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Abstract The aim of this note is twofold. First of all, we propose a very
partial survey on the mathematical modeling and analysis of adhesive contact and
delamination. Secondly, we advance a new model for adhesive contact with thermal
effects that includes nonlocal adhesive forces and surface damage effects, as well
as nonlocal heat flux contributions on the contact surface. In the derivation of the
model, we follow the approach by M. Frémond applying it to nonlocal adhesive
contact.
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1 Introduction

Adhesive contact and delamination have been intensively investigated in recent
years both from the analytical and the mechanical viewpoint. First of all, a thorough
understanding of these inelastic phenomena on surfaces plays an important role
in the stability analysis for laminate structures, more and more used in industry.
For instance, laminated materials enjoy remarkable energy absorption properties,
and are therefore preferable to conventional metallic structures in designing energy-
absorbing elements in vehicles, cf. e.g. [25]. Indeed, delamination is a progressive
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separation of bonded laminates, usually due to the degradation of the adhesive
substance gluing them together. Since it is an inelastic process on a surface, from
a mathematical standpoint adhesive contact and delamination can be modeled by
resorting to a surface damage theory. From a broader perspective, models for joint
volume and surface damage processes are and will be more and more relevant
for the description of the degradation of monumental stones. Their deterioration
is due to the harmful combination of environmental conditions and mechanical
actions. In fact, physical and chemical mechanisms (such as, e.g., pollution) induce
a progressive increase of the surface rugosity and the porosity of the external
layers, with the formation of micro-cracks and fractures in crystal grains. A model
describing this phenomenon has been first advanced and analyzed in the recent
[13]. It would be interesting to gain further insight into this degradation process
by mathematically modeling the damage of the external layers of monuments via a
‘surface damage approach’, in order to evaluate its influence on the behavior of the
whole structure.

In this note we are going to introduce a model for nonlocal adhesive contact with
thermal effects that pertains to a class of models for adhesive contact and delami-
nation originating from the approach by M. FRÉMOND, cf. [29] and the pioneering
paper [28], also in the frame of the theory of generalized standard materials [30].
Typically, one considers two elastic bodies !+, !− ⊂ R3 (throughout this note,
we shall confine the discussion to the 3D case, meaningful for the applications),
possibly subject to viscosity and inertia, bonded along a prescribed contact surface
"C; we set O := !+ ∪ !− ∪ "C. Neglecting thermal effects, the evolution, during
a finite time interval (0, T ), of adhesive contact and delamination between !+ and
!− is described in terms of an internal variable χ : "C × (0, T ) → [0, 1]. The
parameter χ has in fact the meaning of a damage variable, as it describes the fraction
of fully effective molecular links in the bonding. Namely,

χ(x, t) =
{
1

0
means that the bonding is

{
fully intact

completely broken
(1)

at the material point x ∈ "C and the process time t ∈ (0, T ), with χ(x, t) ∈ (0, 1)
for the intermediate states. The momentum balance for the displacement field u :
(!−∪!+) × (0, T ) → R3 is thus coupled with the flow rule for χ . The resulting
PDE system can be derived via a generalized version of the principle of virtual
power (cf. also Sect. 2 below); it has the abstract structure of a generalized gradient
system

$ut t + µ∂V(ut )+ DuE(t,u,χ) ' 0 in U∗ a.e. in (0, T ), (2a)

∂R(∂tχ)+ DχE(t,u,χ) ' 0 in X∗ a.e. in (0, T ). (2b)

Typically, for the momentum balance (2a) the ambient space U is H 1(O\"C;R3)

(or a subspace of the latter space, in order to account for Dirichlet conditions on the
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displacement on a portion "Dir of ∂O); the constant $ ≥ 0 modulates the inertial
term, while the dissipation potential V : U → [0,+∞), given by

V(ut ) :=
∫

O\"C

1
2Vε(ut ) : ε(ut ) dx,

features the (positive definite, symmetric) viscosity tensor V, (ε(ut ) denoting the
classical strain rate tensor), and ∂V : U ⇒ U∗ is its subdifferential in the sense of
convex analysis. The ambient spaceX for the flow rule (2b) can be (formally) taken
as L2("C); the dissipation potential R : X → [0,+∞], with convex subdifferential
∂R : X ⇒ X∗, typically consists of two contributions

R(χt ) :=
∫

"C

R(χt ) dS + ν

∫

"C

I(−∞,0](χt ) dS . (3)

The indicator term I(−∞,0] enforces the constraint

χt ≤ 0 a.e. in"C × (0, T ), (4)

translating the fact that the degradation of the adhesive bonds between !+ and !−
is irreversible; the dissipation density R : R → [0,+∞) is convex and will be
discussed below. Finally, the driving energy functional E : (0, T ) × U × X →
(−∞,+∞] for the adhesive contact/delamination model generally takes the form

E(t,u,χ) :=
∫

O\"C

1
2Eε(u) : ε(u) dx + λ

∫

"C

I(−∞,0](
[[
u
]]
· n) dS

+E"C(χ)+ Ecoup(u,χ) − U∗〈F(t),u〉U .

