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Abstract: This research focuses on cylindrical helical springs with circular cross-sections made
from carbon steel (SH 0.82% C) and stainless steel (AISI 302). The transformation from a linear
bar to a circular spiral involves numerous factors such as material mechanical behavior, stress–
strain relationships and residual stresses. This research investigates the spring-back phenomenon,
which affects the final diameter of helical springs post-manufacture, using analytical, experimental
and numerical methods. An analytical model, derived from the mechanical bending process, was
proposed to predict spring-back, and its accuracy was validated against experimental data. This
study also employed finite element simulations to analyze elastic recovery, confirming the analytical
predictions. Results indicated that the spring-back ratio k could be expressed as an exponential
function of the spring index C (the ratio between the final diameter of the spring D2 and the diameter
of the wire DW), with a maximum error of 4.80% for stainless steel and 3.62% for carbon steel.
This study’s findings provide valuable insights into optimizing the spring manufacturing process,
enhancing the precision of spring diameter predictions, and potentially reducing production errors
and material waste.
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1. Introduction

Springs are one of the most important components used in various industrial appli-
cations. Broadly speaking, it can be said that there are no machines that do not utilize
this component. The primary applications of springs include addressing vibration-related
problems to reduce dynamic effects, preventing shock loads, applying force in a specific
pattern, and more.

For the purposes mentioned above, numerous types of springs are used in the auto-
motive sector. For example, Salah [1] discussed the design of coil springs for automotive
suspension systems, while Solazzi [2] presented the design of a torsion spring bar for the
cab suspension system of an industrial vehicle.

One of the most important parameters in the design of springs is the evaluation of
their dynamic behavior, which is related to both the natural frequencies of vibration and the
displacement of the spring under a specific load. This aspect is crucial because it can either
increase or decrease the displacement or transmission force between the two elements
connected by the spring [3–5].

The static axial load also influences the magnitude of natural frequencies [6]. The
design problem of coil springs, particularly the estimation of deflections or the stress state
of the wire, is highly complex due to its nonlinear nature [7]. This can be evaluated using
analytical or numerical methods [8–10]. Recently, to reduce component weight, innovative
materials have been introduced for the construction of coil springs [11–13].

Both the design and manufacturing processes of coil springs are very complicated. This
complexity arises because the process begins with a linear straight bar that is transformed
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into a circular spiral, forming the coil spring. This process involves many factors, such
as the mechanical behavior of the material, including the stress–strain curve (particularly
Young’s modulus and yield stress [14], plasticity, and residual stress [15,16]. Additionally,
whether the material exhibits kinematic or isotropic hardening [14] significantly affects the
mechanical behavior.

Helical compression springs for automotive suspensions are made using either cold
coiling or hot coiling processes. In hot coiling, steel wire is heated above the austenitiz-
ing temperature, coiled, quenched, and tempered, which can cause decarburization and
surface scaling, detrimental to fatigue performance. In cold coiling, wire is coiled at room
temperature, preset with torsion residual stress, and shot peened, avoiding decarburization
and scaling since stress relief occurs below the austenitizing temperature. Optimizing stress
management in springs involves balancing stress relief temperature, wire strength, shot
peening intensity, and presetting conditions. Understanding the effects of each processing
step on residual coiling stresses is essential for achieving optimal residual stress in helical
springs. Kobelev [16] presented a model to simulate residual stresses in helical springs
due to pre-setting, using the deformational theory of plasticity. It provided analytical
formulas to assess residual stresses, changes in spring shape, and pre-setting force over
spring travel. The method allowed expressing torque as a function of spring travel and
residual stresses in a closed form. The analysis included elastic–plastic bending and torsion,
offering closed-form solutions for preset moments and elastic spring-back.

There is little literature on experimental measurements of spring-back in helical springs
and its analytical prediction based on experimental values. In this paper, we focused on
cylindrical helical springs with circular cross-sections made of two different steels. The
bending theory of plates was applied to verify its applicability in spring production. In
plate production, elastic recovery can simply be measured as the variation in the angle
between the bent part before and after recovery, in relation to the angle produced by the
tool, or by the ratio of these angles. Numerous diagrams allow manufacturers to account
for recovery in sheet production, typically reporting the recovery with respect to the ratio
between the angle after recovery and plate thickness. Marciniak [17] and Gardiner [18] first
proposed an analytical solution to predict elastic recovery, but they only hypothesized a
perfectly plastic elastic behavior. Gonzalez-Coleo et al. [15] later introduced a model that
considered hardening after yielding. The main drawback of these studies is that they are
based on the elastic curve formulation, which is consistent with small thickness geometries;
indeed, in these studies, the error in the estimation of recovery increased with increasing
sheet thickness. Furthermore, larger thicknesses are affected by different hardening areas
that are not considered in the models.

