fracti

gf82 Extremely loaded vehicles

gf87 Overloaded axles fraction

Note: * indicates that the variable is significant at 0.10 level or lower. **

dicates that the variable is significant at 0.001 level or lower. wrt stands
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risk (Fiorillo and Ghosn, 2022; Ministero delle Infrastrutture e

dei Trasporti, 2020).

As for temporal context factors, the negative coefficient

associated with the type of day factor (i.e., gf4 ) indicated that

the frequency was lower over the weekend. This was a

consequence of the fewer commercial activities during

weekends. Nonetheless, it was a novel outcome because the

type of day factor had not been investigated in previous safety

analyses. Moreover, the strong significance of this factor

(pf4 <0:001), suggested that excluding temporal context factors

from the list of frequency predictors would haveworsened the

model fit.

As for the traffic flow characteristics factors, the speed

factor was found to be significant. Particularly, a 1 km/h in-

crease in the mean speed reduced the number of overloading

events, whilst it kept all other predictors constant at their

means. Therefore, the frequency decreased as themean speed

increased, as indicated by the negative coefficient (i.e., gf14 ).

This result could be justified as follows. First, the faster vehi-

cles were generally characterized by a lower GVM, having a

greater probability of belonging to lighter categories (Ventura

et al., 2023a). Second, an increase in speed led to a reduction

in the permanence time of the vehicles on the deck and,

therefore, a lower probability of multiple presences on the

bridge. Consequently, this suggested that imposing low-

speed limits on bridge decks might have a negative safety

impact. This was a noteworthy result, considering that RAs
el (econometric approach): coefficient estimates.

edictor Est.

�1.920

tor) 0.400***

weekday �0.510***

�8.390

6.950

�0.042***

�2.094**

n �1.426**

imum 0.438**

1.084*

m 0.00043***

ss 1 3.910**

-class 2 �0.151

-class 4 0.403***

on-class 3 1.711***

on-class 4 0.271**

following one another 0.150**

19.260***

indicates that the variable is significant at 0.05 level or lower. *** in-

for with respect to.
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Fig. 4 e Cost function for the ANN frequency model as a

function of training epoch (machine Learning approach).
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often prescribe very low speed limits for overloaded trucks

with special permits moving on bridge decks (Ventura et al.,

2020).

As for vehicular characteristics factors, three predictors

were found to be highly significant: one related to the entire

vehicle (i.e., length) and two to single axles (i.e., axle imbal-

ance ratio and interaxle). Particularly, a 1 m increase in the

minimum length of vehicle observed during a timeslot,

reduced the number of overloading events, whilst keeping all

other variables constant at their means (as shown by coeffi-

cient gf29 <0). Perhaps, the interposition of short and light

vehicles prevented multiple heavy vehicles from being on the

bridge simultaneously. Therefore, an increase in the length of

short vehicles interposed between two heavy vehicles

following one another kept them away from each other and

reduced the likelihood of concurrent presence on the bridge.

According to what the authors were able to find in the litera-

ture, this was an original finding not pointed out in any earlier

bridge safety analyses. Conversely, it appears that the axle

imbalance factor had a contrasting effect. Indeed, the fre-

quency of overloading events seemed to be reduced as the

mean axle imbalance ratio of a unit (gf40 <0) increased, whilst

an increase in themaximum axle imbalance ratio induced the

opposite result (gf43 > 0). These opposing behaviours could

indicate that globally axle imbalance had only a slight influ-

ence on frequency.

As for the interaction between vehicular and bridge char-

acteristics factors, the GVM length ratio was shown to be

highly significant, whilst the coefficient was found to be pos-

itive as intuitively expected. Therefore, with a 1 kg/m increase

in the GVM length ratio, the number of overloading events

increased whilst keeping all other predictors constant at their

means. Hence, this outcome confirmed that when short and

heavily loaded vehicles were detected, the probability of

observing a high traffic load on the bridge would increase,

since more vehicular mass can simultaneously impinge upon

on the entire deck length. Despite being evident, this aspect

was not directly emphasized in past bridge risk evaluations, as

far as the authors know.