(5)

Namely, the elastic energy contribution, featuring the (positive definite, symmetric)
elasticity tensor E, (ε(u) denoting the linearized strain tensor), is added with a term
that involves the normal component of the displacement jump [[u]] across "C (i.e.,
[[u]] is the difference of the traces on"C of u|!+ and u|!−), as n denoted the outward
unit normal vector to the boundary ∂!. The indicator function I(−∞,0] ensures that
along a solution to system (2) the non-interpenetration constraint between the bodies
!+ and !−, namely

[[
u
]] · n ≤ 0 a.e. in "C × (0, T ), (6)

holds. The “coupling” functional Ecoup is typically given by

Ecoup(u,χ) :=
∫

"C

J (
[[
u
]]
,χ) dS (7)
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with J : R3 × [0, 1] → [0,+∞] smooth, while the surface contribution E"C may
involve

– a gradient, regularizing term; in that case, it is customary to assume that "C
is a “flat surface”, embedded in R2 (cf. also Sect. 2), on which the Hausdorff
measure coincides with the Lebesgue one. Therefore, one writes dx in place of
dS for integrals on "C, and for the gradient terms the usage of Laplace–Beltrami
operators can be avoided. Hence, one can for instance choose a regularizing
contribution of the form

∫
"C

1
2 |∇χ |2 dx;

– the indicator term
∫
"C

I[0,1](χ) dx enforcing the constraint

χ ∈ [0, 1] a.e. in"C × (0, T ); (8)

– and, possibly, other smooth terms.

Finally, the functionF : (0, T ) → U∗ subsumes volume forces and applied tractions
on the ‘Neumann part’ "Neu of ∂O . The coefficients µ, ν, λ in (2a)–(2b), (3), and
(5) are all non-negative and may thus switch off, or on, the viscosity contribution to
the momentum balance, the unidirectionality constraint (4) for the evolution of χ ,
and the non-intepenetration condition (6), respectively. Similarly, inertial effects in
(2a) are neglected if one takes $ = 0.

A major distinction has to be made between

– rate-independent models, in which the dissipation density R is positively homo-
geneous of degree 1, namely

R() χ̇) = )R(χ̇) for all χ̇ ∈ R, ) ≥ 0 (9)

– and rate-dependent models, featuring a dissipation density with superlinear
growth at infinity; typically, in adhesive contact models one considers a quadratic
dissipation potential, i.e. (setting all physical constants equal to 1)

R(χ̇) = 1
2
|χ̇ |2 for all χ̇ ∈ R. (10)

Although the focus of this note is on a rate-dependent system for nonlocal,
temperature-dependent adhesive contact, we will also very partially review the,
intensively growing, literature on rate-independent models.

1.1 Rate-Independent Models

Adhesive contact and delamination as rate-independent processes have been
actively studied over the last 15 years since the pioneering paper [31], which
addressed a quasistatic (i.e. without inertial effects) model where viscosity in u was
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also neglected (viz., with $ = µ = 0 in (2a)). In such a case, since the displacement
variable is at equilibrium and the subdifferential operator ∂R : X ⇒ X∗ is 0-
(positively) homogeneous, system (2) is invariant upon (increasing) time rescalings,
which reflects the modeling ansatz that the system possesses no internal time
scale. In the 1-homogeneous case, though, system (2) is only formally written
as a subdifferential inclusion holding pointwise in time. Indeed, the dissipation
density R has linear growth at infinity, and thus one can in general expect only
BV-time regularity for χ . Thus, χ may have jumps as a function of time, and its
derivative χt need not be defined. In view of this, it is necessary to formulate (2)
in a suitably weak way. In [31] the authors resorted to the commonest solvability
concept for rate-independent processes, namely the notion of energetic solution
(cf. [32]). It consists of an energy-dissipation balance (which, of course, only
features the 1-homogeneous dissipation potential R, as viscosity and inertia in u
are neglected) and of a (global) stability condition that can be indeed recast as a
(global) minimization problem. The main result of [31] is the existence of solutions
to the Cauchy problem for the energetic formulation. Without entering into further
details, let us only mention that [31] addressed the case in which the ‘coupling
energy’ from (7) is given by

Ecoup(u,χ) =
∫

"C

κ
2χ |

[[
u
]]
|2 dx, (11)

with κ ≥ 0. This term penalizes displacement jumps in points with strictly positive
χ but does not exclude them.

Obviously, one expects that the blow-up of the coefficient κ will lead to a model
with the brittle constraint

χ
[[
u
]]
= 0 a.e. in"C × (0, T ), (12)

that allows for displacement jumps (i.e., [[u]] /= 0) only at points where the
bonding is completely broken (i.e., χ = 0), and otherwise imposes the transmission
condition [[u]] = 0 on the displacements. Systems encompassing (12) are frequently
referred to as brittle delamination models, as opposed to the adhesive contact
models with the coupling energy from (11).

The convergence of energetic solutions of the adhesive contact system examined
in [31] to the brittle delamination system was rigorously proved in [42], relying on
"-convergence type arguments. In fact, the energetic formulation has an intrinsically
variational character that allows for limiting procedures based on notions of varia-
tional convergence. This has been crucially exploited, for instance, for dimensional
reduction analyses, cf. e.g. [33], dealing with the limit passage from bulk to surface
damage as the thickness of an interface between two elastic bodies tends to zero,
and [27], deriving models for both adhesive contact and brittle delamination in
2D plates as limits of delamination between 3D thin plates. More in general, the
flexibility of the energetic concept allows for an easy coupling of delamination with
other inelastic processes such as plasticity and phase transformations, as well as for
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enhancements to cohesive-type or mixed mode models. We refer to [41] (and the
references therein) for a comprehensive survey of these aspects.