In this article, the bending theory of plates is used to predict the elastic recovery of
cylindrical springs with circular cross-sections. First, the machine used to produce these
springs will be described, and data will be collected for different sizes and two materials.
Then, a model for estimating recovery will be proposed, and the equation proposed in [15]
will be validated. Finally, as an alternative to analytical models, a numerical finite element
model with a nonlinear solver will be proposed.

2. Experimental Details

Modern machines used to produce cylindrical helical springs are numerically controlled
with 4 to 12 axes. These machines consist of a straightening and feeding area for the wire
and a winding-cutting area for the spring. The wire, unwound from a coil, passes through a
series of straightening rollers and then through two or four pairs of rollers that press the
wire from above and below, rotating and pushing it to the next stage. Figure 1 shows a
machine that produces springs from wire with diameters ranging from 2.5 to 8 mm.
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Figure 1. Bench machine for 2.5–8 mm springs. 

Figure 2 shows a detailed view of the feeding and winding section with the following 
components: (1) feed rollers, which pull the wire from the coil (fed from the left in this 
photo) and push it to the right; (2) vertical pitch, which moves up and down to deform 
the wire and create the spring’s pitch; (3) cutter, which cuts the wire against the central 
mandrel; (4) horizontal pitch, which has the same function as the vertical pitch but is used 
for springs with larger diameters; (5) coiling fingers, which guide and bend the wire to 
form the helix; and (6) central mandrel. Smaller machines have six axes, while larger ones 
have ten axes, with four motors controlling the diameter (radial and tangential movement 
for the two winding tips) and an additional one for the rotation of the lower tip. 

 
Figure 2. Detail of machine coiling systems: (1) feed rollers, (2) vertical pitch, (3) cutter, (4) horizontal 
pitch, (5) coiling fingers, and (6) central mandrel. 

To regulate the coiling diameter on a machine and control the diameter axes via the 
system interface, manual adjustments are required for the axial position and vertical plane 
rotation at the first and second winding points. These tasks are crucial during winding to 
center the spring relative to the axis of the central pin, ensuring that the wire is cut at the 
highest horizontal point of the coil and that the contact point of the wire with the tips is 
centered within the channel. A crucial aspect of spring production is the diameter varia-
tion due to spring-back phenomena. 

Figure 1. Bench machine for 2.5–8 mm springs.

Figure 2 shows a detailed view of the feeding and winding section with the following
components: (1) feed rollers, which pull the wire from the coil (fed from the left in this
photo) and push it to the right; (2) vertical pitch, which moves up and down to deform
the wire and create the spring’s pitch; (3) cutter, which cuts the wire against the central
mandrel; (4) horizontal pitch, which has the same function as the vertical pitch but is used
for springs with larger diameters; (5) coiling fingers, which guide and bend the wire to
form the helix; and (6) central mandrel. Smaller machines have six axes, while larger ones
have ten axes, with four motors controlling the diameter (radial and tangential movement
for the two winding tips) and an additional one for the rotation of the lower tip.
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To regulate the coiling diameter on a machine and control the diameter axes via the
system interface, manual adjustments are required for the axial position and vertical plane
rotation at the first and second winding points. These tasks are crucial during winding to
center the spring relative to the axis of the central pin, ensuring that the wire is cut at the
highest horizontal point of the coil and that the contact point of the wire with the tips is
centered within the channel. A crucial aspect of spring production is the diameter variation
due to spring-back phenomena.

Given the manual nature of these adjustments, achieving accurate and repeatable
positioning of the winding tips to form an exact circle is challenging. Indeed, with identical
diameter axis positions displayed on the control, incorrect adjustments can result in springs
with diameters differing by up to several millimeters. To quantify this effect, for each wire
size, the position of the diameter axis relative to the winding diameter was documented
alongside the winding and ∆D graphs (where ∆D is the diameter variation due to spring-
back phenomena).

The relationship between the electronically set diameter interval and the measured
diameter difference exhibits a consistent and repeatable trend.

