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Abstract
Objective. Studying motor units is essential for understanding motor control, the detection of
neuromuscular disorders and the control of human–machine interfaces. Individual motor unit
firings are currently identified in vivo by decomposing electromyographic (EMG) signals. Due to
our body’s properties and anatomy, individual motor units can only be separated to a limited
extent with surface EMG. Unlike electrical signals, magnetic fields do not interact with human
tissues. This physical property and the emerging technology of quantum sensors make
magnetomyography (MMG) a highly promising methodology. However, the full potential of
MMG to study neuromuscular physiology has not yet been explored. Approach. In this work, we
perform in silico trials that combine a biophysical model of EMG and MMG with state-of-the-art
algorithms for the decomposition of motor units. This allows the prediction of an upper-bound for
the motor unit decomposition accuracy.Main results. It is shown that non-invasive high-density
MMG data is superior over comparable high-density surface EMG data for the robust
identification of the discharge patterns of individual motor units. Decomposing MMG instead of
EMG increased the number of identifiable motor units by 76%. Notably, MMG exhibits a less
pronounced bias to detect superficial motor units. Significance. The presented simulations provide
insights into methods to study the neuromuscular system non-invasively and in vivo that would
not be easily feasible by other means. Hence, this study provides guidance for the development of
novel biomedical technologies.

1. Introduction

The robust identification of the discharge times of
individual motor units during voluntary contrac-
tions is essential for studying human motion (see
Heckman and Enoka 2004, 2012) or to drive human–
machine interfaces (e.g. Farina and Negro 2012,
Holobar and Farina 2021). A motor unit consists
of a motor neuron and all the muscle fibres, that
it innervates. The neuromuscular junction shows
a characteristic one-by-one transmission, i.e. each
motor neuron discharge (synchronously) triggers an
action potential in all muscle fibres belonging to
the respective motor unit (Enoka 2008). Thus, a

muscle can be considered a natural amplifier of
motor neuron activity (e.g. Farina et al 2014, Röhrle
et al 2019). This can be exploited to reconstruct
the activity of individual motor neurons by decom-
posing muscle signals, i.e. mainly electromyography
(EMG), into the contribution of individual motor
units.

EMG is caused by the muscle fibre action poten-
tials. In detail, EMG records the resultant electric
potential field due to ionic currents that cross the
muscle fibre membrane. For many years, in vivo
studies of motor units have been almost exclusively
possible using invasive EMG (e.g. McGill et al 2005,
Merletti and Farina 2009). This is mainly due to the
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high spatial selectivity of intramuscular EMG record-
ings. In the last decade, the combination of high-
density surface EMG (e.g. Blok et al 2002, Merletti
et al 2016) and sophisticated blind source separa-
tion algorithms (e.g. Holobar and Zazula 2007, Chen
and Zhou 2015, Negro et al 2016) has enabled non-
invasive motor unit decomposition. However, due to
the increased distance between the electrodes and the
sources, surface EMG signals exhibit a spatial low-
pass filter effect, which depends on the anatomy and
the properties of the body (Roeleveld et al 1997a,
Farina et al 2002, Lowery et al 2002). This inherently
limits the number of motor units that can be reliably
decomposed using high-density surface EMG.

In fact, the electrical activity of the muscles
also causes low-amplitude currents, which induce
tiny magnetic fields, i.e. in the picotesla range.
Measuring themagnetic field generated by the activa-
tion of muscle fibres is known as magnetomyography
(MMG) (Cohen and Givler 1972). EMG and MMG
originate from the same biophysical phenomenon
and contain similar information regarding the state of
the muscle as well as the neural drive to the muscle.
However, the magnetic permeability of human tis-
sues is (almost) the same as in free space (Malmivuo
and Plonsey 1995, Oschman 2002). Unlike EMG, the
propagation of magnetic fields is therefore hardly
influenced by the properties and anatomy of the
body. Hence, non-invasiveMMGmeasurements have
the potential to overcome some of the previously
described limitations of surface EMG.

Although MMG was already introduced in the
1970s by Cohen and Givler (1972), several challenges
have limited its practical use. Most importantly, the
amplitude of the muscle-induced magnetic field is
about one million times lower than the Earth’s mag-
netic field. Hence, MMG requires highly sensitive
magnetometers and appropriate shielding from elec-
tromagnetic noise. In recent years, the technical limit-
ations of magnetometers have been solved to such an
extent (cf e.g. Boto et al 2017, Murzin et al 2020, Zuo
et al 2020a) that it is now possible to explore the use
of MMG for biomedical applications (e.g. Broser et al
2018, 2021, Llinás et al 2020). Therefore, it is essential
to support empirical observations from experiments
with a solid theoretical understanding of MMG sig-
nals (e.g. Klotz et al 2022).

The aim of this study is to explore the poten-
tial of using high-density MMG for non-invasive
motor unit decomposition. For this purpose, we have
developed a motor unit decomposition in silico trial
framework. This allows to systematically compare the
results obtained from the decomposition of high-
density MMG and high-density surface EMG, which
is currently the gold standard. In an in silico envir-
onment, it is possible to integrate the full knowledge
of the forward model into the spike train estimation
procedure. Hence, the obtained results are an upper
limit for the achievable decomposition accuracy.

2. Methods

A graphical illustration of the proposedmethodology
is shown in figure 1. The detailed presentation of the
whole methodology is structured as follows: first, in
section 2.1 the computational methods to simulate
EMG and MMG are described. Further, section 2.2
describes themotor unit decomposition as part of the
in silico trial framework.

2.1. Modelling EMG andMMG
2.1.1. Signal Model
EMG and MMG of voluntary contractions can
be modelled as a linear convolutive mixture (cf
figures 1(A)–(D)). For amulti-channel recording sys-
tem, the EMG or MMG signal at the ith channel (i =
1, . . .,M) is given by

xti =
N∑

k=1

L−1∑
l=0

aliks
t−l
k . (1)

Therein, the superscript t refers to a discrete time
instance. Consequently, EMG orMMG can be under-
stood as the superposition of all (active) motor units
k (k= 1, . . .,N), whereby N is the total number of
motor units. The contribution of each motor unit k
is determined by the motor neuron discharge times,
i.e. a binary spike train stk, which is convolved by a cor-
respondingmotor unit responseaik = [a0ik, . . .,a

L−1
ik ]T.