The range of applicability of the energetic formulation can be broadened to
encompass models coupling rate-independent evolution of the internal variable with
rate-dependent evolution of the displacement, subject to viscosity and, possibly,
inertia. This extended notion of energetic solution was exploited, for instance, in
[40]. Relying on a further generalization of energetic solutions for rate-independent
processes also subject to thermal effects (cf. [39]), in [37] a model for adhesive
contact between two thermoviscoelastic bodies was analyzed; the extension to
brittle delamination was carried out in [38]. The PDE systems analyzed in [37]
and [38] couple (2) with the temperature equation in the bulk domain O\"C; in
this case, the overall system has a more complex structure than that of a generalized
gradient system and, accordingly, its energetics is more involved. A common feature
of the coupled rate-independent/rate-dependent systems addressed in [37, 40] and
[38] is that, due to the presence of inertial terms in the momentum balance, the
unilateral non-interpenetration constraint (6) was not incorporated in the model
and, accordingly, the contribution

∫
"C

I(−∞,0]([[u]] · n) dS was either neglected or
replaced by a term only penalizing interpenetration, without excluding it.

1.2 Rate-Dependent Models

Also rate-dependent delamination systems, featuring the quadratic dissipation
potential (10), have been intensively studied over the last two decades.

In [7] we first approached the study of FRÉMOND’s model for adhesive contact,
neglecting inertia (i.e. setting $ = 0 in (2a)), in favor of a more transparent
formulation of the momentum balance that would account for the reaction forces
associated with the constraints encompassed by the model. More precisely, we
confined our analysis to the case of a single body! in adhesive contact with a rigid
support, such that the contact surface "C is a part of their common boundary. In
this case, the jump of the displacement [[u]] coincides with its trace on "C, hereafter
simply denoted by u. We considered the driving energy functional

E(t,u,χ) :=
∫

!

1
2Eε(u) : ε(u) dx +

∫

"C

I(−∞,0](u · n) dx

+
∫

"C

(
1
2 |∇χ |2+I[0,1](χ)−wsχ

)
dx +

∫

"C

κ
2χ |u|2 dx

−
∫

!
f(t) · u dx −

∫

"Neu

g(t) · u dx,

in which the coupling contribution is given by (11), ws is a positive constant related
to the cohesion on the adhesive, f is a volume force and g a traction applied on
the Neumann part "Neu of the boundary ∂! = "Dir ∪ "Neu ∪ "C. Imposing
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zero Dirichlet boundary conditions on the Dirichlet boundary "Dir we derived the
following quasistatic PDE system for adhesive contact

− div (Vε(ut )+Eε(u)) = f in ! × (0, T ), (13a)

u = 0 on "Dir × (0, T ),
(13b)

(Vε(ut )+Eε(u))n = g on "Neu × (0, T ),
(13c)

(Vε(ut )+Eε(u))n+ κχu+ ∂I(−∞,0](u · n)n ' 0 on "C × (0, T ), (13d)

χt + ∂I(−∞,0](χt ) − +χ + ∂I[0,1](χ) ' ws − κ

2
|u|2 on "C × (0, T ), (13e)

∂nsχ = 0 on ∂"C × (0, T ). (13f)

Observe that (13d) generalizes the Signorini conditions from the basic unilateral
contact theory, in that the term κχu represents the resistance to tension related
to the action of microscopic bonds between the surfaces of the adhering solids.
Let us stress that in system (13) all constraints on the variables u and χ are
rendered by means of multivalued operators. This approach, though leading to some
analytical difficulties, allows us to account for the internal reactions ‘activated’ by
the constraints.

The main result of [7] states the existence of solution to the Cauchy problem for
(13), with the flow rule (13e) formulated as a subdifferential inclusion holding a.e.
on "C × (0, T ), and the momentum balance (13a) formulated with test functions
from H 1(!;R3) having null trace on "Dir. In particular, the weak formulation of
(13a) with the boundary conditions (13b)–(13d) features a selection ξ from the
(suitably realized) subdifferential ∂I(−∞,0](u · n)n. This term has the meaning of
a reaction force, activated ‘on the boundary’ of the non-intepenetration constraint,
namely when u · n = 0. Dropping the inertial term in (13a) we were able to
gain estimates for the term ξ ∈ ∂I(−∞,0](u · n)n, and thus to encompass it in the
momentum balance. Subsequently, in [45] (cf. also [43, 44]) an existence result
was proved for a dynamic adhesive contact system with the non-interpenetration
condition (6), in which the analytical difficulties attached to the coupling of inertia
and a unilateral constraint were bypassed by resorting to a suitable weak solution
concept introduced in [17].

The analysis in [7] has been extended in various directions. Indeed, the long-time
behavior of system (13) has been addressed in [6], where the existence and prop-
erties of the associated ω-limit set have been investigated, while frictional effects
have been included in the model studied in [9]. Furthermore, the coupling between
adhesive contact and volume damage has been investigated in [16]. In the rate-
dependent context, the (asymptotic) relation between bulk and surface models has
been addressed in [4, 5]. Therein, by means of the method of asymptotic expansions,
models of ‘imperfect interfaces’ have been derived as limits of processes in a thin
adhesive substrate between two bodies that undergoes a degradation process, as its
thickness vanishes. The limiting models couple the evolution of the (bulk) displace-
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ment and temperature variables to that of a surface damage parameter, encompass-
ing unilateral contact conditions along the interface. However, a rigorous dimen-
sional reduction analysis from a model for bulk damage to a surface damage one,
in the same spirit as [33], is still missing. Likewise, the limit passage from adhesive
contact to brittle delamination (namely, the asymptotic analysis of the adhesive con-
tact system (13) as the parameter κ blows up) is still open. In fact, for rate-dependent
systems it is more challenging to perform this kind of analyses, for they would
involve non-trivial limit passages in the momentum balance and in the flow rule.

