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Abstract
The increasing impact of Web 2.0 involves a growing usage of slang, abbrevia-
tions, and emphasized words, which limit the performance of traditional natural
language processing models. The state-of-the-art Part-of-Speech (POS) taggers
are often unable to assign a meaningful POS tag to all the words in a Web 2.0 text.
To solve this limitation, we are proposing an auxiliary POS tagger that assigns
the POS tag to a given token based on the information deriving from a sequence
of preceding and following POS tags. The main advantage of the proposed auxil-
iary POS tagger is its ability to overcome the need of tokens’ information since it
only relies on the sequences of existing POS tags. This tagger is called auxiliary
because it requires an initial POS tagging procedure that might be performed
using online dictionaries (e.g., Wikidictionary) or other POS tagging algorithms.
The auxiliary POS tagger relies on a Bayesian network that uses information
about preceding and following POS tags. It was evaluated on the Brown Corpus,
which is a general linguistics corpus, on the modern ARK dataset composed by
Twitter messages, and on a corpus of manually labeled Web 2.0 data.
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1 INTRODUCTION

Over the last few decades, technological progress in com-
putational resources required a lot of effort to model large
amounts of textual data. Moreover, in recent years, the
Internet expansion, the Web 2.0 phenomenon, and mas-
sive mobile device adoption have changed communica-
tion languages. Therefore, earlier analyses in the field of
natural language processing (NLP) carried out on doc-
uments written abiding by the standard language rules
might not be efficient if applied to modern textual data.
Web 2.0 text data, such as blogs and microblogs messages,

lead to a wide range of applications in different research
fields: event detection [1], sentiment analysis [2], polit-
ical disclosure [3], and location inference [4]. Web 2.0
data, and specifically microblog data, are characterized
by the absence of a standard vocabulary: slang, abbrevia-
tions, symbols, emoticons, and so on have replaced tradi-
tional words, creating the so-called cyber-slang. Moreover,
Web 2.0 content contains grammar mistakes, typos, and
emphasized words (e.g., “nooo”). Extracting information
from Web 2.0 texts is a relatively new challenge for NLP.
Traditional NLP methods, and especially state-of-the-art
Part-of-Speech (POS) taggers, work well for structured
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66 GOLIA and ZOLA

text, but they have poor data tagging capabilities for blogs
and microblogs data [5]. The main consequence is the
inability of the state-of-the-art POS taggers to assign a
meaningful POS tag to all the words in a Web 2.0 text [6].
Some taggers assign particular labels to unseen words,
whereas other do not assign any tags at all. In order to over-
come this limitation, this paper proposes an auxiliary POS
tagger that assigns the POS tag to an unknown word based
on the information deriving from a POS tags sequence. It
intervenes after an initial POS tagging step of a corpus,
predicting the remaining unknown POS tags that do not
match any dictionary or for which the morpheme analysis
is not helpful.

The auxiliary POS tagger works in two stages: first, it
predicts the probability distribution of the unknown POS
tag and, second, it summarizes it into a predicted POS
tag. The probability distribution of the unknown POS tag
is calculated using a Bayesian network (BN) built on a
sequence of POS tags. The BN is a probabilistic graphi-
cal model that makes explicit, through a directed acyclic
graph, the interactions within a set of variables [7, 8]. As
for the second step, the paper considered two classifiers,
in addition to the default Bayes Classifier, to summarize
the above-mentioned distribution. The predictive perfor-
mance of the learned BN was compared to the predictive
performance of the random forests (RF) [9], which is a
popular machine learning model. In this study, RF was
used as a benchmark for the BN, given its high predictive
power in the classification context [10]. The main advan-
tage of the proposed method is its flexibility when applied
to different domains (e.g., financial, journalistic, medi-
cal, etc.) and different kinds of texts (including traditional
corpus, and modern blog and microblog data). Its flexi-
bility is due to its ability to overcome the need for token
knowledge. Moreover, the method can be applied to any
language, after a preliminary estimation of the BN trained
on a large tagged corpus. Another important difference
between the proposed method and the existing POS tag-
gers regards missing values; as soon as the BN is estimated,
it can be used to predict the missing tag without needing
to know the entire set of predictors used in the estimation
step, thus, overcoming a pre-imputation stage commonly
used in many machine learning (such as support vector
machines [11]) and deep learning algorithms [12].

However, since the proposed method is auxiliary to an
initial POS tag phase, it needs a partially labeled text to be
applicable. This, in practical terms, translates to a need for
an online dictionary or a POS tagging algorithm.

The paper is structured as follows. Section 2 reports an
overview of the existing literature on POS tagging, whereas
Section 3 describes the proposed method and the evalu-
ation metrics used in the analysis. Section 4 reports the
description of three experiments that helped evaluating

the validity of the proposed methodology. Conclusions
follow in Section 5.

2 RELATED WORK

Earlier works on sentence POS tagging were mainly based
on grammar rules and morphemes, such as one of the first
large-scale systems called TAGGIT [13]. TAGGIT uses 71
different tags and a disambiguation grammar including
3300 rules, reaching an overall accuracy of around 77%
of the words in the Brown University Corpus. Another
rule-based approach was proposed by [14] for the Wall
Street Journal (WSJ) dataset. With the progress in compu-
tational technology and the growing interest in machine
learning models, POS studies evolved also in this respect.
A wide range of research has been done since 1970, focus-
ing mainly on Markov models (MM) [15] and their variants
such as the conditional Markov models (CMM) [16] and
the hidden Markov models (HMM) [17]. MM approaches
are unidirectional methods computing the probability of a
tag at time t when considering its preceding tag (at time
t − 1).

In the 90s, another important work on POS tagging
was published by Schmid [18]. The author proposed the
TreeTagger, an algorithm for POS tagging based on deci-
sion trees. The initial work was performed on English
corpora but was later extended to several more languages
and is today one of the most used and popular POS tag-
gers. Toutanova et al. [19] introduced a model called
cyclic dependency networks (CDN) that considers also fol-
lowing information and, together with the token lexical
analysis, they proposed one of the most used and pop-
ular POS taggers: the Stanford log-linear. Over the last
decade, further improvement in POS tagging investiga-
tion was achieved through the application of deep learning
algorithms such as bidirectional long short-term mem-
ory neural network (BI-LSTM) on embedded text repre-
sentation [20, 21]. Moreover, the latest developments in
artificial intelligence studies encouraged the application
of adversarial training (AT) [22] and autoencoders [23]
for sequence POS tagging. Yasunaga et al. [22] analyzed
the proposed AT model both on the English corpus (i.e.,
WSJ) and on the universal dependencies (UD) dataset
with more than 20 different languages, while Zhang
et al. [23] sampled eight languages from the same UD
collection.

