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Abstract: The paper is devoted to the modeling of nonlinear viscoelastic materials. The constitutive
equations are considered in differential form via relations between strain, stress, and their derivatives
in the Lagrangian description. The thermodynamic consistency is established by using the Clausius–
Duhem inequality through a procedure that involves two uncommon features. Firstly, the entropy
production is regarded as a positive-valued constitutive function per se. This view implies that the
inequality is in fact an equation. Secondly, this statement of the second law is investigated by using
an algebraic representation formula, thus arriving at quite general results for rate terms that are
usually overlooked in thermodynamic analyses. Starting from strain-rate or stress-rate equations,
the corresponding finite equations are derived. It then emerges that a greater generality of the
constitutive equations of the classical models, such as those of Boltzmann and Maxwell, are obtained
as special cases.

Keywords: viscoelastic materials; constitutive rate-type equations; nonlinear models; thermodynamic
consistency
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1. Introduction

Viscoelasticity involves a wide domain of models of materials. In general, viscoelastic-
ity is a property ascribed to materials whenever the mechanical response changes in time
while the forces causing the deformation are removed. Furthermore, the relation between
forces and deformation may be different between the loading and unloading processes,
thus producing hysteresis. Accordingly, viscoelastic models are thought to involve both
viscous and elastic characteristics, which in turn might be affected by the temperature. This
quite general view is realized by a number of mathematical models.

As is frequent in the literature, models of viscoelasticity are set up with reference
to rheological elements, mainly the Maxwell unit and the Kelvin–Voigt unit; see, e.g., [1]
and [2] (Ch. 6). This results in a combination of (possibly tensorial) values of deformation,
stress, and their time derivatives.

From a mathematical standpoint, viscoelasticity is modeled in different ways. A well-
known description traces back to Boltzmann [3], whereby the stress at time t is affected
by the strain at all times s ≤ t. Furthermore, the stress–strain relation was assumed to be
linear. Based on the Boltzmann model, much research has been undertaken for constitutive
models in terms of memory functionals [4–6] in the wide domain of continuum physics
and with attention to thermodynamic restrictions, initial and boundary-value problems,
minimum principles, and wave propagation.
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So as to obtain mathematically more tractable models, and meanwhile to allow for
nonlinear effects, lately, different approaches have been developed. They are formally in
differential form, and usually called rate-type viscoelastic models, in that they are expressed
by relations between stress, strain, and their derivatives at the same time. This avoids the
use of integral-type models for which the account of nonlinearities would be quite involved
(see, e.g., [7]).

Physically admissible models are required to be thermodynamically consistent in
the sense that the constitutive equations have to satisfy the inequality arising from the
second law. While the inequality appears to place severe restrictions on the constitutive
functions, a recent approach of ours enables greater generality. This occurs for two reasons.
First, the entropy production is viewed as a constitutive function per se. Secondly, an
appropriate exploitation of the inequality allows for possibilities that usually do not arise.
There are approaches to (linear) viscoelastic models where continuum thermodynamics is
not considered merely because the existence of internal energy is not assumed.

This paper develops a systematic approach to the modeling of viscoelastic materials
through thermodynamically consistent schemes involving strain and stress in differential
forms. Owing to the generality of the approach, we are able to recover known models from
the literature and, furthermore, to find nonlinear models characterized by free energy and
entropy production.

The postulate on the second law of thermodynamics leads to the CD (Clausius–Duhem)
inequality, where the entropy production is provided by a constitutive function. The ther-
modynamic consistency is meant as the compatibility of a set of constitutive assumptions
with the CD inequality. The methodology for the analysis of the consistency involves
finding proper unknowns (here, stress-rate or strain-rate) through the direct application of
a representation formula to the CD inequality.

Notation

The body occupies a time-dependent region Ω in the three-dimensional space. The
position vector of a point in Ω is denoted by x. For any pair of vectors u, w or tensors A, B,
the notations u · w and A · B denote the inner product. Cartesian coordinates are used, and
then, in the suffix notation, u · w = uiwi, A · B = AijBij, the summation over the repeated
indices can be understood. For any tensor A, symA and skwA denote the symmetric and
skew-symmetric parts of A. Also, Sym is the space of symmetric tensors.

2. Balance Laws and Constitutive Equations

Let R be the region occupied by the body in a reference configuration. Any point in
R is associated with the position vector X relative to the chosen origin. The motion of the
body is a C2 function χ(X, t) : R ×R → Ω = χ(R, t). We let ∇ and ∇R denote the gradient
in Ω and R. Hence, ∇R χ is the deformation gradient in components FiK = ∂XK χi. Let ρ(x, t)
and v(x, t) be the mass density and the velocity fields at x at time t ∈ R. The symbol L
denotes the velocity gradient, Lij = ∂xj vi, while D = symL and W = skwL.

Hereafter, a superposed dot denotes the total time derivative. For any function f (x, t)
on Ω ×R, we evaluate ḟ as ḟ = ∂t f + (v · ∇) f . Accordingly, the balance of mass and the
equation of motion are expressed by

ρ̇ + ρ∇ · v = 0, ρv̇ = ∇ · T + ρb,

where T is the Cauchy stress tensor and b is the specific body force.
We assume the existence of a specific internal energy density ε so that ρ( 1

2 v2 + ε) is
the total energy density per unit volume. The balance of energy leads to

ρε̇ = T · D + ρr −∇ · q, (1)

where r is the heat supply, per unit mass, and q is the flux vector.
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Let θ be the absolute temperature and η the specific entropy density. Letting j be the
entropy flux, we assume the balance of entropy in the form

ρη̇ +∇ · j − ρr
θ

= ργ,

where γ is the (rate of) entropy production. We let b and r be arbitrarily provided time-
dependent fields on Ω×R. Hence, we say that a process is the set P = (ρ, v, T, ε, η, θ, q, j, γ),
on Ω ×R, of the quantities entering the balance equations and the constitutive relations.