The model introduced in [7] has been extended in [8] to the temperature-
dependent framework, considering heat generation effects in the phenomenon of
adhesive contact, too. The thermal evolution of the system is assumed to be ruled by
the heat exchange between the body and the adhesive substance through the contact
surface. In particular, allowing for different temperatures in the bulk domain and on
the contact surface, we assumed that temperature variables θ and θs are governed
by two distinct entropy balance laws. The analysis carried out in [8] leads to an
existence result for (the initial-value problem associated with) the following PDE
system:

∂t (ln(θ)) − div(ut ) − +θ = h in ! × (0, T ), (14a)

∂nθ =
{
0 in (∂! \ "C) × (0, T ),

−k(χ)(θ − θs) in "C × (0, T ),
(14b)

∂t (ln(θs)) − ∂t (λ(χ)) − +θs = k(χ)(θ − θs) in "C × (0, T ), (14c)

∂nsθs = 0 in ∂"C × (0, T ), (14d)

− div (Eε(u)+ Vε(ut )+ θ I) = f in ! × (0, T ), (14e)

u = 0 in "Dir × (0, T ), (14f)

(Eε(u)+ Vε(ut )+ θ I)n = g in "Neu × (0, T ), (14g)

(Eε(u)+ Vε(ut )+ θ I)n+ κχu
+∂I(−∞,0](u · n)n ' 0

in "C × (0, T ), (14h)

χt − +χ + ∂I[0,1](χ)+ γ ′(χ)
' −λ′(χ)(θs − θeq) − κ

2 |u|2
in "C × (0, T ), (14i)

∂nsχ = 0 in ∂"C × (0, T ), (14j)

where λ, k, and γ are sufficiently smooth functions, whereas θeq > 0 is a phase
transition temperature, κ a positive constant, and I the identity matrix. Let us
comment that a peculiarity of the system is that, the evolution of the temperature
variables θ and θs is governed by entropy, in place of internal energy, balance
equations. While referring to, e.g., [14, 15] for a more accurate illustration of
this approach, we may mention here that the entropy equations are recovered
by rescaling the internal energy balance equations, neglecting some higher order
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dissipative terms under the small perturbation assumption. As shown in [10, Sec.
2], this leads to a thermodynamically consistent model, where the strict positivity
of θ and θs is enforced by the very form of the equations, cf. (14a) and (14c). On
the other hand, the singular character of the terms ∂t (ln(θ)) and ∂t (ln(θs)) occurring
in (14a) and (14c) does not allow but for poor time-regularity for θ and θs. Again,
we note that the evolution of the temperatures is essentially governed by the heat
exchange throughout the contact surface. More precisely, the entropy flux through
"C (namely the term k(χ)(θ − θs) in (14b)) plays the role of a source of entropy in
(14c). From the analytical point of view, this results in a nonlinear coupling between
(14a)–(14b) and (14c) and gives rise to further technical difficulties.

The thermodynamical modeling approach from [8] was also adopted in [10],
where frictional contributions are further encompassed in a temperature-dependent
model through a regularization of the classical Coulomb law, here generalized
to the case of adhesive contact and assuming thermal dependence of the friction
coefficient. The main result in [10] states the existence of solutions to a temperature-
dependent system for adhesive contact with friction, in which all the constraints on
the internal variables, as well as the unilateral contact conditions and the friction law,
are rendered by means of subdifferential operators, in accordance with the approach
developed in [7–9].

Concerning frictional contact problems, with or without adhesion, we recall
an alternative approach which replaces the unilateral contact conditions (the Sig-
norini contact conditions) rendered by (13d) with a normal compliance condition,
allowing for the interpenetration of the surface asperities and thus for dispensing
with the unilateral constraint on u · n. Analytically, the normal compliance law
corresponds to a penalization of the subdifferential operator ∂I(−∞,0] in (13d).
In this connection, we refer e.g. to [1], analyzing a dynamic model for frictional
contact in thermoviscoelasticity with a power-law normal compliance condition,
and the corresponding generalization of Coulomb’s law of friction. Contact with
a deformable foundation is considered in [2] as well, where a dynamic contact
problem for a thermoviscoelastic body, with frictional and wear effects on the
contact surface, is investigated. A wide class of dynamic frictional contact problems
in thermoelasticity and thermoviscoelasticity is also tackled in [24], with contact
rendered by means of a normal compliance law. In the context of contact with a
deformable foundation, we quote [35], where a dynamic frictional contact problem
with adhesion is formulated by coupling a hyperbolic hemivariational inequality for
the displacement and a first-order ODE for the adhesive field. By means of abstract
results on variational-hemivariational inequalities, the existence and the regularity
of a solution were proved (for these techniques and their applications in Contact
Mechanics, see e.g. the monograph [34]).