As for compliance with TC prescription factors, this is the

subgroup that has the greater influence on frequency, since

the six factors were found to be extremely significant: five

related to the vehicle and one related to single axles. Precisely,

the frequency increased as the GVM limit ratio for class 1 and

class 4 vehicles rose (gf60 >0 and gf70 > 0). Likewise, a greater

percentage of overloaded class 3 and class 4 vehicles led to a

higher frequency of overcoming events (gf77 > 0 and gf78 > 0).

These outcomes imply that vehicles exceeding themass limits

prescribed by the TC can induce a higher threat on the bridge

than those that are compliant. Moreover, since only co-

efficients of class 1, class 3, and class 4 emerged as significant,

illegally overloaded vehicles appeared to be more detrimental

than those with permits, which are more likely to belong to

class 5. This could be explained considering that illegally

overloaded vehicles are generally shorter than those with

permits, as the latter are conceived with more axles to reduce

their mass linear density. These findings endorse Fiorillo and

Ghosn (2018), who showed that the probability of failure

increased with the percentage of illegally overweighted

trucks.
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Besides, a positive coefficient was found for the factor

related to the detection of extremely loaded vehicles (GVM

higher than 44,000 kg) following one another (i.e., gf82 ). This is

a consistent outcome because following vehicles are more

likely to simultaneously act on the bridge deck than distant

ones, thus inducing a lane load greater than design thresh-

olds. This result confirms Fiorillo and Ghosn (2019) and Fiorillo

and Ghosn (2022) who showed that the probability that

overloaded trucks crossing the bridge simultaneously could

have a negative effect on bridge reliability. As for single axle

factors, a 1% increases in the overloaded axle fractions

strongly increases the number of overloading events, as

shown by the relatively high coefficient (i.e., gf87 ). This result

denotes that frequency increases significantly when the

percentage of overloaded axles increases as well, because

more of the vehicular load will act on the bridge lane. On the

one hand, the outcome is novel since the overloaded axle

fractions had never been explicitly accounted for in previous

models. On the other hand, this finding was expected

because it is well-known that overloaded axles lead to

adverse impacts on infrastructure, such as a rise in bridge

deterioration rates (Lou et al., 2016) and a decrease in road

pavement life (Zhao et al., 2021).
3.3. Artificial neural network models

Next, the frequencymodel was fitted by adopting themachine

learning approach based on an ANNM, according to Eqs. (2)

and (3). A splitting ratio of 70%, 15% and 15% was employed to

identify TR, VA and TE, respectively (Flach, 2012). Numerous

attempts to gain improvement were undertaken by varying

the number of neurons in the hidden layer and the training

algorithm. Then, a network with 10 perceptrons in the

hidden layer trained with the Levenberg-Marquardt algo-

rithmwas chosen because it returned the best data fitting. The

training procedure was halted at epoch 9, corresponding to

the minimum cost function computed on the validation sub-

set (MSEðqÞVA), as indicated in Fig. 4. In epoch 9, the best

validation performance was attained.
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Table 5 e Permutation feature importance of each predictor for the ANN frequency model (machine learning approach).

Note: * the colour of the background is graduated from themost important predictor (red) to the least (white), **NA indicates that the PFI cannot

be calculated because the factor is constant across timeslots.
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The permutation feature importance of each frequency

predictor (PFIfi ) in the best fit model is shown in Table 5.

As a general rule, factors related to vehicular characteris-

tics, the interaction between vehicular and bridge character-

istics, and compliance with TC make the greatest

contributions to explaining the frequency of design over-

loading events. Indeed, several predictors belonging to these

groups showed a high permutation feature importance.
Fig. 5 e Regression plot (RP). (a) GLRM on TR dataset. (b) GLRM o

dataset. (e) ANNM on TE dataset.
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Focusing on the 10 most important predictors separately, the

following considerations were deemed important.