The statement of the balance of energy in the form (1) is essential for the next devel-
opments. It is worth observing that there are approaches in continuum mechanics where
the existence of an energy density ε is not assumed. A distinction is made between stored
and dissipated energy; the dissipated energy is determined by a rate equation involving
appropriate state variables (see, e.g., [8] and Refs. therein). Still, without any assumption
about the internal energy, attention is confined to a relation between stress and deformation
through a transform function [9,10], the transform function being possibly expressed by
fractional derivatives.

2.1. Second Law of Thermodynamics

The balance of entropy is assumed to be non-negative. Hence, the second law is stated
as follows.

Postulate 1. For every process P admissible in a body, the inequality

ρη̇ +∇ · j − ρr
θ

= ργ ≥ 0 (2)

is valid at any internal point.

Letting
j =

q
θ
+ k

we regard k as the extra-entropy flux [11]. Nonzero values of k arise when nonlocal
properties (higher-order gradients) are considered. For the present purposes, there is no
loss of generality in taking k = 0. Since

∇ · q
θ
− ρr

θ
=

1
θ
(∇ · q − ρr)− 1

θ2 q · ∇θ

then substitution of ∇ · q − ρr from (1) and using the free energy ψ = ε − θη results in

−ρ(ψ̇ + ηθ̇) + T · D − 1
θ

q · ∇θ = ρθγ ≥ 0. (3)

As is standard in continuum thermodynamics [11–13], the requirement (2), or (3),
results in restrictions on physically admissible constitutive models. The novelty of the
present approach is that, beyond the entropy flux j, the entropy production γ is also
conceptually a constitutive function to be determined. Henceforth, we apply the statement
(2) to the modeling of viscoelastic materials.

While the extra-entropy flux k is generally associated with nonlocal effects, models
of materials are characterized by the free energy ψ and the entropy production γ. Before
addressing the restrictions placed by (3) and the intrinsic connections with ψ and γ, we
introduce useful terminology for viscoelastic models.

2.2. Lagrangian Form of the Balance Laws

Owing to the coexistent elastic and viscous properties, viscoelasticity is described by
relations involving stress, strain, and their derivatives. The occurrence of time derivatives
makes the compatibility with the objectivity principle more involved, whereby the con-
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stitutive equations must be form-invariant under the group of Euclidean transformations
([14] (Section 1.13); [2] (Section 1.9)). This requirement is best satisfied by dealing within
the Lagrangian description. Hence, we represent deformation and stress by using the
red-Lagrange strain, E, and the second Piola tensor, TRR,

E = 1
2 (F

TF − 1), TRR = JF−1TF−T ,

together with the referential vectors, e.g., qR = JqF−T . All of them and the Jacobian
J = det F are in fact invariant. Under SO(3), the time derivatives Ė, ṪRR are also invariant.
Using the identities

∇θ = F−T∇R θ, Ė = FTDF

we have
T · D = J−1TRR · Ė, q · ∇θ = J−1qR · ∇R θ.

Consequently, multiplying (3) by J and recalling that Jρ = ρR is the mass density in the
reference configuration, we obtain the CD inequality in the form

−ρR(ψ̇ + ηθ̇) + TRR · Ė − 1
θ

qR · ∇R θ = ρRθγ ≥ 0. (4)

3. Rate-Type Models for Thermo-Viscoelastic Solids

To save writing the dependence on the temperature θ and possibly the temperature
gradient ∇θ, it is understood here and not written. Since we are dealing with viscoelastic
models, we split TRR into two additive parts, namely

TRR = G(E) + SRR, (5)

with the view that G(E) is the elastic stress and SRR the dissipative stress.
Rate-type equations involve relations, or constitutive equations, among variables

E, SRR, Ė, and ṠRR. So, the variables are not independent from one another and are subject
to appropriate conditions. Often, the relations are assumed in implicit form [15], namely

F (E, SRR, Ė, ṠRR) = 0. (6)

As a natural example, the CD inequality (4) might eventually result in the reduced form

A(E, SRR) · Ė + B(E, SRR) · ṠRR − γ(E, SRR, Ė, ṠRR) = 0,

where A, B are tensor functions. Depending on the function γ, this scheme allows us
to obtain models of viscoelastic or viscoplastic materials with hysteresis [2] (ch. 13). To
illustrate possible types of rate equations, we now show how particular cases arise from
the implicit form (6).

1. Assume ∂ṠRR
F ̸= 0. Hence, we can express ṠRR in terms of the remaining variables

E, SRR, Ė. The corresponding function

ṠRR = S(E, SRR, Ė), (7)

where S is a tensor-valued function, can be viewed as a constitutive function for ṠRR,
thus allowing models of dissipative stress–strain-rate materials.

2. Now let F be independent of ṠRR so that the condition is F (E, SRR, Ė) = 0. If further
∂SRRF ̸= 0, we can solve with respect to SRR and obtain a constitutive equation in the
form

SRR = S0(E, Ė).
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If, furthermore, S0(E, Ė) = S(E)Ė with S a fourth-rank tensor-valued function, using
(5), we can write

TRR = G(E) + S(E)Ė. (8)

Equation (8) is in a strain-rate form and can be viewed as a generalization of the
Kelvin–Voigt model.