Recent studies tried to extend traditional POS taggers
to blogs and microblogs data, yet with poor results. Con-
ditional random fields (CRF) has been widely adopted
for POS tagging, especially for Indian languages, such as
Urdu [24, 25] and Bengali [26]. CRFs are undirected graph-
ical models which are very similar to HMMs but with
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high computational complexity, making them less efficient
than other algorithms [27]. Nevertheless, for the Urdu POS
tagging task, Khan et al. [24] have shown that CRF per-
formed better than support vector machine (SVM), two
variants of the recurrent neural network (RNN) and HMM.
Nand and Perera [5] compared different traditional POS
taggers based on different approaches: maximum entropy
(ME), HMM, and CRF. As training and test data, they
used three different English Twitter datasets (T-POS, DCU,
and ARK). The T-POS and the DCU dataset, together with
the Penn Treebank section related to the WSJ and NPS
IRC datasets, were also analyzed by Derczynski et al. [28],
who evaluated four existing POS tag algorithms: Tnt [29],
SVMTool [30], TBL [31], and Stanford log-linear tagger.
The authors calculated different metrics on Twitter test
data based on different training sets, varying the impact of
Twitter data as opposed to the traditional corpus. The anal-
ysis showed the loss in accuracy when the models were
trained on a structured corpus with a small portion of Twit-
ter data, therefore, a new methodology based on the vote
constrain bootstrapping (VCB) was proposed. Attardi and
Simi [32] proposed a traditional algorithm (HMM) and a
more recent BI-LSTM to estimate the POS tag of annotated
Italian tweets. Albogamy and Ramsay [33] compared the
POS taggers AMIRA, MADA, and Stanford log-linear on
an Arabic sample of tweets. The authors showed a loss in
accuracy in about 30%–40% of the tweets as opposed to tra-
ditional text, and they proposed a series of improvements
for the compared POS taggers that were able to increase
the goodness by about 15%.

Table 1 contains a summary of the main features of
a representative subset of studies on POS tagging, where
consolidated and advanced algorithms were applied to
Web 2.0 data and/or traditional corpus data. The compar-
isons in Table 1 aim to highlight the differences in terms
of datasets, algorithms, validation methods, and evalua-
tion metrics. Moreover, column Cross Domain states if the
study involved a domain adaptation approach, while col-
umn Lexicon refers to the usage of token’s morphological
analysis. Table 1 also shows, in its last row, how this study
is described according to the features being considered.
The main difference between the proposed method and the
others reported in Table 1 is its ability to discard any lex-
icon information (such as suffixes, etc.). Moreover, even
if the BN belongs to the class of the probabilistic graph-
ical models [34] like HMM and CMM, it differs in some
regards. Both HMM and CMM derive the tags sequence
from the corresponding words sequence, using only the
information related to preceding tokens and tags, while the
proposed auxiliary POS tagger based on BN also employs
the knowledge of the subsequent tags. Moreover, CMM
and most machine learning models suffer in the testing
procedure when some preceding tags are missing, whereas

BN can estimate the target tag even if some of the preced-
ing or subsequent tags are missing.

3 PROPOSED METHOD

As stated in the introduction, Web 2.0 texts are a challenge
for POS taggers because they include words that do not
match any dictionary or that are written in non-standard
ways (e.g., “im”, “youuuu”, “lovethat”). Some traditional
POS taggers, therefore, attempt to predict the “unseen”
words often assigning a residual POS tag class, such as
“Foreign Word,” while other POS taggers leave the token
unlabelled.

Table 2 shows an example of a tweet which includes
slang, hashtags, mentions, and emoticons. We used the
Cambridge online dictionary1 and the state-of-the-art
Stanford log-linear POS tagger to tag the words. The “?”
symbol indicates the words not found by the Cambridge
online dictionary, whereas the “×” symbol for the Stan-
ford log-linear POS tagger is the tag for foreign word (FW).
Six words are cyber-slang tokens; five of them were recog-
nized as unknown by the dictionary, whereas the Stanford
log-linear POS tagger labeled four of them as FW. Curi-
ously, the “luv” word, which is slang for the verb “to love,”
was wrongly tagged by the dictionary because luv is an
actual word in English. Forty-seven percent of the words
were tagged as FW by the Stanford log-linear POS tag-
ger; this is an inexplicably high percentage suggesting that
some of the corresponding words are typical cyber-slang
words, therefore unknown.

Following the Twitter example in Table 2 and the lim-
its of both existing POS taggers and online dictionaries,
the idea is to focus on a POS tags sequence to derive the
unknown POS tag without performing any word vectoriza-
tion nor analyzing the word string (affixes, capital letters,
etc.). Thus, the only available information that we aim to
use for labelling a target tag is the sequence of preced-
ing and subsequent POS tags determined by an initial POS
tagging step (see Table 2). The auxiliary POS tagger first
derives a suitable BN from a wide and tagged corpus (such
as the Brown Corpus), allowing to predict the probability
distribution of the unknown POS tag, and then it applies
a criterion to summarize that distribution into a predicted
POS tag.

