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Abstract 

Debris flows are a fundamental component of hydraulic hazard in mountain areas and are often 
triggered by the failure of the saturated bed along the channel network. Accordingly, the 
identification of unstable areas during a rainfall event inside a catchment and the debris flow 
propagation are crucial to the correct computation of hydraulic hazard in mountain areas. 
Focusing the attention on the collapse of lateral slopes, in literature many contributions deal 
with the first task by using physically based distributed models. In most applications the 
geotechnical component of these models provides the Factor of Safety (FS) using the Infinite 
Slope (IS) assumption coupled with suitable hydrological hypothesis. However, there is 
evidence in literature, that the IS assumption, that considers single cells stability, becomes 
increasingly inadequate with the growing space resolution of the elevation model, contributing 
to the overprediction of unstable areas that affect these models. As a first contribution, in this 
thesis an original improvement to the stability calculation is proposed for physically based 
distributed models. The improvement is obtained by presenting a modification of the Janbu’s 
method of slices suitable to basin scale applications. It is shown that the proposed method is 
systematically better than the local IS prediction for a set of elementary test cases in which a 
rigorous stability analysis is available, confirming the predictive capabilities of the proposed 
approach. Finally, the applicability of the method at the watershed scale is showed by 
considering its application to a well-known test case in Oregon, i.e. the Mettman Ridge. As a 
second contribution, once the source areas have been detected, in order to model the 
propagation of triggered debris flows, a numerical solver has been implemented. The proposed 
software, called DEBRA (Debris-flow Evolution and Behaviour for Risk Assessment), is a 
shock capturing finite volume numerical scheme which solves the monophasic 2D Steep Slope 
Shallow Water Equations on an unstructured grid. DEBRA can use multiple rheological laws 
(Manning’s for newtonian fluids, Voellmy’s and O’Brien’s for non-newtonian fluids) used in 
most commercial software allowing the user to choose the best formulation according to 
experience or field characteristics. Firstly, the numerical scheme is validated against dam break 
analytical solutions which are obtained specifically for each rheology. Finally, DEBRA and a 
commercially available software (RAMMS) are compared on a recent event happened in Niardo 
(Italy) where information about deposition maps and inundation extent are available.  
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Abstract 

Le colate detritiche sono una componente fondamentale della pericolosità idraulica nelle aree 
montane e sono spesso innescate dal cedimento del fondo alveo saturo lungo il reticolo 
canalizzato. Di conseguenza, l’identificazione delle aree instabili durante un evento meteorico 
intenso a scala di bacino è cruciale per la mappatura delle aree potenzialmente impattate. 
Relativamente ai collassi di versante, in letteratura molti contributi utilizzano dei modelli 
fisicamente basati a scala di bacino per modellare il fenomeno. Nella maggior parte delle 
applicazioni la componente geotecnica di questi modelli fornisce il Fattore di Sicurezza (FS) 
utilizzando il modello di versante infinito (IS) accoppiato con opportune ipotesi idrologiche. 
Tuttavia, è possibile riscontrare in letteratura che il modello IS, il quale considera ogni cella 
del bacino in modo isolato, diviene via via meno adeguato all’aumentare della risoluzione del 
modello di elevazione del bacino, contribuendo a sovrastimare le aree instabili. In questo lavoro 
verrà presentato un originale miglioramento del calcolo della stabilità dei versanti, modificando 
il metodo di stabilità di Janbu per poter essere applicato a scala di bacino. Il metodo proposto 
è un miglioramento rispetto all’IS su casi test semplificati in cui un’analisi di stabilità rigorosa 
consente di validare le risposte dei modelli. Infine, è stato applicato il modello introdotto ad un 
caso test ben documentato in letteratura: il Mettman Ridge in Oregon. Nell’ottica di modellare 
la propagazione delle colate detritiche dopo l’innesco è stato implementato un codice numerico 
ai volumi finiti chiamato DEBRA (Debris-flow Evolution and Behaviour for Risk Assessment) 
in grado di simulare la propagazione degli shock grazie alla risoluzione delle equazioni delle 
acque basse bidimensionali a forte pendenza su grigliati non-strutturati. DEBRA è dotato di 
svariati modelli reologici (Manning per fluidi newtoniani, Voellmy e O’Brien per fluidi non 
newtoniani) utilizzati in letteratura e in altri software commerciali, consentendo all’utente di 
poter selezionare la formulazione migliore considerando le peculiarità del caso in esame. In 
primo luogo, lo schema numerico è stato validato utilizzando soluzioni analitiche di rottura di 
diga o presenti in letteratura o derivate appositamente per la reologia considerata. In secondo 
luogo, sono stati confrontati i risultati di DEBRA e di un software commerciale (RAMMS) 
relativamente alla propagazione di una colata accaduta recentemente a Niardo (Italia) dove 
sono disponibili informazioni di riferimento relative alla deposizione e all’estensione delle aree 
impattate. 
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Introduction 

In recent years, the escalating frequency of extreme rainfall events has underlined the urgent 
need for effective disaster mitigation strategies. In mountain areas, debris flows triggered by 
prolonged or intense rainfall events pose a significant threat to inhabited and vulnerable 
regions, stressing the need for development of Early Warning Systems (EWS) to safeguard 
lives and infrastructure. In general terms, as reported by Piciullo et al. (2018), an Early Warning 
System is an important dynamic and non-structural mitigation alternative, upgradable over time 
to reduce the risk for human life associated to the occurrence of hazardous events. EWSs can 
be defined as the set of capacities needed to generate and disseminate timely and meaningful 
warning information to enable individuals, communities and organizations threatened by a 
hazard to prepare and to act appropriately and in sufficient time to reduce the possibility of 
harm or loss (UNISDR, 2009). People-oriented EWSs are made by a few interconnected assets 
(UNISDR, 2006): 1) identification of risks; 2) monitoring, analysis and forecasting of hazards; 
3) communication of warnings and 4) local responses to warnings. The identification of risk 
follows the study of hazards in a given area. Considering an inhabited area near a mountain 
catchment, the recognition of risk means to quantify the possible consequences of a debris flow 
that could occur in an area where valuable assets are present. The occurrence of a debris flow 
can be suggested  either from the characteristics of the catchment or from historical events. 
Accordingly, although the analysis of historical events is the first step to an adequate 
knowledge of the risk, it is often not sufficient, either due to lack of documentation or due to 
climate change which is responsible for a higher frequency and intensity of rainfalls, thus 
endangering previously unaffected or inhabited areas. On the other hand monitoring requires 
gauging stations which can record some physical quantity of interest, i.e. rainfall or overall 
debris discharge, a fundamental data set for calibration purposes of any analysis and forecasting 
of hazards. However, a simple gauging station can provide information about the history of a 
particular catchment but provide little information for forecasting purposes. This is true 
especially if the data collected is not analysed by some kind of model which can extrapolate 
what is going to happen based on past recordings. Considering debris flows, the forecasting 
aspect requires special attention, due to their high velocity, long runout and high impact forces 
(Berti et at., 2020). Intense or prolonged rainfall events are the main cause of debris flow 
triggering so most regional warning systems rely on the use of rainfall thresholds to predict 
their occurrence (Berti et al., 2020). However, these intensity duration curves are usually 
empirically derived from past observations in which a certain rainfall triggered a debris flow 
(Cannon et al., 2008). Accordingly, they provide a useful but very approximate indication of 
something that can happen somewhere and sometime in the catchment, without any indication 
of its magnitude or of the actually impacted areas. Furthermore, these thresholds, being purely 
regressive, do not consider the sediment availability in a catchment which may or may not be 
present to trigger a debris flow independently from the rainfall. A similar flaw can affect also 
more recent Machine Learning (ML) based models (Piciullo et al., 2022), which despite their 
applicability and their exponential growth in usage in new fields, require a large amount of 
diverse data to calibrate and to be considered useful. Most ML algorithms significantly “draw” 
from past experience, therefore struggle to predict new susceptible patterns (Tehrani et al., 
2022). Following the contribution of Varnes (1984) most of ML literature contributions 
(Tehrani et al., 2022) use a pixel-based computational approach to evaluate susceptibility 
analysis, neglecting more complex failure mechanisms that may involve entire slopes. 
Furthermore, the low number of landslide cells in relation to non-landslide cells (Tehrani et al., 



2 
 

2022) may significantly affect the quality of results. On the other hand, the reliability of an 
early warning system is fundamental to ensure its effectiveness and, in this direction, more 
reliable systems can be tension cables located in sensible portions of the catchment and 
equipped with a sensor which is triggered if the cable is suddenly put in tension. Despite their 
effectiveness, the time to issue a warning with this information is very limited, because it is 
proportional to the propagation time of the debris flow from the point where the cable is placed 
as far as the sensible areas. Depending on the characteristics of the catchment, this warning 
time can be as little as 10-20 minutes which can be effectively used to stop circulation along 
roads by triggering traffic lights but, on the other hand, is very short for more comprehensive 
civil protection measures if they need to be deployed. Therefore, there is an urgent need to 
identify methods which can be used to extend the warning time while keeping their reliability. 
This research is based on the idea that there is a positive answer to this problem and it must be 
searched in the physics behind the phenomena that triggers debris flows. In the author’s 
opinion, by coupling these methods to the enhanced predictive capabilities of meteorological 
models and to suitable distributed hydrologic modeling of the rainfall-runoff transformation at 
the watershed scale, the warning time can be made significantly longer to the point that 
evacuation measures can be implemented. Examples of integrated modelling, i.e. models that 
combine triggering with propagation of debris flows, can be found in the literature. Stancanelli 
et al. (2017) coupled a well-known soil stability model, i.e. TRIGRS (Baum et al., 2008), to 
model soil stability and the hydrological response of a catchment to an incoming rainfall, while 
using the commercial software FLO-2D (FLO-2D software) to propagate the debris flow that 
originates from each unstable cell. However, the limited knowledge of the catchment soil 
properties required an iterative calibration procedure, which still required the introduction of a 
threshold to limit the number of potentially unstable areas computed by TRIGRS. Liu & He 
(2020) suggested a complex integrated modelling which showed promising results by 
successfully coupling the Richard’s equation for soil saturation due to rainfall, Shallow Water 
Equations (SWE) for runoff along the drainage network and ultimately a biphasic approach 
capable of propagating the debris flow once the flow becomes hyperconcentrated. The focus 
of such modelling chain, as stated by the authors, are runoff generated debris flows which occur 
under heavy rainfall and loose deposits (Liu & He, 2020), which is not always the case in alpine 
areas, more prone to debris flows originated from shallow landslides. Being an exceedingly 
complex problem, in the following this research has been confined to the analysis of the 
stability of the slopes that are present in a catchment, proposing an innovative approach to 
study their response to growing water saturation during rainfall events. The idea of coupling a 
distributed hydrologic model to a local stability model is not new and has been practiced many 
times in the literature over the last 30 years. However, this has been done either by numerically 
solving the flow and stability conditions inside simplified and limited slopes by using the Finite 
Element methods, with strong limitations arising from the computational burden on the 
extension of the studied area, or by using the simple Infinite Slope (IS) approximation on a 
raster digital elevation model of the watershed, a method that totally neglects the collaborative 
role of surrounding blocks on the local stability. Although some critical papers have cast doubts 
on the scope of validity of this approach, it is still widely used and so far, in the author’s 
knowledge, no reasonably simple method has been presented in the literature to overcome the 
mentioned limitations. Here it is proposed a modification of the well-known Janbu’s method 
of slices (1973), widely used in geotechnical applications, in order to make it suitable to basin 
scale applications. It is showed that the proposed method is systematically better than the local 



3 
 

IS prediction for a set of elementary test cases in which a rigorous stability analysis is available, 
confirming the predictive capabilities of the proposed approach. Finally, it is showed the 
applicability of the method at the watershed scale by considering its application to a well-
known test case in literature, i.e. the Mettman Ridge watershed in Oregon. Thanks to the 
introduced methodology, able to enhance the prediction of the areas more susceptible to failure 
during a rainfall event at catchment scale, it is possible to obtain a reasonable estimate about 
the volumes and the locations at which the saturated soil can start to propagate downstream. 
Using the assumption of a monophasic fluid, a SWE solver has been proposed and implemented 
to study the propagation phase. Even though the monophasic assumption does not incorporate 
the state of the art physics on the debris flow propagation, according to which the phenomena 
can be studied considering the solid and liquid phases separately, at this stage of research the 
potential of an enhanced 2D SWE solver was investigated. State of the art physics include 
multiphase flow (Trujillo-Vela et al., 2022), able to describe the solid and the liquid phase 
separately, which allows the simulation of flows in which the solids concentration, i.e. 
sediments, may vary in time, thus enabling a more accurate representation of the phenomena. 
Physics complexity scales accordingly with mathematical complexity which often lead either 
to multiple parameters to calibrate before the simulation or additional numerical challenges 
like the loss of hyperbolicity of the system of equations being solved, tied to the appearance of 
Kelvin-Helmholtz instabilities (Pelanti et al., 2008) which arise when the two phases tend to 
separate. Having in mind the need of a practical and operative tool to properly account for all 
the uncertainties of the phenomena, the following important improvements are introduced: 1) 
the use of an unstructured grid that allows a better reproduction of the local bathymetry; 2) the 
adoption of a state-of-the-art steep formulation of the solving equations, that seems important 
considering the nature of the problem; 3) the use of two constitutive equations (in addition to 
the plain newtonian rheology) currently implemented in two separate solvers (FLO-2D and 
RAMMS) that are the most internationally widely used for the practical mapping of debris flow 
hazard. Finally, the implementation of transparent and physically based conditions for the input 
sedimentograph, that unfortunately are not clearly implemented in the mentioned software. 
Eventually, a shock capturing finite volume numerical scheme with the mentioned features has 
been implemented, called DEBRA (Debris-flow Evolution and Behaviour for Risk 
Assessment). In the following, the numerical scheme is validated against dam break analytical 
solutions which are obtained specifically for each rheology considered. A brief discussion on 
each modelled rheology is reported, highlighting how the parameters affect the flow being 
modelled. Finally, DEBRA and a commercially available software (RAMMS) are compared 
on a real event happened in Niardo (Italy) where information about deposition maps and 
inundation extent occurred in a recent event are available.  
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Chapter 1 

A novel approach for the computation of soil slope 
stability in distributed hydrologic applications  
 