Thereby, L denotes the number of time samples of
the (discrete) motor unit response. A motor unit
response is defined as the signal generated by the
(synchronised) activity of all muscle fibres innerv-
ated by the same motor neuron. In the following,
the terms motor unit electric potential (MUEP) and
motor unit magnetic field (MUMF) are used to dis-
tinguish motor unit responses observed by means of
EMG and MMG, respectively. Note that for high-
density EMG each channel represents one sampling
point. For a high-densityMMG signal, each sampling
point is associated with three channels, i.e. one chan-
nel for each component of the magnetic field vector
(cf figures 1(C) and (D)).

2.1.2. The bioelectromagnetic skeletal muscle model
MUEPs and MUMFs depend on the properties of
the muscle fibres, a motor unit’s fibre load, the geo-
metry of the motor unit territories as well as the elec-
tric properties of the body. To simulate MUEPs and
MUMFs for a population of virtual muscles, a bio-
physical model is required. Within this work, we use
the multi-scale simulation framework proposed by
Klotz et al (2020, 2022)to simulate a library ofMUEPs
and MUMFs. In short, we assume quasi-static condi-
tions to simulate muscle-induced bioelectromagnetic
fields (Malmivuo and Plonsey 1995, Griffiths 2013).
This decouples the phenomena and allows to first
solve the electric field equations before solving the
magnetic field equations.
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Figure 1. (A)–(D): Schematic illustration of the generative model of MMG during voluntary contractions. (A) Discharge patterns
of spinal motor neurons. (B) Every motor neuron discharge triggers an action potentials in the innervated muscle fibres. (C) The
spatio-temporal summation of the action potentials yields for each motor unit a characteristic motor unit magnetic field
(MUMF). (D) The simultaneous activity of multiple motor units mixes the MUMFs according to the firing instances of the motor
neurons. (E) Algorithm to predict upper-bound accuracy estimates of motor unit decompositions. (F) Illustration of the
simulated tissue geometry.

In the model, a skeletal muscle composed of
muscle fibres of different motor units and con-
nective tissue is homogenised. That is, at every
given material point there exist one extracellular
domain and one intracellular domain for each motor
unit. Accordingly, the total current density can be
defined as

j = je +
N∑

k=1

f kr j
k
i , (2)

where f kr is the (local) muscle fibre density of
motor unit k (with

∑N
k=1 f

k
r = 1). Further, Maxwell’s

equations require that the current density is con-
served. This holds, if one assumes that the extracel-
lular space and the intracellular spaces are coupled
through the transmembrane current densities Ikm, i.e.

div je = −
N∑

k=1

f krA
k
mI

k
m , (3a)

div jki = Ak
mI

k
m . (3b)

Therein, Ak
m is the surface-to-volume ratio of

a muscle fibre associated with motor unit k. The
transmembrane currents are computed with a micro-
scopic electric circuit model (Hodgkin and Huxley

1952). Further, each domain is considered as a volume
conductor with an individual electric potential and
conductivity tensor. Mathematically, this yields for
every skeletal muscle material point P ∈ Ωm a set of
coupled differential equations:

0 = div [σe gradϕe]

+
N∑

k=1

f kr div
[
σk

i grad
(
Vk
m +ϕe

)]
, (4a)

∂Vk
m

∂t
=

1

Ck
mA

k
m

(
div

[
σk

i grad
(
Vk
m +ϕe

)]
− Ak

mI
k
ion(y

k,Vk
m, I

k
s)
)
, k= 1, . . .,N , (4b)

ẏk = gk(yk,Vk
m, I

k
s) , k= 1, . . .,N . (4c)

Thus, the resulting multi-scale skeletal muscle
model describes the evolution of the transmembrane
potential Vk

m of the (homogenised) muscle fibres of
a motor unit k and the extracellular potential ϕe in
response to the motor neuron firings. That is, the
post-synaptic current pulses Iks at the neruomuscular
junction. The active response of the muscle fibre
membranes is simulated with an electric circuit

3
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Table 1. Summary of parameters for the multi-domain skeletal muscle model.

Parameter Symbol Value References

Longitudinal intracellular conductivity σl
i 8.93mS cm−1 Bryant (1969)

Transversal intracellular conductivity σt
i 0.0mS cm−1 Klotz et al (2020)

Longitudinal extracellular conductivity σl
e 6.7mS cm−1 Rush et al (1963)

Transversal extracellular conductivity σt
e 1.34mS cm−1 Gielen et al (1984)

Fat conductivity σb 0.4mS cm−1 Rush et al (1963)
Membrane capacitance Ck

m 1µF cm−2 Hodgkin and Huxley (1952)
Surface-to-volume ratio Ak

m Variable cf section 2.1.3
Motor unit density f kr Variable cf section 2.1.3
Magnetic permeability µ0 1.257×10−6 NA−2 Physical constant

model that takes into account a sodium conductance,
a potassium conductance and a leakage conduct-
ance (Hodgkin and Huxley 1952). Mathematically,
the dynamic ionic permeability Ikion of themuscle fibre
membranes is described by a set of ordinary differen-
tial equations summarised by equation (4c). Further,
Ck
m is the capacitance per unit area for a patch of the

membrane of a muscle fibre associated with motor
unit k.

To simulate the muscle-induced electric poten-
tial field in the entire body, the electrophysiological
skeletal muscle model can be coupled to a volume
conductor model, e.g. describing the influence of the
subcutaneous fat or the skin. This yields a generalised
Laplace equation, i.e.

div [σb gradϕb] = 0 in Ωb . (5)

Therein, ϕb and σb denote the electric potential
and the conductivity tensor in the body region Ωb,
respectively.