A different approach to frictional contact problems was developed in [23] and
in [21] (cf. also the references in the monographs [22, 46]), where contact with a
rigid foundation is modeled by the Signorini conditions in velocity form, that are
indeed expressed in terms of ut rather than of u. In this context, existence results
were obtained for contact problems including frictional and thermal effects.
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We also recall the contributions [19, 20, 36] on the analysis of systems coupling
friction, adhesion and unilateral contact (modeled via the classical Signorini
conditions), akin to FRÉMOND’s model (see [28, 29]). In [36], a consistent model
describing unilateral contact, adhesion and friction was derived and the related
quasistatic problem was written in terms of two variational inequalities and a first-
order ODE (indeed, local interactions in the adhesive substance were neglected);
the main result therein provides the existence of solutions for an incremental
formulation of the problem; some numerical schemes are also given. In [19, 20],
based on [36], contact problems with adhesion and friction were considered in
the quasistatic elastic case and in the dynamic viscoelastic case, respectively. Let
us stress that, differently from our approach, in all of these contributions the
existence of solutions is proved for formulations of the related PDE systems that
involve variational inequalities, and not evolutionary differential inclusions, for the
displacement.

We conclude this short review on frictional contact problems with adhesion
returning to the temperature-dependent case in order to illustrate our paper [11].
Differently from [10], therein the temperature equations for the bulk and the
surface temperatures θ and θs are derived from the internal energy balance, without
neglecting any higher order dissipative contribution. The presence of quadratic
terms on their right-hand side that are only estimated in L1(! × (0, T )) and in
L1("C × (0, T )), respectively, leads to considerable difficulties. By resorting to
Boccardo-Gallouët [3] type estimates and under suitable growth conditions on the
heat capacity and the heat conductivity of the system, the existence of a solution for
the related initial-boundary value problem has been proved in [11].

1.3 Adhesive Contact with Nonlocal Effects

In [12] we have further extended the analysis of the (isothermal) adhesive contact
model by FRÉMOND, by assuming that also nonlocal forces act on the contact
surface. More precisely, in addition to the interactions, on the contact surface,
between damage (of the adhesive substance) at a point and damage in its neigh-
borhood, in the model in [12] we have encompassed a nonlocal interaction among
the adhesive substance, the body ! and its rigid support. This results in an integral
term further contributing to the resistance to tension in the generalized Signorini
conditions (13d), and in a second integral term, coupled to it, in the flow rule for the
adhesion parameter. The motivation for this enhancement of the model comes from
experiments showing that elongation, i.e. a variation of the distance of two distinct
points on the contact surface, may have damaging effects on the adhesive substance,
cf. [26].

The aim of this note is to introduce a model further encompassing thermal
effects in the nonlocal system studied in [12], still within the assumption that the
temperatures in the body and in the adhesive substance are a priori different, as
in the models from [8, 10, 11]. As we have seen, this ansatz leads to a different
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approach to the modeling of the heat exchange between the body and the glue
located on the contact surface. In particular, we are now going to assume a nonlocal
interaction between the body and the adhesive as far as it concerns heat transfer,
as well. Accordingly, the related PDE system (cf. (54) ahead) will contain integral
terms in the boundary condition for the bulk absolute temperature on the contact
surface, and in the equation for the surface temperature, too. We will derive it in the
upcoming Sect. 2.

2 The Model and the PDE System

In this section we present the modeling approach leading to the PDE system
(54) ahead for an adhesive contact process in the presence of nonlocal thermo-
mechanical effects. In the derivation of system (54), we shall refer to the theory
introduced by FRÉMOND [29] and developed in [12, 26] for nonlocal adhesive
contact models in the isothermal case. As in [12], we will confine the discussion
to the reduced case in which only one body is considered in adhesive contact with
a rigid support. We observe that this choice has the advantage of simplifying the
exposition in comparison to the two-body case, without affecting the relevance of
the model.

During a time interval (0, T ), T > 0, we consider a thermoviscoelastic body
located in a smooth and bounded domain ! ⊂ R3 and lying on a rigid support on
a part of its boundary, on which some adhesive substance is present. The contact
surface "C between the body and the support is part of the boundary of !, given by
∂! = "Dir ∪ "Neu ∪ "C. Here "Dir, "Neu, and "C are open subsets in the relative
topology of ∂!, each of them with a smooth boundary and disjoint one from each
other. Without loss of generality, we suppose that "C is a flat surface and identify
it with a subset of R2. That is why, all integrals on "C will involve the Lebesgue
measure, that coincides with the Hausdorff measure by the flatness requirement.
We prescribe zero Dirichlet boundary conditions on "Dir, while we assume that a
traction is applied on "Neu.

2.1 The State and Dissipative Variables

The phenomenon of adhesive contact is modeled by state and dissipative variables,
describing the thermomechanical equilibrium of the system and its evolution,
respectively.