1.1 Introduction 

Debris flows are a major component of hydraulic hazard in mountainous environment and are 
often triggered by the collapse of steep slopes along the drainage network of a watershed. Soil 
slope failures are usually triggered by a build-up of pore water pressure during heavy or 
prolonged rainfalls undermining the equilibrium between resistance and gravitational forces 
(Iverson,  2000). Accordingly, the accurate prediction of the locations of the areas which are 
most susceptible to failure, as well as of the amount of material that is destabilized have great 
importance for zonation purposes and for designing early-warning systems (e.g. Piciullo et al., 
2018; Guzzetti et al., 2020). The interplay between groundwater, water runoff and geotechnical 
soil properties determines where a soil slope failure will occur: accordingly, hillslope hydrology 
plays a crucial role in the overall process. To this purpose distributed physically based 
hydrological models, operating either in steady state or in dynamic conditions (e.g. Dietrich et 
al., 1992; Dietrich et al., 1993; Dietrich et al., 1995; Baum et al., 2008; Casadei et al., 2003; 
Iida, 2004), coupled with a soil stability model triggered either by shallow subsurface flow (e.g. 
Montgomery & Dietrich, 1994; Dietrich et al., 2001) or by a wetting front during rainfall event 
(e.g. Rosso et al., 2006), have been used to map landslide sources in a watershed. The overall 
idea is important and attractive: a distributed hydrologic model that provides the surface and 
shallow subsurface flow paths, derived by the terrain gradient, showing the locations where 
pore water pressure builds up and where runoff is stronger. The first element governs instability 
whereas the second is a key variable in the potential evolution of a soil slip into fast slope 
movements, e.g. debris flow. As a consequence, several physically based models at the basin 
scale have been proposed, based either on actual rainfall-runoff models (e.g. Baum et al., 2008) 
or on more simplified GIS coupling between land topography and rainfall potential (e.g. 
Dolojan, 2021). It is interesting to observe that since the very first distributed hydrological 
attempt to model soil stability in a watershed (e.g. Haefeli, 1948), the Infinite Slope approach 
(IS in the following) has been mainly used (Rossi et al., 2013; Medina et al., 2021; Murgia et 
al., 2022). In their seminal contribution Montgomery & Dietrich (1994) developed a distributed 
model able to combine digital elevation data with near surface throughflow under steady rainfall 
and IS stability models. Following a similar idea the Transient Rainfall Infiltration Grid-Based 
Regional Slope Stability (TRIGRS) model (Baum et al., 2008) computes slope stability 
considering the transient pore-pressure due to rainfall infiltration. The TRIGRS model is based 
on an extension of the linearized solution of the Richards’ equation (Iverson, 2000), while the 
IS hypothesis is adopted for slope stability computation. The Shallow Landslides Instability 
Prediction (SLIP) model (Montrasio et al., 2011) considers the stability conditions of a slope, 
the soil characteristics, and the incoming rainfall, by neglecting the surface run-off and transient 
infiltration, since the entire amount of rain at a certain time instantaneously infiltrates into the 
soil. Cho & Lee (2002) and Cho (2017) proposed a similar model which uses the Green & Ampt 
equations (1911) for rainfall infiltration and the IS hypothesis for slope stability. 
Multidimensional stability models at the watershed scale are an active topic of research (e.g. 
Hovland, 1977; Burroughs, 1985; Dietrich et al., 2008). Such models usually apply a limit-
equilibrium approach to an assumed failure surface, modelling the soil as a collection of rigid 
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blocks. Even though these models require the same input parameters as IS models, they avoid 
the a-priori definition of a failure surface. Accordingly,  their application is hindered by the 
need of an efficient search algorithm to test multiple failure shapes. Actually, the number of 
possible failure surfaces grows exponentially with the number of grid cells used, so this 
approach may soon become intractable as the number of cells becomes significant (Dietrich et 
al., 2008). For these reasons, some constraints must be introduced in order to reduce the 
computational complexity of the problem (Bellugi et al., 2015). Montgomery et al. (2000) used 
a predefined rectangular landslide shape with a fixed size, Gabet & Dunne (2002) and Casadei 
et al. (2003) assumed that the areas of instability have a fixed length to width ratio. Okimura 
(1994) assumed landslides to be rectangular but characterized by a single length to width ratio: 
the size of the landslide is determined by computing a least stable cell using an IS model then 
exploring a fixed number of potential rectangular slide masses that included the least stable cell. 
Qiu et al. (2017) and Oguz et al. (2022) instead, explored the three-dimensional stability of 
ellipsoidal surfaces, using the procedure described in the work of Hovland (1977), neglecting 
the resisting contribution provided by the roots on the margin of the unstable block. In order to 
reduce the computational complexity, Lehmann & Or (2012) proposed a different approach in 
which the shape of the landslide can be general but requires the landslides to originate at a 
single cell. In their contribution the hillslope is modelled as different soil columns 
interconnected by frictional and tensional mechanical bonds represented as fiber bundles. If a 
certain failure criterion measured on the forces acting at the base of the soil column is met, then 
its load gets redistributed to its neighbours via the beforementioned fibers, which can fail as 
well, allowing an accurate description of the failure mechanism. Despite the possibility to 
predict rather general failure shapes, this approach is computationally very intensive and tends 
to overpredict the number and volume of the observed landslides.  

1.2 Evolution and limitations of physically based models 

Over the last decades, in the coupled modeling of soil stability and transient hydrology at the 
watershed scale, one can observe considerable advances on the hydrological side and a 
tendency to use the IS model for the computation of stability. According to this approach, the 
stability is computed at a local scale, neglecting the interaction with the surrounding blocks. 
However, there is evidence that the confining role of the surrounding blocks can be dominant 
when the typical vertical scale of the soil depth, ℎ, is comparable to the typical horizontal scale 
of the block, Δ𝑥. According to Griffiths et al. (2011), when the Δ𝑥/ℎ ratio is smaller than 16, 
the adequacy of the infinite slope assumption is questionable due to the boundary stresses that 
arise when the slope has a finite length compared to its depth. The practical relevance of this 
issue was negligible until a few decades ago, when the space resolution of the raster digital 
elevation models used in the hydrologic applications was relatively rough and a typical cell 
dimension was in the order of 10-20 𝑚. At this scale, considering a reference soil depth 
typically less than 1 𝑚 (e.g. Lehmann & Or, 2016), the Δ𝑥/ℎ ratio was sufficiently large to 
make the infinite slope approach acceptable. On the other hand, after the widespread advent of 
LIDAR, it is now customary to have distributed hydrologic models with Δ𝑥 in the order of a 
few meters. This is an important advancement (e.g. Claessens et al., 2005) because a better 
topographic resolution provides a careful reproduction of the flow paths, which is fundamental 
for the correct detection of flow accumulation zones and for the physical meaningfulness of 
the local parameters derived from the pre-processing of the drainage network (e.g. Pilotti et al., 
1996) or from local soil properties. In these situations, the scope of validity of the IS assumption 
is narrowing, because collaborative actions between blocks can become dominant: an unstable 
block could be sustained by the surrounding ones, or a stable block can be destabilized due to 
the instability of the upper blocks along the hillslope. These situations are considered by 
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traditional geotechnical stability analysis that study the stability of the whole slope with 
methods of increasing complexity (e.g. by means of a Finite Element analysis or applying 
Morgenstern & Price procedure) that, however, are difficult to implement in dynamic 
hydrologic simulations. Another flaw of the IS model in catchment scale applications is a 
marked tendency to overprediction of unstable areas and, accordingly, of the potential landslide 
hazard (Bellugi et al., 2015). In this thesis it is proposed to overcome some limitations of the 
widespread IS method by implementing a modification of the well-known Janbu method 
(Janbu, 1973; US Army Corps of Engineers, 2003) as a reasonable compromise between the 
simplicity of the IS model and the complete limit equilibrium methods. As it will be showed, 
the Janbu method considers the collaborative action between consecutive cells along a hillslope 
and satisfies all equilibrium equations for the whole slope in its complete formulation (e.g. 
Spencer, 1967; Morgenstern & Price, 1965). The modified method is sufficiently simple and 
computationally unexpensive to be implemented within a distributed hydrological model. In 
the following, considering that watershed test cases are inevitably affected by large 
uncertainties on the actual distribution of governing soil parameters, the method was first 
applied to some idealized test cases where everything is known, using SLOPE/W module of 
the GeoStudio software (Stability modelling with GeoStudio, 2021) as a validation tool. Next, 
the performance of the proposed methodology with the predictions provided by the IS model 
was compared, showing a systematic improvement. Finally, the proposed methodology was 
validated in terms of landslide susceptibility at basin scale using a dataset provided by Bellugi 
et al. (2015) consisting of measured soil properties and of an inventory of unstable areas 
observed during a 10-year period in a catchment located in Oregon. 

1.2.1 Infinite slope model 

The most used criterion to assess the stability of a slope is the factor of safety (FS in the 
following), i.e. the ratio between stabilizing and destabilizing forces: 

𝐹𝑆 =
𝐹������

𝐹��������
 (1.1) 

A slope characterised by 𝐹𝑆 ≥ 1 is stable, indicating that it is able to withstand the stresses 
necessary to maintain equilibrium, while if 𝐹𝑆 < 1 the slope is unstable, and failure may occur 
if the stressing conditions persist. A standard method to compute the 𝐹𝑆 is the introduction of 
the infinite slope (IS) model. The IS model (Haefeli, 1948; Taylor, 1948; Skempton & DeLory, 
1957) is based on the following assumptions: 

� The slope is infinitely long  
� Sliding failure occurs along a plane parallel to the surface of the slope 
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Figure 1.1 Side view of an infinitely wide and long slope inclined of an angle 𝛽. 

In the IS simple equilibrium equations are derived considering a block (see the yellow-shaded 
area in Figure 1.1) where the slip surface is represented by the dashed line at depth ℎ. The 
stabilizing force is given by 𝑆��� [𝑁], which is the maximum friction exerted along the slip 
surface at failure, provided by the Mohr-Coulomb relationship: 

𝑆��� = 𝑐�𝑎 + (𝜎 − 𝑢) 𝑎 tan 𝜙′ (1.2) 

where 𝑐′ [𝑁/𝑚�] is the basal effective soil cohesion, 𝜙�[°] is the effective friction angle, 𝜎 
[𝑁/𝑚�] is the total stress perpendicular to the failure plane, 𝑢 [𝑁/𝑚�] is the pore water 
pressure, 𝑎 is the inclined bottom area of the element of soil considered given by 𝑎 = 𝐴/ cos 𝛽, 
where 𝐴 is the planimetric area of the element and 𝛽 [°] is the inclination angle of the slope.  
In dry conditions, the vertically averaged specific weight of the soil 𝛾� [𝑁/𝑚�] is a function of 
the specific weight of the solid matrix, 𝛾� [𝑁/𝑚�], and of the block porosity, 𝜑 [−] as 𝛾� =

(1 − 𝜑)𝛾�. When moisture is present inside the soil, the specific weight depends also on the 
degree of saturation. If the block is totally saturated, its specific weight is 𝛾��� = (1 − 𝜑) 𝛾� +

𝜑 𝛾� with 𝛾� [𝑁/𝑚�] being the water specific weight. If the water table is located at distance 
r above the potential failure surface (see blue solid line in Figure 1.1), the vertically averaged 
specific weight is defined as 𝛾� = (1 − 𝑚)𝛾� + 𝑚𝛾���, where 𝑚 [−] is the normalized free 
surface height given by 𝑚 = 𝑟/ℎ where ℎ [𝑚] is the soil depth. In this case a steady seepage 
parallel to the slope occurs and the normal stress is reduced as effective stress 𝜎′ due to the 
hydrostatic pore pressure 𝑢: 

𝜎� = 𝜎 − 𝑢 = ℎ[(1 − 𝑚) 𝛾� + 𝑚(1 − 𝜑)(𝛾� − 𝛾�)] cos� 𝛽 = (𝛾�ℎ − 𝛾�𝑟) cos� 𝛽 (1.3) 

Lastly, the driving force is given by the saturated weight of the element: 

𝐹�������� = ℎ 𝑎 [(1 − 𝑚) 𝛾� + 𝑚 𝛾���] sin 𝛽 cos 𝛽 = ℎ 𝑎 𝛾� sin 𝛽 cos 𝛽 (1.4) 

Accordingly, the factor of safety (1.1) can be written as: 

𝐹𝑆 =
𝑐� + (𝛾�ℎ − 𝛾�𝑟) cos� 𝛽 tan 𝜙′

ℎ 𝛾� sin 𝛽 cos 𝛽
 (1.5) 
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It is important to observe that only the equilibrium in the direction orthogonal to the sliding 
plane is satisfied in the IS model whereas the equilibrium along the sliding plane is simplified, 
neglecting the forces that can be transmitted along the boundaries between the considered block 
and the upper and lower ones. Accordingly, in the IS approximation the values of 𝐹𝑆 in 
situations of incipient instability does not exactly reflect the stability of the block. Actually, 
even neglecting the soil resistance to traction, a single block 𝐴 in incipient collapse is 
constrained by a stabilizing force 𝐹 exerted by the block downslope, 𝐵. In this case, the value 
of 𝐹𝑆 would be underestimated. However, when computing the 𝐹𝑆 of the downslope block 𝐵, 
one is neglecting the reaction to 𝐹 exerted by 𝐴, that has now a destabilizing role. In this case, 
𝐹𝑆 could be overestimated. However, due to its simplicity the IS hypothesis has been 
extensively applied in literature, often coupled to hydrological models (e.g. Montgomery & 
Dietrich, 1994; Rosso et al., 2006) that provide the space and time distribution of the free 
surface height 𝑟 or to more simplified GIS based analysis in catchment-scale applications 
(Dolojan et al., 2021; Xie et al., 2004). More recently, the actual scope of the IS applicability 
has been questioned. Griffiths et al. (2011) performed stability analysis on slopes with different 
lengths using the Finite Element Method (FEM in the following), and found that the IS model 
is accurate only for slopes characterised by a length over depth ratio Δ𝑥/ℎ > 16. As the ratio 
diminishes the IS predictions deviate significantly from the values provided by the FEM 
method: e.g. for Δ𝑥/ℎ ≈ 2 the IS model returns a slope which is half as stable with respect to 
the predictions of the FEM under the same conditions (Griffith et al. 2011). This deviation is 
enhanced if one considers also the role of cohesion. Milledge et al. (2012) performed similar 
analysis and found that the 𝐹𝑆 values computed by the FEM always converge to the value 
provided by the IS method within 5%, when the Δ𝑥/ℎ ratio exceeds 25 although this limit ratio 
is affected by the geometry and by material properties of the slope. However, despite its 
limitations and due to its simplicity, the IS model is still widely used in catchment scale 
applications, even in presence of Δ𝑥/ℎ ratio below the reported threshold (e.g. Xie et al., 2004; 
Chae et al., 2015). 