3. The dual form of (7) is obtained by assuming that ∂ĖF ̸= 0. Hence, we obtain a
constitutive function for Ė, namely

Ė = E(E, SRR, ṠRR), (9)

where E is a tensor-valued function. Equation (9) may be viewed as a strain–stress-rate
model. If, in particular, E is independent of ṠRR, namely Ė = E0(E, SRR), then we can
view E0 as describing a conservative deformation, as is the case for elastic solids.

4. If F is independent of Ė and ∂EF ̸= 0, then we can derive the constitutive equation

E = Ê(SRR, ṠRR).

This form may be referred to as a stress-rate model and is convenient whenever we
examine the deformation determined by a time-dependent stress.

4. Stress–Strain-Rate Models

Based on the decomposition of TRR = G(E) + SRR, we look for models described by
equations of the form

ṠRR = S(θ, E, SRR, Ė). (10)

To allow also for heat conduction, we let

θ, E, SRR, Ė,∇R θ

be the variables for the constitutive functions

ψ, η, ṠRR, qR, γ.

A possible dependence on J = (det C)1/2 = [det(1 + 2E)]1/2 is embodied in the depen-
dence on E.

The CD inequality (4) can be written in the form

−ρR(∂θψ + η)θ̇ + (G(θ, E) + SRR − ρR∂Eψ) · Ė − ρR∂SRR ψ · ṠRR − ρR∂Ėψ · Ë

−ρR∂∇R θψ · ∇R θ̇ − 1
θ

qR · ∇R θ = ρRθγ.
(11)

The quantities ∇R θ̇, Ë, and θ̇ occur linearly and can take arbitrary values. Hence, (11) holds
only if

∂∇R θψ = 0, ∂Ėψ = 0, η = −∂θψ.

We let
G(θ, E) = ρR∂Eψ,

and hence (11) simplifies to

SRR · Ė − ρR∂SRR ψ · ṠRR −
1
θ

qR · ∇R θ = ρRθγ.

Further restrictions follow by considering (10) and qR in the particular form

qR(θ, E, SRR,∇R θ).
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It follows that γ = γS + γq, such that

SRR · Ė − ρR∂SRR ψ · S = ρRθγS ≥ 0, (12)

−1
θ

qR · ∇R θ = ρRθγq ≥ 0, (13)

where γS is independent of ∇R θ and γq is independent of Ė.

4.1. Solutions to (12)

We now look for solutions to (12) in the unknown function S(θ, E, SRR, Ė) subject to

S(θ, E, SRR, Ė) = O(|Ė|),

that is, S(θ, E, SRR, Ė) → 0 as Ė → 0.
First, we determine the general form of S on the assumption that ∂SRR ψ ̸= 0. In this

connection, we recall a representation formula [2] such that if the (second order) tensor Z
satisfies

Z · N = f , |N| = 1,

then
Z = f N + [I− N ⊗ N]Ξ, (14)

Ξ being an arbitrary tensor. In Equation (14), I denotes the fourth-order identity tensor and
⊗ the dyadic tensor product. Now let ∂SRR ψ ̸= 0 and define

N =
∂SRR ψ

|∂SRR ψ|

while Ξ is allowed to be a function of θ, E, SRR, and Ė. Hence, by (12), with Z = S and
f = SRR · Ė − ρRθγS, we have

ṠRR = − θγS

|∂SRR ψ|2 ∂SRR ψ +
∂SRR ψ ⊗ SRR

ρR|∂SRR ψ|2 Ė + [I−
∂SRR ψ ⊗ ∂SRR ψ

|∂SRR ψ|2 ]Ξ. (15)

This is a general formula for the stress-rate ṠRR. Appropriate choices for ψ, γS, and Ξ lead
to special models of stress-rate equations.

4.1.1. A Model for Damage and Fatigue

A rather general model arises by letting

ρR∂SRR ψ = α(E, θ)SRR, γS = β(E, θ)|SRR|2, Ξ =
1

α(E, θ)
Ė,

where β > 0 in order that γS ≥ 0. These assumptions simplify Equation (15) to

ṠRR = − θβ

α
SRR +

1
α

Ė. (16)

The function α is usually assumed to be positive, which allows

τ(E, θ) =
α(E, θ)

θβ(E, θ)
> 0 (17)

to be viewed as a relaxation time. To integrate Equation (16), we proceed as follows. Let

YRR = exp[
∫ t

t0
(1/τ)dξ]SRR.



Mathematics 2024, 12, 3011 7 of 18

Hence, Equation (16) provides

ẎRR(t) := exp[
∫ t

t0
(1/τ)dξ]

(
ṠRR(t) +

1
τ

SRR(t)
)
= exp[

∫ t
t0
(1/τ)dξ]

1
α

Ė(t),

and then the integration on (t0, t] yields

YRR(t) = YRR(t0) +
∫ t

t0

1
α

exp[
∫ s

t0
(1/τ)dξ]Ė(s)ds.

Accordingly, it follows that

SRR(t) = exp[−
∫ t

t0
(1/τ)dξ]SRR(t0) +

∫ t

t0

1
α

exp[−
∫ t

s(1/τ)dξ]Ė(s)ds.