The solution of the model requires suitable
boundary conditions. That is, no current leaves the
body at its boundary. To couple the regions, it is
assumed that at the muscle-body interface the poten-
tials ϕe and ϕb are continuous. Further, it is required
that any current leaving the extracellular space must
enter the body region. Finally, it is assumed that no
current can leave the intracellular domains at the
boundary of the muscle. This is equivalent to a sealed
ending in a cable model. In summary:

(σb gradϕb) · nb = 0 on Γb , (6a)

(σe gradϕe) · nm = 0 on Γm \Γb , (6b)

ϕe −ϕb = 0 on Γm ∩Γb , (6c)

(σe gradϕe −σb gradϕe) · nm
= 0 on Γm ∩Γb , (6d)

(σk
i gradV

k
m +σe gradϕe) · nm = 0 on Γm . (6e)

Therein, nb and nm are unit outward vectors
of the body surface Γb and the muscle surface Γm,
respectively.

With the solution of the electric field problem
at hand we can solve the magnetic field problem. In
detail, the muscle-induced magnetic field at obser-
vation point r is determined by the Biot-Savart law
(Griffiths 2013), i.e.

B(r) =
µ0

4π

˚
V

j× r ′

|r ′|3
dV . (7)

Therein, µ0 is the vacuum permeability, j is the total
current density and r ′ is a vector from a material
point to r. Further, the volume integral is evaluated
for the whole simulated tissue sample, i.e. Ωm ∪Ωb.
Recalling that it is assumed that the total current
density is purely conductive (see Klotz et al 2022), the
total current density is related to the electric potential
fields via Ohm’s law:

j = −σe gradϕe

−
N∑

k=1

f krσ
k
i grad(V

k
m +ϕe) in Ωm .

(8)

Analogous, the current density in the body region is
given by

j = −σb gradϕb in Ωb . (9)

Note that the presented biophysicalmodel can only be
solved numerically. The utilised discretisation scheme
(finite differences) is adopted from Klotz et al (2020,
2022). The resultant computational model is pub-
licly available5. A summary of all model parameters
is given in table 1.

2.1.3. Tissue geometry
The spatio-temporal pattern of MUEPs and MUMFs
strongly depends on the tissue geometry, the tis-
sue’s electromagnetic properties and the character-
istics of the muscle fibres. To guarantee a controlled
environment, we consider in this work a layered tissue
model consisting of a cube-shaped (half) muscle, i.e.

5 https://bitbucket.org/klotz_t/multi_domain_fd_code.
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L= 80mm, W = 40mm and H= 40mm, and a fat
tissue layer on top of it (cf figure 2(B)). To test the
influence of subcutaneous fat on the decomposition
performance, three different fat tissue thicknesses are
simulated, i.e. 0mm, 5mm and 20mm. To resolve
the functional architecture of skeletal muscles, five
different motor unit pools consisting of 150 motor
units are considered. The fibres of the different motor
units are characterised by themicro-scale shape para-
meter Ak

m. In detail, the surface-to-volume ratio is
500 cm−1 for the smallest motor unit and 250 cm−1

for the largest motor unit. For all other motor units
the parameter Ak

m is linearly interpolated between
the minimum and the maximum value. Notably, the
utilised distribution yields muscle fibre conduction
velocities ranging from 3m s−1 to 6m s−1 (see Klotz
et al 2020). Moreover, we assume an idealised circu-
lar shape of the motor unit territories. Hence, each
motor unit territory is fully described by its centre and
radius. Themotor unit territory centres are randomly
distributedwithin the boundary of themuscle’s cross-
sectional area. Further, the radius of each motor unit
territory is randomised from a uniform distribution
ranging from 3mm to 5mm. It is assumed that the
ratio of the innervation number of the biggest motor
unit and the smallest motor unit is approximately
100. To compute for each motor unit territory a local
(continuous) fibre load, first we weight each point
within themotor unit territory by a parameterwk, i.e.

wk = exp

[
ln(100)

(k− 1)

(N− 1)

]
+ 1 . (10)

Next, the motor unit volume fractions f kr are calcu-
lated for each skeletal muscle material point:

f kr = wk

/
N∑

m=1

wm , k= 1, . . .,N . (11)

In a last step, themotor unit territories are sorted such
that the integral of the parameter f kr over the whole
muscle region increases with the motor unit index k.
The neuromuscular junctions are randomly distrib-
uted between 10mm and 20mm in the muscle fibre
direction.

2.1.4. Virtual detection system
The computational model predicts for each time
step and each grid point the electric potential in
each domain and the magnetic field at the specified
sampling points (cf section 2.1.2). Here, we assume
an ideal measurement system not interfering with the
physical fields and point-like MMG sensors / EMG
electrodes. To obtain high-density EMG or MMG
signals we consider a 10× 7 array of equidistantly
distributed sampling points (i.e. electrodes or mag-
netometers). The detection system is located in the
middle between the innervation zone and the bound-
ary of the muscle (cf figure 2(B)). Thereby, the

Table 2.Motor neuron model parameters.

Intensity Recruited motor units Peak firing rate

Low 60 15Hz
Medium 100 20Hz
High 150 25Hz

EMG electrodes are located on the top of the tis-
sue sample and MMG sensors are placed in a plane
1mm above the tissue sample. The spacing between
the sampling points is 5mm. The sampling frequency
is 2000Hz. To simulate high-density surface EMG at
each sampling point the body potential ϕb is recor-
ded. In the case where subcutaneous fat is neglected
the extracellular potential ϕe is measured. For the
virtual high-density MMG recordings, we consider a
vector magnetometer system, which simultaneously
measures at each sampling point all three compon-
ents of the magnetic field vector. Hence, while the
high-density EMG records 70 variables, the high-
density MMGmeasures 210 variables.

2.1.5. Motor neuron model
Muscle force can bemodulated bymotor unit recruit-
ment and rate coding (Kandel et al 2000, Heckman
and Enoka 2004, 2012). Here, we use a phenomen-
ological approach that integrates basic physiological
knowledge to obtain motor unit spike trains for three
different isometric contraction levels, i.e. low intens-
ity, medium intensity, and high intensity. First, it is
assumed that a motor units’s recruitment threshold
increases with the motor unit’s size (Henneman et al
1965). Hence, the number of active motor units
increases with the contraction intensity (cf table 2).
Further, it is assumed that the smallest motor unit
exhibits the highest firing frequency and that the peak
firing rate increases with the contraction intensity (cf
table 2). The firing rate of the largest activemotor unit
is always set to 8Hz (Duchateau and Enoka 2011).
Finally, the firing frequencies for all othermotor units
are uniformly distributed between the minimum fir-
ing rate (8Hz) and the peak firing rate. Note that for
each contraction level the firing rates decrease with
the size of the motor units. Spike trains are obtained
by adding a random jitter of ±10% of the mean
inter-spike interval to the base firings (Clamann 1969,
Matthews 1996).