1.2.2 Janbu’s method 

A well-known method for computing slope stability is the one proposed by Janbu (1973). Due 
to its hypothesis, the method is categorised as a Force Equilibrium Method (US Army Corps 
of Engineers, 2003). For our purposes, the main advantage of the Janbu’s approach is its 
applicability to general non-circular shear surfaces, a limitation that characterizes other 
methods available in literature (e.g. the Ordinary Method of Slices, US Army Corps of 
Engineers, 2003; the Bishop method, Bishop, 1955) and that limits their applicability in the 
context of shallow landslides or soil slip problems. Another advantage of the Janbu method is 
that it is simpler than other complete methods (so defined because they satisfy all equilibrium 
equations for the whole slope, e.g. Spencer, 1967; Morgenstern & Price, 1965), which are 
computationally too expensive to be applied in a distributed approach at basin scale. Let’s 
consider a rather general soil slope, as shown in Figure 1.2, in which the shear surface between 
AB (solid red line), is assumed to be known a priori.  



11 
 

 

Figure 1.2 Visualisation of the Janbu method applied to a soil slope of general shape. 
 
The depicted shear surface is only one among the infinite possible slip surfaces. The shear 
surface that gives the minimum 𝐹𝑆 value is defined as the critical shear surface and if 𝐹𝑆 ≤ 1 
then it is called a potential slip surface or failure surface (Janbu, 1973). Let us subdivide the 
slope into an appropriate number of slices by vertical lines, so that the local gradient can be 
well represented by the angle 𝛽. The forces acting on the boundaries of each slice are shown 
in Figure 1.3. 

 
Figure 1.3 Forces acting on a single slice. 

 
The total interslice forces acting in the horizontal and vertical direction are 𝐸 and 𝑇 
respectively; 𝑁 and 𝑆 are the integrals of the normal and shear stress distribution acting along 
the shear surface. 𝐺 is the weight of the slice. Although not present in the original formulation 
of Janbu (1973), in the following the lateral contribution represented by the term 𝑅 is provided 
both by root cohesion and lateral earth pressure on both sides of the element (Dietrich et al., 
2008). According to the so called simplified Janbu’s method (Janbu, 1973) it is assumed that 
the interslice forces are very similar inside each block, i.e. Δ𝑇� ≈ 0, and that all the blocks in 
the slope have the same 𝐹𝑆 value. Accordingly, eq. (1.1) can now be written: 
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𝐹𝑆 =
𝑆��� + 𝑅���

𝐺 sin 𝛽 − Δ𝐸 cos 𝛽
 (1.6) 

where Δ𝐸 could be positive or negative and 𝑅��� is the maximum resisting contribution 
provided by two lateral boundaries exerted both by the roots present in the soil and by the 
confinement action of lateral earth pressure that can be written as the depth-averaged lateral 
earth pressure multiplied by the tangent of the effective soil friction angle (e.g. Dietrich, 2008; 
Chugh, 2003; Arellano & Stark, 2000; Burroughs, 1985): 

𝑅��� = 2𝑐′� Δ𝑥 ℎ + 𝑘�(𝛾�ℎ − 𝛾�𝑟) cos� 𝛽 Δ𝑥 ℎ tan 𝜙′ (1.7) 

with 𝑐′� [𝑁/𝑚�] being the lateral effective soil cohesion and 𝑘� = (1 − sin 𝜙′) is the earth 
pressure coefficient at rest.  Under the assumption of plane strain conditions, it is possible to 
write the vertical equilibrium of the 𝑖-th slice along the slope: 

−𝐺� + 𝑁� cos 𝛽� + 𝑆� sin 𝛽� + 𝑅� sin 𝛽� − Δ𝑇� = 0 (1.8) 

By writing the block equilibrium in the direction of the sliding plane and considering eq. (1.6) 
one can easily see that: 

𝑆� + 𝑅� =
𝑆���,� + 𝑅���,�

𝐹𝑆
 (1.9) 

which is verified under the reasonable hypothesis that: 

𝑆� =
𝑆���,�

𝐹𝑆
;               𝑅� =

𝑅���,�

𝐹𝑆
 (1.10) 

that can be written as:  

             𝑆� =
𝑐�𝑎� + (𝑁� − 𝑢� 𝑎�) tan 𝜙′

𝐹𝑆
 

 

             𝑅� =
2𝑐′� ℎ� Δ𝑥 + 𝑘�(𝛾�ℎ� − 𝛾�𝑟�) cos� 𝛽� ℎ� Δ𝑥 tan 𝜙′

𝐹𝑆
 

(1.11) 

Combining eq. (1.8) and eq. (1.11) one obtains 𝑁� for the 𝑖-th slice: 
 

𝑁� =
𝐺� −

sin 𝛽�

𝐹𝑆
[𝑐�𝑎� − 𝑢� 𝑎� tan 𝜙� + 2𝑐�

�ℎ� Δ𝑥 + 𝑘�(𝛾�ℎ� − 𝛾�𝑟�) cos� 𝛽� ℎ� Δ𝑥 tan 𝜙�] + Δ𝑇�

cos 𝛽� +
tan 𝜙� sin 𝛽�

𝐹𝑆

 (1.12) 

Moreover, an independent equation can be obtained by writing the horizontal equilibrium for 
the whole slope: 
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�(𝑁� sin 𝛽� − 𝑆� cos 𝛽� − 𝑅� cos 𝛽�) = 𝐸� − 𝐸�

�

���

 (1.13) 

where 𝐸� and 𝐸�  are the horizontal forces acting on the shear boundary at lower and upper end 
of the slope respectively. Using rigorous FEM analysis, Griffiths et al. (2011) showed that for 
long and steep slopes the failure mechanism is likely to be located at the top of the slope where 
tensile forces are dominant (location B). On the other hand, considering short slopes, the 
dominant failure is likely to occur at the toe, where compressive forces are dominant (location 
A). Considering a long slope, it is a conservative assumption to consider the difference 𝐸� −
𝐸�  negligible. Inserting eq. (1.11) into eq. (1.13) one can write: 

� 𝑁� sin 𝛽� =

�

���

1

𝐹𝑆
 �[𝑐� 𝑎� + (𝑁� − 𝑢� 𝑎�) tan 𝜙� + 2𝑐′�ℎ� Δ𝑥 + 𝑘�(𝛾�ℎ� − 𝛾�𝑟�) cos� 𝛽� ℎ� Δ𝑥 tan 𝜙′] cos 𝛽�

�

���

 (1.14) 

and, by rearranging the last equation the safety factor 𝐹𝑆 can be obtained: 

𝐹𝑆 =
� {𝑐� 𝑎� + [𝑁�(𝐹𝑆) − 𝑢� 𝑎�+𝑘�(𝛾�ℎ� − 𝛾�𝑟�)ℎ� Δ𝑥 cos� 𝛽�] tan 𝜙� + 2𝑐′�ℎ�Δ𝑥} cos 𝛽�

�

���

� 𝑁�(𝐹𝑆) sin 𝛽�
�

���

 (1.15) 

Eq. (1.15), along with the definition of Ni given by eq. (1.12), becomes a polynomial equation 
of degree 𝑛 that can be solved numerically for the unknown overall safety factor 𝐹𝑆. It can be 
shown that the hypothesis Δ𝑇� ≈ 0 of the simplified Janbu’s method, provides a stress 
distribution inside the slope which satisfies both horizontal and vertical equilibrium but not 
moment equilibrium. Janbu (1973) also proposed a further refinement to consider the interslice 
shear forces Δ𝑇� ≠ 0 in the so-called rigorous Janbu’s method, according to which an 
additional moment balance for each slice is written, obtaining a more complex double iteration 
process in which all equilibrium equations are satisfied. In the following will be used only the 
simplified Janbu’s method, omitting therefore the term simplified. To this purpose, it is 
important to observe that according to the Janbu’s method it is possible that one or more slices, 
that would be locally unstable (stable) are kept in position (put in motion) by the surrounding 
slices. Accordingly, the method considers the cooperative role of the slope as a whole, 
improving the purely local equilibrium of the IS approach. 

1.3 Progressive slope method using Janbu’s approach 

Although the scope of the proposed method is wider, in the following soils covering an 
impervious bedrock will be considered, concentrating the attention on shallow landslides 
induced by rain (soil slips). As showed, the Janbu’s method considers the cooperative role of 
the slope as a whole, improving the purely local equilibrium of the IS approach. However, the 
Janbu’s method was devised to test the stability of a single slope, whose length is set in advance. 
This situation is different from what happens in a distributed hydrologic model, where each 
slope is typically represented as a collection of consecutive cells along the drainage network 
(see Figure 1.4, upper inset), computed by connecting the steepest directions (e.g. O' Callaghan 
& Mark, 1984; Pilotti et al., 1996) of a raster Digital Elevation Model (DEM).  Actually, each 
branch of the drainage network can be regarded as a collection of slopes of different length. To 
better explain this point, consider the example shown in Figure 1.4, where, in the inset, a 
drainage network is shown for a basin draining to the outlet O. Let us consider the stability of 
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the 8 cells of the slope that goes from A to B, where B is the local divide. Whilst the Janbu’s 
method has been devised to test whether the whole AB slope is unstable, here our purpose is 
computing the length of any subset of AB, starting from A, that might be unstable (e.g., 1-2, 1-
2-3, …). To this purpose, the Janbu’s method must be suitably modified. In Figure 1.4 the 
longitudinal section of the slope is shown, discretized in slices according to the cell size of the 
DEM. Theoretical and practical evidence suggests that in case of shallow landslides, i.e. where 
the length of the slope is much larger than the soil depth ℎ, failure usually occurs at the 
discontinuity between the soil and the bedrock (e.g. Pierson, 1977; Sidle & Swanston, 1982) 
or at the surface of discontinuity determined by the wetting front during rainfall events (Rosso 
et al., 2006).  

 

Figure 1.4 Visualisation of a general slope discretized into slices. The top left corner of the picture depicts where 
the slope is located inside the catchment, with O being the outlet cross section. 

In order to find out the length of the subset of AB that is potentially unstable, let us consider 
cell 1 in Figure 1.4 and let us apply the Janbu’s method assuming that the entire slope is made 
up only by that single cell. Using the following notation as a shorthand: 

𝑁𝑢𝑚� = {𝑐� 𝑎� + [𝑁� − 𝑢� 𝑎�+𝑘�(𝛾�ℎ� − 𝛾�𝑟�)ℎ� Δ𝑥 cos� 𝛽�] tan 𝜙� + 2𝑐�
�ℎ�Δ𝑥} cos 𝛽� 

 
𝐷𝑒𝑛� = 𝑁� sin 𝛽� (1.16) 

in which both 𝑁𝑢𝑚� (Numerator) and 𝐷𝑒𝑛� (Denominator) are functions of the unknown 
safety factor, which is computed using eq. (1.12) and eq. (1.15) with 𝑛 = 1. One obtains: 

𝐹𝑆� =
𝑁𝑢𝑚�(𝐹𝑆�)

𝐷𝑒𝑛�(𝐹𝑆�)
 (1.17) 

The solution of eq. (1.17) provides 𝐹𝑆�. Note that at this stage eq. (1.17) is identical to the IS 
method provided that no lateral contribution is present, i.e. 𝑘� = 0 and 𝑐�

� = 0. (see Appendix 
A for details). Considering cells 1 and 2 and compute the functions 𝑁𝑢𝑚�, 𝑁𝑢𝑚� and 
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𝐷𝑒𝑛�, 𝐷𝑒𝑛�, to be used into the next equation provides the overall safety factor 𝐹𝑆���,which 
is now representative of the slope made up by the first two cells: 

𝐹𝑆��� =
𝑁𝑢𝑚�(𝐹𝑆���) + 𝑁𝑢𝑚�(𝐹𝑆���)

𝐷𝑒𝑛�(𝐹𝑆���) + 𝐷𝑒𝑛�(𝐹𝑆���)
 (1.18) 

Now the solution of eq. (1.18) provides 𝐹𝑆���, which is the failure surface that spans along the 
first two slices. In general terms the safety factor for the stretch of the slope that goes from the 
first cell to the 𝑖-th cell can be computed as: 

𝐹𝑆�� … �� =
∑ 𝑁𝑢𝑚�(𝐹𝑆�� … ��)

�
���

∑ 𝐷𝑒𝑛�(𝐹𝑆�� … ��)�
���

 (1.19) 

The upper extent of the unstable part of slope AB is given by the largest value of 𝑖 (if any) for 
which 𝐹𝑆�� … � � < 1. On the other hand, the 𝐹𝑆 value computed for the last cell, i.e. the whole 
slope from A to B, is precisely eq. (1.15), i.e. the classical implementation of Janbu’s method 
to the whole slope. The computation of the stability of the slope, eq. (1.19), requires solving a 
polynomial equation for each slice present on the slope, which can be effectively done using a 
Newton Raphson method. However this requirement can be simplified in two directions. First, 
this computation can be avoided if one is interested only in assessing whether the considered 
soil slope is stable or not. If this is the case, by inserting 𝐹𝑆 = 1 into eq. (1.19) and carrying 
all terms on the right side, one obtains a quantity 𝑄 given by: 

𝑄(1) =
∑ 𝑁𝑢𝑚�(1)�

���

∑ 𝐷𝑒𝑛�(1)�
���

− 1 (1.20) 

which is larger than zero if the slope is stable or lower than zero if it is unstable (see Appendix 
B for a proof of this statement). As a second direction, it can be shown that an approximate 
solution of eq. (1.19) is provided by the following linearization: 

𝐹𝑆 =
∑ [𝐺� tan 𝜙′ + 𝑀� cos 𝛽� + 𝑀� sin 𝛽� tan 𝛽�]�

���

∑ [𝐺� tan 𝛽�]�
���

 (1.21) 

where 𝑀� is a short-hand notation for 𝑀� = 𝑐�𝑎� − 𝑢�𝑎� tan 𝜙� + 2𝑐�
�ℎ� Δ𝑥 + 𝑘�(𝛾�ℎ� −

𝛾�𝑟�) ℎ� Δ𝑥 cos� 𝛽� tan 𝜙� (see appendix C for derivation and further evidence on the topic). 
By applying this procedure one can check every potential failure surface which starts from the 
toe of the slope (point A) and ends after each slice (e.g. 𝐹𝑆������� is the factor of safety 
associated with the failure surface that joins point A and the end of slice 4).  