Normalised GVM-mean (f48) is the predictor that gives the

greatest contribution to explaining the frequency of design

load overcoming events. This predictor (which belongs to the

interaction between vehicular and bridge characteristics fac-

tors) surpasses three factors of the simple GVM of each

passing vehicle (i.e., GVM-mean (f23), GVM-std. deviation (f24)
n TE dataset. (c) ANNM on TR dataset. (d) ANNM on VA
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and GVM-maximum (f26)), ranked second, fourth and fifth,

respectively. This is an interesting outcome since it suggests

that the load acting on the bridge deck is more closely related

to the interaction between the GVM and the bridge span

length-vehicle length ratio rather than to the simple GVM

(which belongs to vehicular characteristics factors). It can be

explained considering that if the vehicular length is less than

the bridge span, there will be at least a temporal frame in

which the overall GVMwill act on the deck. Conversely, only a

fraction of the GVM will be on the deck at every timestamp.

Whereas if the simplifying hypothesis of a GVM uniformly

distributed along the vehicular length is assumed, this frac-

tion will therefore be proportional to the bridge span length-

vehicular length ratio.

Nevertheless, the significance of vehicular characteristic

factors in frequency prediction is endorsed by 1) the third and

seventh positions achieved by the two factors related to

vehicular length parameters (i.e., length-mean (f27) and

length-std. deviation (f28), respectively), and 2) the ninth po-

sition reached by a factor related to mass acting on each

vehicular axle (i.e., axle mass-std. deviation (f37)).

Finally, factors associated with compliance with TC pre-

scriptions also have a relevant impact on the frequency of

design overloading events: a predictor of the presence of

overloaded vehicles (i.e., GVM limit ratio-mean-all classes

(f56)) and one of the detections of overladed axles (i.e., axle

mass limit ratio-std. deviation (f84)) ranked at the sixth and

tenth position, respectively.
3.4. Performance evaluation between GLRM and ANNM

Once the GLRM and ANNM were estimated, their fitting and

prediction performances were compared to find the best

modelling approach. As for the I comparison strategy, the RPs

associated with the models were graphed (Fig. 5) and the

correlation coefficient (R) among target and predicted

frequency was computed (Table 6). In Fig. 5, the graphs are

arranged by putting the models in the rows and the datasets

in the columns. GLRM has only two datasets, therefore, only

two graphs are presented.

Fig. 5 clearly indicates that the ANNM had a greater fitting

and predictive capacity than the GLRM. Specifically, several

relatively high residuals corresponding to the greater target

frequencies were observed on both TR and TE subsets for

the GLRM. Indeed, many ðHðsÞ; eHðsÞÞ points fell far away from

the first quadrant bisector. Conversely, in the ANNM the ðHðsÞ;
Table 6 e Comparison of the fitting and prediction performanc

Parameter

I Comparison strategy

Correlation coefficient related to RPs (R)

II Comparison strategy

Mean absolute error (MAE) (events/timeslot)

Root mean squared error (RMSE) (events/timeslot)

Coefficient of variation (CoV)

III Comparison strategy

Ratio among the total number of predicted and observed design load o

Please cite this article as: Ventura, R et al., Estimating the frequen
Transportation Engineering (English Edition), https://doi.org/10.1
eHðsÞÞ points feel closer to the first quadrant bisector on all TR,

VA and TE subsets, implying relatively lower residuals. The

greater performance of the ANNM was confirmed by the

values obtained for the correlation coefficient as shown in

Table 6. Indeed, the R metric of the GLRM was always under

0.9 for all subsets (TR and TE). Conversely, the R coefficient

of the ANNM was close to 1 on all subsets (TR, VAL and TE).

Specifically, a high R on the test dataset would be a

fundamental result because TE had no effect on the training

process and then provided an independent measure of the

ANNM predictive performance.