2.2. Upper-bound accuracy estimates of motor unit
decompositions
2.2.1. Spike train estimation
The main aim of this work is to explore the potential
of using MMG to record the firings of individual
motor units non-invasively and in vivo. For this
purpose, we have developed an in silico trial
framework. This allows to systematically compare
the results obtained from high-density MMG-based
and high-density surface EMG-based motor unit
decompositions. In short, the decomposition scheme

5



J. Neural Eng. 20 (2023) 046022 T Klotz et al

utilised follows closely algorithms for blind source
separation (e.g. Holobar and Zazula 2007, Chen and
Zhou 2015, Negro et al 2016). However, by consider-
ing simulated signals, it is possible to directly integ-
rate the full knowledge about the forward mixing
model, i.e. the motor unit responses, into the spike
train estimation step. Hence, the reconstructed spike
trains represent upper-bound accuracy estimates.
Further, the predicted spike trains are not affected
by the choice of a specific decomposition algorithm.
The proposed method is schematically illustrated
in figure 1(E) and is implemented in MATLAB
(The MathWorks, Inc. Natick, Massachusetts, United
States).

Mathematically, motor unit decomposition
requires to invert the signal model given in
equation (1). Therefore, onemakes use of the fact that
any convolutive mixture with finite impulse response
filters can be transformed into an instantaneous mix-
ture of extended sources and hence, a matrix system
(Negro et al 2016). That is, the signal xti, consisting
of M observations at time frame t, is expanded by
K time instances to yield an extended observation
vector x̃t ∈ RKM:

x̃t =
[
xt1,x

t−1
1 , . . . ,xt−(K−1)

1 , . . . ,

xtM,x
t−1
M , . . . ,xt−(K−1)

M

]T
.

(12)

Here, we chose the extension factor K equal to the
length of the motor unit responses, i.e. K = L (cf
section 2.1.1). The mixing of the extended observa-
tions x̃t can be written as

x̃t = Ã s̃ t . (13)

Therein, the extended spike train vector s̃ t ∈
RN(L+K−1) is derived from the binary spike trains
stk, i.e.

s̃ t =
[
st1, s

t−1
1 , . . . , st−(L−1)−(K−1)

1 , . . . ,

stN, s
t−1
N , . . ., st−(L−1)−(K−1)

N

]
T .

(14)

Further, themixingmatrix of the extended system
Ã ∈ RKM×N(L+K−1) is given by

Ã =


Ã11 Ã12 . . . Ã1N

Ã21 Ã22 . . . Ã2N

. . . . . . . . . . . .

ÃM1 ÃM2 . . . ÃMN

 , (15)

where the block matrices Ãik ∈ RK×(L+K−1) are
defined as

Ãik =


a0ik a1ik ... aL−1

ik 0 ... 0

0 a0ik ... aL−2
ik aL−1

ik ... 0
. . ... . . ... .
. . ... . . ... .
. . ... . . ... .
0 0 ... . . ... aL−1

ik

 , (16)

and alik are the motor unit responses, cf section 2.1.1.

The signal extension is followed by a whitening
transformation that uncorrelates the extended sig-
nals, i.e.

zt = W x̃t . (17)

Here, we apply zero-phase component analysis (ZCA)
whitening (Krizhevsky et al 2009), in which the
whitening matrix W is determined by the eigen-
decomposition of the extended signal’s covariance
matrix Cx̃̃x, i.e.

W = VD− 1
2VT . (18)

Therein, D is a diagonal matrix, that contains, in
increasing order, the eigenvalues ej(j = 1, . . .,KM)
of Cx̃̃x. The columns of matrix V contain the cor-
responding eigenvectors. To avoid numerical errors,
eigenvalues that are numerically zero, i.e. ej < ε ·KM
and ε is the modulus of the distance from the max-
imum eigenvalue to the next larger floating point
number, are discarded for the calculation of the
whitening matrix W . Figure 1(E) exemplarily show-
cases that the covariance matrix of the extended and
whitened observations is the identitymatrix. The gen-
erativemodel of the extended whitened signal is given
by

zt = WÃ s̃ t = (WÃ) s̃ t . (19)

Therein, the mixing matrix (WÃ) is equivalent to the
extended and whitened motor unit responses.

Motor unit decomposition can be achieved by
inverting the linear system given in equation (19).
Typically, this is an ill-conditioned problem. Yet, the
motor unit spike trains can be estimated by correlat-
ing the extended and whitened motor unit responses
with the extended and whitened signal zt , i.e.

ŝtk = (Wãk)
Tzt,

ãk =
[
aL−1
1k ,aL−2

1k , ...,a01k, ...,

aL−1
Mk ,aL−2

Mk , ...,a0Mk

]T
.

(20)

Therein, ŝtk is the reconstructed spike train of motor
unit k (k= 1, . . .,N) at the discrete time instance t.
Importantly note that for experimentally measured
signals the motor unit responses alik are unknown and
therefore, must be approximated by an optimisation
scheme. In the presented in silico trial framework we
can exploit that the MUEPs and MUMFs are already
known. Thus, we can directly evaluate equation (20)
to obtain an optimal reconstruction of themotor unit
spike trains. This provides an upper bound for the
decomposition accuracy.

In a last step, for each motor unit k a bin-
ary spike train ŝ ′ tk is obtained by applying a peak
detection method to the estimated spike trains ŝtk.
Further, the k-means clustering algorithm is applied
to identify (potential) false-positive firings (see Negro
et al 2016), i.e. separating the spikes into two clusters
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whereby the centroids are initialised by the minimum
peak and maximum peak height, respectively.