[𝐹𝑆� 𝐹𝑆��� 𝐹𝑆����� 𝐹𝑆������� … 𝐹𝑆���� … � �] (1.22) 

This is only a subset of the possible failure surfaces that may arise in the general slope depicted 
in Figure 1.4. As an example, the procedure described so far has no way to check the stability 
of the failure surface located between slices 3 and 5 (e.g. 𝐹𝑆�����). To address this issue it is 
proposed to check every consecutive partition of the slope AB, in order to explore every 
location which may become unstable inside the slope. So, after computing every 𝐹𝑆 starting 
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from A, one can repeat the procedure described excluding the first slice and computing every 
𝐹𝑆 up the slope crest. Therefore, adding a row to the matrix reported in (1.22): 

�
𝐹𝑆� 𝐹𝑆��� 𝐹𝑆����� 𝐹𝑆������� … 𝐹𝑆���� … � �

 𝐹𝑆� 𝐹𝑆��� 𝐹𝑆����� … 𝐹𝑆���� … � �
� (1.23) 

Repeating the previous procedure until only the last slice remains leads to the following matrix: 

⎣
⎢
⎢
⎢
⎢
⎡
𝐹𝑆� 𝐹𝑆��� 𝐹𝑆����� 𝐹𝑆������� … 𝐹𝑆���� … � �

 𝐹𝑆� 𝐹𝑆��� 𝐹𝑆����� … 𝐹𝑆���� … � �

  𝐹𝑆� 𝐹𝑆��� … 𝐹𝑆���� … � �

   𝐹𝑆� … 𝐹𝑆���� … � �

    ⋱ ⋮
     𝐹𝑆� ⎦

⎥
⎥
⎥
⎥
⎤

 (1.24) 

Upper triangular matrix (1.24) contains all possible 𝐹𝑆 of the partitioned slope and, for a slope 
made of 𝑛 slices, the number of consecutive partitions to be checked is a triangular number, 
given by: 

𝑁° 𝑜𝑓 𝑐ℎ𝑒𝑐𝑘𝑠 =
𝑛(𝑛 + 1)

2
 (1.25) 

As an example the number of consecutive partitions to be explored in a slope made up of 4 
slices is 10, i.e. (1), (1-2), (1-2-3), (1-2-3-4), (2), (2-3), (2-3-4), (3), (3-4) and (4). Within each 
i-th row, the value of the (𝑖, 𝑗) cell indicates the overall 𝐹𝑆 for the failure surface which spans 
from the i-th slice to the j-th slice. On the other hand, the 𝐹𝑆 for the i-th slice can be obtained 
considering the minimum 𝐹𝑆 of all the slopes or sub-slopes (some collection of slices) that 
contain the i-th slice, that can be achieved using the following procedure: 

1. Apply the proposed Janbu’s method to the slope under study and compute each entry 
of the row matrix reported in (1.22), starting from the first slice. 

2. If at any point along the slope (slice 𝑘, for instance) a  𝐹𝑆���� … � � <  𝐹𝑆���� … � ��� 
is computed, meaning a lower factor of safety is encountered along the slope, then all 
𝐹𝑆 values before it, i.e. 𝐹𝑆�, 𝐹𝑆���, 𝐹𝑆���� … � � are set equal to the newly computed 
value  𝐹𝑆���� … � � . This condition states that a newly discovered shear surface has a 
lower factor of safety with respect to the previously analysed ones, therefore it is in a 
less stable configuration. The simple condition described works regardless of whether 
𝐹𝑆 > 1 or 𝐹𝑆 < 1, therefore is general to both stable and unstable slices or collection 
of slices. After this step, by looking at the output, it is possible to notice that along each 
collection of slices, i.e. along each row of matrix (1.24), the 𝐹𝑆 values can never 
decrease, otherwise the condition 𝐹𝑆���� … � � <  𝐹𝑆���� … � ��� is violated.  

3. Repeat step 2 for every partition of the slope. 
4. Finally, after each entry of the upper triangular matrix (1.24) is computed, a summary 

of the actual 𝐹𝑆 values along the slope can be obtained by taking the minimum value 
along each column of matrix (1.24). 
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It is interesting to note that the diagonal terms of matrix (1.24) are the 𝐹𝑆 values considering 
just a single slice, which, when the lateral contribution is neglected, are identical to the 𝐹𝑆 
computed using the IS model. Accordingly, to avoid the overprediction bias of unstable areas, 
that besets the IS method, the extraction of the minimum in the submatrices of matrix (1.24) 
can be done excluding the main diagonal: in this way, only the failure surfaces with at least two 
slices are considered when flagging the unstable areas. 

1.4 Controlled test cases 

The application of a stability model to a real watershed case is affected by many uncertainties, 
largely related to the amount of geotechnical and hydrologic data that this type of evaluation 
would demand. Accordingly, before proceeding with the application of the proposed 
progressive procedure to a real watershed, its performance must be tested against the results of 
more rigorous methods (e.g. the Morgenstern & Price procedure, whose stability analyses 
satisfies all equilibrium equations) applied to some elementary test cases, where all the data 
are known. In the following, the unstable areas are computed for two simple test slopes with 
different methodologies: using the proposed progressive Janbu’s method, the IS method and 
the Morgenstern & Price procedure. The output of Morgenstern & Price procedure is 
considered as the reference solution, since both the factor of safety and the position of the 
critical failure surface area provided by this method are very close to the output provided by a 
FEM analysis performed with the same conditions (Cheng & Lau, 2014). For simplicity’s sake 
in the following test cases 𝑘� = 0 and 𝑐�

� = 0. In all test cases the software GeoStudio 
(SLOPE/W module) has been used to dynamically test all admissible failure surfaces that can 
arise in a given slope and display only the ones that are characterized by a factor of safety that 
is smaller than unity. The software has been used to compute the reference solution, choosing 
the half-sine function as an interslice shear force function, as customary for stability analysis 
(Cheng & Lau, 2014). All the considered slopes are analysed in fully saturated conditions with 
a static water table located at the soil surface.  

1.4.1 Slope change test case 

The first test case consists of the idealized slope shown in Figure 1.5. The slope is equally 
divided into two portions: the first 50 m stretch has a constant gradient of 11°, while the 
remaining portion is characterized by a uniform steeper gradient of 27°. The geotechnical 
characteristics of the soil are reported in Figure 1.5.  
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Figure 1.5 Visualization of the analysed slope. The depth of soil along the slope has been enlarged for graphical 
reasons. The inset on the left shows the geotechnical properties of the soil. ℎ is the soil depth, 𝛽 is the inclination 
of the slice, Δ𝑥 is the slice length, 𝑚 is the normalized free surface height (the slope is completely saturated), 𝛾���  
is the saturated unit weight of the soil, 𝑐′ is the effective cohesion of the soil and 𝜙′ is the effective friction angle. 
The parameters are constant throughout the slope, except the gradient which changes between slices 10 and 11. 
The red shaded area is the amount of soil that is unstable (𝐹𝑆 < 1) in the current configuration using  SLOPE/W 
(GeoStudio). 

 

 

Figure 1.6 Steps for the application of the progressive Janbu’s method. a) Matrix presented in (1.24) for the slope 
reported in Figure 1.5, so far the 𝐹𝑆 values displayed are those computed using the progressive Janbu’s method 
without applying the procedure discussed previously (Step 1). b) Matrix presented in (1.24) after the application 
of the second step of the described procedure (Step 2), as one can notice, along the rows and spanning the columns 
from left to right, all values are either constant or increasing. 
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Figure 1.7 Computed safety factor using the proposed Janbu’s method (JFS) and Infinite Slope method (IS). The 
values of JFS are obtained from the matrix shown in Figure 1.6 by taking the minimum 𝐹𝑆 value along each 
column, as explained in the text. The light blue and red shadings represent the stable and unstable areas computed 
using SLOPE/W. 

In Figures 1.5 and 1.7 the output of SLOPE/W for the proposed slope is reported. The red-
shaded area spanning from the 20 m station up to the top of the slope is computed as unstable. 
As can be seen, the instability of the steeper region also affects the upper part of the less steep 
region. Figure 1.6b shows the matrix (1.24) for the slope under investigation: as one can 
observe, several slices that would be wrongly considered stable based on a purely local analysis 
turn out to be unstable due to the destabilizing contribution of the upper slices. For instance, 
notice how in row 6, which corresponds to the shear surface which starts from the 25 m mark 
going upstream, the slope would be stable up to the second-last slice, as highlighted by the 
values of the factor of safety. Then, if the contribution of the last slice is considered, the overall 
slope is no longer stable since the factor of safety reported in the last column of row 6 is less 
than 1 (i.e. 𝐹𝑆����...��� < 1). This newly computed factor of safety is then assigned to all slices 
already encountered, flagging them as unstable, according to the procedure discussed in the 
previous section. To summarize the entries of matrix depicted in Figure 1.6b in a single line 
plot, for each column the minimum 𝐹𝑆 value that has occurred has been reported in Figure 1.7, 
which displays the final output of the progressive Janbu’s method, together with the IS method 
and SLOPE/W. As explained above, to avoid overpredicting unstable areas, as done by the IS 
method, the extraction of the minimum along the columns of matrix (1.24) is done excluding 
the main diagonal. Actually, a factor of safety less than one of the i-th element of the main 
diagonal means that the i-th slice of the slope is unstable on its own: however, this situation 
may change when also the surrounding slices are considered, in contrast to the results provided 
by the IS method. Figure 1.7 shows that, as expected, the IS model is unable to predict unstable 
slices in the milder stretch since it considers only local contributions, whereas the proposed 
Janbu’s method is able to correctly predict a failure even in the less steep  region. Overall, the 
proposed Janbu’s method predicts failure for the last 75 m, while the IS method only for the 
last 50 m. Using the output shown in Figure 1.5 as a reference solution, we can say that in this 
case the proposed Janbu method detects 93.75% of the overall unstable area while the IS 
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method only 62.50%. This case provides a clear example of the limits of the IS approach in a 
simple situation which however may arise inside any stability analysis at the basin scale. 
Although in this example we used a small Δ𝑥/ℎ ratio 5/1 = 5, the computation of the stability 
along the less steep part of the slope does not improve when a larger dimension of the cells, up 
to 50/1 = 50, is used. 

1.4.2 Parabolic slope 

In this second example (see Figure 1.8), the profile of the slope is given by the equation 𝑧 =

2√𝑥, where 𝑥 is the space coordinate, spanning 20 m. As the equation implies, the slope is 
initially steep and becomes progressively mild towards the top. 

 

Figure 1.8 Visualization of the parabolic slope. In the top left corner the geotechnical characteristics of the soil 
are reported. The elevation data and base angles are given as a function of the space coordinate x, which starts at 
the beginning of slice 1. The red shaded area is the amount of soil that is unstable (𝐹𝑆 < 1) in the current 
configuration using  SLOPE/W (GeoStudio). 

 



21 
 

Figure 1.9. Final output of the progressive Janbu’s method, the red shaded entries are characterized by a 𝐹𝑆 < 1 
(unstable), while for the blue shaded entries 𝐹𝑆 > 1 (stable).  

 

Figure 1.10 Computed safety factor using the proposed Janbu’s method (JFS), obtained by taking the minimum 
along each column of the matrix reported in Figure 1.9 and the Infinite Slope method (IS). The light red shaded 
area of the figure, spanning from 0 to around 16 m displays the unstable portion computed by SLOPE/W, contrary 
to the light blue shaded area which is the stable portion. 

The slope is discretized with Δ𝑥 = 1 𝑚, an ordinary resolution in current DEM that are usually 
obtained by high resolution LIDAR survey. Accordingly, the Δ𝑥/ℎ ratio (slice by slice) is 
1/0.8 = 1.25, well below the validity thresholds of the IS model. In Figure 1.8 and 1.10 the 
output of SLOPE/W for the presented slope is shown. The red-shaded area along the first 16 m 
of the slope is flagged as unstable. Figure 1.10 shows that, according to the IS model, only  the 
first 4.5 m of the slope would be unstable, while the proposed Janbu’s method computes the 
first 13.5 m of the slope as being unstable. Accordingly, the proposed implementation of the 
Janbu’s method detects 84.38% of the unstable area while the IS method just 28.12%.  

1.5 Extension to the watershed scale 

The analysis of the synthetical test cases showed the superiority of the proposed method over 
the IS method. On the other hand, the method is relatively more complex with respect to the 
IS, that is based on a pure local analysis and it is important to show its actual applicability at 
the watershed scale. To this purpose in the following it is presented the application of the 
proposed methodology to a study area which has been widely discussed in the literature: the 
Mettman Ridge case, Oregon (e.g. Bellugi et al., 2015; Rosso et al., 2006; Dietrich et al., 2001; 
Montgomery & Dietrich, 1994). Although the high level of uncertainty in the soil description 
is the real stumbling block when dealing with real watersheds, in this case, the data required to 
run the model are obtained from the online repository provided by Bellugi et al. (2015, 2021). 
Accordingly, the use of a reference test case and of the corresponding dataset as input avoids 
the parametric uncertainty of the problem, allowing a direct comparison with previous results. 
In order to identify the areas which are potentially unstable at the watershed scale during a 
rainfall event, a distributed hydrologic model must be implemented which incorporates a 
stability model. The hydrologic model should provide the transient soil saturation at each site 
in the watershed, to be used in the stability model, as well as the shallow subsurface flow and 
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surface runoff. In the following a proprietary distributed hydrologic model whose structure is 
an evolution of Pilotti and Rosso (1990) will be used. Using a DEM of the watershed, the model 
first computes the watershed Space Filling Drainage Network (SFDN, e.g. Pilotti et al., 1996) 
and then, by using suitable filtering algorithms, the channel network (see Figure 1.11). These 
two networks are codified as topologic non-binary tree-like structures, where each node 
corresponds to a cell of the original DEM. All the watershed cells are connected in the SFDN 
and water is transferred along the SDFN non-binary tree using suitable recursive algorithms 
for tree traversal described in Pilotti et al. (2019). Each node has direct access to the 
geomorphological and topologic information of the locally drained watershed and is connected 
downstream to a single node in the steepest direction.  