Accurate measurements of the cut spring can be obtained using a centesimal caliper.
However, measuring the winding diameter is more challenging; only half a coil can be
measured on the machine, and the space for the caliper is very limited for small spring
diameters. Additionally, small wire diameters are very flexible, and even slightly exces-
sive pressure from the caliper can result in inaccurate measurements. The maximum
estimated error for these measurements was approximately 0.2 mm, an acceptable margin
for this work.

Springs with wire diameters ranging from 0.05 to 12 mm for this study were selected.
The investigated springs were made of carbon steel type SH (0.82% C) and stainless steel
AISI 302, which are among the most common materials for producing small and medium-
sized springs. The chemical compositions of these steels are reported in Tables 1 and 2.
Table 3 reports the ultimate tensile stress and the yield stress.

Table 1. Chemical composition of the SH steel (EN 10270-1) [19].

C Si Mn P S Cu

0.35–1.00 0.10–0.30 0.50–1.20 0.035 max 0.035 max 0.20 max

Table 2. Chemical composition of the AISI 302 steel (EN 10270/3 [20]; DIN EN ISO 6931-1 [21]).

C Si Mn P S N Cr Mo Ni

0.05–0.15 ≤2.00 ≤2.00 ≤0.045 ≤0.015 ≤0.10 16.0–19.0 ≤0.80 6.0–9.5

Table 3. Mechanical properties according to the wire diameters.

Carbon Steel Stainless Steel

DW [mm] σR [MPa] σy [MPa] DW [mm] σR [MPa] σy [MPa]

0.25 2690 1883 0.25 2310 1617
0.6 2423 1696 0.6 2060 1442
0.9 2100 1606 1.5 1900 1330
1.5 2098 1469 2.5 1784 1249
2.5 1886 1320
6 1648 1154

Various springs were manufactured for each wire size and material type, with a spring
index ranging from 4 to 25. The spring index C is defined as the ratio between the final
diameter of the spring D2 and the diameter of the wire DW.
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For each spring size, we measured the diameter across the two winding points to
calculate the diameter increase. Figure 3 illustrates the diameter variation (∆D = D2 − D1)
of the spring before ( D1) and after spring-back ( D2) for carbon steel springs (a) and
stainless-steel springs (b) according to the spring index C. The higher elastic return in
stainless steel can be ascribed to the lower Young modulus (185 GPa for the stainless steel
and 206 GPa for the carbon steel) combined with the lower yield strength.
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Figure 3. Experimental correlation between index factor C and spring-back.

3. Analytical Approaches

This section reviews various approaches for predicting the spring-back.
The first method we investigate is derived from the mechanical bending process and

based on the spring-back ratio k, defined as follows [22]:

k =
D1 + DW
D2 + DW

=
α2

α1
(1)

where α1 and α2 are for the bending angles (see Figure 4). This approach has been widely
adopted for several materials, but curves for the steels investigated in this paper are
not available.
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Figure 5 shows the spring-back parameter k as a function of the spring index C for the
two materials. An exponential function was chosen to fit the points:

k = a1 ea2C (2)

where Table 4 reports the estimated variables for carbon steel and stainless steel, with each
coefficient of determination R2.

Tables 5 and 6 report the spring geometrical parameters, the k parameter derived by
applying Equation (1) and using the diameters D1 and D2 estimated during the spring
production process ( kexp), and the k parameter calculated from Equation (2). The maximum
error is about 3.62% and 4.80% for carbon and stainless steels, respectively.
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Table 4. Coefficient of interpolation for Equation (2).

Material a1 a2 R2

Carbon steel 1.0309 −0.009 0.96
Stainless steel 1.0257 −0.01 0.98

Gonzalez-Coleo et al. [15] recovery model was based on the plasticity constitutive law
of the steel:

1 − r1

r2
= −8

(1 − n)
(n + 2)

(
r1σy

DW E

)3
+ 3

21−n

(n + 2)

(
r1σy

DW E

)1−n
(3)

where n is the nondimensional hardening exponent describing the plastic trend of the
tensile test, E the Young’s modulus, σy the yield stress, r1 the radius curvature before the
spring-back, r2 the radius curvature after the spring-back. The yield stresses are reported in
Table 4, while the strain hardening exponent is 0.1. Table 7 shows the relative error between
the nominal diameter experimentally found and that calculated from Equation (3); the error
increases with the spring index C. The error can be ascribed to the fact that Equation (3)
focuses solely on the bending phenomenon. As the spring diameter increases, it is overly
simplistic to consider only bending; torque should be included as well, for instance.
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Table 5. Spring geometry details and results from spring-back recovery k for carbon steel ( kexp is the
parameter experimentally found; kint is the one calculated from Equation (2)).