As for the II comparison strategy, MoEs were computed for

both GLRM and ANNM and on all TR, VA and TE subsets. The

results in Table 6 indicate that the ANNM outperformed the

GLRM both on fitting and forecasting tasks. Indeed, as for

the fitting task, the ANNM performed better than the GLRM

at fitting training data as evidenced by the fewer errors

discovered on TR. Similarly, for the forecasting task, the

ANNM's reduced errors on TE showed that it could more

accurately anticipate the frequency of upcoming design load

overcoming events than the GLRM.

The p ratio was computed for both GLRM and ANNM and

on all TR, VA and TE subsets for the III comparison strategy.

The findings in Table 6 demonstrated that, depending on

whether TE or TR subset was considered, the GLRM

overstated the overall number of overloading events by a

percentage ranging from roughly 10% to 13%. Conversely, a

contrasting effect was observed for the ANNM. Indeed, the

ANNM slightly overestimated the number of overloading

events by about 1% on TR subset, while it slightly

underestimated the number of overcoming events by about

1% and 2% on VA and TE subsets, respectively. Nevertheless,

these outcomes suggested that globally, the ANNM had a

better fitting and predictive performance than the GLRM:

although a moderate overappraisal in the number of

overcoming events can be considered as conservative, an

excessive p ratio such as those observed for the GLRM

should be avoided to prevent unnecessary (and costly) traffic

management actions.
4. Conclusions

Truck weights frequently exceed legal load limits, occasion-

ally leading to road bridge failures. Hence, setting models to

forecast the frequency of the events inwhich the design traffic
es of GLRM and ANNM.

GLRM ANNM

Training Test Training Validation Test

0.84 0.86 0.98 0.97 0.96

2.23 2.24 1.13 1.31 1.37

6.52 5.56 1.82 2.11 2.13

1.03 0.91 0.32 0.33 0.39

vercoming events (p) 1.13 1.10 1.01 0.99 0.98
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loads of bridges are exceeded is an addition to RAM safety

management. Indeed, the frequency of design overloading

events is a key component of the methodologies aimed at

assessing the risk related to traffic load hazard on bridges.

While econometric models (EMs) based on generalised linear

regressions (GLRMs) were seldomly employed to predict the

frequency of such events, according to the best authors’

knowledge, machine learning models (MLMs) based on artifi-

cial neural networks (ANNMs) had never been investigated in

this context.

This study contributes to the literature as follows.

� It introduces a frequency-based metric of traffic over-

loading on road bridges that could be a driver of bridge

failure probability. This is an addition to the current liter-

ature, which has investigated this probability using RAMs.

� It specifies, calibrates, and validates a GLRM and an ANNM,

for the prediction of the frequency of traffic overloading on

road bridges, according to a list of exposure, bridge side,

temporal context, and traffic load hazard frequency pre-

dictors. Next, it shows the related effects and importance

of both models.

� It compares the performance of themodels by determining

regression plots (RPs), some measures of errors (MoEs) and

the ratio among the observed vs predicted number of

events.

A real-world application was performed considering a

large dataset of 2 million records collected by a weigh-in-

motion (WIM) station on a bridge along a main road near

Brescia (Italy). The results showed that vehicular character-

istics, interaction between vehicular and bridge characteris-

tics, and compliance with traffic code (TC) prescriptions have

the greatest importance in explaining the frequency of over-

loading events.Moreover, the results indicated that the ANNM

outperformed the GLRM. Indeed, a greater correlation coeffi-

cient among target and predicted frequencies, lowerMoEs and

a closer to unity ratio between the sum of the observed and

predicted number of design load overcoming events were

found for the ANNM.

The relevant implications of this research are shown as

follows.

� The availability of frequency models with a greater pre-

dictive capacity than the current state-of-the-art could

enhance the consistency of predictions. For instance, as

frequency is an important risk component, the higher its

predictive capacity, the more effective the risk prediction.