 

Figure 1.11 Space filling drainage network, SFDN, (B) derived from the DEM of the basin (A). The red dot is the 
basin outlet. From the SFDN it is possible to extract different channel networks, e.g., the one shown on the DEM 
(A) surface, computed according to a slope dependent contributing area (𝐶 = 0.1 𝑘𝑚�, 𝛼 = 1.7, where 𝐶 and 𝛼 
are two parameters controlling the channel extraction). 

Figure 1.12 shows the hydrological processes that are computed within each cell of the SFDN. 
The hydrologic model is parametrized as a function of suction, porosity, saturated permeability, 
and soil depth (used by the Green-Ampt method and Darcy’s equation) and local Manning’s 
coefficient (for surface runoff computation). These quantities can be provided either as a single 
uniform value in the basin or as distributed maps when more detailed data are available. Each 
cell has a two-storage structure, where the effective depth of the subsurface storage is 
controlled by the soil depth and porosity. Runoff and subsurface flows are modelled according 
to a kinematic wave approach, that makes use of a modified Manning’s equation for runoff and 
of Darcy’s equation for subsurface flow. As proposed by D’Odorico et al. (2005), the model 
takes into account both the topography-driven groundwater table and the moisture content 
related to the wetting front computed by the Green-Ampt method (Rosso et al., 2006) during a 
rainfall event; typically, the two processes have different time scales, as shown by Iverson 
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(2000), and both cause a build-up of pore water pressure that can trigger soil failure. 
Accordingly, the stability model assumes that failure occurs either within the soil column at the 
local wetting front, or at the soil bedrocks boundary (e.g. Megahan et al., 1983).  

 

Figure 1.12 Hydrological processes computed within each cell of the Space Filling Drainage Network. The block 
on the right is a vertical-section of the cell framed in red on the left, that receives inflow from cells A and B and 
feeds cells C. Net rainfall is computed from local rainfall R using the Green-Ampt method. Net rainfall contributes 
to the water depth hr of the upper storage, whose balance provides local runoff 𝑄�� on the basis of incoming runoff 
𝑄��, from upstream cells A and B and of Manning’s equation. ℎ� is the thickness of the saturated layer from 
above, i.e. the position of the wetting front of the infiltrating rainfall. When ℎ� =  ℎ���� ,  the wetting front is on 
the bedrock and a shallow aquifer parallel to the soil surface is considered for the giving block. The local aquifer 
balance uses 𝑄�� (different from zero only if an aquifer is present at cells A or B) and 𝑄��, that is computed 
according to Darcy’s equation. The balance provides ℎ�, the thickness of the saturated layer on the bedrock. 
Considering that an aquifer can be originated also by 𝑄��, it can be present in a cell even if ℎ� <  ℎ���� . In this 
case two saturated layers are locally present, separated by a conceptually dry layer ℎ� =  ℎ���� − (ℎ�  +  ℎ�). 

By simulating the rainfall-runoff transformation along the SFDN, the model effectively takes 
into account the morphology of the channel network. A simple example that shows the 
influence of the slope topography on the dynamics of soil saturation is shown in Figure 1.13 
for an elemental hillslope made with a sequence of 28 cells, each with a side of 10 m. Three 
different elevation profiles have been considered: linear (case A), convex (B) and concave (C). 
The slope is initially dry with a uniform distribution of soil depth ℎ���� = 0.4 𝑚, porosity Φ =

0.3 and suction Ψ = 0.19 𝑚 and saturated permeability 𝐾 = 8.3 ∙ 10�� 𝑚/𝑠. A steady rainfall 
of 0.05 𝑚/ℎ, lasting three hours, has been assumed. The coloured maps on the right of Figure 
1.13 show the time and space evolution of slope saturation during 20 days after the end of the 
event, in the three cases of linear, convex and concave slope. Red colour indicates complete 
saturation that is also the initial condition of the three slopes. In contrast, the violet colour 
indicates the minimum level of saturation, which is followed by desaturation (white). Whilst 
in the case of the linear slope A, desaturation proceeds at the same rate from upstream to 
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downstream, in the case of the convex slope B this is not the case. The steepest cells are 
desaturated more rapidly, and a perching aquifer remains whose slow desaturation feeds the 
downstream cells. Finally, in the concave slope the faster desaturation of the upper part of the 
basin keeps a prolonged high saturation level at the foothill.   

 

Figure 1.13 Space-time evolution of average soil saturation along three 1D slopes with the curvatures shown on 
the left. Along a 20 days long period the saturation decreases from 1 (red) to 0 (white) with different patterns that 
reflect drainage and accumulation governed by the local slope.  

After each time step of the simulation of the rainfall-runoff transformation, the SFDN is visited 
to compute stability according to equation (1.19), using local values of friction angle and 
cohesion. In this way, the time varying map of FS throughout the watershed can be computed.  

1.6 Mettman Ridge application 

The Mettman Ridge study site (see Figure 1.14) has an area of 0.5 𝑘𝑚� and consists of steep, 
highly dissected soil-mantled hillslopes with narrow ridges and steep channels (Bellugi et al., 
2015). As a crucial information to validate a model that must predict susceptibility to areas 
which may become unstable in a catchment, an inventory of landslides occurred over a 10 year 
period is available for this area (Montgomery et al., 2000). Despite using a real test case to 
effectively validate the modelling chain it is proposed to consider a well-studied basin in 
Oregon which has been extensively studied with all parameters fixed allowing to focus only 
on the performance of the stability model. 
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Figure 1.14 Elevation data of the Coos Bay, OR, study site. The solid black polygons represent the mapped 
landslides that occurred over a 10 year period (Montgomery et al. 2000). 

The following data from the online repository by Bellugi et al. (2015, 2021) were used: 

� DEM data: available from the online repository, 2 m resolution. 
� Soil depth map: available from the online repository, 2 m resolution. The map has been 

estimated coupling an exponential soil production term (Heimsath et al., 2001) with a 
nonlinear diffusive term (Roering et al., 1999), following the framework reported in 
Dietrich et al. (1995): see Bellugi et al. (2015) for a more detailed description. 

� Root cohesion map: available from the online repository, 2 m resolution. Data is taken 
from the work of Montgomery et al. (2009) who measured the spatial distribution of 
root type, root diameter, root/area ratio and root depth in a portion of the study area. 
Experimental data suggested that the relationship between root cohesion and depth at 
the site is represented by a negative exponential function (Bellugi et al., 2015) which 
has been used to compute the basal cohesion in every point of the catchment. 

� Lateral cohesion map: available from the online repository, 2 m resolution. The average 
lateral root cohesion per unit perimeter area has been computed as the integral of the 
root cohesion over the soil thickness (Bellugi et al., 2015). 

� Soil saturation map: available from the online repository, 2 m resolution. Saturation 
data reported is obtained using the transient hydrologic model proposed and applied by 
Rosso et al. (2006) to this test case considering high intensity typical storms that occur 
across the catchment. 

� Soil friction angle: constant value of 40° across the whole catchment. 
� Saturated soil unit density: constant value of 1600 𝑘𝑔/𝑚� across the whole catchment. 

In Figure 1.15 the results provided by the IS model and the proposed model based on the 
Janbu’s method are compared. Figure 1.15 shows that the IS model correctly predicts all the 
unstable areas: however it shows a significant tendency to overpredict unstable areas. On the 
other hand, the proposed Janbu’s method fails to predict all the unstable areas but the 
overprediction is significantly reduced. To give a numerical score between these different 
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classifiers of unstable areas, it is customary to use the receiver operating curves (ROC) (Metz, 
1978) which are computed on the basis of the surveyed landslides shown in Figure 1.14. If an 
unstable cell (𝐹𝑆 < 1) falls inside an area which has been mapped as unstable then it is counted 
as true positive (TP), if not then it is flagged as false positive (FP). Similarly, if a stable cell 
(𝐹𝑆 > 1) falls inside an area which has been mapped as unstable then it is flagged as false 
negative (FN), if not then it is counted as true negative (TN). These well-known quantities 
allow to define the true positive rate (TPR) and true negative rate (TNR), as done by Montrasio 
et al. (2022): 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(1.26) 

In Figure 1.16 the ROC curve is represented on the TPR-FPR plane as a function of the factor 
of safety used to distinguish between stable and unstable areas, with FS varying between 0.6 
and 6 with 0.1 steps. By integrating the areas below a ROC curve one is able to obtain a 
numerical information about the quality of the binary classifier (stable, unstable) being tested. 
The higher the area under the ROC curve (AUC) the higher the quality of the classifier. 

 

Figure 1.15 (Left) Stability map output of the IS model. (Right) Stability map output of the Janbu’s method. The 
red dots indicate the areas which are computed as unstable even if they are not inside the observed unstable areas 
(black polygons). The overlapping between observed and computed unstable areas is displayed in green.   
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Figure 1.16 Receiver operating curves (ROC), for the IS (showed in solid red) and the proposed Janbu’s method 
(showed in solid blue). The table shows the values of the area under the curve (AUC) for each model. AUC = 1 
would correspond to a perfect classification with no mistakes.  

Figure 1.16 confirms that the IS model  (AUC = 0.791) performs better with respect to the 
random classifier (AUC = 0.500), i.e. just assuming a 50% chance that each cell is unstable. 
On the other hand the Janbu’s method proves itself to be a robust classifier, performing slightly 
better with respect to the other models (AUC = 0.836). 

1.7 Discussion 

Debris flows triggered by soil slips are a relevant hazard in many mountainous regions 
worldwide, causing destruction of properties and claiming a significative death toll each year. 
Accordingly, in several nations real‐time monitoring and forecast systems are being developed 
for managing measures of civil protection in case of emergency. Very often these systems rely 
on estimated rainfall thresholds for landslides triggering (e.g. Baum & Godt, 2010). However 
this approach is purely regressive at best, not capable of differentiating the peculiarities of the 
mountain territory and of the saturation history at the time of landslide occurrence. Finally, it 
provides a vague information about something that could happen somewhere within a wide 
territory. To be effective, a forecast system needs something more precise. On a line of 
principle, physically based models, working on accurate weather forecast, will be the 
appropriate solution. Within the limits of the approximations made in reproducing the complex 
processes involved in soil hydrology, these models will provide exact position of potential 
landslides within a watershed, in response to a specific rainfall event and considering the past 
saturation history of the watershed. In this direction, the use of DEM with increasing space 
resolution, provided by widely used LIDAR technologies, allows a better reproduction of local 
slope, flow propagation and soil saturation build-up during rainfall events at the watershed 
scale. On the other hand, when a DEM is coupled to a hydrologic model to identify potential 
soil slips, growing the resolution implies that the stability of a cell cannot be analysed 
independently from the stability of the surrounding cells. According to Milledge et al. (2012), 
when the Δ𝑥/ℎ ratio is smaller than 16, the adequacy of the IS assumption, the most widely 
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used approach for this purpose, is questionable. In the author’s opinion, although this problem 
is intrinsically affected by a disproportion between the necessary data and the typically 
available data, this does not exempt one from trying to reduce the margins of uncertainty by 
identifying better methods for the calculation. The method proposed in this contribution is an 
adaptation of the well-known Janbu’s method to space-distributed application. It is a 
computationally viable compromise in the path between a FEM computation of soil stability 
and the IS method. The method has been analysed with three different tests. The synthetic test 
cases have shown the superiority of this methods in situations where everything is known and 
the actual soil stability is provided by the FEM method. In both cases the IS underestimates the 
extent of the unstable soil because it neglects the destabilising role of the surrounding blocks. 
The modified Janbu’s method matches 94% and 84% of the unstable soil. On the other hand, 
the Mettman Ridge case shows that the IS has a dramatic tendency to overpredict unstable 
areas, a flaw well documented in the literature (Bellugi et al., 2015). Figure 1.15 shows that 
most of the cells are classified as unstable by the IS, strongly limiting the usefulness of the 
results of this model in practical situations. Considering the discretization of the DTM used in 
the last application (2 m), and the average soil depth in the basin (0.67 m), then it is evident the 
reason behind the poor performance of the IS model, i.e. the relatively low Δ𝑥/ℎ ratio being 
roughly around 3, well below the threshold of 16 highlighted by Milledge et al. (2012). Aside 
from the performances of the proposed methodology on fixed datasets, as the one of the 
Mettman Ridge, every modelling chain which aims to predict soil instability due to rainfall 
events in ungauged basins is bound to struggle with the estimation of all the soil parameters 
involved. In the proposed methodology, the soil depth input, which is very difficult to obtain 
at basin scale, is the most influencing parameter in terms of stability since the slope stability 
method assumes that the failure surface occurs precisely at the interface between the soil and 
the bedrock, which is given precisely by the input data. To address this issue which may impair 
the use of the model it is possible either to use empirical methods that try to correlate the soil 
depth with elevation or local slope (Catani et al. 2010), which still require calibration, or to use 
the thickness of the dynamic saturated layer provided by the hydrological model as the soil 
depth as reported in Rosso et al. (2006). At each time step of the simulation the stability of the 
slopes is verified assuming that the most critical shear surface occurs at the interface between 
the saturated and unsaturated zone, that is a key information provided by the hydrological 
model implemented. Lastly, to account for the spatial variability of the soil parameters, a Monte 
Carlo analysis can be done to understand the role of each individual parameter and to assess its 
importance on the resulting stability maps.  
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Chapter 2 

A multi-rheological finite volume scheme on 
unstructured grid for debris flow propagation 
 

2.1 Introduction 

In steep mountain areas rapid mass movements such as avalanches and debris flows are surface 
processes which are characterized by large masses of granular material flowing at high speed 
(Takahashi, 2014). These processes may pose a serious threat whenever their path crosses 
populated areas, or damage key infrastructures like streets or railways. Accordingly, they 
deserve the highest attention. While multiple mitigation strategies are possible, their choice 
must be based on suitable physically based models and can’t be done only using historical data, 
which inevitably are often missing or incomplete. Numerical methods describing the motion of 
granular material coupled with remote sensing are a viable alternative to properly assess run-
off distance, velocity, flow and depositional height (Hergarten & Robl, 2015). Despite the work 
of many authors on the subject (e.g. Takahashi, 1978; Iverson 1997) a complete understanding 
about the main processes behind the propagation of debris flows is still missing. Debris flows 
are a flow of sediment and water mixture driven by gravity, and they attain large mobility from 
the enlarged void space saturated with water or slurry (Takahashi, 2014). From a mathematical 
point of view, mass and momentum balance are the physical laws used to model the dynamics 
of a debris flow (Trujillo-Vela et al., 2022) and in some cases it is important to consider the 
interaction with the flow boundary, where significative erosion and deposition can occur. 
Starting from one of the first attempts to model snow avalanches made by Voellmy (1955), 
which used a simplified momentum equation coupled with a custom rheological relationship, 
model complexity has been increasing proportionally to the understanding of the underlying 
governing processes. Latest contributions are three-dimensional and multiphase description of 
the phenomena as found in Leonardi et al. (2015), Pudasaini & Mergili (2019) and Rosatti & 
Begnudelli (2012). Despite the technical advancement provided by these implementations, 
which tends towards a complete model, in which both solid and liquid phases are considered, 
complexity, computational burdens and calibrating parameters scale accordingly. In principle 
the accurate description of the momentum of every single phase during the flow may lead to 
accurate results, assuming that adequate information about the initiation of the motion is 
available. This may require the knowledge, to the very least, of the volume of the event that 
may occur, an already difficult estimate to make considering that most debris flow occur 
unexpectedly and often in ungauged areas. Techniques to estimate the amount of material that 
may trigger a debris flow are described in the previous chapter, from which it is clear that a 
reliable estimate depends on a variety of parameters which need to be known (in theory) in 
every point of the catchment. An additional complexity of debris flows dynamics is the 
possibility to entrain or deposit sediments during the propagation of the flow which may alter 
momentum, mass, rheology and flow behaviour. The intricacies described, that may 
substantially affect the results if not properly considered, usually are solved by performing 
multiple simulations exploring a range of parameters and initial conditions with equal 
probability and then analysing the results to determine which areas are endangered by a certain 
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event. Such approach works reasonably well for hazard mapping but inevitably requires a 
mathematical model for the simulation with a relatively low computational time. In this 
framework, a shock-capturing, finite volume scheme which solves a modified formulation of 
the Shallow Water Equations (SWE) on unstructured grids has been developed and 
implemented. The model (in the following called DEBRA) will be described and validated in 
the following sections. 