2.2.2. Data analysis
To quantify the uniqueness of the motor unit
responses, i.e. MUEPs orMUMFs, the cosine similar-
ity Skqcos (k= 1, . . .,N and q= 1, . . .,N, with k ̸= q) for
all motor unit response pairs is computed. Therefore,
the motor unit responses are aligned in time by max-
imising their channel-by-channel cross-correlation.
The cosine similarity between two multi-channel
motor unit responses is given by

Skqcos =

L−1∑
l=0

M∑
i=1

alika
l
iq√

L−1∑
l=0

M∑
i=1

(
alik

)2
√

L−1∑
l=0

M∑
i=1

(
aliq

)2
. (21)

Note that Skqcos = 0 means that the kth and the qth
motor unit responses are orthogonal and hence

uncorrelated. In contrast, Skqcos = 1 indicates that the
signals are identical. To guarantee that each magnetic
field component is weighted equally for the computa-
tion of the MUMF similarities, each MMG compon-
ent is normalised with the maximal value observed at
the highest contraction level.

To quantify the quality of a motor unit decom-
position, a set of performance metrics is computed.
Therefore, the predicted spikes are classified for each
motor unit k into the true-positive spikes TPk, which
are the firings that appear in the true spike train stk and
in the predicted spike train ŝ ′ tk with a maximal delay
of±0.5ms. Further, the false-positive spikes FPk rep-
resent the firings only included in the predicted spike
train ŝ ′ tk and the false-negative spikes FNk denote the
firings that are only included in the true spike train stk.
Thus, for each motor unit k (k= 1, . . .,N) the rate of
agreement (RoA) is computed by

RoAk =
|TPk|

|TPk|+ |FPk|+ |FNk|
, (22)

where |TPk| is the number of true-positive spikes,
|FPk| is the number of false positive spikes and |FNk| is
the number of false-negative spikes. The uncertainty
associatedwith the predicted spike trains ŝ ′ tk is quanti-
fied by computing for eachmotor unit k the silhouette
coefficient

SILk =

∑
p∈TPk

Dpk
nospike−

∑
p∈TPk

Dpk
spike

max

 ∑
p∈TPk

Dpk
spike,

∑
p∈TPk

Dpk
nospike

 . (23)

Therein, Dpk
spike is the Euclidean distance between a

true positive point of the estimated spike train ŝpk and
the mean value of all estimated true positive spike
points ¯̂sp∈TPk , i.e. D

pk
spike = ∥̂spk − ¯̂sp∈TPk∥. Analogous,

Dpk
nospike is the euclidean distance between a true pos-

itive value of the estimated spike train spk,est and the
mean value of all remaining estimated spike points
not included in the set of the true-positive spikes
¯̂sp/∈TPk , i.e. D

pk
spike = ∥̂spk − ¯̂sp/∈TPk∥. For SILk > 0.9 a

motor unit is classified as reliably identifiable (Negro
et al 2016).

3. Results

3.1. Basic signal properties
First, we exemplary highlight the basic properties of
MUEPs and MUMFs. To do so, we consider a vir-
tual muscle (L= 80mm, W = 40mm, H= 40mm)
with a 5mm thick fat tissue layer and a motor unit
that is centred with respect to the muscle’s lateral
axis, see figure 2(B). The depth of the motor unit
territory’s centre is 3mm (independent of the fat
tissue layer thickness). It is observed that the high-
density EMG or MMG signals exhibit a time delay
when comparing two signals from different sampling
points aligned with themuscle fibre direction. Hence,
the temporal and the spatial coordinate are linked.
However, due to the different physical governing
equations, the spatial distribution of the EMG and
the MMG are fundamentally different. That is, the
EMG amplitude is maximal directly over the source
and decreases in the lateral direction. As quasi-static
magnetic fields are always perpendicular to the source
currents, figure 2(A) shows that the spatial distri-
bution of the MMG depends on the measured vec-
tor field component. Like for the EMG, the MMG’s

x∥xf-component is maximal over the active fibres and
decreases in the lateral direction. In contrast, both the
MMG’s x∥f -component and the x⊥xf -component van-
ish directly over the active fibres and have their max-
ima towards the lateral direction. Notably, the lateral
centre line represents a reflection axis, where the sign
of the signal is flipped.

Further, figure 2(C) demonstrates the signalmod-
ulation of the EMG and the MMG depending on
the depth of the active motor unit. When increasing
the depth of the motor unit territory’s centre from
3mm to 15mm, the area under the curve drops by
97.9% for the EMG. For the MMG, the area under
the curve decreases by 93.6%. Moreover, increasing
the depth of themotor unit territory causes a decrease
of the frequency content of the motor unit responses.
The median frequency of the signals presented in
figure 2(C) and a motor unit depth of 3mm are
353.7Hz for the EMG and 216.0Hz for the MMG.
When considering the same motor unit in a depth of
15mm the median frequency drops by 17.9% for the
EMG and by 14.3% for the MMG.

3.2. Similarity of MUEPs andMUMFs
The unique representation of the motor unit
responses in a (multi-channel) EMG or MMG
recording is the basic requirement to decompose the

7



J. Neural Eng. 20 (2023) 046022 T Klotz et al

Figure 2. (A) Exemplary high-density MUEP (red) and MUMF (light green, normal green and dark green for the different
components) at six exemplary chosen sampling points. (B) Schematic drawing of the simulated tissue geometry and the utilised

high-density EMG/MMG array. (C) Time domain signal of the EMG and the x
∥
xf-component of the MMG when increasing the

depth of the recruited motor unit from 3mm to 15mm (by increments of 3mm) observed at one exemplary sampling point (4d).