DW
[mm]

D2
[mm]

D1
[mm] kexp kint Error k DW

[mm]
D2

[mm]
D1

[mm] kexp kint Error k

0.25 4 3.40 0.859 0.886 3.13% 2.5 12 11.70 0.979 0.985 0.60%
0.25 5 4.07 0.823 0.853 3.62% 2.5 15 14.53 0.973 0.974 0.09%
0.25 6 4.72 0.795 0.821 3.23% 2.5 16 15.53 0.975 0.970 0.44%
0.25 8 6.00 0.758 0.761 0.43% 2.5 18 17.28 0.965 0.963 0.20%
0.25 10 7.07 0.714 0.705 1.26% 2.5 20 19.00 0.956 0.956 0.01%
0.6 5 4.64 0.936 0.953 1.81% 2.5 22 20.70 0.947 0.948 0.15%
0.6 6 5.51 0.926 0.938 1.29% 2.5 24 22.36 0.938 0.941 0.33%
0.6 8 7.12 0.898 0.908 1.20% 2.5 28 25.70 0.925 0.927 0.26%
0.6 10 8.60 0.868 0.880 1.40% 2.5 32 28.98 0.912 0.913 0.06%
0.6 12 10.00 0.841 0.853 1.36% 2.5 36 32.05 0.897 0.899 0.21%
0.9 10 9.10 0.917 0.928 1.13% 2.5 40 35.10 0.885 0.886 0.11%
0.9 12 10.66 0.896 0.908 1.37% 2.5 42 36.60 0.879 0.879 0.04%
0.9 15 13.00 0.874 0.880 0.67% 2.5 44 38.15 0.874 0.872 0.21%
0.9 16 13.75 0.867 0.871 0.46% 2.5 48 41.00 0.861 0.859 0.26%
0.9 18 15.20 0.852 0.853 0.10% 2.5 50 42.35 0.854 0.853 0.19%
1.5 10 9.64 0.969 0.968 0.09% 2.5 52 43.94 0.852 0.846 0.69%
1.5 12 11.36 0.953 0.956 0.32% 6 42 40.93 0.978 0.965 1.32%
1.5 15 14.03 0.941 0.938 0.38% 6 44 42.66 0.973 0.962 1.18%
1.5 16 14.85 0.934 0.932 0.27% 6 48 46.11 0.965 0.956 0.97%
1.5 18 16.50 0.923 0.920 0.33% 6 50 47.83 0.961 0.953 0.90%
1.5 20 18.20 0.916 0.908 0.86% 6 52 49.54 0.958 0.950 0.83%
1.5 22 19.78 0.906 0.897 0.94% 6 60 56.32 0.944 0.938 0.70%
1.5 24 21.38 0.897 0.886 1.29% 6 70 64.77 0.931 0.923 0.89%
1.5 28 24.42 0.879 0.864 1.72% 6 80 73.42 0.923 0.908 1.63%
1.5 32 27.32 0.860 0.842 2.13% 6 100 89.00 0.896 0.880 1.80%
1.5 36 30.06 0.842 0.821 2.46%

Table 6. Spring geometry details and results from spring-back recovery k for stainless steel ( kexp is
the parameter experimentally found; kint is the one calculated from Equation (2)).

DW
[mm]

D2
[mm]