2.2 Governing equations 

Debris flows are typically triggered either by the failure of saturated steep slopes or of mountain 
stream beds and can stop on slopes ranging from 5° to 10° or more. Accordingly, it is 
fundamental to properly account for the role of slope in the formulating equations, so  the 
numerical model proposed in this thesis is based on a new formulation of the Shallow Water 
Equations (SWE), named Steep Slope Shallow Water Equations (SSSWE), following 
Maranzoni & Tomirotti (2022). The formulation is reported below for clarity.  

𝐔� + 𝐅(𝐔)� + 𝐆(𝐔)� = 𝐒(𝐔) 
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𝐒(𝐔) = �

0
−𝑔ℎ(𝑆�� + 𝑆��)

−𝑔ℎ(𝑆�� + 𝑆��)
�     

(2.1) 

in which 𝐔 is the vector of conserved variables (i.e. the vertical depth, ℎ, measured along the 
direction of gravity, and the 𝑈ℎ and 𝑉ℎ unit discharges in the direction parallel to the bottom 
bed respectively), 𝐅 and 𝐆 are the vectors of physical fluxes, 𝐒 is the source term, 𝑔 is the 
gravity acceleration and 𝑘 (≤ 1) is a pressure correction factor. The bottom slopes in the 
directions parallel to the bottom bed, i.e. 𝜉 and 𝜂 (see Figure 2.1) are given by 

𝑆�� = sin 𝜗�              𝑆�� = sin 𝜗�  (2.2) 

where 𝜗� and 𝜗�  are the bottom slopes in the cartesian frame of reference (see again Figure 2.1) 
and finally in eq. (2.1) 𝑘 is given by 

𝑘 = �
  1                                              𝑠𝑡𝑖𝑙𝑙 𝑤𝑎𝑡𝑒𝑟

cos� 𝜓 =
�

������ ������� ��
                𝑒𝑙𝑠𝑒                (2.3) 

which describes the effect of the bottom slope on vertical pressure distribution (Maranzoni & 
Tomirotti, 2022). In eq. (2.1) dependent unit discharges ℎ𝑈 and ℎ𝑉 are defined in terms of 
vertically averaged velocity components 𝑈 and 𝑉 but can also be expressed in terms of the 
velocity components 𝑢 and 𝑣 in the bottom oriented frame of reference (see Table 2.1 for a 
schematic view of the notation used).  
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    𝑈 = 𝑢 + 𝑣 sin 𝜗� sin 𝜗� = 𝑢 + 𝑣 cos 𝜑         𝑉 = 𝑣 + 𝑢 sin 𝜗� sin 𝜗� = 𝑣 + 𝑢 cos 𝜑 

(2.4) 

where 𝜑 is the angle between local directions 𝜉 and 𝜂, which are orthogonal only when 𝜗� =

0,  𝜗� = 0 or both. 

 

Figure 2.1 Definition sketch of the 3D free surface flow on steep bottom surface. 

Variable 
Cartesian frame of reference 

(𝒙𝒚𝒛) 
Bottom oriented frame of 

reference (𝝃𝜼𝒛) 

Velocity normal component 𝑈 𝑢 

Velocity tangential 
component 𝑉 𝑣 

Table 2.1 Schematic view of the notation for the fluid variables used in this thesis. 

Although system (2.1) is closely related to the classical system of SWE, its properties and wave 
structure are an extension of the original system, as showed in the following. Following Toro 
(2001), consider the two dimensional x-split of the SSSWE 

�
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(2.5) 

where 𝐔�, 𝐔� are the constant states of the problem and represent conditions at time 𝑡 = 0 to 
the left and right of 𝑥 = 0. As reported by Maranzoni & Tomirotti (2022) system (2.1) is strictly 
hyperbolic for ℎ ≠ 0 and the eigenvalues of (2.5) are given by 
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(2.6) 

Therefore, in the general case, three waves are originated in the Riemann problem described in 
(2.5). Considering classical SWE, characteristic fields associated with eigenvalues 𝜆�(𝐔) and 
𝜆�(𝐔) are genuinely nonlinear, i.e. they generate either shocks or rarefactions, while the 
characteristic field associated with eigenvalue 𝜆� is linearly degenerate, i.e. it generates a 
contact or a shear wave (Toro, 2001). In the following it will be shown that also the SSSWE 
preserve the same structure, behaving identically to the classical SWE. Recall that a 
characteristic field 𝜆�  is said to be linearly degenerate if ∇𝜆� ∙ 𝐑(�)(𝐔) = 0 for any 𝐔 and 
genuinely nonlinear if ∇𝜆� ∙ 𝐑(�)(𝐔) ≠ 0, where ∇𝜆� is the gradient of an eigenvalue 𝜆�(𝐔) 
given by 
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where 𝑞�, 𝑞� and 𝑞� are the conserved variables of system (2.5) and 𝐑(�)(𝐔) is the corresponding 
eigenvector associated to the 𝑖-field. To show this, express system (2.1), where the source term 
has been neglected, in non-conservative formulation, by introducing the primitive variables ℎ, 𝑈 
and 𝑉 
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(2.8) 

Considering the matrix of right eigenvectors of 𝐀(𝐖) leads to the following result 

𝐑 = �
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0 1 0
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Now express the eigenvalues reported in (2.6) in terms of the conserved variables 𝑞� = ℎ, 𝑞� =

ℎ𝑈 and 𝑞� = ℎ𝑉 
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Simple calculations for the 1-wave (the wave associated with the first eigenvalue) and 3-wave 
(the wave associated with the third eigenvalue) show that 
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While for the 2-wave (the wave associated with the second eigenvalue) 
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Thus confirming that both the 1-wave and 3-wave are genuinely nonlinear while the 2-wave is 
linearly degenerate. From the solution of the Riemann problem (2.5) with constant initial data 
four possible wave patterns can emerge, as reported in Figure 2.2. 

 

Figure 2.2 Possible wave patterns in the solution of the Riemann problem (2.5). Case a) left wave is a rarefaction 
while the right one is a shock. Case b) left wave is a shock and right one is a rarefaction. Case c) both waves are 
rarefactions. Case d) both waves are shocks. In each case three waves arise, the 1-wave and 3-wave are genuinely 
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non-linear and are either rarefaction or shock waves while the 2-wave is linearly degenerate and corresponds 
always to a shear wave. 

In the following sections simple solutions of the Riemann problem (2.5) are investigated that 
originate from a particular choice of the initial data which create just a single wave. Any other 
possible wave is assumed to possess zero strength, i.e. it is absent from the wave structure. The 
bottom slopes 𝜗� and 𝜗�  are assumed to be defined at the cell center of the left and right of the 
cell center, which are denoted with 𝜗�,� and 𝜗�,� considering the 𝑥 direction only (similarly for 
the 𝑦 direction).  

2.2.1 Rarefaction waves 

A rarefaction wave arises in the situation in which two data states are connected through a 
smooth transition in a genuinely non-linear wave (Toro, 2001). Figure 2.3 depicts the fan-like 
structure, centred at the origin. Rarefactions are associated with the genuinely non-linear waves 
and satisfy: the constancy of generalized Riemann invariants and the divergence of 
characteristics (Toro, 2001). 

 

Figure 2.3 Single wave solution of the Riemann problem is a rarefaction wave. 𝜆(𝐔�) and 𝜆(𝐔�) are the 
eigenvalues corresponding to the states 𝐔� and 𝐔�. 

The divergence of characteristics states that 𝜆�(𝐔�) < 𝜆�(𝐔�), meaning that the corresponding 
eigenvalue increases monotonically as the wave is crossed from left to right, this follows from 
the hyperbolicity of system (2.1). On the other hand generalized Riemann invariants are 
relations that hold true across rarefactions and lead to the following 𝑚 − 1 differential equations 
of the form 

𝑑𝑊�

𝑟�
(�)

=
𝑑𝑊�

𝑟�
(�)

= ⋯ =
𝑑𝑊�

𝑟�
(�)

 (2.13) 

that relate ratios of changes 𝑑𝑊� of a quantity 𝑊�  to the respective component 𝑟�
(�)of the right 

eigenvector 𝐑(�), as reported by Toro (2001). System (2.1) possesses Riemann invariants that 
can be seen as an extension of the Riemann invariants of the classical SWE. Applying eq. (2.13) 
to the third column of matrix 𝐑 reported in eq. (2.9), thus considering a right rarefaction, leads 
to 

𝑑ℎ

ℎ
=

𝑑𝑈

�𝑔𝑘ℎ sin 𝜑
=

𝑑𝑉

0
 (2.14) 
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The third ratio implies 𝑑𝑉 = 0 and thus 𝑉 is constant across the wave, while the first equality 
implies 

𝑑𝑈

�𝑔𝑘 sin 𝜑
− ℎ��/�𝑑ℎ = 0 (2.15) 

which can be integrated in the phase space obtaining that the quantity 𝑈 − 2�𝑔𝑘ℎ sin 𝜑 is 

constant across the rarefaction. As it can be noticed, the quantity 𝑈 − 2�𝑔𝑘ℎ sin 𝜑 reduces to 

𝑈 − 2�𝑔ℎ in presence of negligible slopes (sin 𝜑 ≈ 1, 𝑘 = 1). The first column of matrix 𝐑 

leads to a similar result, i.e. 𝑈 + 2�𝑔𝑘ℎ sin 𝜑 is constant across the wave if one considers a 
left rarefaction.  

2.2.2 Shear waves 

Shear waves are discontinuous solutions associated with a linearly degenerate field, i.e. the 2-
wave. Interestingly, application of the Riemann invariants equations (2.13) across the 2-wave 
leads to 

𝑑ℎ

0
=

𝑑𝑈

cos 𝜑
=

𝑑𝑉

1
 (2.16) 

The first ratio simply tells that ℎ is constant across the shear wave, as expected, while the last 
equality tells that 

𝑑𝑈 − 𝑑𝑉 cos 𝜑 = 0 (2.17) 

By integrating eq. (2.17) one obtains that the quantity 𝑈 − 𝑉 cos 𝜑 is constant across the middle 
wave, meaning that both velocity components in the cartesian frame of reference exhibit a jump 
across the shear wave, contrary to the classical SWE in which just the tangential velocity 
component changes abruptly. 

 

Figure 2.4 Single wave solution of the Riemann problem is a shear wave. Characteristics are parallel on both sides 
of the discontinuity. 
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2.2.3 Shock waves 

The solution of the Riemann problem (2.5) made by two constant data states 𝐔� and 𝐔� is made 
up by a single shock wave of speed 𝑆� , as showed in Figure 2.5. As reported by Toro (2001) the 
two data states are connected through a single jump discontinuity in a genuinely nonlinear field. 
Across the shock Riemann invariants equations are no longer valid but the Rankine-Hugoniot 
jump conditions apply (Leveque, 2002) 

𝐅(𝐔�) − 𝐅(𝐔�) = 𝑆�(𝐔� − 𝐔�) (2.18) 

Furthermore, the compressive character of the shock reflects the physical solution to be selected 
among the several weak solutions which are possible in case of a discontinuity in the solution. 
In particular the entropy condition (Leveque, 2002) stating that 

𝜆�(𝐔�) > 𝑆� > 𝜆�(𝐔�) (2.19) 

holds for the shock wave assumed for the problem.  

 

Figure 2.5 (Left) Single wave solution of the Riemann problem is a shock wave, characteristics ahead and behind 
the shock wave merge into the shock path in agreement with the entropy condition (2.19). (Right) Solution of the 
Riemann problem is an isolated right shock wave. 