In the bulk domain ! the state variables are the absolute temperature θ and the
symmetric linearized strain tensor ε(u)

(θ, ε(u)) in ! , (15)
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while the dissipative variables are

(∇θ, ε(ut )) in ! . (16)

On the contact surface "C the state variables are

(θs,χ,∇χ,u) on "C , (17)

where θs is the absolute temperature of the adhesive substance, χ is the surface
damage-type parameter from (1), its gradient ∇χ accounts for interactions of
the degradation of the adhesive substance in a point, with the degradation in the
neighborhood of that point and, with slight abuse of notation, we denote by u the
trace of u on "C. The surface dissipative variables are

(∇θs,χt , θ − θs) on "C , (18)

where θ − θs represents the thermal gap on the contact surface (still denoting by θ

the trace of the bulk absolute temperature on "C).
Finally, on "C we also consider state and dissipative variables describing the

interaction between the body and the support along the contact surface: in order to
distinguish between those describing local interactions and those rendering nonlocal
interactions, we will now make explicit their dependence on the variables x ∈ "C
and (x, y) ∈ "C×"C, respectively. In particular, the state variables attached to local
interactions, defined pointwise in "C, are

(χ(x),u(x)), x ∈ "C , (19)

while the state variable describing nonlocal damaging effects is defined in "C ×"C
by

g(x, y) := 2(x − y)u(x), (x, y) ∈ "C × "C . (20)

Analogously, we consider as dissipative variables the surface thermal gap defined
pointwise in "C, i.e.

(θ(x) − θs(x)), x ∈ "C , (21)

as well as a dissipative variable defined in "C × "C by

G(x, y) := 2(x − y)(θ(x)− θs(y)), (x, y) ∈ "C × "C. (22)

Let us point out that the terms g(x, y) := 2(x − y)u(x) and G(x, y) := 2(x −
y)(θ(x)− θs(y)) render the nonlocal contributions to the degradation process of the
adhesive. In particular, as analyzed in [26], g(x, y) takes into account the elongation
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as a source of damage to the adhesive substance, whileG(x, y) describes the effects
due to the evolution of the thermal gap between two different points on the contact
surface. These terms lead to integral contributions both in the normal reaction and
in the flow rule for χ , and to a nonlocal heat flux contribution on the contact surface
(see (34), (36), (47), and (51) below).

2.2 The Free Energy

The free energy F of the system is given by the sum of three contributions:

F = F(θ, ε(u), θs,χ,∇χ,u,g)
:= F!(θ, ε(u))+ F"C(θs,χ,∇χ) + Finter(χ,u,g),

(23)

with F!, F"C, and Finter the bulk, surface, and interaction free energies. We
prescribe the bulk free energy as

F!(θ, ε(u)) :=
∫

!
0!(θ(x), ε(u(x))) dx with

0!(θ, ε(u)) := θ − θ log(θ)+ θ tr(ε(u))+ 1
2
ε(u)E ε(u),

(24)

(recall that E is the elasticity tensor). The surface free energy is given by

F"C(θs,χ,∇χ) :=
∫

"C

0"C(θs(x),χ(x),∇χ(x)) dx with

0"C(θs,χ,∇χ) = θs − θs log(θs)
+I[0,1](χ)+ γ (χ)+ 1

2 |∇χ |2 + λ(χ)(θs − θeq),
(25)

where the indicator function I[0,1] of the interval [0, 1] imposes the physical
constraint χ ∈ [0, 1], since I[0,1](χ) = 0 if χ ∈ [0, 1] and I[0,1](χ) = +∞
otherwise. The function λ is related to the latent heat and the constant θeq > 0
is a phase transition temperature. Moreover, the function γ , sufficiently smooth and
possibly nonconvex, describes non-monotone dynamics for χ (it may model some
cohesion in the material). Finally, we prescribe the interaction free energy as a sum
between local and nonlocal contributions

Finter(χ,u,g) := Fl
inter(χ,u)+ Fnl

inter(χ,g), (26a)
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where the local contribution Fl
inter is given by

Fl
inter(χ,u) :=

∫

"C

0 l
inter(χ(x),u(x)) dx with

0 l
inter(χ,u) = I(−∞,0](u · n)+ κ

2χ |u|2
(26b)

and the nonlocal one consists of the integral functional on "C × "C

Fnl
inter(χ,g) :=

∫∫

"C×"C

0nl
inter(χ(x),χ(y),g(x, y)) dx dy with

0nl
inter(χ(x),χ(y),g(x, y)) =

1
2
g2(x, y)H(χ(x),χ(y))e− |x−y|2

d2 , (26c)

where d a given constant and the interaction functionH is assumed to be symmetric,
i.e. H(x, y) = H(y, x).

2.3 The Dissipation Potential

We follow the approach proposed by J.J. Moreau and prescribe the dissipated
energy by means of a so-called pseudo-potential of dissipation, which is a convex,
nonnegative functional, attaining its minimal value 0 at 0. More precisely, the
dissipation potential is again given by the sum of a bulk, a surface, and an interaction
part, i.e.

P = P(∇θ, ε(ut ),∇θs,χt , θ − θs,G)

:= P!(∇θ, ε(ut ))+ P"C(∇θs,χt )+ Pinter(θ − θs,G) .
(27)

The volume part is given by

P!(∇θ, ε(ut )) :=
∫

!
1!(∇θ(x), ε(ut (x))) dx with

1!(∇θ, ε(ut )) =
αb(θ)

2θ
|∇θ |2 + 1

2
ε(ut )V ε(ut ), (28)

(recall that V is the viscosity tensor), with αb the bulk heat conductivity coefficient.
The surface contribution P"C to the pseudo-potential of dissipation is

P"C(∇θs,χt ) :=
∫

"C

1"C(∇θs(x),χt (x)) dx with

1"C(∇θs,χt ) =
αs(θs)

2θs
|∇θs|2 +

1
2
|χt |2,

(29)
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where αs denotes the surface heat conductivity coefficient. Finally, the interaction
contribution Pinter also consists of a local and a nonlocal term, i.e.