Identifying the best BN requires considering sev-
eral information sets to determine the most suitable tag
sequence length to be used for predicting the unknown
POS tag, denoted as tagt. Most of the previous works only
relied on the information linked to the two preceding POS

1https://dictionary.cambridge.org/
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68 GOLIA and ZOLA

T A B L E 1 Summary of the main features of a representative subset of studies on POS tagging

Cross

Study Sourcea Domain Datasetb Languagec Algorithmd Lexicon Metricse Validationf

Cutting et al. [17] TC No Brown ENG HMM Yes Acc 8 ITE

Schmid [18] TC No PTB ENG DT Yes Acc

Cussens [14] TC No WSJ ENG Rules Yes Acc

Ratnaparkhi [16] TC No PTB ENG CMM Yes Acc

Toutanova et al. [19] TC No PTB ENG CDN Yes Acc

Ekbal et al. [26] TC No NLPAI, SPSAL BAN CRF Yes Acc 10-F Cv

Derczynski et al. [28] TC, B Yes T-POS, DCU ENG VCB Yes Acc HO, 10-F Cv

WSJ

NPS IRC

Albogamy and Ramsay [33] B No Twitter ARAB IMP-POS Yes Acc –

Nand and Perera [5] B Yes T-POS ENG HMM Yes Acc 3-F Cv

DCU CRF

ARK ME

Attardi and Simi [32] B No SENTICPOL IT HMM Yes Acc –

Evalita 2009 BI-LSTM

Yasunaga et al. [22] TC No WSJ, UD ENG, MX AT Yes Acc HO

Zhang et al. [23] TC No UD MX NCRF-AE Yes Acc HO

Khan et al. [24] TC No CLE, BJ URDU CRF No Acc 10-F Cv

HMM

SVM

RNN

This study TC, B Yes Brown ENG BN No Acc, AUC, 10-F Cv

ARK MAF1, Av Acc

aSource: B, blog and microblogs; TC, traditional corpus.
bDataset: BJ, Bushra Jawaid; CLE, Center for Language Engineering; PTB, Penn TreeBank; WSJ, Wall Street Journal; UD, Universal Depencencies.
cLanguage: ARAB: Arabic, BAN: Bangali, ENG, English; IT, Italian, MX, mixed languages.
dAlgorithm: AT, adversarial training; BI-LSTM, bidirectional long- and short-term memory networks; BN, Bayesian network; CDN, cyclic dependency
networks; CMM, conditional Markov Model; CRF, conditional random field; DT, decision trees; HMM, hidden Markov models; IMP-POS, improvement of
ADMIRA, MADA, and Stanford Log-linear taggers; ME, maximum entropy; NCRF-AE, neural CRF autoencoder; RNN, recurrent neural network; Rules,
grammatical rules; SVM, support vector machine; VCB, vote constrain bootstrapping.
eMetrics: Acc, accuracy; Av Acc, average accuracy; AUC, area under the ROC curve; MAF1, macro average F1-score; P, precision; R, recall.
fValidation: Cv, cross-validation; HO, held-out, ITE, iteration; n-F Cv, n-fold cross-validation.

tags; in our analysis, we investigated the three possible sets
of information below:

• one tag before and one tag next (Tagt−∕+1):
{

tagt−1, tagt, tagt+1
}
,

• two tags before and two tags next (Tagt−∕+2):
{

tagt−2, tagt−1, tagt, tagt+1, tagt+2
}
,

• three tags before and three tags next (Tagt−∕+3):
{

tagt−3, tagt−2, tagt−1, tagt, tagt+1, tagt+2, tagt+3
}
.

We did not consider extra tags preceding and following
an unknown POS tag, such as tagt−4 or tagt+4, because a
longer sequence of predictors could cause two kinds of
problems: first, an unknown POS tag might appear at the
beginning or at the end of a sentence, in which case a
longer set of preceding and following tags could include
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GOLIA and ZOLA 69

T A B L E 2 Example of a tweet tagged by Cambridge
Dictionary and Stanford log-linear Part-of-Speech (POS) tagger

Token
Cambridge
dictionary

Stanford
POS tagger

@Iselgomezl ? ×

Dont ? ×

Really ADV ADV

Know VERB VERB

Where ADV ADV

I PRON ×

Would VERB VERB

Be VERB VERB

Without ADP ADP

Youuuuuuuuuu ? NOUN

And CONJ CONJ

Demi NOUN ×

<3 (♥) ? ×

I PRON ×

Luv NOUN ×

Youu ? ×

#IfMyMomsHadATwitter ? NOUN

Abbreviations: ADP, adposition; ADV, adjective; CONJ, conjunction;
PRON, pronoun.

misleading information. Second, in a real-world context
the number of preceding and following tags that are miss-
ing might be higher.

Below we are going to describe BN and RF, the latter
being used as a benchmark.

3.1 The Bayesian network

The BN is a model that uses a directed acyclic graphs
(DAG) to make explicit a set of (conditional) dependence
and independence properties among the variables repre-
sented in the BN. BNs have been widely used in different
domains such as biology [35], consumer satisfaction [36],
product perception [37], and so on. A DAG  is formed
by the pair  = (V,E), where V is a finite set of distinct
vertices, V = {Vi}k

i=1, which correspond to a set of ran-
dom variables  =

{
XVi

}k
i=1 indexed by V, and E ⊆ V × V

is the set of directed edges between pairs of nodes in V.
For any couple of variables Vi,V𝑗

∈ E linked by an arrow
(→) from node Vi to node V

𝑗
, Vi is said to be a parent of V

𝑗

whereas V
𝑗

a child of Vi. The set of parents of a node V is
denoted by pa(V). A BN over the variables in  is defined
as the triplet  = ( ,,), where  is a DAG and  is

a set of conditional probability distributions containing
one distribution of the P

(
X
𝜈
|Xpa(𝜈)

)
kind for each X

𝜈
∈  ,

where Xpa(𝜈) is the set of parent variables of X
𝜈
. The joint

probability distribution of , P(), is factorized as follows:

P() =
∏

𝜈∈V
P
(

X
𝜈
|Xpa(𝜈)

)
. (1)

A BN can be seen in terms of its DAG, the qualitative
component, and of its joint probability distribution (1),
the quantitative component. The arrows direction in the
DAG does not necessary have a causal interpretation, but
it shows the way in which the information can flow into
the BN.