D1
[mm] kexp kint Error k DW

[mm]
D2

[mm]
D1

[mm] kexp kint Error k

0.25 4 3.41 0.862 0.874 1.91% 2.5 12 11.77 0.984 0.978 1.13%
0.25 5 4.10 0.829 0.840 1.89% 2.5 15 14.50 0.971 0.966 0.84%
0.25 6 4.76 0.801 0.807 1.23% 2.5 16 15.39 0.967 0.962 0.77%
0.25 8 5.96 0.753 0.745 1.26% 2.5 18 17.16 0.959 0.954 0.63%
0.25 10 7.03 0.710 0.688 4.80% 2.5 20 18.90 0.951 0.947 0.51%
0.6 5 4.65 0.938 0.944 0.59% 2.5 22 20.61 0.943 0.939 0.41%
0.6 6 5.46 0.917 0.928 1.29% 2.5 24 22.29 0.936 0.932 0.32%
0.6 8 7.00 0.884 0.898 1.91% 2.5 28 25.58 0.921 0.917 0.15%
0.6 10 8.48 0.856 0.868 1.94% 2.5 32 28.75 0.906 0.902 0.01%
0.6 12 9.87 0.831 0.840 1.64% 2.5 36 31.81 0.891 0.888 0.11%
1.5 10 9.89 0.990 0.960 3.32% 2.5 40 34.76 0.877 0.874 0.23%
1.5 12 11.52 0.964 0.947 1.87% 2.5 42 36.19 0.869 0.867 0.28%
1.5 15 13.91 0.934 0.928 0.49% 2.5 44 37.59 0.862 0.860 0.34%
1.5 16 14.69 0.925 0.922 0.18% 2.5 48 40.31 0.848 0.847 0.44%
1.5 18 16.24 0.910 0.910 0.28% 2.5 50 41.63 0.841 0.840 0.50%
1.5 20 17.77 0.896 0.898 0.57% 2.5 52 42.92 0.833 0.833 0.55%
1.5 22 19.26 0.883 0.886 0.72%
1.5 24 20.73 0.872 0.874 0.78%
1.5 28 23.59 0.851 0.851 0.65%
1.5 32 26.35 0.831 0.829 0.28%
1.5 36 29.00 0.813 0.807 0.27%
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Table 7. Spring recovery according to Equation (3) for carbon steel and relative error with respect to
experimental results.

DW
[mm]

σy
[MPa] C [-] D2 exp.

[mm]
D2 calc.
[mm]

Error
D2

DW
[mm]

σy
[MPa] C [-] D2 exp.

[mm]
D2 calc.
[mm]

Error
D2

0.25 1883 8.0 4 4.3 9% 2.5 1469 2.4 12 12.5 4%
0.25 1883 10.0 5 5.5 9% 2.5 1469 3.0 15 15.8 5%
0.25 1883 12.0 6 6.7 11% 2.5 1469 3.2 16 17.0 6%
0.25 1883 16.0 8 9.4 17% 2.5 1469 3.6 18 19.1 6%
0.25 1883 20.0 10 12.1 21% 2.5 1469 4.0 20 21.2 6%
0.6 1696 4.2 5 5.3 5% 2.5 1469 4.4 22 23.3 6%
0.6 1696 5.0 6 6.4 7% 2.5 1469 4.8 24 25.4 6%
0.6 1696 6.7 8 8.6 8% 2.5 1469 5.6 28 29.7 6%
0.6 1696 8.3 10 10.9 9% 2.5 1469 6.4 32 34.1 7%
0.6 1696 10.0 12 13.1 9% 2.5 1469 7.2 36 38.4 7%
0.9 1606 5.6 10 10.6 6% 2.5 1469 8.0 40 42.8 7%
0.9 1606 6.7 12 12.8 7% 2.5 1469 8.4 42 45.0 7%
0.9 1606 8.3 15 16.2 8% 2.5 1469 8.8 44 47.3 8%
0.9 1606 8.9 16 17.4 9% 2.5 1469 9.6 48 51.7 8%
0.9 1606 10.0 18 19.7 10% 2.5 1469 10.0 50 53.8 8%
1.5 1320 3.3 10 10.5 5% 2.5 1469 10.4 52 56.3 8%
1.5 1320 4.0 12 12.5 4% 6 1154 3.5 42 44.3 5%
1.5 1320 5.0 15 15.8 5% 6 1154 3.7 44 46.3 5%
1.5 1320 5.3 16 16.9 5% 6 1154 4.0 48 50.3 5%
1.5 1320 6.0 18 19.0 6% 6 1154 4.2 50 52.4 5%
1.5 1320 6.7 20 21.2 6% 6 1154 4.3 52 54.4 5%
1.5 1320 7.3 22 23.4 6% 6 1154 5.0 60 62.6 4%
1.5 1320 8.0 24 25.6 7% 6 1154 5.8 70 73.1 4%
1.5 1320 9.3 28 30.0 7% 6 1154 6.7 80 84.2 5%
1.5 1320 10.7 32 34.4 8% 6 1154 8.3 100 105.0 5%
1.5 1320 12.0 36 38.8 8% 6 1154 10.0 120 127.4 6%

4. Numerical Simulations

We conducted finite element simulations to investigate the effect of elastic return
in spring production using Ansys. This analysis requires a nonlinear solver. The model
contains six components, as labeled in Figure 6: spring steel wire (1), coiling mandrel (2),
and two rollers that bend the wire on the inner disc (3), which are joined to the support
braces (4). Except for the wire, all components are designated as rigid, allowing the mesh
to be generated solely on the surfaces in contact with the wire, preventing deformations of
the rollers or arms that could result in inaccurate calculations and extended solving times.
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SH class steel was characterized using the tensile test chart of the same type and
batch of material used in the coiling tests previously reported. Table 8 lists the mechanical
properties of the steel. To account for the plastic behavior, we implemented an elastic–plastic
constitutive model; in detail, a bilinear law approximated the stress–strain tensile curve.