Pinter(θ − θs,G) := Pl
inter(θ − θs)+ Pnl

inter(G) . (30a)

The local contribution is given by

Pl
inter(θ − θs) :=

∫

"C

1l
inter(θ(x) − θs(x)) dx with

1l
inter(θ − θs) =

k(χ)

2
(θ − θs)

2,

(30b)

where the positive (and smooth) function k is a surface thermal diffusion coefficient.
The nonlocal contribution is

Pnl
inter(G) :=

∫∫

"C×"C

1nl
inter(G(x, y)) dx dy with

1nl
inter(G(x, y)) = 1

2
|G(x, y)|2K(χ(x),χ(y))e− |x−y|2

d2 . (30c)

Here, the interaction function K is assumed to be symmetric, i.e. K(x, y) =
K(y, x). For simplicity, from now on for the functions H and K in (26c) and (30c)
we set

H(χ(x),χ(y)) = K(χ(x),χ(y)) := χ(x)χ(y) .

We note that in (26c) and (30c) the exponential term describes the attenuation of
nonlocal interactions as the distance |x − y| between two points x and y on the
contact surface increases.

2.4 The Balance Equations and the Constitutive Laws

Now, we recover the equations of the system, written in the bulk domain and on the
contact surface, by the general laws of Thermomechanics with the free energy (23)
and the potential of dissipation (27).

We derive the momentum balance equation for macroscopic movements (33) and
the flow rule for the adhesive parameter (36) from the principle of virtual power, in
which local and nonlocal microscopic forces responsible for the degradation of the
adhesive substance are included. More precisely, for any virtual bulk velocity v with
v = 0 on "Dir and for any virtual microscopic velocity w on the contact surface, we
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define the power of the internal forces in ! and "C as follows

Pint := −
∫

!
3ε(v) d! −

∫

"C

(Bw +H∇w) dx +
∫

"C

Rv dx

+
∫∫

"C×"C

2m(x, y)(x − y)v(x) dx dy

+
∫∫

"C×"C

(B1
nl(x, y)w(x)+ B2

nl(x, y)w(y)) dx dy.

(31)

Here, 3 is the Cauchy stress tensor, R the classical macroscopic reaction on the
contact surface, B and H are local interior forces, responsible for the degradation
of the adhesive bonds between the body and the support. The terms m(x, y) and
Bi
nl(x, y), i = 1, 2, are new scalar nonlocal contributions: they stand for internal

microscopic nonlocal forces on the contact surface and describe the effects of the
elongation as a source of damage. The power of the external forces is given by

Pext :=
∫

!
fv d!+

∫

"Neu

hv d", (32)

where f is a bulk known external force, while h is a given traction on "Neu. Note that
here we have neglected any microscopic external force and any acceleration power.

The principle of virtual power, holding for every virtual microscopic and macro-
scopic velocities and every subdomain in !, leads to the quasistatic momentum
balance

− div3 = f in !, (33)

supplemented by the following boundary conditions

3n(x) = R(x)+
∫

"C

2(x − y)m(x, y) dy in "C, (34)

u = 0 in "Dir, 3n = h in "Neu. (35)

Observe that in (34) the boundary condition for the stress tensor on the contact
surface combines a local contribution involving the (pointwise) reaction R(x) and
a nonlocal force (defined in terms of the new variable m(x, y)), related to the
elongation.

Again, the principle of virtual power leads to a micro-force balance on the contact
surface given by

B(x) − divH(x) =
∫
"C

(
B1
nl(x, y)+ B2

nl(y, x)
)
dy in "C,

H · ns = 0 on ∂"C ,
(36)
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where ns denotes the outward unit normal vector to ∂"C.
Constitutive relations for 3,R, B,H,m, and Bi

nl, i = 1, 2, are given in terms
of the free energies and the pseudo-potentials of dissipation. More precisely, the
constitutive relation for the stress tensor 3 is

3 := ∂0!

∂ε(u)
+ ∂1!

∂ε(ut )
= Eε(u)+ θ I+ Vε(ut ) (37)

with I the identity matrix, while the local reaction is

R := −∂0 l
inter

∂u
= −κχu − ∂I(−∞,0](u · n)n, (38)

combined with

m(x, y) := −∂0nl
inter

∂g
(x, y) = −g(x, y)χ(x)χ(y)e− |x−y|2

d2 . (39)

Concerning the microscopic forces B and H, we prescribe

B := ∂0"C

∂χ
+ ∂0 l

inter

∂χ
+ ∂1"C

∂χt
= ∂I[0,1](χ)+γ ′(χ)+λ′(χ)(θs−θeq)+

κ

2
|u|2+χt

(40)
and let H be

H := ∂0"C

∂∇χ
= ∇χ , (41)

while the terms B1
nl and B2

nl are (formally) defined as derivatives of 0nl
inter with

respect to the values of the surface damage parameter in x and y ∈ "C, respectively,
as follows

B1
nl(x, y) := −∂0nl

inter

∂χ(x)
= −1

2
g2(x, y)χ(y)e− |x−y|2

d2 , (42)

B2
nl(x, y) := −∂0nl

inter

∂χ(y)
= −1

2
g2(x, y)χ(x)e− |x−y|2

d2 . (43)

The equations for the temperature variables are recovered from the first principle
of thermodynamics, i.e. the internal energy balance written in the bulk domain and
on the contact surface. The internal energy balance equation in ! reads

θst + divq = ∂1!