The construction of a BN consists in identifying the
DAG and specifying the joint probability distribution in
terms of the set of conditional probability distributions
P
(

X
𝜈
|Xpa(𝜈)

)
. The DAG can be derived manually, that is be

elicited by experts of the field, or be automatically derived
from data. To automatically find a BN’s structure, one
can follow constraint-based, score-based, or hybrid algo-
rithms. Constraint-based algorithms use conditional inde-
pendence tests, focusing on the presence of individual arcs;
score-based algorithms assign scores to evaluate DAGs as
a whole; hybrid algorithms combine constraint-based and
score-based algorithms. In this study, we considered two
score-based algorithms, the Hill Climbing (HC) and the
Tabu search (TABU), which belong to the class of greedy
search algorithms. Both algorithms explore the search
space starting from an empty DAG and adding, deleting,
or reversing one arc at a time until the score being exam-
ined can no longer be improved [38]. TABU depends on a
tabu list containing a number of tabus that prevent revis-
iting recently seen structures when going away from local
optima. We took into account two different scores: the
Bayesian Information criterion (BIC) and the Bayesian
Dirichlet equivalent uniform score, or BDE [39]. The latter
depends on a parameter called imaginary sample size (iss)
associated with a Dirichlet prior, which defines how much
weight is assigned to the prior in the form of the size of an
imaginary sample supporting it.

A BN can be used to answer questions related to
the domain of the data; this process is also known as
probabilistic reasoning or belief updating. It focuses on
the calculus of posterior probabilities given a new piece
of information called evidence E. The kind of evidence
considered in this paper is called hard evidence, that
is, an instantiation of a subset of or all the variables in
the BN: E =

{
Xi1 = e1, … ,Xim = em

}
, with i1 ≠ · · · ≠ im ∈

{V1,V2, … ,Vk}. Hard evidence can come from new par-
tial or complete observations recorded after the BN was
learned. Therefore, from a learned BN, it is possible to
compute the effect of E on one or more target variables
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70 GOLIA and ZOLA

X′ using the knowledge encoded in the BN, by comput-
ing the posterior distribution P

(
X′|E

)
. In this article, we

used the junction tree representation of the BN , where
a junction tree is a transformation of the moral graph
of  (the moral graph of a DAG is an undirected graph
built adding edges between all pairs of non-adjacent nodes
that have a common child and ignoring the directions
of all the edges in the graph) in which the nodes were
clustered to reduce any network structure into the tree
[38]. The belief updates were performed efficiently using
Kim and Pearl’s Message Passing algorithm which involves
the repeated application of Bayes’ Theorem and the use
of conditional independencies encoded in the network
structure [40].

So, an interesting aspect in the use of BN to com-
pute posterior probabilities given a new piece of informa-
tion E, is that E can concern any subset of the available
variables. For example, if the variables are the ones in
Tagt−∕+3 and one wants to predict the posterior probability
P
(

tagt|E
)
, E can be a single variable in Tagt−∕+3, a cou-

ple, such as
(

tagt−1, tagt+1
)

or
(

tagt−3, tagt+3
)
, a triple, such

as
(

tagt−2, tagt−1, tagt+1
)
, or the entire set Tagt−∕+3 − tagt.

This makes the BN a suitable tool for determining tagt
when surrounding tags are missing, without the need of a
preliminary imputation step for these missing tags.

Starting from the set of attribute probabilities of the
target variable estimated by the BN, it is necessary to syn-
thesize it in order to extract a predicted attribute. In this
article, the target variable is the unknown POS tag tagt,
which is a nominal variable, and the used classifiers are:

• Bayes classifier (BC): It assigns a word to the most likely
POS tag.

• Maximum difference classifier (MDC): It evaluates the
difference between the predicted probabilities of each
possible attribute of the POS tag variable and the corre-
sponding sample frequencies derived from the dataset.
It takes the attribute corresponding to the maximum
difference among all attributes [41, 42].

• Hybrid classifier (Hybrid): It is created to exploit the
benefits of either the BC or MDC; it uses MDC when
each frequency associated with the modal attribute is
less than 0.5; otherwise it uses BC.

3.2 Random forest

RF is a machine learning algorithm proposed by Refer-
ence [9] and belonging to the family of ensemble learning
models with a decision tree [43] as base learner. Given
that the target variable in the POS tag context is nomi-
nal, the appropriate decision tree is a classification tree in
which the data space generated by p explanatory variables

Xi is recursively partitioned into a set of regions that are
homogeneous with respect to a target variable, and assign-
ing each region, called a leaf node, to the class occurring
more often. RF consists in drawing B bootstrap samples
from the data and growing a tree on each one with the
following perturbation: before each split, one randomly
selects m ≤ p explanatory variables from the p available as
candidates for splitting. Then, for each tree the predicted
class is recorded, and the majority vote is taken as the over-
all RF prediction. Three parameters need to be set: the
number B of bootstrap samples, the number k of variables
to be selected at each split, and the minimum number of
observations presented into a leaf node. In general, a high
B value does not cause overfitting problems, whereas the
default value for m is the integer part of k, and the default
minimum node size is one.

RF tends to achieve good classification results even
when using its default parameters [44]. In a recent and
large comparison study, the RF classifier was ranked as
the best classifier among 17 main machine learning algo-
rithms [10], and that is why we chose it as benchmark for
the analysis of full information.

RF handles missing values by applying either the
built-in methodology of the surrogate splits or a prelimi-
nary imputation step; a comparison of the two approaches
can be found in [45]. Reference [46] describes three strate-
gies for missing data imputation in which missing data
are pre-imputed or simultaneously imputed, also when the
forest is used for prediction. It is important to notice that
both approaches imply a “fill in” step for missing data,
unlike BN.

3.3 Performance metrics

When the number of attributes of the target variable is
greater than two and in case of unbalanced classes, as in
this context, considering several metrics is better for the
evaluation of the predictive performance of a model. In
fact, the simple percentage of correct predictions gives a
limited view of its predicting abilities. Therefore, to give
a synthetic measure of the algorithm predictive capabili-
ties we adopted, following [47], the metrics: area under the
curve (AUC) of the receiver operating characteristic (ROC)
curve, average accuracy, macro precision, macro-averaging
F1-score and overall accuracy.

The AUC is based on the ROC curve, which plots the
false positive rate in x-axis, versus the true positive rate in
the y-axis. The AUC = ∫ ROCdT measures the global dis-
criminatory performance of a classifier. ROC curves can be
applied to unbalanced tasks and without knowing a priori
the false positive and false negative costs [48]. The AUC
metric was first studied for the binary classification task,
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GOLIA and ZOLA 71

but later it showed its potential also for the multiclass clas-
sification [49, 50]. In this work, following the research of
[50], the AUC reported is the average value obtained on
single pairwise ROC curve for each of the 10-fold experi-
ments for the prediction of the unknown tagt.