� Road authorities can implement more efficient traffic

management strategies to improve the safety of bridges

against traffic load hazards. For instance, with additional

technologies (e.g., cloud computing platforms, traffic
Please cite this article as: Ventura, R et al., Estimating the frequen
Transportation Engineering (English Edition), https://doi.org/10.1
lights, and variable message signals), strategies could

reroute groups of vehicles that pose a high risk of over-

loading a specific bridge. Particularly, since vehicles that

break TC mass limits have been shown to increase the

overloading frequency, the simultaneous presence of non-

compliant vehicles on a bridge should be avoided by

requiring them to leave the road at an upstream exit.

This study also suggests new directions for further inves-

tigation. First, the effect of a greater ability to predict fre-

quency over existing methodologies for assessing traffic load

hazards on bridges should be investigated (Ventura et al.,

2024). Second, incorporating new variables based on data

collected by additional sensors (e.g., accelerometers, strain

gauges, intelligent traffic cameras) could further boost the

performance of the frequency prediction models. Finally,

this study used the load value as a straightforward criterion

to evaluate the occurrence of overloading events as a driver

of bridge failure probability. Since the traffic load effect

directly influences bridge safety, a specific assessment of

bridge safety involving an accurate evaluation of the

structural response should be required. This is because for

the same total applied load, the demand that this induces in

terms of internal actions on the structural elements can be

very dissimilar depending on the different load patterns.

This specific analysis will help better individuate limit states

of overloading events and can be applied in future studies.
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Table A1 e Frequency predictors and response variable. List, definition, unit of measure, type, and some descriptive statistics. An earlier (less complete) version of this
table was proposed in Ventura et al. (2023a).

Name of the frequency predictor Symbol Definition Unit of
measure

Type Minimum* Maximum* Mean* Standard.
deviation*

Hourly flow (exposure factor) f1ðsÞ ¼ EðsÞ Ratio among the number of vehicles passing on the

bridge during TðsÞ and the duration of TðsÞ expressed
in hours

veh/h Continuous 1.00 953.00 335.68 240.16

Lane width f2ðsÞ Width of the monitored bridge lane m Continuous 3.00 3.00 3.00 0.00

Span length f3ðsÞ Length of the monitored bridge span m Continuous 23.50 23.50 23.50 0.00

Type of day-weekend wrt weekday f4ðsÞ 1 if TðsÞ falls on Saturday or Sunday; 0 otherwise e Binary 0.00 1.000 0.280 0.449

Lighting-daytime wrt night-time f5ðsÞ 1 if TðsÞ falls from 7:00 to 19:00; 0 otherwise e Binary 0.00 1.000 0.547 0.498

Type of hour-peak hour wrt off-peak hour f6ðsÞ 1 if TðsÞ falls from 7:00 to 9:00 or from 16:00 to 18:00;

0 otherwise

e Binary 0.00 1.000 0.168 0.374

Vehicular fraction-class 1 f7ðsÞ Fraction of vehicles in class 1 computed on TðsÞ e Continuous 38.27% 100.00% 91.89% 23.43%

Vehicular fraction-class 2 f8ðsÞ Fraction of vehicles in class 2 computed on TðsÞ e Continuous 0 9.85% 0.42% 0.72%

Vehicular fraction-class 3 f9ðsÞ Fraction of vehicles in class 3 computed on TðsÞ e Continuous 0 58.21% 6.75% 9.21%

Vehicular fraction-class 4 f10ðsÞ Fraction of vehicles in class 4 computed on TðsÞ e Continuous 0 16.67% 0.65% 1.46%

Vehicular fraction-class 5 f11ðsÞ Fraction of vehicles in class 5 computed on TðsÞ e Continuous 0 16.67% 0.28% 0.70%

Vehicular fraction-class 6 f12ðsÞ Fraction of vehicles in class 6 computed on TðsÞ e Continuous 0 0.49% 0 0.02%

Vehicular fraction-class 7 f13ðsÞ Fraction of vehicles in class 7 computed on TðsÞ e Continuous 0 12.50% 0 0.24%

Speed-mean f14ðsÞ Mean of the vehicular speed computed on TðsÞ km/h Continuous 12.0 81.6 73.4 4.6