Then, letting t0 → −∞ and assuming

lim
t0→−∞

SRR(t0) = 0

we obtain

SRR(t) =
∫ t

−∞

1
α

exp{−
∫ t

s[1/τ]dξ} Ė(s)ds. (18)

Finally, if we introduce the reduced-time function

Tr(t) =
∫ t

t0

1
τ
(
E(ξ), θ(ξ)

)dξ,

where τ is named the time-temperature shift factor, Equation (18) can be rewritten as

SRR(t) =
∫ t

−∞

1
α

exp{−[Tr(t)− Tr(s)]} Ė(s)ds. (19)

Note that Tr depends on the past values of E, so that (19) is a non-separable integral rep-
resentation of SRR (see, e.g., [16]) that is able to capture damage and fatigue effects; we
mention [17] where a representation of the form (19) is used to describe damage in asphalt
mixture. The thermodynamic consistency of (19) is proved in the more general case of (15),
which allows for nonlinearities through ψ and γS and any dependence, on the whole set of
variables, through Ξ.

4.1.2. The Maxwell Fluid

Assume that α and β depend on θ and let the temperature θ be a known function of
time. Then, α and τ are known functions of time in that

α(t) = α̂(θ(t)), τ(t) = τ̂(θ(t)).

Hence, Equation (18) takes the form

SRR(t) =
∫ t

−∞

1
α(s)

exp{−
∫ t

s[1/τ(ξ)]dξ} Ė(s)ds. (20)

Equation (20) is in the form of the Boltzmann model for SRR in terms of the present value
E(t) and the history Et.

If α and θβ, introduced in (17), are constants, then Equation (16) simplifies to

ṠRR = − 1
τ

SRR +
1
α

Ė, (21)



Mathematics 2024, 12, 3011 8 of 18

which is just the classical Maxwell equation although in the Lagrangian formulation. The
solution SRR(t) can be obtained directly by integration. Otherwise, we observe that α and τ
would be constant and then Equation (20) would read

SRR =
1
α

∫ t

−∞
exp[− 1

τ
(t − s)]Ė(s)ds,

whence, by an integration by parts, it follows

SRR(t) =
1
α

E(t)− 1
ατ

∫ t

−∞
exp[−(t − s)/τ] E(s)ds.

Since TRR = G(E) + SRR, then TRR can be written in the form

TRR(t) = G0(E(t)) +
∫ t

∞
G′(t − s)E(s)ds,

where
G0(E) = G(E) +

1
α

E, G′(t − s) =
1

ατ
exp[−(t − s)/τ].

It reduces to the well-known linear model [4,5] if G(E) = G∞E, G∞ > 0.
In the one-dimensional case, the differences between the linear and the nonlinear

model are outlined by the following numerical simulations (see Figures 1 and 2). In the
first picture, we consider the linear one-dimensional model TRR = G∞E + SRR, where the
evolution of SRR is ruled by Equation (21). The resulting system{

Ė(t) = ω cos(ωt)
ṪRR(t) = G0Ė(t)− 1

τ

[
TRR(t)− G∞E(t)

] (22)

where G0 = G∞ + 1/α describes the cycles in the E − TRR plane at different frequencies ω
of the oscillating strain.

-1 0 1

-1

1 TRR

E

Figure 1. Stress–strain cycles at ω = π/50 (solid) and ω = π/150 (dashed) with τ = 2, α = 5/6, and
G∞ = 4/5.

Figure 2 represents the cycles at different frequencies ω of the nonlinear model ob-
tained by letting G(E) = G∞E3.

The resulting system{
Ė(t) = ω cos(ωt)
ṪRR(t) = G0(E(t))Ė(t)− 1

τ

[
TRR(t)− G(E(t))

] (23)
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where G0(E(t)) = G′(E(t)) + 1/α describes the cycles in the E − TRR plane at different
frequencies ω of the oscillating strain.

It is of interest that Figures 1 and 2 show a hysteretic evolution of the dependence
TRR(E). Systems (22) and (23) are rate-dependent, and this is made evident by the variation
in the loop shape as the frequency ω changes. Indeed, as ω goes to 0 the loop narrows until
it reaches the quasi-stationary regime TRR ≃ G(E). On the other hand, as the frequency
increases, the loop becomes narrower and narrower, thus approaching the rate-independent
property at high frequencies where ṪRR ≃ G′Ė. As a remark, the form of the loops associated
with (23) is quite similar to the stress–strain curve occurring in foamed materials [2]
(Section 13.7).

-1 0 1

-1

1 TRR

E

Figure 2. Stress–straincycles at ω = π/50 (solid) and ω = π/150 (dashed) with τ = 2, α = 1, and
G∞ = 4/5.

4.1.3. A Model for Bio-Soft Tissues

Consider one-dimensional settings and let β = 0, so γS = 0 too. Namely, materials
with zero entropy production from the mechanical side are concerned. Furthermore, let α
depend on the strain E as well as on the temperature. Equation (16) then simplifies to

ṠRR = f (θ, E)Ė, f (θ, E) =
1

α(θ, E)ρR
(24)

This type of rate equation is found to model the hypoelastic behavior of collagen fiber
stress [18] if

f (θ, E) = k{1 − exp[−(E/δ)a]}

for proper values of the positive parameters k, δ, a possibly dependent on θ. Assuming that
these parameters are constant, upon integration, we obtain

SRR(t) = H(E(t)),

where H′(E) = f (E), H(0) = 0.
In [18], the viscoelastic behavior of ligaments and tendons (bio-soft tissues) is deter-

mined by modeling collagen fibers and proteoglycan-rich matrix as a Maxwell-type system
with two relaxation times, τ1, τ2 > 0. By means of the following correspondence with our
notations

σf → H, σ → TRR, E f → k, Em → h,

the full model (Equation (15) in [18]) can be written in the form (see Equation (16))

TRR = G(E) + SRR, ṠRR = − 1
τ

SRR +
1
α

Ė
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where τ = τ1 + τ2 and

G(E) =
τ

τ1
H(E), α(E) =

1
h − (1 − τ1/τ)G′(E)

.