In a multiclass classification problem with l > 2
attributes, the l × l confusion matrix can be reduced to
l 2 × 2 confusion matrices, one for each class label i =
1, 2, … , l, from which accuracy, precision, recall (or sen-
sibility), and F1-score can be calculated as follows:

Acci =
tpi + tni

tpi + tni + fni + fpi

Preci =
tpi(

tpi + fpi
)

Recalli =
tpi(

tpi + fni
)

F1 − scorei = 2 × Preci × Recalli

Preci + Recalli
,

where tpi, fpi, fni, and tni are the number of true posi-
tives, false positives, false negatives, and true negatives for
the ith class. The average accuracy (Av Acc) computes the
average per-class effectiveness of the classifier, the macro
precision (M Prec) denotes the average per-class preci-
sion whereas the macro average F1 score (MAF1) [51] is
the average per-class F1 scores. The F1-score is consid-
ered a more reliable measure when data are unbalanced,
as in our case. These metrics were obtained averaging the
l corresponding indicators as follows:

AvAcc =
∑l

i=1Acci

l

MPrec =
∑l

i=1Preci

l

MAF1 =
∑l

i=1F1 − scorei

l

Moreover, we also reported the overall accuracy (Acc)
for all classes, that is, the simple sum of the correct
classified, or predicted, cases over the total number of
cases n:

Acc =
∑l

i=1tpi

n
.

3.4 The auxiliary POS tagger

To identify the proposed auxiliary POS tagger, we used the
Brown Corpus, a wide and well-known Corpus compiled in

T A B L E 3 Tagset for the auxiliary Part-of-Speech (POS)
tagger

POS Brown

Adjective ADJ

Adposition ADP

Adverb ADV

Conjunction CONJ

Determiner DET

Noun NOUN

Number NUM

Pronoun PRON

Particle PRT

Verb VERB

Other X

, COMMA

. , ; , ! , ? PUNCT

the 1960s at Brown University. It is a general corpus (text
collection) in the field of corpus linguistics containing 500
English-language text samples, totaling roughly one mil-
lion words. The tagged Brown Corpus used a selection of
about 80 POS tags, as well as special indicators for com-
pound forms, contractions, foreign words, and a few other
phenomena. In this analysis we used the version avail-
able in the nltk module of Python [52] composed of 1.15
million words tagged by 12 basic POS tags. This tagset is
called Universal POS tagset and was introduced by Ref-
erence [53]. Before implementing the BN, we customized
the notation for punctuation, since in the Brown universal
tag all punctuation is defined as “.” In order to differen-
tiate strong punctuation symbols identifying the end of a
grammatical sentence, we kept the tag “PUNCT” for the
following punctuation: {. : ! ?}, whereas we created a tag
“COMMA” for the “,” Moreover, we removed some punc-
tuation symbols that did not bring useful information for
the tag sequence, such as: {“< () " ” : - – %}. The class
represented by “X” refers to others POS tags as foreign
words. Table 3 reports the tagset on which the auxiliary
POS tagger is based and the respective meaning.

To determine the POS tag of the unknown token, the
collection of POS tags reported in Table 3 was used as an
informative tags sequence. Moreover, since the applica-
tion of basic regular expression modules allows identifying
digits and punctuation marks, we did not estimate the
unknown tagt whenever the token was NUM, COMMA, or
PUNCT.

Table 4 reports the marginal frequencies in the Brown
Corpus for the set of unknown tagt, showing a highly
unbalanced POS tags distribution; the mode corresponds
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72 GOLIA and ZOLA

T A B L E 4 Observed POS tag frequencies for tagt in Brown
Corpus

POS tag Brown

ADJ 0.084

ADP 0.145

ADV 0.056

CONJ 0.038

DET 0.137

NOUN 0.276

PRON 0.049

PRT 0.030

VERB 0.183

X 0.001

Abbreviations: ADJ, Adjective; ADP, adposition; ADV, adjective; CONJ,
conjunction; DET, determiner; PRON, pronoun; PRT, particle.

to NOUN, even if the frequency is below 50%, followed by
VERB.

The identification of the suitable BN was conducted in
two steps. First, we identified the best DAG using the three
different sets of preceding/following tags, then we per-
formed a 10-fold cross-validation procedure to define the
auxiliary POS tagger. Operationally, we used three R pack-
ages: bnlearn [54] for BN’s identification and estimation,
and rminer [55] and pROC [56] for predictive performance
evaluation.

3.4.1 First step

In order to identify the structure of the relations between
the POS tags involved, we used the HC and TABU
algorithms, and the BIC and BDE scores. Since the
TABU algorithm and the BDE score depend on the
tabu and iss parameters, respectively, we considered
a set of possible values for these two parameters: {5,
10, 20, 50, 100, 200, 300, 500, 700, 1000} for tabu
and {500,1000,2500,5000,10000,20000} for iss. Figure 1
reports the best DAG structures for each of the sets
Tagt−∕+1, Tagt−∕+2, and Tagt−∕+3 originated from a 10-fold
cross-validation step.

In this phase, we applied the BC to predict the POS
tag. Since the dataset includes about 1 million tokens,
the training set at each iteration is of about 900,000
tokens and the test of 100,000 tokens. When the infor-
mation considered only one previous/next tag, the best
BN structure was provided using the HC algorithm with
the BDE score (iss = 500); if there were two preceding/-
following tags, the best model was obtained using the

HC algorithm with the BIC score, whereas in case there
were three preceding/following tags, the best BN structure
was provided using the HC algorithm with the BDE score
(iss = 5000).

For all three DAGs shown in Figure 1, the set of arcs
well represents the expected relationships among the dif-
ferent POS tags. The estimated DAG structure for Tagt−∕+1
(Figure 1A is fully connected. Looking at Figure 1C, there
is an arrow that can seem anomalous: Tag t → Tag t−1,
nevertheless, the BN derived in this paper is not a causal
BN, therefore, the arrows direction in the DAG does not
have a causal interpretation, but shows, as previously men-
tioned, the way in which the information can flow into the
BN.

3.4.2 Second step

To decide which combination of information set, BN,
and predictive criterion to use, we performed a 10-fold
cross-validation procedure, following the procedure pro-
posed by [57]. For each fold, we reckoned the three pre-
viously described predictive criteria and the evaluation
metrics recalled in Section 3.1. Table 5 shows the mean and
standard deviation (in parenthesis) of the obtained values.