Figure 3. Similarity of the MUEPs and MUMFs from two exemplary chosen motor unit pairs. Left column: territories of two
arbitrarily chosen motor units. Second column: MUEPs on a few randomly selected channels. Third column: channel-by-channel
cosine similarity the MUEPs. A value of zero (green) indicates uncorrelated signals and a value of 1 (red) means that the signals
are identical. Fourth column: MUMFs on a few randomly selected channels. Right column: channel-by-channel cosine similarity
of the MUMFs. MU: motor unit.

signal into its individual components. Surface EMG
signals are low-pass filtered by the anatomy and the
electric properties of the body. This inherently lim-
its the accuracy of surface EMG-based motor unit
decompositions. To test if non-invasive MMG meas-
urements can (partially) overcome the physical lim-
itations of surface EMG, this section compares the
similarity of MUEPs and MUMFs. Figure 3 exem-
plary showcases for two pairs of motor units the
similarity of the respective high-density MUEPs and
MUEFs. It can be observed that for two motor units
with spatially distinct territories, both the MUEPs
and the MUMFs, can be visually distinguished in the
time domain. In detail, the mean channel-by-channel

cosine similarity is 0.90 for the MUEPs and 0.73
for the MUMFs. Further, the minimum channel-by-
channel cosine similarity is 0.54 for the MUEPs and
0.37 for the MUMFs. However, if one considers two
motor units in close proximity, the MUEPs become
nearly indistinguishable. This is also reflected in the
cosine similarity, which is 0.99 across all channels
and the minimum channel-by-channel cosine sim-
ilarity is 0.96. In contrast, the time domain signals
of the MUMFs are still visually distinguishable for
some channels. The mean channel-by-channel cosine
similarity of the two high-density MUMFs is 0.93.
Further, the minimum channel-by-channel cosine
similarity is 0.79. This example demonstrates that
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Figure 4.Mean cosine similarity of all MUEPs (red) and
MUMFs (blue) in five motor unit pools depending on the
thickness of the subcutaneous fat tissue. The circles denote
the average values and the shaded areas represent the
respective standard deviations. HD: high-density.

non-invasiveMMG has advantages to separate motor
units, which are hardly distinguishable using high-
density surface EMG.

The robust decomposition of a motor unit
requires that the respective motor unit response is
unique in comparison with all other motor unit
responses. Hence, we evaluate the similarity of the
MUEPs and the MUMFs for five different motor unit
populations as well as three different fat tissue thick-
nesses. Therefore, for each virtual muscle the mean
cosine similarity across all MUEPs and MUMFs is
computed. Figure 4 shows that the mean similar-
ity of the MUMFs is lower than the mean similar-
ity of the MUEPs. For example, for a thickness of
5mm of the subcutaneous fat tissue, the mean cosine
similarity is 0.38 for the MUMFs and 0.76 for the
MUEPs. Further, with increasing thickness of the sub-
cutaneous fat, for the MUEPs the mean cosine simil-
arity increases. In contrast, there is no significant rela-
tion between the cosine similarity of the MUMFs and
fat tissue thickness. In conclusion, it can be expected
that more motor units can be decomposed from the
high-density MMG than from the high-density sur-
face EMG.

Further, figure 5 exemplary illustrates for three
motor units, i.e. superficial, centred, and deep, the
influence of the spatial position of a motor unit on
the uniqueness of the MUEPs and the MUMFs. It is
observed that the uniqueness of the MUEPs correl-
ates with the depth of themotor unit territory. That is,
the fraction of themuscle’s cross-sectional area with a
mean cosine similarity larger than 0.9 is 3.0% for the
superficial motor unit, 18.4% for the centred motor
unit and 24.5% for the deep motor unit. For the
MMG there is no considerable correlation between

Figure 5. Uniqueness of three randomly selected MUEPs
(left column) and MUMFs (right column) depending on
the spatial position of the motor units. The territories of the
reference motor units are visualised with black circles. The
colour map indicates the mean cosine similarity of the
reference motor unit response and all other motor unit
responses from motor units that are located at the
respective grid point. HD: high-density.

the depth of the motor units and the uniqueness of
the MUMFs. In detail, the fraction of the muscle’s
cross-sectional area with a mean cosine similarity lar-
ger than 0.9 is always less than 1%. Thus, it is expected
that the MMG decomposition will be less affected by
variations in the depth of the motor units.

3.3. Upper-bound decomposition accuracy for
EMG andMMG
The motor unit decomposition results presented in
this work summarise 45 independent in silico exper-
iments. That is, five different motor unit pools are
considered and simulated with three different fat tis-
sue layers, respectively. For those 15 virtual muscles
and three different contraction intensities, i.e. low
intensity, medium intensity and high intensity, 30 s
long steady isometric contractions were simulated
and analysed with the proposed methodology (see
Klotz et al 2023, to access the replication dataset).

Figure 6 exemplary shows for three randomly
selected motor units the spike trains estimated from
the high-density EMG (left column) and the high-
density MMG (right column). The first motor unit
can be perfectly reconstructed both from the high-
density EMG and the high-density MMG, i.e. the
rate-of-agreement is 100%. Further, the robustness
of the decomposition is reflected in the silhouette
coefficients, i.e. 0.98 for the high-density EMG and
0.97 for the high-density MMG. Also the second
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Figure 6. Spike trains estimated from HD-EMG (left
column) and HD-MMG (right column). Each row
represents one randomly selected motor unit. Green circles
show true positive spikes, red circles show false positive
spikes and orange circles show false negative spikes. The
predicted spike trains are normalised with respect to the
mean value of all true positive spikes. HD: high-density.

selectedmotor unit is classified as reliably identifiable
fromboth the high-density EMG (SIL= 0.91) and the
high-density MMG (SIL= 0.95). However, while the
spike train is perfectly reconstructed from the high-
density MMG, the rate-of-agreement is only 93%
for the EMG-based decomposition. The last selected
motor unit can only be reliably decomposed from
the high-density MMG. The poor reconstruction of
the spike train estimated from the high-density EMG
is both reflected in the silhouette coefficient (SIL=
0.78) and in the rate-of-agreement (RoA= 5%).

A summary of all conducted in silico trials is
provided in figure 7. Therefore, the fraction of separ-
able motor units, i.e. the number of motor units with
SILk > 0.9 divided by the number of active motor
units, is correlated with the thickness of the sub-
cutaneous fat and the contraction intensity. It can
be observed that for both the high-density EMG
and the high-density MMG the fraction of separ-
able motor units decreases with the thickness of
the subcutaneous fat tissue layer. Further, the frac-
tion of separable motor units is negatively correlated
with the contraction intensity. Notably, for all sim-
ulated conditions the decomposition performance of
the high-density MMG is superior over the decom-
position performance of the high-density EMG. In
detail, the fraction of separable motor units increases
between 56% and 116% when decomposing high-
density MMG instead of the high-density EMG. The
robustness of the spike train estimation is reflected
in the rate-of-agreement. That is, the mean rate-of-
agreement for the motor units that are classified as
reliable decomposable is 98.1% for the high-density
EMG and 99.7% for the high-density MMG. The
mean rate-of-agreement for the motor units that are
classified as not reliably identifiable, i. e. SILk < 0.9,

is 20.5% for the high-density EMG and 64.3% for
the high-densityMMG.This indicates that the chosen
uncertainty measure might underestimate the poten-
tial performance benefit when decomposing high-
density MMG instead of high-density EMG.