Speed-std. deviation f15ðsÞ Std. deviation of the vehicular speed computed on

TðsÞ
km/h Continuous 0.0 25.1 7.0 1.1

Speed-minimum f16ðsÞ Minimum of the vehicular speed computed on TðsÞ km/h Continuous 5.0 74.0 54.1 8.1

Speed-maximum f17ðsÞ Maximum of the vehicular speed computed on TðsÞ km/h Continuous 12.0 90.0 88.9 2.2

Headway-mean f18ðsÞ Mean of the temporal distance between consecutive

vehicles computed on TðsÞ
s Continuous 3.8 4443.9 55.4 181.6

Headway-std. deviation f19ðsÞ Std. deviation of the temporal distance between

consecutive vehicles computed on TðsÞ
s Continuous 0.0 26,100.1 90.5 809.6

Headway-minimum f20ðsÞ Minimum of the temporal distance between

consecutive vehicles computed on TðsÞ
s Continuous 0.5 754.6 3.4 20.3

Headway-maximum f21ðsÞ Maximum of the temporal distance between

consecutive vehicles computed on TðsÞ
s Continuous 19.6 165,095.4** 437.9 4490.2

Congestion condition-free flow f22ðsÞ 1 if no headway lower than 5 s occurs during TðsÞ;
0 otherwise

e Binary 0.000 1.000 0.944 0.229

GVM-mean f23ðsÞ Mean of the GVM computed on TðsÞ kg Continuous 1588 28,378 5339 4490

GVM-std. deviation f24ðsÞ Std. deviation of the GVM computed on TðsÞ kg Continuous 0 31,018 8855 6823

GVM-minimum f25ðsÞ Minimum of the GVM computed on TðsÞ kg Continuous 1000 2400 1228 87

GVM-maximum f26ðsÞ Maximum of the GVM computed on TðsÞ kg Continuous 2000 122,600 52,992 36,049

Length-mean f27ðsÞ Mean of the vehicular length computed on TðsÞ m Continuous 2.52 8.39 3.38 0.94

Length-std. deviation f28ðsÞ Std. deviation of the vehicular length computed on

TðsÞ
m Continuous 0.00 6.40 1.86 1.30

Length-minimum f29ðsÞ Minimum of the vehicular length computed on TðsÞ m Continuous 2.20 3.35 2.27 0.07

Length-maximum f30ðsÞ Maximum of the vehicular length computed on TðsÞ m Continuous 2.67 35.95 12.91 6.10
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Axle number-mean f31ðsÞ Mean of the axle number computed on TðsÞ e Continuous 2.00 3.93 2.25 0.32

Axle number-std. deviation f32ðsÞ Std. deviation of the axle number during TðsÞ e Continuous 0.00 2.51 0.63 0.49

Axle number-minimum f33ðsÞ Minimum of the axle number computed on TðsÞ e Discrete 2 2 2 0

Axle number-maximum f34ðsÞ Maximum of the axle number computed on TðsÞ e Discrete 2.00 10.00 5.64 2.44

Axle typology-double wheels axle fraction f35ðsÞ Fraction of axles with double wheels computed on

TðsÞ
e Continuous 0 47.62% 5.42% 5.73%

Axle mass-mean f36ðsÞ Mean of the axle mass computed on TðsÞ kg Continuous 809 7544 2184 1379

Axle mass-std. deviation f37ðsÞ Std. deviation of the axle mass computed on TðsÞ kg Continuous 90 5006 2235 1476

Axle mass-minimum f38ðsÞ Minimum of the axle mass computed on TðsÞ kg Continuous 500 1093 515 32

Axle mass-maximum f39ðsÞ Maximum of the axle mass computed on TðsÞ kg Continuous 1077 19,783 11,226 5691