Through the analysis of the reported results we iden-
tified, as the overall best model, the BN built using the
information set Tagt−∕+3, the DAG of Figure 1C, and MDC.
This combination has, on average, the best predictive per-
formance, according to the considered metrics.

4 EXPERIMENTS

In order to test the validity of the proposed method in
application contexts, we performed several analyses. In the
first one, we analyzed the Brown Corpus as well as a more
modern dataset called ARK. We applied to both datasets
the proposed auxiliary POS tagger and the RF to solve
the problem of predicting an unknown tag, knowing the
entire sequence of three preceding and following tags. We
considered the RF as a benchmark for the proposed POS
tagger based on BN and the analyses were carried out using
the sklearn module on Python. The second analysis was
inspired by the real-world example shown in Table 2, in
which the entire sequence of three preceding and follow-
ing tags was not always available. Therefore, we evaluated
the predictive performance of the proposed auxiliary POS
tagger in the case of missing tags. In the last analysis, we
applied the proposed method to a small corpus of Web 2.0
data, which included Twitter messages, Facebook posts,
and Tripadvisor and Amazon reviews.
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GOLIA and ZOLA 73

F I G U R E 1 DAG structure for the information sets (A) Tagt−∕+1, (B) Tagt−∕+2, and (C) Tagt−∕+3

T A B L E 5 Mean (SD) of the best BN models for the different tag sequences

Information set Method AUC Av Acc MAF1 M Prec Acc

Tagt−∕+1 BC 0.728 (0.020) 0.410 (0.007) 0.470 (0.017) 0.310 (0.007) 0.572 (0.015)

MDC 0.728 (0.020) 0.410 (0.007) 0.470 (0.017) 0.310 (0.007) 0.572 (0.015)

Hybrid 0.728 (0.020) 0.410 (0.007) 0.470 (0.017) 0.310 (0.007) 0.572 (0.015)

Tagt−∕+2 BC 0.720 (0.016) 0.413 (0.007) 0.500 (0.018) 0.313 (0.007) 0.613 (0.015)

MDC 0.732 (0.015) 0.435 (0.007) 0.515 (0.018) 0.335 (0.007) 0.606 (0.016)

Hybrid 0.730 (0.015) 0.434 (0.007) 0.514 (0.018) 0.334 (0.007) 0.607 (0.016)

Tagt−∕+3 BC 0.717 (0.015) 0.426 (0.006) 0.523 (0.015) 0.326 (0.006) 0.630 (0.013)

MDC 0.731 (0.015) 0.444 (0.007) 0.533 (0.017) 0.344 (0.007) 0.624 (0.015)

Hybrid 0.730 (0.015) 0.443 (0.007) 0.533 (0.017) 0.343 (0.007) 0.625 (0.015)

Abbreviations: Acc, overall accuracy; AUC, area under the curve; Av Acc, average accuracy; BC, Bayes classifier; MAF1, macro average F1 score; MDC,
maximum difference classifier; M Prec, macro precision.

4.1 Full data: Brown and ARK datasets

The ARK dataset includes 39 K tokens from Twitter mes-
sages. It was developed by [58] and originally included
20 POS tags plus 5 specific POS tags linked to Twitter
writing. In our analysis, we focused on a partition of
ARK called “Daily547” which included 547 tweets, one

per day from January 2011 through June 2012.2 Since
the tagset used in ARK is larger than the one in the
Brown Corpus, we aggregated some POS tags to comply
with the Brown notation. Table 6 reports the aggregations

2https://github.com/brendano/ark-tweet-nlp/tree/master/data/twpos-
data-v0.3
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T A B L E 6 Part-of-Speech (POS) tag levels (tagset) in Brown
Corpus and ARK dataset

POS Brown ARK

Adjective ADJ A

Adposition ADP P

Adverb ADV R

Conjunction CONJ &

Determiner DET D

Noun NOUN N, ^, Z, S, M, #, @

Number NUM $, PM

Pronoun PRON O

Particle PRT T, X,Y, L

Verb VERB V

Other X U, G, !

, COMMA –

. , ; , ! , ? PUNCT ∼, E

performed. The specific Twitter tags (#, U, E, ∼, @) were
rearranged as follows: hashtag and mentions (#, @) were
recorded as nouns, emoticons (E) and discourse markers
(∼) as punctuation, and URLs (U) as “Other.” The POS
“Other” included interjections (!) and foreign words, sym-
bols, and other words (G). Marginal frequencies of the POS
tags in the ARK dataset were similar to the ones of the
Brown Corpus, with the exception of the DET tag (Brown:
0.137, ARK: 0.074) and the X tag (Brown: 0.001, ARK:
0.064). These differences highlight the different commu-
nication styles of a classical text (Brown) and a microblog
text (ARK).

Starting from the DAG identified in Figure 1C, we esti-
mated the corresponding BN on the ARK dataset. Then, we
trained the RF on Brown Corpus and ARK dataset keeping
the same information set Tagt−∕+3. We adopted the pro-
cedure proposed by [57], that is we firstly calculated the
metrics (Av Acc, AUC, M Prec, MAF1, Acc) for each fold
of a 10-fold cross-validation procedure and then reckoned
the average of the 10 different results. The two algorithms
(BN and RF) were evaluated both for the Brown Corpus
and the ARK dataset. Moreover, we investigated their per-
formance in a domain adaptation structure, where the
training domain was the Brown Corpus and the target
domain the ARK dataset. This domain adaptation anal-
ysis is of particular interest because there currently are
only few and relatively small labeled datasets to train the
models for Twitter and Web 2.0 data. Table 7 reports the
results in terms of evaluation metrics for the Brown, ARK,
and domain adaptation cases, comparing the BN and RF
models.

T A B L E 7 BN and RF comparison for Brown, ARK and
domain adaptation

Model AUC
Av
Acc MAF1 M Prec Acc

Brown → Brown BN 0.731 0.444 0.533 0.344 0.624

RF 0.717 0.421 0.520 0.321 0.628

ARK → ARK BN 0.629 0.355 0.364 0.259 0.474

RF 0.615 0.324 0.300 0.234 0.492

Brown→ ARK BN 0.613 0.337 0.318 0.242 0.399

RF 0.614 0.304 0.308 0.217 0.452

Abbreviations: Acc, overall accuracy; AUC, area under the curve; Av Acc,
average accuracy; MAF1, macro average F1 score; M Prec, macro precision.