3.4. Difference of EMG-based andMMG-based
decompositions
In the previous section, it was shown thatmoremotor
units can be decomposed from high-density MMG
than from the corresponding high-density surface
EMG. This section investigates if there is a differ-
ence between motor units, which can be decomposed
from MMG and EMG. Figure 8(A) subdivides the
motor units that are classified as reliably decompos-
able into three groups. That is, 25% of the motor
units can be reliably decomposed from both high-
density EMG and high-density MMG, 1% of the
motor units are only identifiable from high-density
EMG and 19% of the motor units can only be
reconstructed from high-density MMG. In summary,
non-invasiveMMG-basedmotor unit decomposition
nearly identifies all motor units that can be decom-
posed from high-density surface EMG. However,
the MMG decomposition allows to observe motor
units that cannot be identified with the EMG-based
decomposition.

Next, we want to study if the motor units that
can only be detected through high-density MMG-
based decompositions have common characteristics.
Figures 8(B) and (C) map for both EMG and MMG
the fraction of identifiablemotor units to the anatom-
ical position of the motor units. It can be observed
that the EMG-based decomposition has a strong bias
to detect superficial motor units. In detail, when the
muscle is subdivided into a superficial part and a deep
part, 67% of the motor units from the superficial
part are classified as separable. However, only 4% of
the motor units from the deep part are classified as
detectable. The MMG-based motor unit decomposi-
tion also shows a tendency to identifymore superficial
motor units, cf figure 8(C). However, considerably
more deep motor units can be reliably decomposed,
i.e. 88% of the superficial motor units and 41% of the
deep motor units are classified as detectable.

3.5. Relevance of MMG properties
Next, we investigate the importance of different
MMG properties, i.e. the different vector field com-
ponents and the density of the sensor array, to achieve
optimised decomposition results. First, the relevance
of the individual MMG components is examined.
Hence, the proposed in silicomotor unit decomposi-
tion testing framework (cf section 2.2.1) is applied to
each MMG component individually. Notably, there
are infinite possibilities for the orientation of the
sensor coordinate system. Inspired by the structure of
the muscle, we consider one component aligned with

the muscle fibres x∥f , one component transversal to
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Figure 7. Fraction of motor units that are classified as reliably identifiable from high-density EMG (red) and high-density MMG
(blue). All results are shown for three different contraction intensities (left to right) depending on the thickness of the
subcutaneous fat tissue layer. The markers indicate mean values and the shaded areas represent the corresponding standard
deviations. MUs: motor units. HD: high-density.

Figure 8. (A) Fraction of motor units that can be reliably decomposed in all in silico trials. (B) Fraction of motor units identifiable
with HD-EMG depending on the spatial position of the motor units. (C) Fraction of motor units identifiable with HD-MMG
depending on the spatial position of the motor units. The dashed horizontal lines in (B) and (C) show the boundary between the
superficial and the deep parts of the muscle. MUs: motor units. HD: high-density.

the muscle fibres as well as tangential to the body sur-

face x∥xf and one component transversal to the muscle
fibres as well as normal to the body surface x⊥xf (cf
figure 1(F)). It can be observed from figure 9(A)
that the decomposition performance of the indi-
vidual MMG components is between the goodness of
the EMG-based decomposition and the MMG-based
decomposition considering all magnetic field com-
ponents. Notably, the MMG components transversal
to themuscle fibre direction yield a better decomposi-
tion performance than the MMG component aligned
with themuscle fibres . Thereby, the fraction of separ-
able motor units is highest for the MMG component
normal to the body surface. In detail, defining the vec-
torMMG-based decomposition as reference solution,
the fraction of separable motor units decreases by
34.4%, 24.4% and 18.0%, for the scalar MMG com-
ponents x∥f , x

∥
xf and x⊥xf , respectively.

Next, we study the influence of the density of
the MMG sensors. For this purpose, the signal
processing workflow is applied to two additional
virtual MMG data sets. One that only considers
every third MMG sensor and another one that
considers every sixth sensor. The corresponding

Figure 9. (A) Decomposition performance of the individual
(scalar) MMG components. (B) Decomposition
performance depending on the density of the MMG array.
MUs: motor units. HD: high-density.

decomposition results are summarised in figure 9(B).
It can be observed that with only 12 vector
magnetometers, the high-density MMG decom-
position identifies more motor units than the
EMG-based decomposition, which uses an array of
70 electrodes. Further, for an array with 24 vector
magnetometers, the decomposition performance is
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nearly as good as for the 70-MMG-sensors-case. In
detail, using only every third and every sixth MMG
sensor, decreases the fraction of separablemotor units
by 2.6% and 34.2%, respectively.

4. Discussion

We analysed the performance of motor unit decom-
position based on non-invasive high-density MMG
and high-density surface EMG. The latter is con-
sidered to be the current gold standard to identify the
activity of individual motor units non-invasively and
in vivo (e.g. De Luca et al 2006, Holobar et al 2010,
Chen and Zhou 2015, Negro et al 2016). Here, we
demonstrate that the decomposition of high-density
MMG is superior over high-density surface EMG-
based motor unit decomposition. We rate, non-
invasive MMG-based motor unit decomposition as a
promising alternative to the well-established surface
EMG-based motor unit decomposition.