To study shock waves it is crucial to enforce the conservative formulation of the equations to 
apply the Rankine-Hugoniot conditions (2.18). However, it is possible to express the initial 
states in terms of the primitive variables, the left and right states are given by 

𝐖∗ = �
ℎ∗

𝑈∗

𝑉∗

�       𝐖� = �
ℎ�

𝑈�

𝑉�

� (2.20) 

where a right shock is assumed to occur, i.e. 𝑆� = 𝑆� . As proposed by Toro (2001), to simplify 
computations, the variables are transformed in a frame of reference moving with the shock 
speed 𝑆� . 
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𝑈�∗ = 𝑈∗ − 𝑆�     𝑈�� = 𝑈� − 𝑆�  

𝑉�∗ = 𝑉∗ − 𝑆�       𝑉�� = 𝑉� − 𝑆� 
(2.21) 

Therefore the Rankine-Hugoniot jump conditions (2.18) states 

�𝑈��ℎ� − 𝑉��ℎ� cos 𝜑��
cos 𝜗�,�

sin� 𝜑�
− �𝑈�∗ℎ∗ − 𝑉�∗ℎ∗ cos 𝜑��

cos 𝜗�,�

sin� 𝜑�
= 0 

�𝑈��
�ℎ� − 𝑈��𝑉��ℎ� cos 𝜑� +

1

2
𝑔𝑘�ℎ�

� sin� 𝜑��
cos 𝜗�,�

sin� 𝜑�
− �𝑈�∗

�ℎ∗ − 𝑈�∗𝑉�∗ℎ∗ cos 𝜑∗ +
1

2
𝑔𝑘∗ℎ∗

� sin� 𝜑∗�
cos 𝜗�,∗

sin� 𝜑∗
= 0 

�𝑈��𝑉��ℎ� − 𝑉��
�ℎ� cos 𝜑��

cos 𝜗�,�

sin� 𝜑�
− �𝑈�∗𝑉�∗ℎ∗ − 𝑉�∗

�ℎ∗ cos 𝜑∗�
cos 𝜗�,∗

sin� 𝜑∗
= 0 

(2.22) 

In principle, the system made by (2.21) and (2.22) has 8 unknowns, i.e. 
𝑈�∗, 𝑈∗, 𝑈��, 𝑉�∗, 𝑉∗, 𝑉��, 𝑆�, ℎ∗ (assuming 𝜗�,∗and 𝜗�,∗ known using some simple criteria, see the 
next sections) and 7 equations, meaning that it is possible to write the unknown shock speed 𝑆�  
in terms of one other unknowns, i.e. ℎ∗ (see the next section to understand the reason behind 
this choice). Despite being possible, the resulting expression is highly complicated and tedious 
to write in compact form due to the presence of different trigonometric functions inside eq. 
(2.22). Having in mind straightforwardness, it has been set 𝜑� = 𝜑∗ = 𝜑 and cos 𝜗�,� =

cos 𝜗�,∗ = cos 𝜗�, which physically corresponds to a constant bottom slope present between the 
states, which is not always the case. Therefore the following shock speed will be an estimate 
where the states are separated by a slope which is not constant, or the true shock speed if they 
are. Rewriting eq. (2.22)  

�𝑈��ℎ� − 𝑉��ℎ� cos 𝜑�
cos 𝜗�

sin� 𝜑
− �𝑈�∗ℎ∗ − 𝑉�∗ℎ∗ cos 𝜑�

cos 𝜗�

sin� 𝜑
= 0 

�𝑈��
�ℎ� − 𝑈��𝑉��ℎ� cos 𝜑 +

1

2
𝑔𝑘ℎ�

� sin� 𝜑�
cos 𝜗�

sin� 𝜑
− �𝑈�∗

�ℎ∗ − 𝑈�∗𝑉�∗ℎ∗ cos 𝜑 +
1

2
𝑔𝑘ℎ∗

� sin� 𝜑�
cos 𝜗�

sin� 𝜑
= 0 

�𝑈��𝑉��ℎ� − 𝑉��
�ℎ� cos 𝜑�

cos 𝜗�

sin� 𝜑
− �𝑈�∗𝑉�∗ℎ∗ − 𝑉�∗

�ℎ∗ cos 𝜑�
cos 𝜗�

sin� 𝜑
= 0 

(2.23) 

From the first and last equation of (2.23) follows that 𝑉�� = 𝑉�∗, meaning that the tangential 
velocity component remains constant across the right shock wave. It is useful to define a 
parameter 𝑀� in terms also of the projected velocities given by eq. (2.4) 

𝑀� = −�𝑈��ℎ� − 𝑉��ℎ� cos 𝜑�
cos 𝜗�

sin� 𝜑
= −ℎ�𝑢�� cos 𝜗� = −ℎ∗𝑢�∗ cos 𝜗�  (2.24) 

Combining the second equation reported in (2.23) with (2.24) leads to 

𝑀��𝑈�� − 𝑈�∗� =
1

2
𝑔𝑘(ℎ∗

� − ℎ�
� ) cos 𝜗�  (2.25) 

On the other hand using eq. (2.23) 

𝑢�∗ = −
𝑀�

ℎ∗ cos 𝜗�
         𝑢�� = −

𝑀�

ℎ� cos 𝜗�
 (2.26) 
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and considering that 

𝑈�� − 𝑈�∗ = (𝑢�� − 𝑢�∗)(1 + cos� 𝜑) (2.27) 

where the relation 𝑉�� = 𝑉�∗ has been used to obtain (2.27). Then by substituting (2.26) and (2.27) 
into (2.25) it is possible to write 

𝑀� = �
𝑔𝑘(ℎ∗ + ℎ�)ℎ∗ℎ�

2(1 + cos� 𝜑)
cos 𝜗� (2.28) 

Lastly, by suitably manipulating eq. (2.21) one obtains 

𝑆� = (𝑢� − 𝑢��)(1 + cos 𝜑) (2.29) 

which can be used, together with eq. (2.25) and eq. (2.29), to compute the unknown shock speed 

𝑆� = �
𝑈� − 𝑉� cos 𝜑

sin� 𝜑
+ �

𝑔𝑘(ℎ∗ + ℎ�)ℎ∗

2(1 + cos� 𝜑)ℎ�

� (1 + cos 𝜑) (2.30) 

Similar computations can be performed to obtain the relation for 𝑆� , the left facing shock. 

2.3 Numerical scheme 

The following numerical scheme is an adaptation of the works of Bonomelli et al. (2023) to the 
new SWE formulation. The entire computational domain Ω is divided into 𝑁 triangular shaped 
control volumes 𝐾� . The vector of conserved variables 𝐔 is computed at the centre of gravity of 
each element, thus defining a cell-centred discretization. Using an explicit Euler scheme and 
denoting the current time step as 𝑡� = 𝑛 Δ𝑡, system (2.1) can be approximated as 

𝐔�
��� = 𝐔�

� −
Δ𝑡

𝐴�
� 𝐇(𝐔) ∙ 𝒏�� 𝐿�� + 𝛥𝑡 𝐒�

�

���

 

𝐔� =
1

𝐴�

� 𝐔(𝒙, 𝑡�)
 

��

𝑑𝒙 

𝐒�
� =

1

𝐴�Δ𝑡
� � 𝐒(𝐔�(𝒙, 𝑡)

 

��

)𝑑𝒙 𝑑𝑡
�����

��
 

(2.31) 

where 𝐿�� is the 𝑗 side of the 𝑖 cell, which is characterized by a normal vector 𝒏�� , while 𝐴� is 
the area along the bottom bed of the cell considered. Eq. (2.31) is obtained by the integration 
of system (2.1) in the (𝒙 − 𝑡) space, i.e. 𝑉 = 𝐾� × [𝑡�, 𝑡���]. Furthermore 𝐔�

� is the averaged 
spatial integral of the solution at time 𝑡� and 𝐒�  is the volume integral average in 𝑉 of the source 
term vector. To compute the intercell fluxes 𝐇(𝐔) = [𝐅(𝐔) 𝐆(𝐔)] needed to update the 
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conserved variables on the triangular grid one can exploit the rotational invariance property of 
the system, still valid in this formulation of the SSSWE (Maranzoni & Tomirotti, 2022), 
between 𝐅 and 𝐆 over each side, which states 

𝐇(𝐔) ∙ 𝒏�� = 𝐓���
��𝐅 �𝐓���

𝐔� 

𝐓���
= �

1 0 0
0 𝑛��

 (1) 𝑛��
 (2)

0 −𝑛��
 (2) 𝑛��

 (1)
� 

(2.32) 

Meaning that the computation of the fluxes reduces to a local 1D problem over each side 

𝐔�
��� = 𝐔�

� −
Δ𝑡

𝐴�
� 𝐓���

��𝐅� �𝐓���
𝐔�, 𝐓���

𝐔�� 𝐿�� + 𝛥𝑡 𝐒�

�

���

 (2.33) 

with 𝐅� �𝐓���
𝐔�, 𝐓���

𝐔�� = 𝐅�(𝐔�, 𝐔�) being a discrete flux resolved using an exact or 

approximate solver of the Riemann problem having 𝐔� and 𝐔� as left and right initial states  

⎩
⎨

⎧
𝜕𝐔

𝜕𝑡
+

𝜕𝐅(𝐔)

∂𝑥�
= 𝟎

𝐔(𝑥, 0) = �
𝐔�   𝑥� < 0
𝐔�  𝑥� > 0

 (2.34) 

The application of the finite volume method requires a way to determine the numerical flux 
𝐅(𝐔) and the numerical source term 𝐒� . In this approach the numerical flux is computed using 
the Weighted Averaged Flux (WAF) approximation applied to a HLLC-type flux (Toro, 2001). 
The WAF method was first proposed by Toro (2001), it ensures a second order of accuracy in 
time and space, without data reconstruction as customary for other well-known methods like 
the MUSCL method (Leer, 1979). Although several versions of the WAF method are available 
(Ata et al., 2013), the original formulation is chosen for this implementation, which is a 
weighted sum of the fluxes in all the regions arising in the solution of the piecewise constant 
data Riemann problem (see Figure 2.6), namely 

𝐅���/� =
1

Δ𝑥
� 𝐅 �𝐔���/� �𝑥,

Δ𝑡

2
��  𝑑𝑥

��
�

�
��
�

 (2.35) 

where 𝐔���/�(𝑥, 𝑡) is the solution of the Riemann problem reported in (2.34) with 𝐔� = 𝐔�
� and 

𝐔� = 𝐔���
� . The state 𝐔���/� can be computed by using either an exact or approximate Riemann 

solver. Exact Riemann solvers may be used to obtain Godunov-like methods (Leveque, 2002) 
which are first order of accuracy (Toro, 2001) and computationally expensive due to the 
requirement of a root searching algorithm, i.e. Newton’s method, to compute the states required 
to evaluate the fluxes. Approximate Riemann solvers on the other hand are proved to be efficient 
(Leveque, 2002), and, if they are complete, i.e. they consider all regions in the Riemann diagram 
(see Figure 2.6), may provide an interesting alternative to exact Riemann solvers in numerical 
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applications. Here it is considered the HLLC Riemann solver (Toro, 2009), widely used in the 
literature for its simplicity and numerical robustness.  

 

Figure 2.6 WAF diagram corresponding to the one dimensional Riemann problem between cell 𝑖 (also referred 
as state 𝐿) and 𝑖 + 1 (state 𝑅). The region between 𝑆�  and 𝑆� is called the star region. 

With reference to Figure 2.6, there are two distinct fluxes in the region which arise from the 
interface, namely 𝐔�∗ and 𝐔�∗. The HLLC flux (Toro, 2019) can be written as 

𝐅���/�
����(𝐔�, 𝐔�) =

⎩
⎨

⎧
𝐅� = 𝐅(𝐔�)                                         

𝐅�∗ = 𝐅� + 𝑆�(𝐔�∗ − 𝐔�)                

𝐅�∗ = 𝐅� + 𝑆�(𝐔�∗ − 𝐔�)              

𝐅� = 𝐅(𝐔�)                                        

0 ≤ 𝑆�

 𝑆� ≤ 0 ≤ 𝑆∗

𝑆∗ ≤ 0 ≤ 𝑆�

0 ≥ 𝑆�

 (2.36) 

where 𝑆∗ is the speed of the middle wave, still to be computed. A possible way to accomplish 
this task is to apply the Rankine Hugoniot jump conditions across the 1-wave and the 3-wave, 
and remembering that ℎ�∗ = ℎ�∗ = ℎ∗, 𝑢�∗ = 𝑢�∗ = 𝑢∗, 𝑉� = 𝑉�∗ and 𝑉� = 𝑉�∗ due to the 
Riemann invariants equations reported in (2.13) together with the reasonable assumption that 
𝜑�∗ = 𝜑�∗ 

ℎ∗𝑢∗ cos 𝜗�,∗ = ℎ�𝑢� cos 𝜗�,� + 𝑆�(ℎ∗ − ℎ�) 

ℎ∗𝑢∗ cos 𝜗�,∗ = ℎ�𝑢� cos 𝜗�,� + 𝑆�(ℎ∗ − ℎ�) 
(2.37) 

Combining the equations above allows the following relation for the speed of the middle wave 
in terms of the assumed outer wave speed estimates 𝑆�  and 𝑆�  

𝑆∗ = 𝑢∗ cos 𝜗� =
𝑆�ℎ��𝑢� cos 𝜗�,� − 𝑆�� − 𝑆�ℎ�(𝑢� cos 𝜗�,� − 𝑆�)

ℎ��𝑢� cos 𝜗�,� − 𝑆�� − ℎ��𝑢� cos 𝜗�,� − 𝑆��
 (2.38) 

Lastly, from the condition 𝑢�∗ = 𝑢�∗ it is possible to write 
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𝑈�∗ = 𝑢∗ sin� 𝜑∗ + 𝑉� cos 𝜑∗ 

𝑈�∗ = 𝑢∗ sin� 𝜑∗ + 𝑉� cos 𝜑∗ 
(2.39) 

To facilitate the implementation of the HLLC solver to the SSSWE the following summary is 
presented. 