Axle imbalance ratio-mean f40ðsÞ Mean of the ratio between the masses acting on left

and right wheels computed on TðsÞ
e Continuous 0.764 1.279 1.029 0.076

Axle imbalance ratio-std. deviation f41ðsÞ Std. deviation of the ratio between the masses acting

on left and right wheels computed on TðsÞ
e Continuous 0.072 0.297 0.148 0.026

Axle imbalance ratio-minimum f42ðsÞ Minimum of the ratio between the masses acting on

the left and right wheels computed on TðsÞ
e Continuous 0.500 1.015 0.673 0.103

Axle imbalance ratio-maximum f43ðsÞ Maximum of the ratio between the masses acting on

the left and right wheels computed on TðsÞ
e Continuous 0.918 2.000 1.686 0.182

Interaxle-mean f44ðsÞ Mean of the interaxes computed on TðsÞ m Continuous 2.47 3.59 2.70 0.08

Interaxle-std. deviation f45ðsÞ Std. deviation of the interaxes computed on TðsÞ m Continuous 0.00 1.66 0.69 0.37

Interaxle-minimum f46ðsÞ Minimum of the interaxes computed on TðsÞ m Continuous 0.44 3.35 1.48 0.49

Interaxle-maximum f47ðsÞ Maximum of the interaxes computed on TðsÞ m Continuous 2.67 18.39 5.93 1.84

Normalized GVM-mean f48ðsÞ Mean of the GVM, normalized with the ratio of bridge

span length to vehicle length computed on TðsÞ
kg Continuous 1588 28,378 5339 4490

Normalized GVM-std. deviation f49ðsÞ Std. deviation of the GVM, normalized with the ratio

of bridge span length to vehicle length computed on

TðsÞ

kg Continuous 0 31,018 8854 623

Normalized GVM-minimum f50ðsÞ Minimum of the GVM, normalized with the ratio of

bridge span length to vehicle length computed on

TðsÞ

kg Continuous 1000.00 2400.00 1227.60 86.55

Normalized GVM-maximum f51ðsÞ Maximum of the GVM, normalized with the ratio of

bridge span length to vehicle length computed on

TðsÞ

kg Continuous 2000.00 122,600.00 52,976.49 36,044.29

GVM-length ratio-mean f52ðsÞ Mean of the ratio of GVM to vehicle length computed

on TðsÞ
km/h Continuous 602.09 2822.23 978.71 351.13

GVM-length ratio-std. deviation f53ðsÞ Std. deviation of the ratio of GVM to vehicle length

computed on computed on TðsÞ
km/h Continuous 0.00 2063.99 747.52 545.88

GVM-length ratio-minimum f54ðsÞ Minimum of the ratio of GVM to vehicle length

computed on computed on TðsÞ
km/h Continuous 149.53 791.37 476.41 59.93

GVM-length ratio-maximum f55ðsÞ Maximum of the ratio of GVM to vehicle length

computed on computed on TðsÞ
km/h Continuous 716.42 9957.63 4855.51 2634.51

GVM limit ratio-mean-all classes f56ðsÞ Mean of the ratio of GVM to TC limit computed on

TðsÞ-all classes
e Continuous 0.454 0.881 0.585 0.061

GVM limit ratio-std. deviation-all classes f57ðsÞ Std. deviation of the ratio of GVM to TC limit

computed on TðsÞ-all classes
e Continuous 0.000 0.501 0.173 0.061

GVM limit ratio-minimum-all classes f58ðsÞ Minimum of the ratio of GVM to TC limit computed

on TðsÞ-all classes
e Continuous 0.067 0.686 0.289 0.106

(continued on next page)
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Table A1 e (continued )

Name of the frequency predictor Symbol Definition Unit of
measure

Type Minimum* Maximum* Mean* Standard.
deviation*

GVM limit ratio-maximum-all classes f59ðsÞ Maximum of the ratio of GVM to TC limit computed

on TðsÞ-all classes
e Continuous 0.571 4.457 1.444 0.596

GVM limit ratio-mean-class 1 f60ðsÞ Mean of the ratio of GVM to TC limit computed on

TðsÞ-class 1

e Continuous 0.444 0.771 0.547 0.030

GVM limit ratio-mean-class 2 f61ðsÞ Mean of the ratio of GVM to TC limit computed on