4.1. Insights onmuscle-induced
bio-electromagnetic fields
The results presented in this work are predictions
from a biophysically realistic computer model. The
use of an in silico testing framework has several
advantages: first, we note that the decomposition
of experimentally recorded EMG or MMG signals
requires to solve a blind source separation problem.
Thereby, the decomposition results are influenced by
the selected algorithms. In the in silico environment
we can always obtain the best achievable decompos-
ition. This is possible as we can use the information
about the forward model to solve the inverse prob-
lem. Yet, as the motor unit decomposition problem
is typically ill-conditioned, even with the full know-
ledge of the forward model a perfect reconstruction
of the spike trains is not always feasible.

Further, during in vivo experiments the biophys-
ical properties of the body are associated with con-
siderable levels of uncertainty. This makes it very
challenging to relate the results of motor unit decom-
positions and the properties, the anatomy and the
function of the body. Within this work, we show
that the decomposition goodness for both EMG and
MMG is negatively correlated with the thickness of
subcutaneous fat tissue as well as the contraction
intensity. This is consistent with decomposition res-
ults from experimentally measured surface EMG sig-
nals (e.g. Farina et al 2008, Del Vecchio et al 2020, de
Oliveira et al 2022), even if other factors may play a
role (Taylor et al 2022).

The simulation environment also allows to sys-
tematically study the differences between EMG-
based and MMG-based motor unit decomposition.
Notably, the decomposition of high-density MMG
detects nearly all motor units that can be decomposed
from the corresponding high-density EMG signal.
However, while surface EMG-based decomposition

is limited to detect motor units up to a depth of
approximately 20mm, the non-invasive MMG-based
decomposition can also detect deeper motor units.
The predicted depth limit of the surface EMG-based
motor unit decomposition is perfectly in agreement
with experimental observations (see Fuglevand et al
1992, Roeleveld et al 1997b). This underlines the pre-
dictive power of the presented in silico trials.

Finally, this work explores which properties of a
MMG recording are particularly relevant to achieve
good decomposition results. Typically, the fact that
the magnetic permeability in the human body and
in free space is identical is considered as the major
advantage of magnetographic recordings (e.g. Klotz
et al 2022). In this work we exemplary show that
surface EMG has a more pronounced signal decay
than non-invasive MMG (cf figure 2(C)). This is
mainly caused by the conductivity jump at themuscle
boundary, i.e. limiting the amount of current that
can flow transversal to the muscle fibre direction (e.g.
Lowery et al 2002). This can explain the observa-
tion that measuring a single component of the mag-
netic field vector yields better decomposition results
than the surface EMG-based motor unit decompos-
ition. Yet, this work shows that the most important
requirement for MMG detection systems optimised
for motor unit decomposition is the use of vector
magnetometers. This is demonstrated by the fact that
even when the density of the MMG array is reduced,
the vector space decomposition is superior over the
EMG decomposition as well as the decomposition of
the scalar MMG components. It is expected that this
is caused by the unique relation between the anatomy
of the motor unit territory and the spatial patterns of
theMUMFs (cf figure 2(A)). Accordingly, the unique-
ness of the MUMFs shows no considerable correl-
ation with the motor unit depth and the fat tissue
thickness. Yet, theMMG’s amplitude decay, still limits
the number of deep motor units that can be reliably
decomposed.

4.2. Limitations
The simulation results presented within this work
are upper-bound accuracy estimates of motor unit
decompositions. Whether the theoretical advantages
of MMG-based motor unit decomposition also apply
to experimentally measured signals depends onmany
factors. First, it is noted that within this work we
assumed ideal magnetometers. Yet, magnetometers
that are currently used tomeasure biomagnetic fields,
most importantly, the superconducting quantum
interference device (SQUID) (e.g. Körber et al 2016,
Clarke et al 2018) and optically pumped magneto-
meters (OPMs) (e.g. Boto et al 2017, Osborne et al
2018, Sander et al 2020, Gutteling et al 2023), still
have some limitations for high-density MMG meas-
urements. For example, SQUIDs require cryogenic
cooling and hence, the sensors must be placed sev-
eral centimetres away from the skin. Further, SQUIDs
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are rigid devices (typically in a helmet-like geometry)
that do not provide the flexibility that is required to
cover different muscles. OPMs can overcome those
limitations, however, still have shortcomings regard-
ing the bandwidth (most sensors act as a low-pass
filter with a cutoff frequency in the range of 150Hz
to 300Hz)) and the achievable grid-density (typ-
ical sensor footprint sizes are in the range of 1 cm2

to 4 cm2). The application of other magnetomet-
ers to measure MMG is currently subject of basic
research, for example, magnetoelectric sensors (Zuo
et al 2020b) or nitrogen-vacancy centres (Zhang et al
2022). Further, we assumed that the signals are not
affected by noise. However, experimentally measured
EMGorMMGsignals are affected by different sources
of physiological noise, e.g. cross-talk from other
muscles or (small) motions, and non-physiological
noise, e.g. ambient electromagnetic fields or imper-
fections of the detection system. The influence of
these factors needs to be examined in the future.
We also note that solving a blind source separa-
tion problem strongly depends on the implemen-
ted optimisation schemes. Moreover, the utilised bio-
physical model is an idealised representation of the
underlying physiology and anatomy. For example,
the motor units are characterised by the mean firing
rate, the muscle fibre diameter, the territory and their
fibre load. However, the distribution of the respect-
ive parameters and the validity of the corresponding
assumptions might vary considerably between dif-
ferent muscles, subjects or patients. This shortcom-
ing is substantiated by the fact that we considered an
idealised cube-shaped tissue geometry. Despite the
advantage that geometrical effects do not play a role in
the presented results, the influence of the muscle geo-
metry needs to be explored in the future. This can eas-
ily achieved by applying the proposed methodology
to realistic muscle geometries discretised by the finite
elementmethod (cf e.g. Lowery et al 2002,Mordhorst
et al 2015, Schmid et al 2019).

4.3. Conclusion and Outlook
In conclusion, this work shows that high-density
MMG has the potential to become the new gold
standard for recording single motor unit activity
non-invasively and in vivo. Further experimental
research is required to proof the theoretical predic-
tions presented within this work. It is anticipated that
this will be feasible within the next decade. Thereby,
the proposed in silico trial framework can be used
to optimise novel high-density MMG recording sys-
tems, assist the interpretation of experimental meas-
urements and benchmark the performance of motor
unit decomposition algorithms.
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