The positivity of α for each value of E is guaranteed by the condition h ≥ kτ/τ1.

4.2. Solutions to (13)

Inequality (13) holds if qR is provided by a Fourier-like relation

qR = −K(θ, E)∇R θ, (25)

with K a positive definite second-order tensor; the dependence on the strain E, in addition
to the temperature θ, makes the model nonlinear. However, inequality (13) allows for more
general solutions qR.

Letting N = ∇R θ/|∇R θ|, we apply the representation formula to (13). It follows that

qR =
ρRθ2γq

|∇R θ|2 ∇R θ +
[
1 − ∇R θ ⊗∇R θ

|∇R θ|2
]
w, (26)

where w is any vector function of θ, E,∇R θ. If, e.g., we select w = −K∇R θ, with K positive
definite, then Equation (26) becomes

qR = −
ρRθ2γq

|∇R θ|2 ∇R θ − K∇R θ +
∇R θ · K∇R θ

|∇R θ|2 ∇R θ.

Hence, qR consists of a part in the direction of ∇R θ and a part −K∇R θ subject only to K > 0.
This splitting is parameterized by the entropy production. Two interesting particular
cases arise. Firstly, if γq = ∇R θ · K∇R θ/ρRθ2, then the relation simplifies to Equation (25).
Secondly, if γq = 0, then

qR = −K∇R θ +
∇R θ · K∇R θ

|∇R θ|2 ∇R θ,

which is a Fourier-like relation with zero entropy production.
As a further example, let w = αE∇R θ. Then, we have

qR = −
ρRθ2γq

|∇R θ|2 ∇R θ + αE∇R θ − α
∇R θ · E∇R θ

|∇R θ|2 ∇R θ.

This model shows that the deformation induces a transverse part of qR relative to ∇R θ;
the CD inequality is a constraint on the longitudinal part of qR while the transverse part
is unconstrained.

5. Strain–Stress-Rate Models

We now consider a strain–stress-rate model in the explicit form

Ė = E(θ, E, SRR, ṠRR);

for definiteness, we select ṠRR, rather than Ė, as one of the variables. Accordingly, the set of
variables is now

θ, E, SRR, ṠRR,∇R θ.

Again, we let TRR = G(E) + SRR and then consider the free energy

ρRϕ = ρRψ − E · SRR − G,
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where G is the elastic energy, say

G(E) = ∂EG(E).

Using ϕ instead of ψ, we can write the CD inequality in the form

−ρR(ϕ̇ + ηθ̇)− E · ṠRR −
1
θ

qR · ∇R θ = ρRθγ ≥ 0.

Computing the time derivative of ϕ(θ, E, SRR, ṠRR,∇R θ) and substituting, we have

−ρR(∂θϕ + η)θ̇ − ρR∂Eϕ · Ė − (E + ρR∂SRR ϕ) · ṠRR − ρR∂ṠRR
ϕ · S̈RR

−ρR∂∇R θϕ · ∇R θ̇ − 1
θ

qR · ∇R θ = ρRθγ ≥ 0.
(27)

The arbitrariness of S̈RR,∇R θ̇, and θ̇ implies that ∂ṠRR
ϕ = 0, ∂∇R θϕ = 0, and η = −∂θϕ. The

remaining inequality is now examined by setting aside cross-coupling terms in the sense
that E is independent of ∇R θ and qR is independent of ṠRR. Hence, the inequality (27) splits
into

−ρR∂Eϕ · Ė − (E + ρR∂SRR ϕ) · ṠRR = ρRθγS ≥ 0, (28)

and again (13), where γS is the value of γ at ∇R θ = 0.
We now apply the representation Formula (14) to Equation (28). Assume ∂Eϕ ̸= 0 and

define N = ∂Eϕ/|∂Eϕ|. Hence, by Equation (28), we obtain

Ė =
ρRθγS

|∂Eϕ|2 ∂Eϕ +
∂Eϕ ⊗ (E + ρR∂SRR ϕ)

|∂Eϕ|2 ṠRR +
[
I− ∂Eϕ ⊗ ∂Eϕ

|∂Eϕ|2
]
Ξ, (29)

where Ξ is a tensor function of θ, E, SRR, ṠRR. Equation (29) shows the general form of the
function E in terms of θ, E, SRR, ṠRR.

The simplest case follows by letting Ξ = 0 and γS = 0 (zero entropy production).
Hence, we have

Ė = F ṠRR, F :=
∂Eϕ ⊗ (E + ρR∂SRR ϕ)

|∂Eϕ|2 . (30)

The integration of (30) on (−∞, t) and the assumption E(−∞) = 0 yield

E(t) =
∫ t

−∞
F(ξ)ṠRR(ξ)dξ.

An integration by parts and the assumption SRR(−∞) = 0 result in

E(t) = F(t)SRR(t)−
∫ t

−∞
Ḟ(ξ)SRR(ξ)dξ.

These results have some analogy with a class of quasi-linear viscoelastic materials [19]
where the present value of B = FFT is provided by the history of Ṫ.

6. Strain-Rate Models

As a generalization of the Kelvin–Voigt constitutive equation, we now look for a
function

SRR = S0(θ, E, Ė) = O(|Ė|).

Hence, we let
θ, E, Ė,∇R θ

be the variables and ψ, η, qR, γ the constitutive functions. The CD inequality becomes

−ρR(∂θψ + η)θ̇ − ρR∂∇R θψ · ∇R θ̇ + (TRR − ρR∂Eψ) · Ė − ρR∂Ėψ · Ë − 1
θ

qR · ∇R θ = ρRθγ ≥ 0.
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The arbitrariness of ∇R θ̇, Ë, θ̇ implies that

∂∇R θψ = 0, ∂Ėψ = 0, η = −∂θψ.