The results for the Brown Corpus are overall better
than the ones for the ARK dataset, both for BN and RF.
Moreover, when comparing the performance of the mod-
els that used only the ARK dataset (ARK → ARK) with
respect to the cross-domain setting (Brown → ARK), we
noticed only a slight decrease in the evaluation metrics.
For example, the AUC of BN for ARK → ARK was only
2.6% points greater. This outcome shows that the use of
models estimated on a wide corpus, such as the Brown
Corpus, to predict unknown POS tags for Web 2.0 datasets,
does not entail a significant reduction in the predictive
power of the models; therefore, they can be successfully
applied to datasets other than the Brown Corpus. As for the
comparison of the BN and RF performance, we observed
that all metrics have comparable values, indicating a sim-
ilarity in the performance. These findings confirmed the
robustness of the proposed method. The auxiliary POS
tagger has the advantage that it can be used even when
there are missing tags without an imputation step, which
is needed if RF is used. The latter is further explored in the
section below.

4.2 Data with missing tags

Taking inspiration from the real-world example shown in
Table 2, we tested the model prediction capabilities when
some preceding/following tags are missing. To this end, we
performed a 10-fold cross-validation procedure described
below. For each fold, the training set was used to estimate
the BN corresponding to the DAG of Figure 1C. The “un-
known” tags (i.e., tagt in the set Tagt−∕+3) in the test set
were predicted under the hypothesis that the tags listed in
Table 8 were missing, and applying MDC. Then, we com-
puted the metrics Av Acc, AUC, M Prec, MAF1, and Acc;
Table 8 reports the average values of the metrics over the
10 distinct results, with standard deviation in parenthesis.
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T A B L E 8 Mean (SD) of the best BN model with missing tags

Missing tags AUC Av Acc MAF1 M Prec Acc

Tagt−3, tagt−2, tagt+2, tagt+3 0.728 (0.020) 0.410 (0.007) 0.470 (0.018) 0.310 (0.007) 0.572 (0.015)

Tagt−3, tagt−2, tagt−1 0.703 (0.015) 0.352 (0.007) 0.344 (0.015) 0.252 (0.007) 0.442 (0.013)

Tagt+1, tagt+2, tagt+3 0.627 (0.015) 0.332 (0.007) 0.323 (0.017) 0.232 (0.007) 0.444 (0.011)

Tagt−2, tagt−1, tagt+1 0.601 (0.017) 0.263 (0.010) 0.197 (0.016) 0.163 (0.010) 0.283 (0.014)

Tagt−1, tagt+1, tagt+2 0.566 (0.013) 0.256 (0.009) 0.191 (0.015) 0.156 (0.009) 0.290 (0.009)

Tagt−1, tagt+1 0.607 (0.016) 0.292 (0.009) 0.242 (0.017) 0.192 (0.009) 0.330 (0.012)

Tagt−3, tagt+3 0.732 (0.013) 0.440 (0.007) 0.522 (0.020) 0.340 (0.007) 0.612 (0.017)

Abbreviations: Acc, overall accuracy; AUC, area under the curve; Av Acc, average accuracy; MAF1, macro average F1 score; M Prec, macro precision.

The worst performance occurred when both tagt−1 and
tagt+1 were missing, with a 20% reduction of the AUC and
50% reduction of the other indicators. There was a negli-
gible reduction in the metrics when both tagt−3 and tagt+3
were missing, whereas the reduction was limited when
tagt−1 or tagt+1 was missing.

4.3 Web 2.0 data

This section reports the results of a practical application
of the proposed auxiliary POS tagger to new data. Given a
corpus of manually labeled Web 2.0 data, first we tagged it
with an online dictionary and then predicted the missing
POS tags applying the BN defined in previous sections. We
then compared the results of the proposed method with
three other POS taggers: the Stanford Log-linear, the Tree-
Tagger, and the TextBlob Python library [59]. The tagging
step performed by the TreeTagger left some tokens unla-
belled, so the proposed auxiliary POS tagger was applied
also in those cases.

The Web 2.0 dataset includes messages from Twitter,
Facebook, Tripadvisor, and Amazon and aims to cover the
most used platforms in Web 2.0 communication. Tripadvi-
sor and Amazon data were collected in January 2018, and
Facebook and Twitter data in May 2018. These data are
publicly available at https://github.com/sgol17/Web2.0-
data-for-POS-tagging. In the first step, the messages were
tagged using the online Cambridge dictionary.3 The POS
tagset used by the online Cambridge Dictionary is similar
to the Brown one, with only a few differences regarding

1. modal verbs, which were affiliated to VERB,
2. plural nouns, which were affiliated to NOUN,
3. exclamations, which regard words such as “ok”, were

attributed to the POS more pertinent to each particular
context.

3https://dictionary.cambridge.org/dictionary/english/

All POS taggers (i.e., Stanford Log-linear, TreeTagger,
and TextBlob) tagsets were adapted according to the one in
Table 6, in order to homogenize the experiments.

Table 9 reports the overall accuracy and the AUC of
the proposed method and of the other three POS taggers
applied to the data examined. Looking at the results on the
data from the two websites and Facebook, the proposed
approach (Cambridge Dict. + BN and TreeTagger + BN)
outperformed the Stanford Log-linear, TextBlob and Tree-
Tagger in terms of both Acc and AUC, whereas it had a
poorer performance on the Twitter dataset in terms of Acc.