∂ε(ut )
ε(ut )+ h in !, (44)
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which h an external heat source. Here the entropy s is defined by the constitutive
relation

s := −∂0!

∂θ
= log(θ) − divu , (45)

and the heat flux q is given by

q := −θ
∂1!

∂∇θ
= −αb(θ)∇θ (46)

(recall that αb is the heat conductivity coefficient in the bulk domain). The boundary
conditions on q are prescribed on "Dir ∪ "Neu as q · n = 0, and on "C as

(q · n)(x) = θ(x)

(
F l(x)+

∫

"C

2(x − y)M(x, y)dy

)
, x ∈ "C. (47)

Here, the term

F(x) := F l(x)+
∫

"C

2(x − y)M(x, y)dy, x ∈ "C , (48)

split into local and nonlocal contributions, represents the total entropy flux through
the contact surface. In particular, we prescribe

F l(x) := ∂1l
inter

∂(θ − θs)
(x) = k(χ(x))(θ(x) − θs(x)) (49)

and

M(x, y) := ∂1nl
inter

∂G
(x, y) = G(x, y)χ(x)χ(y)e− |x−y|2

d2 . (50)

Finally, the internal energy balance on "C is written as

θs(x)∂t ss(x)+ divqs(x) = θs(x)
(
F l(x)+

∫
"C

2(y − x)M(y, x)dy
)

+∂0"C

∂χt
(x)χt (x), x ∈ "C

(51)

supplemented by no-flux boundary conditions qs · ns = 0 on ∂"C . Here

ss := −∂0"C

∂θs
= log(θs) − λ(χ) (52)
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denotes the entropy on the contact surface and

qs := −θs
∂1"C

∂∇θs
= −αs(θs)∇θs (53)

the heat flux (recall that αs is the heat conductivity coefficient on "C). We note that,
like for the entropy flux through the contact surface (the term F in (48)), also for the
entropy source involved on the right-hand side of (51), we have distinguished local
and nonlocal contributions.

With these choices, combining the previous constitutive relations with the
balance laws, we derive the PDE system (54) below.

2.5 The PDE System

By the previous constitutive relations and balance laws, we obtain the following
boundary value problem

θt − θdiv(ut ) − div(αb(θ)∇θ)

= ε(ut )V ε(ut )+ h, in ! × (0, T ), (54a)

αb(θ)∇θ · n = 0, in ("Dir∪"Neu) × (0, T ),
(54b)

αb(θ)∇θ · n = −θ
(
k(χ)(θ−θs)

+
∫

"C

2(x − y)G(x, y)χ(x)χ(y)e− |x−y|2
d2 dy

)
,

in "C × (0, T ), (54c)

− div(Eε(u)+ Vε(ut )+ θ I) = f, in ! × (0, T ), (54d)

u = 0, in "Dir × (0, T ),
(54e)

(Eε(u)+ Vε(ut )+ θ I)n = h, in "Neu × (0, T ),
(54f)

(Eε(u)+ Vε(ut )+ θ I)n

+ κχu+ ∂I(−∞,0](u · n)n

+
∫

"C

2(x − y)g(x, y)χ(x)χ(y)e− |x−y|2
d2 dy ' 0, in "C × (0, T ), (54g)

∂tθs − θsλ
′(χ)χt − div(αs(θs)∇θs) = |χt |2

+ θs

(
k(χ)(θ−θs)
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+
∫

"C

2(y − x)G(y, x)χ(x)χ(y)e− |x−y|2
d2 dy

)
, in "C × (0, T ), (54h)

αs(θs)∇θs · ns = 0, in ∂"C × (0, T ),
(54i)

χt − +χ + ∂I[0,1](χ)+ γ ′(χ)

+ λ′(χ)(θs − θeq) ' −κ

2
|u|2

− 1
2

∫

"C

(
g2(x, y)+ g2(y, x)

)
χ(y)e− |x−y|2

d2 dy, in "C × (0, T ), (54j)

∂nsχ = 0, in ∂"C × (0, T ),
(54k)

where we have written explicitly the dependence of the unknowns (θ, θs,u,χ) on
the variable x ∈ "C only in the nonlocal terms involving integrals (with respect to
the spatial variable y ∈ "C), cf. (54c), (54g), (54h), and (54j).

Let us stress that, with respect to the ‘standard’ Frémond system for adhesive
contact (see e.g. (14)), (54) encompasses integral terms in the flux boundary
conditions (54c) for θ , in Eq. (54h), in the normal reaction (54g), and in the flow
rule (54j) for χ . In particular, the thermal evolution of the system depends on a local
contribution related to θ − θs evaluated at the same point x ∈ "C, and on a nonlocal
one described by the function G from (22) that involves the thermal gap between
different points x and y on the contact surface. Analogously, the source of damage
on the right-hand side of (54j) features local and nonlocal terms and, in particular, it
may be different from zero even if u = 0, due to the integral contribution (in terms
of the variable g from (20)) that renders the damaging effects of elongation.

2.6 Outlook to the Analysis

The analysis of system (54) will be carried out in the forthcoming [18]. There,
taking into account the L1-character of the right-hand sides of the temperature
equations (54a) and (54h), we will address the existence of a of weak solution for
(54).
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