The remaining inequality is

(TRR − ρR∂Eψ) · Ė − 1
θ

qR · ∇R θ = ρRθγ ≥ 0. (31)

Although TRR and qR might depend jointly on Ė,∇R θ, for definiteness, we assume that

TRR = G(θ, E) + S0(θ, E, Ė), S0 → 0 as Ė → 0 (32)

while qR is independent of Ė. Hence, inequality (31) splits into two inequalities, namely

(TRR − ρR∂Eψ) · Ė = ρRθγE ≥ 0, (33)

and again (13), where γE is the value of γ at ∇R θ = 0 and γq is the value of γ at Ė = 0. In
light of (32), it follows from (33) that

G(θ, E) = ρR∂Eψ(θ, E), S0(θ, E, Ė) · Ė = ρRθγE ≥ 0. (34)

6.1. Some Examples

Borrowing from [20], we now consider a model with application to human knee
ligaments. Let G and S0 be functions satisfying the requirements in (34). Let

I1 = tr C = 2tr E + 3.

Hence, G and S0 are assigned the forms

G(θ, E) = −pC−1 + αβ{exp[β(I1 − 3)]− I1}1 + αβC, S0(θ, E, Ė) = ν(I1 − 3)Ė,

where the parameters α, β, ν are allowed to depend on temperature. Furthermore, p is the
standard pressure of the Eulerian description.

A nonlinear model is obtained by using the triples J = (J1, J2, J3) and J̃ = ( J̃1, J̃2, J̃3) of
the main invariants of E and Ė, respectively. The requirement (34) is satisfied by letting

S0(θ, E, Ė) = f0(θ, J)λ(Ė)

where f0 ≥ 0 and λ(Ė) · Ė ≥ 0. In a more detailed form, we can assume

λ(Ė) = λ0(J̃)Ė, λ0 > 0.

Otherwise, we might consider the representation

λ(Ė) = λ0(J̃)1 + λ1(J̃)Ė + λ2(J̃)ĖĖ.

whence it follows that

λ(Ė) · Ė = λ0(J̃) J̃1 + λ1(J̃) J̃2 + λ2(J̃) J̃3.

In this case, the non-negative value of λ(Ė) · Ė requires appropriate restrictions on λ0, λ1, λ2.
Another class of unidimensional nonlinear strain-rate models has been proposed to

describe the mechanical behavior of polymeric foams whose dynamic loading shows a
dependence of the stress also on the strain-rate [2] (ch. 13.7). To include strain-rate effects,
the dependence has been improved in the form [21]

S0(θ, E, Ė) = f (E)h(E, Ė) (35)



Mathematics 2024, 12, 3011 13 of 18

where f , h may depend on the temperature θ. The literature shows various forms of the
functions f , h, e.g.,

f (E) = a{1 − exp[(−c/a)E(1 − E)m]}+ b
( E

1 − E
)n, h(E, Ė) = 1 + (α + βE) ln(Ė/Ė0),

where a, b, c, m, n, α, β are the pertinent positive parameters and Ė0 is a reference strain-rate
(frequently Ė0 = 10−3 s−1).

6.2. Generalizations of the Kelvin–Voigt Model

A two-parameter class of constitutive equations is considered in [15] in the form

γB + νD = F (T), B = FFT ;

this equation is said to model a fluid if γ = 0 and an elastic solid if ν = 0. For generality,
we might regard strain-rate models as those characterized by relations in the Lagrangian
form,

F S(θ, E, Ė, SRR) = 0 or F T(θ, E, Ė, TRR) = 0,

where TRR = G(E) + SRR. As we show in a while, significantly different relations arise
depending on the choice of the (independent) variables.

For definiteness, here, we let θ, E, SRR be the variables. The exploitation of the CD
inequality leads to

∂∇R θψ = 0, ∂SRR ψ = 0, η = −∂θψ

and the remaining inequality is (33). Assuming (34)1, we have

SRR · Ė = ρRθγE.

Since γE depends on θ, E, SRR, we look for Ė as a function of the same variables, namely

Ė = E0(θ, E, SRR),

(see the special case of item 3). We let N = SRR/|SRR| and apply the representation
Formula (14) to obtain

Ė := E0(θ, E, SRR) =
ρRθγE(θ, E, SRR)

|SRR|2
SRR + [I− SRR ⊗ SRR

|SRR|2
]Ξ, (36)

where Ξ is a tensor function of the variables θ, E, SRR. In particular, if we take Ξ = −βE,
then it follows

Ė =
ρRθγE + βSRR · E

|SRR|2
SRR − βE. (37)

A model describing a conservative strain evolution is obtained by assuming zero entropy
production, γE = 0. If ρRθγE = α|SRR|2, we can write Equation (37) in the form

Ė + βE = α(1 +
βSRR · E
α|SRR|2

)SRR.

Inasmuch as |βSRR · E/α|SRR|2| ≪ 1, we obtain the Kelvin–Voigt equation as an approxi-
mation of (37).

A more general constitutive equation in the form

Ė + βE = HHH(θ, E, SRR)

is thermodynamically consistent. This is shown by substituting

Ξ = βE +H(θ, E, SRR)
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in (36). It follows that

Ė + βE = H(θ, E, SRR) +
ρRθγE(θ, E, SRR) + βSRR · E − SRR ·H(θ, E, SRR)

|SRR|2
SRR. (38)

The right-hand side is the expected function HHH(θ, E, SRR), where βE, H(θ, E, SRR) and
γE(θ, E, SRR) are involved in a proper way. This is a nonlinear generalization of the Kelvin–
Voigt type. However, if γE = 0, then a model is obtained with zero entropy production.