TðsÞ-class 2

e Continuous 0.144 1.872 1.108 0.247

GVM limit ratio-mean-class 3 f62ðsÞ Mean of the ratio of GVM to TC limit computed on

TðsÞ-class 3

e Continuous 0.073 1.339 0.919 0.210

GVM limit ratio-mean-class 4 f63ðsÞ Mean of the ratio of GVM to TC limit computed on

TðsÞ-class 4

e Continuous 0.109 1.386 0.934 0.159

GVM limit ratio-mean-class 5 f64ðsÞ Mean of the ratio of GVM to TC limit computed on

TðsÞ-class 5

e Continuous 0.491 2.559 1.868 0.400

GVM limit ratio-mean-class 6 f65ðsÞ Mean of the ratio of GVM to TC limit computed on

TðsÞ-class 6

e Continuous 0.223 1.369 0.612 0.232

GVM limit ratio-mean-class 7 f66ðsÞ Mean of the ratio of GVM to TC limit computed on

TðsÞ-class 7

e Continuous 0.532 0.800 0.626 0.119

GVM limit ratio-maximum-class 1 f67ðsÞ Maximum of the ratio of GVM to TC limit computed

on TðsÞ-class 1

e Continuous 0.514 4.457 1.029 0.326

GVM limit ratio-maximum-class 2 f68ðsÞ Maximum of the ratio of GVM to TC limit computed

on TðsÞ-class 2

e Continuous 0.144 2.000 1.245 0.238

GVM limit ratio-maximum-class 3 f69ðsÞ Maximum of the ratio of GVM to TC limit computed

on TðsÞ-class 3

e Continuous 0.073 1.727 1.095 0.276

GVM limit ratio-maximum-class 4 f70ðsÞ Maximum of the ratio of GVM to TC limit computed

on TðsÞ-class 4

e Continuous 0.109 1.564 1.022 0.165

GVM limit ratio-maximum-class 5 f71ðsÞ Maximum of the ratio of GVM to TC limit computed

on TðsÞ-class 5

e Continuous 0.491 2.786 2.057 0.405

GVM limit ratio-maximum-class 6 f72ðsÞ Maximum of the ratio of GVM to TC limit computed

on TðsÞ-class 6

e Continuous 0.223 1.369 0.613 0.232

GVM limit ratio-maximum-class 7 f73ðsÞ Maximum of the ratio of GVM to TC limit computed

on TðsÞ-class 7

e Continuous 0.532 0.800 0.626 0.119

Overloaded vehicles fraction-all classes f74ðsÞ Fraction of vehicles with a GVM above TC limit

computed on TðsÞ-all classes
e Continuous 0 54.10% 4.73% 6.68%

Overloaded vehicles fraction-class 1 f75ðsÞ Fraction of vehicles with a GVM above TC limit

computed on TðsÞ-class 1

e Continuous 0 33.33% 0.28% 1.08%

Overloaded vehicles fraction-class 2 f76ðsÞ Fraction of vehicles with a GVM above TC limit

computed on TðsÞ-class 2

e Continuous 0 100.00% 82.59% 29.56%

Overloaded vehicles fraction-class 3 f77ðsÞ Fraction of vehicles with a GVM above TC limit

computed on TðsÞ-class 3

e Continuous 0 100.00% 44.98% 28.83%

Overloaded vehicles fraction-class 4 f78ðsÞ Fraction of vehicles with a GVM above TC limit

computed on TðsÞ-class 4

e Continuous 0 100.00% 42.07% 35.38%

Overloaded vehicles fraction-class 5 f79ðsÞ Fraction of vehicles with a GVM above TC limit

computed on TðsÞ-class 5

e Continuous 0 100.00% 89.99% 23.48%

Overloaded vehicles fraction-class 6 f80ðsÞ Fraction of vehicles with a GVM above TC limit

computed on TðsÞ-class 6

e Continuous 0 100.00% 4.55% 21.32%
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