Considering the performance of the auxiliary POS Tag-
ger taken alone, we must first underline that the scenario
in which the corpus described in this subsection is placed
is the one concerning the cross domain and, in a few cases,
the one concerning incomplete information. Looking at
the Tripadvisor dataset, which is the largest dataset (1914
tags), the values of Acc and AUC were respectively 0.418
and 0.709, when the tagging step was performed by the
Cambridge Dictionary, and 0.429 and 0.737 when the tag-
ging step was performed by the TreeTagger. These values
are in line with what is shown in Table 7. The same hap-
pened with the Amazon dataset (466 tags) for which the
Acc was 0.375, whereas for the Facebook dataset (866 tags)
the overall accuracy was a bit lower at 0.290. The Twit-
ter dataset, which is the smallest dataset (254 tags), is the
one in which the auxiliary POS Tagger performed worse
in terms of overall accuracy. The percentage of unlabelled
tokens, but correctly labeled by the auxiliary POS Tag-
ger (Acc) was equal to 21.9%, far from what expected. An
explanation of this behavior relies on the quality of the pre-
liminary tagging step. In fact, for this dataset, the error rate
of the Dictionary was high, equal to the 31.5%, and this
can affect the ability to correctly tag the missing tags when
some wrong tags are in the set of the tags used by the BN,
as happened for some missing tags in this dataset.

With reference to the example of cyber-slang data
reported in Table 2, Table 10 shows how the proposed
method filled the ? and × symbols. The last column of
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T A B L E 9 Overall Accuracy and AUC (Acc-AUC) for the Web 2.0 data

Websites Social media

Method Amazon Tripadvisor Facebook Twitter

Cambridge dictionary+BN 0.867–0.943 0.874–0.914 0.847–0.928 0.714–0.915

Stanford log-linear 0.815–0.872 0.809–0.897 0.834–0.906 0.750–0.874

TreeTagger 0.839–0.944 0.858–0.922 0.849–0.915 0.761–0.905

TreeTagger+BN — 0.862–0.919 0.851–0.915 —

TextBlob 0.821–0.906 0.848–0.891 0.836–0.896 0.775–0.885

Abbreviations: Acc, overall accuracy; AUC, area under the curve; BN, Bayesian network.

T A B L E 10 Application of the auxiliary POS tagger to the
Twitter cyber-slang data of Table 2

Token

Cambridge
dictionary+
auxiliary
POS tagger

Stanford POS
tagger +
auxiliary
POS tagger

Ground
truth
POS tags

@Iselgomezl PRON PRON NOUN

Dont VERB VERB VERB

Really ADV ADV ADV

Know VERB VERB VERB

Where ADV ADV ADV

I PRON PRON PRON

Would VERB VERB VERB

Be VERB VERB VERB

Without ADP ADP ADP

Youuuuuuuuuu NOUN NOUN PRON

And CONJ CONJ CONJ

Demi NOUN NOUN NOUN

<3 (♥) VERB NOUN PUNCT

I PRON ADP PRON

Luv NOUN ADP VERB

Youu VERB DET PRON

#IfMyMoms
HadATwitter

PRON NOUN NOUN

Abbreviations: ADP, adposition; ADV, adjective; CONJ, conjunction; DET,
determiner; PRON, pronoun.

the table reports the ground truth POS tags. The words in
italics are the imputed ones. The proposed auxiliary POS
tagger, jointly with the Cambridge dictionary, achieved
a 64.7% accuracy (11 correct matches out of 17 tokens).
The Stanford Log-linear was able to correctly identify
47.1% of the tokens, and this percentage increased up to
64.7% when the auxiliary POS tagger was applied to the
tokens with a ×. Analyzing the wrong POS tags assigned
by the auxiliary POS tagger, we could notice frequent

miss-matches between nouns and pronouns. In fact, with-
out the usage of token information, the role of a noun and
pronoun in a sentence is similar: both can be either sub-
ject or direct object. Nevertheless, this kind of error came
up also when traditional POS taggers were used, as shown
by the tag assigned to the word “youuuuuuuuuu” by the
Stanford Log-linear. As argued by [60], an error analysis
regarding POS tag estimation will help in better under-
standing the method performance, since not all errors
are the same. Moreover, the auxiliary POS tagger abilities
might also be affected by the misclassified tags deriving
from the online dictionaries or the other POS taggers used
in the preliminary labeling phase.

5 CONCLUSIONS

In this paper, we are proposing an auxiliary POS tagger that
aims to predict unknown POS tags given a partially labeled
text. Our motivations were mainly related to the inabil-
ity of traditional POS taggers to correctly assign a POS tag
to modern text from blogs and microblogs, characterized
by the presence of the so-called cyber-slang. Moreover, the
availability of large and labeled Web 2.0 corpora to train
the models is still limited. For these reasons, the proposed
auxiliary POS tagger was developed avoiding token lexical
information, thus aiming to be a flexible tool applicable to
different domains.

The proposed auxiliary POS tagger applies BNs to pre-
dict the unknown tagt by analyzing a set of three preced-
ing and following POS tags and using, as a training set,
the well-known Brown Corpus. To identify the optimal
BN structure, several experiments were conducted, and
the structure of the best BN was identified through the
score-based algorithm HC. Moreover, to translate the BN
probabilities to a POS tag class, we performed a 10-fold
cross-validation of three possible classifiers, finding that
MDC is the best one.

To test the capabilities of the proposed auxiliary POS
tagger, we performed several experiments. We analyzed
the ARK dataset and a sample of manually labeled data
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from Facebook, Twitter, Tripadvisor, and Amazon. The
domain adaptation analysis involving the ARK dataset
showed a good predictive performance of the model
trained on a traditional dataset (Brown Corpus) to esti-
mate the POS tag of modern texts (ARK dataset). The
proposed method, jointly with the Cambridge online dic-
tionary, performed well when applied to Web 2.0 data,
also compared to three traditional POS taggers (Stanford
Log-linear, TreeTagger and TextBlob).

Furthermore, we also tested the method with missing
tags (apart from the target tagt) in the tags sequence, and
we observed that the predictive performance considerably
decreased only if both tagt−1 and tagt+1 were missing.

The main advantage of the proposed method is its flex-
ibility toward different domains and kinds of texts, due to
its ability to overcome the need of token knowledge. It can
be applied to any language, after a preliminary estimation
of the BN trained on a large tagged corpus. However, since
it is an auxiliary tool, there is the need of a pre-tagging step
that can be done through online dictionaries or other POS
taggers, and the validity of this preliminary tagging phase
has an impact on the performance of the proposed auxil-
iary POS tagger. Therefore, in future works we aim to solve
this limitation in order to create an integrated system able
to assign a meaningful POS tag to each word contained into
Web 2.0 modern texts, testing other dictionaries and POS
taggers.
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