If θ is a known function of time, then we can integrate (38) to obtain

E(t) =
∫ t

−∞
exp

[
−
∫ t

sβ(ξ)dξ
]
HHH(θ, E, SRR)(s)ds,

which is again in the Boltzmann form with dependence on the histories of θ, E, and SRR.
If instead we let θ, E, Ė be the variables, then, applying the representation formula to

(34)2, it follows that

SRR := S0(θ, E, Ė) =
ρθγE(θ, E, Ė)

|Ė|2
Ė +

[
I− Ė ⊗ Ė

|Ė|2
]
Ξ.

In the simple case

G(E) = gE, ρRθγE = λ|Ė|2, λ > 0, Ξ = 0

we have
TRR = gE + λĖ.

6.3. Remarks about Alternative Strain-Rate Models

Let
ρRθγE = α(JS)|SRR|2, β = β(JS),

where JS denotes the triple of main scalar invariants of SRR. Hence, in light of (37), we can
write

Ė + βE =
(

α(JS)
√

J2 + β
SRR · E
|SRR|

) SRR

|SRR|
, J2 = |SRR|2. (39)

Within the strain-limiting elastic constitutive setting [22,23], the strain E and the
strain-rate Ė are replaced by their linear approximations ε and ε̇. In this setting,∣∣∣SRR · ε

|SRR|

∣∣∣ ≤ |ε| ≪ 1

so that, if α
√

J2 and β are comparable, then we can take the approximation

ε + νε̇ = β1SRR, ν = 1/β, β1 = α/β > 0. (40)

Hence, assuming tr SRR = 0 and α = α̂(J2) > 0, we recover the model investigated in [22].

Remark 1. If β and then ν are constant, then integration of (40) on (−∞, t] yields

ε(t) =
∫ t

−∞
exp(−β(t − u)) α(JS(u)) SRR(u)du. (41)

Equation (41) shows an example of separable strain-dependent modulus [16,24].
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7. Stress-Rate Models

Many experimental tests may be viewed as the investigation of the strain induced by a
stress process. This warrants attention regarding stress-rate models, as is the case in [25,26].
Hence, we now address equations of the form

E = g(θ, TRR, ṪRR). (42)

To examine the compatibility of the constitutive function (42) with the second law, we let

θ, TRR, ṪRR,∇R θ

be the set of variables. Consistently, it is convenient to consider the Gibbs free energy

ρRϕ = ρRψ − TRR · E

and observe that
−ρRψ̇ + TRR · Ė = −ρRϕ̇ − ṪRR · E.

Now, ϕ, η, q, E, γ are provided by constitutive equations. Computation of ϕ̇ and substitution
in the CD inequality yield

−ρR(∂θϕ + η)θ̇ − (E + ρR∂TRR ϕ) · ṪRR − ρR∂ṪRR
ϕ · T̈RR

−ρR∂∇R θϕ · ∇R θ̇ − 1
θ

qR · ∇R θ = ρRθγ ≥ 0.

The arbitrariness of T̈RR,∇R θ̇, θ̇ implies that

∂ṪRR
ϕ = 0, ∂∇R θϕ = 0, η = −∂θϕ

and
−(E + ρR∂TRR ϕ) · ṪRR −

1
θ

qR · ∇R θ = ρRθγ ≥ 0. (43)

For reasonable simplicity, we let q be independent of ṪRR. Hence, we let

γ = γT(θ, TRR, ṪRR) + γq(θ, TRR,∇R θ),

both γT and γq being non-negative. Thus, it follows that

[g(θ, TRR, ṪRR) + ρR∂TRR ϕ(θ, TRR)] · ṪRR = ρRθγT, (44)

−1
θ

qR · ∇R θ = ρRθγq ≥ 0.

For definiteness, we consider (44) under the assumption

g(θ, TRR, ṪRR) = g0(θ, TRR) + g̃(θ, TRR, ṪRR), g̃ → 0 as ṪRR → 0.

It follows that
g0(θ, TRR) = −ρR∂TRR ϕ(θ, TRR)

and
g̃(θ, TRR, ṪRR) · ṪRR = ρRθγT.

A nonlinear dependence of g̃ on TRR and ṪRR can be assumed in the form

g̃(θ, TRR, ṪRR) = g1(θ, JT)λ(ṪRR),

where g1 ≥ 0 and
λ(ṪRR) = λ0(JṪ)ṪRR, λ0 > 0.
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8. Advantages and Disadvantages of Rate Equations

The constitutive equations of viscoelastic materials in the form of rate equations are
advantageous in many respects. Relative to the Lagrangian description adopted in this
paper, the dissipative properties of solids are modeled by equations involving the rates
Ė, ṠRR, most frequently through nonlinear dependencies on E and SRR. Nonlinear properties
are then accounted for in a variety of ways, thus showing the flexibility of the approach.
Furthermore, the thermodynamic consistency is established in a standard way by using the
representation formula also in view of the constitutive property of the entropy production.

The nonlinearities possibly involved in the rate equations need not allow us to set the
equations in the form of materials with fading memory. This shows the limited possibility
of modeling through memory integrals, although increasing attention is focused on models
with fractional derivatives [27–29].