Table 8. Mechanical properties implemented in finite element simulations.

Properties Value

Density [kg/m3] 7850
Young’s modulus [GPa] 197

Poisson’s ratio [-] 0.3
Yield strength [MPa] 1154

Tangent modulus [MPa] 117

The two support braces are attached to the central disc using revolute joints, allowing
them to rotate. Similarly, the two rollers are attached to the upper pivots of the arms using
revolute joints, enabling their rotation. The central disc is fixed to the ground. The wire is
constrained from moving vertically, keeping it centered on the disc and rollers throughout
the process. The bending operation is performed by rotating the arms: the right arm rotates
clockwise up to 90◦ and then back to 75◦, while the left arm rotates counterclockwise up to
90◦ and then back to 75◦. This motion retracts the rollers, releasing the wire.

The interaction between the wire and the rollers is set through a contact constraint
with an Augmented Lagrange method. This was chosen because it provides more accurate
results than those obtained through a Pure Penalty method and shorter calculation times,
much less than what is required by Normal Lagrange. Additionally, the chosen method
does not present any risk of contact vibration (which is possible with Normal Lagrange)
and has low permissible contact penetration values. The pure penalty method allows high
overlapping values, which result in inaccurate diameter measurements.

The contact behavior is set to asymmetric, and the friction coefficient is set at 0.4. The
coiling tools of the actual machine are made of lapped tungsten carbide, while the wire is
covered with a thin layer of stearate, which reduces friction during the forming process.

The components are discretized using tetrahedral elements. For the simulation with
6 mm diameter wire and 65 mm coiling diameter, the number of nodes is 26,894, and the
number of elements is 5871, as shown in Figure 7. These belong mostly to the steel wire
since all other elements are rigid, and the mesh is generated only on the surfaces of the
components that come into contact with the wire. Figures 8 and 9 illustrate the progression
of the wire throughout the simulations.
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The simulations results were calculated based on the parameter k. Firstly, the angles α1
and α2 were estimated from the simulations as shown in Figure 9. Subsequently, kFEM using
Equation (1) and, finally, the final diameter D2, FEM according to the following equations:

D2,FEM =
1

kFEM
(D1 + s)− s (4)

where D2,FEM is the diameter after the spring-back estimated by the finite element mode,
D1 is the diameter before the spring-back and Dw the wire diameter.

Table 9 shows the simulation results. The extent of spring-back increases nonlinearly
as the spring index increases. Of note, the relative errors found in the numerical models are
consistent with those calculated with Equation (3). The relative errors are not more than
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8%. However, the computation time (in general more than 5 h) makes simulations a less
practical method compared to an analytical prediction.

Table 9. Detail of finite elements model results.

D1
[mm]

D2,exp
[mm]

α1
[◦]

α2
[◦]

kFEM
[-]

D2,FEM
[mm] % Error D2

50 52.6 90.62 89.36 0.986 50.79 3%
65 70.3 91.53 89.7 0.980 66.45 5%
75 82.6 91.6 90 0.983 76.44 7%
80 88.8 91.38 90 0.985 81.32 8%

5. Conclusions

This research provided an in-depth analysis of the spring-back phenomenon in cylin-
drical helical springs made of carbon steel and stainless steel. By employing both ex-
perimental measurements and analytical models, the exponential relationship between
the spring-back ratio k (Equation (1)) and the spring index C (the ratio between the final
diameter of the spring D2 and the diameter of the wire 2s) is determined. The maximum
errors for the predicted spring-back were 4.80% for stainless steel and 3.62% for carbon
steel, demonstrating the model’s accuracy. Furthermore, a model requiring the initial diam-
eter, thickness, and plastic properties of the material as input data were employed. The
outcomes of this model were dependent on the spring index C, with the error increasing as
C increased.

Additionally, finite element simulations corroborated the analytical predictions, though
they required significant computation time. These findings offer valuable insights for optimiz-
ing spring manufacturing processes, enhancing precision, and minimizing material waste.

Future work could explore more geometries and materials to further refine predictive
models and improve manufacturing efficiency.
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