It is worth mentioning that, so far, aging properties are described by memory function-
als. In this connection, consider a four-rank tensor function G(t, s) on R×R+ and, in the
Eulerian description, we modify the Boltzmann model of viscoelastic behavior in the form

T(x, t) = G0(t)ε(x, t)−
∫ t

−∞
∂sG(t, s)ε(x, s)ds,

where G0(t) = G(t, t) and ε is the infinitesimal strain tensor. The function G(t, s) accounts
for the memory through the second variable, s, and for aging through the first variable, t.
This approach is developed in [30]. The aging effect on the viscoelastic property is also
described by a memory integral through a rescaling of times t, s [17,31], as illustrated above
by Equation (19).

9. Conclusions

The modeling of viscoelastic or dissipative solids is often developed through memory
functionals. The description through the Boltzmann functional for the stress in terms
of the strain history is the best-known example in this sense. Yet, memory functionals
make it more involved than any account of nonlinearity and affect compatibility with
thermodynamics. That is why, alternatively, the thermodynamically consistent modeling of
viscoelasticity is performed through rate-type equations whose best-known examples are
those associated with rheological models.

This paper provides a general account of viscoelasticity through rate equations as
relations between strain, stress, and their derivatives. To comply with the objectivity
principle, we chose to follow the Lagrangian description and used as variables the Green–
Lagrange strain E and the second Piola stress TRR, or E and SRR = TRR − G(E). Both
E and TRR are invariant under Euclidean transformations and hence so are their time
derivatives Ė, ṪRR. The inspection of thermodynamic consistency leads to the analysis of
inequalities like, e.g., SRR · Ė = ρRθγs. Equations (15), (29) and (38) describe general classes
of viscoelastic models in rate-type form.

Two features, characteristic of this paper, are unusual in the literature. Firstly, the en-
tropy production γS is regarded as provided by a constitutive function to be determined or
chosen. Secondly, the use of a representation formula enables vector (or tensor) unknowns
to comprise an arbitrary term, denoted by Ξ. Sections 4–7 show that special selections
of Ξ lead to qualitatively new constitutive equations. Furthermore, the constitutive rate
equations thus determined have the remarkable advantage of being consistent with thermo-
dynamics. The main outcome of this paper is that a simple, unique scheme, consistent with
the second law of thermodynamics, leads to nonlinear models of various real materials (see
Sections 4.1, 6.1 and 6.3).

Although this has not been our concern here, it is worth mentioning that the same
thermodynamic approach to equations involving Ė and ṪRR enables the modeling of
hysteresis in viscoplastic materials, as shown, e.g., in [6]. Regarding possibilities for
future work developments, we observe that modeling through rate equations is under
investigation in connection with the transition processes.
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26. Duman, E.; Şengül, Y. Stress-rate-type strain-limiting models for solids resulting from implicit constitutive theory. Adv. Cont.

Discr. Mod. 2023, 2023, 6. [CrossRef]
27. Fabrizio, M.; Giorgi, C.; Morro, A. Modelling of heat conduction via fractional derivatives. Heat Mass Transfer 2017, 53, 2785–2797.

[CrossRef]
28. Tarasov, V.E. Generalized Memory: Fractional Calculus Approach. Fractal Fract. 2018, 2, 23. [CrossRef]
29. Brandibur, O.; Garrappa, R.; Kaslik, E. Stability of Systems of Fractional-Order Differential Equations with Caputo Derivatives.

Mathematics 2021, 9, 914. [CrossRef]

http://doi.org/10.3390/ma15196804
http://www.ncbi.nlm.nih.gov/pubmed/36234142
http://dx.doi.org/10.1177/0037549719857136
http://dx.doi.org/10.1088/1402-4896/acf88f
http://dx.doi.org/10.1016/j.ijengsci.2020.103375
http://dx.doi.org/10.1023/A:1026062615145
http://dx.doi.org/10.1002/pen.760090410
http://dx.doi.org/10.1007/s12064-021-00361-7
http://dx.doi.org/10.1007/s00707-013-0848-8
http://dx.doi.org/10.1016/S0021-9290(98)00077-3
http://dx.doi.org/10.1177/0021955X7401000306
http://dx.doi.org/10.1007/s00033-013-0362-9
http://dx.doi.org/10.3934/dcdss.2020330
http://dx.doi.org/10.1007/s00397-003-0312-0
http://dx.doi.org/10.1007/s00033-020-01315-7
http://dx.doi.org/10.1186/s13662-023-03751-x
http://dx.doi.org/10.1007/s00231-017-1985-8
http://dx.doi.org/10.3390/fractalfract2040023
http://dx.doi.org/10.3390/math9080914


Mathematics 2024, 12, 3011 18 of 18

30. Fabrizio, M.; Giorgi, C.; Morro, A. Two approaches to aging and fatigue models in viscoelastic solids. Atti Accad. Peloritana
Pericolanti 2019, 97, A7.

31. Zink, T.; Kehrer, L.; Hirschberg, V.; Wilhelm, M.; Böhlke, T. Nonlinear Schapery viscoelastic material model for thermoplastic
polymers. J. Appl. Polym. Sci. 2022, 139, 52028. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/app.52028

	Introduction
	Balance Laws and Constitutive Equations
	Second Law of Thermodynamics
	Lagrangian Form of the Balance Laws

	Rate-Type Models for Thermo-Viscoelastic Solids
	Stress–Strain-Rate Models 
	Solutions to (12)
	A Model for Damage and Fatigue
	The Maxwell Fluid
	A Model for Bio-Soft Tissues

	Solutions to (13)

	Strain–Stress-Rate Models
	Strain-Rate Models
	Some Examples
	Generalizations of the Kelvin–Voigt Model
	Remarks about Alternative Strain-Rate Models

	Stress-Rate Models
	Advantages and Disadvantages of Rate Equations
	Conclusions
	References