1. Given the states 𝐔� and 𝐔� one can compute an estimate of the water depth in the star 
region using the two rarefaction solution suggested by Toro (2019) adapted to the 
SSSWE which follows from the application of the Riemann invariants reported in eq. 
(2.15) assuming that both waves are rarefactions 

ℎ�∗ =
1

𝑔𝑘∗
�
1

4
�𝑈� − 𝑈� + cos 𝜑∗ (𝑉� − 𝑉�) + 2�𝑔𝑘�ℎ� sin 𝜑� + 2�𝑔𝑘�ℎ� sin 𝜑���

�

 (2.40) 

2. Compute the wave estimates 𝑆�  and 𝑆�   

𝑆� =

⎩
⎪
⎨

⎪
⎧

�
𝑈� − 𝑉� cos 𝜑�

sin� 𝜑�

− �
𝑔𝑘�(ℎ∗ + ℎ�)ℎ∗

2(1 + cos� 𝜑�)ℎ�

� (1 + cos 𝜑�),              ℎ�∗ > ℎ�                                    

  �𝑈� − 𝑉� cos 𝜑� − �𝑔𝑘�ℎ� sin 𝜑��
 cos 𝜗�,�

sin� 𝜑�

,                                 ℎ�∗ < ℎ�                                    

  

 

𝑆� =

⎩
⎪
⎨

⎪
⎧

�
𝑈� − 𝑉� cos 𝜑�

sin� 𝜑�

+ �
𝑔𝑘�(ℎ∗ + ℎ�)ℎ∗

2(1 + cos� 𝜑�)ℎ�

� (1 + cos 𝜑�),              ℎ�∗ > ℎ�                                    

  �𝑈� − 𝑉� cos 𝜑� + �𝑔𝑘�ℎ� sin 𝜑��
 cos 𝜗�,�

sin� 𝜑�

,                                 ℎ�∗ < ℎ�                                    

 

(2.41) 

3. Compute the middle wave speed using (2.38) 
4. Compute the states in the star region using eq. (2.39) as 

𝐔�∗ = �
ℎ∗

ℎ∗𝑈�∗

ℎ∗𝑉�

�       𝐔�∗ = �
ℎ∗

ℎ∗𝑈�∗

ℎ∗𝑉�

� (2.42) 

5. Compute the HLLC flux according to eq. (2.36) 

System (2.1) is strictly hyperbolic for a wet bed (Maranzoni & Tomirotti, 2022), but dry bed 
situations may arise and the wave speeds need to be adapted accordingly. Shock waves cannot 
be adjacent to a region of dry bed (Toro, 2001), therefore wet/dry discontinuities are 
characterized by a contact discontinuity, which continues to hold also for the SSSWE. This can 
be proven easily considering a Riemann problem (2.5) with data 

𝐖� = �
ℎ�

𝑈�

0

�       𝐖� = 𝐖� = �
ℎ�

𝑈�

0

� (2.43) 
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such that 𝐖� is the data for a wet bed portion (ℎ� > 0) and 𝐖� is the data for the dry bed 
portion, i.e. ℎ� = 0 and 𝑈� is arbitrary. Suppose that 𝐖� and 𝐖� are connected by a shock wave 
of speed 𝑆. Using Rankine-Hugoniot conditions with ℎ� = 0 gives 

ℎ�𝑢� cos 𝜗�,� = 𝑆 ℎ� 

�ℎ�𝑢�𝑈� +
1

2
𝑔𝑘�ℎ�

�� cos 𝜗�,� = 𝑆 ℎ�𝑈�  
(2.44) 

The first equation in (2.44) just states that 𝑆 = ℎ�𝑢� cos 𝜗�,� which, if substituted into the 
second equation in (2.44) gives ℎ� = 0. This last result is in contradiction with the original 
assumption of a wet left bed, i.e. ℎ� > 0, thus proving that shocks cannot be adjacent to a region 
of dry bed. To find the wave speed 𝑆 in presence of a dry bed one can simply apply the Riemann 
Invariant across the correct wave, following Toro (2001). Considering a case in which the dry 
bed is on the right leads 

𝑈� + 2�𝑔𝑘�ℎ� sin 𝜑� = 𝑈� + 2�𝑔𝑘�ℎ� sin 𝜑 (2.45) 

Therefore the speed of the contact discontinuity is 

𝑆��� = 𝑈� = 𝑈� + 2�𝑔𝑘�ℎ� sin 𝜑� (2.46) 

A brief summary on the conditions enforced in case of left or right dry bed are reported below 
for clarity 

ℎ� = 0:   𝑆� = 𝑈� − 2�𝑔𝑘�ℎ� sin 𝜑� ;   𝑆∗ = 𝑆� 

ℎ� = 0:   𝑆� = 𝑈� + 2�𝑔𝑘�ℎ� sin 𝜑� ;    𝑆∗ = 𝑆�     
(2.47) 

Eq. (2.40) requires a way to assign a value for the slope at the interface between the cells (see 
Figure 2.7), which in general will be different (along the 𝑥 direction) from either 𝜗�,� and 𝜗�,�. 
To ensure flux consistency (Maranzoni & Tomirotti, 2023), the following choice has been 
adopted throughout the thesis 

𝜗�,∗ =
1

2
 �𝜗�,�, +𝜗�,�� 

𝜗�,∗ =
1

2
 �𝜗�,� + 𝜗�,�� 

(2.48) 

which provided good numerical results. 
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Figure 2.7 Schematics of the slopes for the x-split of the SSSWE. 

The WAF scheme, being second-order accurate in space and time, produces spurious 
oscillations near steep gradients in the conserved variables (Loukili & Soulaimani, 2007). To 
suppress the unphysical oscillations while preserving the order of accuracy, a Total Variation 
Diminishing (TVD) nonlinear modification is enforced into the scheme (Toro, 2009). Enforcing 
this adaptation into the scheme requires a wider spatial numerical stencil, i.e. the numerical flux 
now depends not only on the states present between the two cells considered (𝐔� and 𝐔�) but 
also on some upwinding cells necessary to suppress oscillations, which will be defined as 𝐔�� 
and 𝐔��. The approach described by Loukili & Soulaimani (2007) has been implemented in 
which the upwind state variables are calculated using the neighbouring volumes. Wet and dry 
fronts are handled by introducing a cutoff threshold of 10�� 𝑚 on the water depth to avoid 
unphysical velocities or instabilities. Boundary conditions are implemented by inserting ad hoc 
states corresponding to the type of boundary being modelled on the basis of the theory of 
characteristics (Hou et al., 2013; Yoon et al., 2004). The approach implemented in the current 
numerical scheme is the one followed by Hou et al. (2013) according to which solid wall or 
open boundary conditions can be imposed. Lastly a second order accurate Strang splitting 
decomposition of the friction source term is adopted (Toro, 2001; Maranzoni & Tomirotti, 2023) 
which is made by three consecutive steps 

𝐔�
∗ = 𝐔�

� +
Δ𝑡

2
𝐒�

 (𝐔�
�) 

𝐔�
∗∗ = 𝐔�

∗ −
Δ𝑡

𝐴�
� 𝐓���

��𝐅� �𝐓���
𝐔�

∗, 𝐓���
𝐔�

∗� 𝐿�� + 𝛥𝑡 𝐒�(𝐔�
∗)

�

���

 

𝐔�
��� = 𝐔�

∗∗ +
Δ𝑡

2
𝐒�

 (𝐔�
∗∗) 

(2.49) 

In the first step of the procedure, the friction source term is computed using the solution at the 
current time step 𝑛 and evolved using a half time step to compute the first intermediate step 𝐔�

∗. 
In the second step the solution is updated applying both advection and the bottom slope source 
term 𝐒�  to the previously computed intermediate state 𝐔�

∗. Lastly, the solution is evolved over 
a half time step following the same procedure reported in step one, using this time the updated 
state obtained from the second step. Despite higher computational times, this procedure was 
selected for its simplicity in implementation, stability and its independence from the kind of 
friction term 𝐒�

  used to describe the fluid. Lastly, modelling non-Newtonian fluids requires a 
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way to distinguish if the flow is in motion or it has stopped. Contrary to water, which stops once 
it has reached a flat surface only, non-Newtonian fluid can stop once they rest on a slope which 
is milder than its internal friction angle. However, the motion can start again because of its 
surrounding activity (Medina et al., 2008), so a simple check on the velocity or on the angle on 
which the flow is propagating would lead to inaccuracies. RAMMS (Christen et al., 2010) uses 
two criteria to detect whether a debris flow can be considered still across the domain, one based 
on the percentage of total momentum and the other one based on the center of mass of the flow. 
In the first one the momentum of all grid cells is computed at each time step and the maximum 
value encountered along the simulation is stored and compared with the current summation of 
the momentum of all grid cells. If the ratio between these two quantities (current momentum 
sum over maximum momentum sum) is below a certain threshold then the flow can be 
considered stopped. However, in practise, this approach requires to perform multiple 
simulations to calibrate this threshold: a threshold too low and the flow exhibits creeping 
behaviour and diffusion, and a threshold too high may stop prematurely the results. The second 
one tracks the position of the Center Of Mass (COM) of the debris flow and stops the flow 
when the velocity of the COM is below a certain threshold defined by the user. However, this 
approach makes sense only if a single release is considered in the domain. In DEBRA the 
momentum threshold used in RAMMS has been implemented and its application yielded 
similar stopping times when compared with RAMMS. Finally DEBRA is coded entirely inside 
the Matlab environment, which is very convenient for data handling and visualization purposes. 
However, as all interpreted languages, may be slower than compiled languages like C or 
Fortran, historically used to implement numerical software. To speed up the execution time of 
the routines present inside DEBRA, the plugin C Coder present inside Matlab has been used to 
generate a C-like code called MEX file that can be called inside Matlab during execution. This 
choice, although not ideal, ensured a computational speed-up of around 40 times with respect 
to the same code run using plain Matlab. C Coder plugin allows the user to translate numerically 
intensive user-written functions in C-like compiled language for higher computational 
efficiency while still retaining the level of abstraction of Matlab. 

2.3.1 Friction laws 

The monophasic SSSWE can represent any continuous fluid in which the horizontal scale is 
much larger than the vertical one. The frictional slope 𝐒�  distinguishes the behaviour of the 
fluid being modelled. In the following all the rheological laws which can selected inside 
DEBRA will be listed. In flood propagation applications (Bonomelli et al., 2023) it is customary 
to model the bed friction using Manning’s coefficient 𝑛, which must be adapted to the current 
formulation of the SSSWE, as reported in Maranzoni & Tomirotti (2022) 

𝑆�� =
𝑛�𝑢‖𝐯‖

ℎ�/� �1 + tan� 𝜗� + tan� 𝜗�  

𝑆�� =
𝑛�𝑣‖𝐯‖

ℎ�/� �1 + tan� 𝜗� + tan� 𝜗� 

‖𝐯‖ = �𝑢� + 𝑣� + 2𝑢𝑣 sin 𝜗� sin 𝜗� 

(2.50) 
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On the other hand, the Voellmy rheology (Voellmy, 1955) is frequently used to describe debris 
flows (Frank et al., 2017) and dense snow avalanches (Hergarten & Robl, 2015) and it is 
implemented in proprietary software like RAMMS (Christen et al., 2010), TRENT2D (Zugliani 
& Rosatti, 2021) and HEC-RAS (US Army Corps of Engineers, 2008). In the context of this 
application, the Voellmy’s frictional slope can be expressed as 

𝑆�� =
𝑢

‖𝐯‖
�

𝜇

𝛼
+

𝛼‖𝐯‖�

𝜉 ℎ
� 

𝑆�� =
𝑣

‖𝐯‖
�

𝜇

𝛼
+

𝛼‖𝐯‖�

𝜉 ℎ
� 

‖𝐯‖ = �𝑢� + 𝑣� + 2𝑢𝑣 sin 𝜗� sin 𝜗�      𝛼 = �1 + tan� 𝜗� + tan� 𝜗�  

(2.51) 

where 𝜇 [−] is a Coulomb friction coefficient and 𝜉 [𝑚/𝑠�] is a turbulent friction coefficient. 
A commercially available software for two-dimensional flood or mud-flood routing which has 
been widely applied for the assessment of debris flow hazard (Wu et al., 2013) is FLO-2D 
(FLO-2D Software, 2006). FLO-2D has been approved as a hydraulic program for flood and 
debris flow simulation by Federal Emergency Management Agency of the United States (FLO-
2D Software, 2006). To model debris flows, FLO-2D uses an ad-hoc rheology first proposed 
by O’Brien et al. (1993) from measurements of shear stress in fluids at various rates of angular 
deformation. The O’Brien frictional slope has been modified with respect to its original 
formulation to be compatible with the SSSWE formulation, and it given by 

𝑆�� =
𝑢

‖𝐯‖
�

𝛼 𝜏�

𝛾�ℎ
+

𝐾 𝜂|𝑢| 𝛼�

8 𝛾�ℎ�
+

𝑛�
�𝑢‖𝐯‖𝛼

ℎ�/� 
� 

𝑆�� =
𝑣

‖𝐯‖
�

𝛼 𝜏�

𝛾�ℎ
+

𝐾 𝜂 |𝑣| 𝛼�

8 𝛾�ℎ�
+

𝑛�
�𝑣‖𝐯‖𝛼

ℎ�/� 
� 

‖𝐯‖ = �𝑢� + 𝑣� + 2𝑢𝑣 sin 𝜗� sin 𝜗�      𝛼 = �1 + tan� 𝜗� + tan� 𝜗�  

(2.52) 

where 𝜏� [𝑁/𝑚�] is the yield stress of the granular material, 𝛾� [𝑁/𝑚�] is the specific weight, 

𝐾 [−] is a resistance parameter for laminar flow, 𝜂  [𝑃𝑎 ∙ 𝑠] is the viscosity and 𝑛� [𝑠/𝑚�/�] is 
the turbulent Manning’s coefficient. Viscosity, yield stress and turbulent Manning’s coefficient 
are shown to be functions of the volumetric sediment concentration 𝐶� of silts, clays and fine 
sands according to the relations (O’Brien, 1988) 

𝜂 = 𝛼�𝑒����             𝜏� = 𝛼�𝑒����         𝑛� = 0.0538 𝑛 𝑒�.���� ��    (2.53) 

where 𝛼�, 𝛼�, 𝛽� and 𝛽� are empirical coefficients defined by laboratory experiments (O’Brien 
& Julien, 1988).  
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2.4 Validation 

In the following a selection of test cases are reported to assess the performance of the proposed 
numerical scheme against either simple analytical solutions or the computed solution of a 
reference software already used in literature to model debris flow, i.e. RAMMS. Additional test 
cases concerning the standard implementation of the SWE are reported in Appendix D and also 
in Bonomelli et al. (2023). 

2.4.1 Dam break on a sloping channel with Coulomb friction 

This test case is taken from Mangeney et al. (2000) in which the one dimensional flow of an 
incompressible fluid is described by mass and momentum equations. With reference to Figure 
2.8, a fluid of height ℎ is released from rest at the initial instant on a topography given by a 
uniform slope inclined by 𝜗. The initial conditions represent the well-known dam break 
problem in hydraulics. Interestingly, a Coulomb type friction is present in this formulation, 
allowing the schematic representation of a debris flow or a dense snow avalanche. Mangeney 
et al. (2000) gives an analytic solution for this problem with these conditions, employing the 
method of characteristics, closely following the approach of Stoker (1957). 

 

Figure 2.8 Schematics of the dam break problem on a sloping bed with Coulomb friction for a fluid of height ℎ 
released from rest on a sloping bed inclined by 𝜗. Two reference systems are depicted: one bottom oriented (𝜂 𝜁) 
and one cartesian (𝑥 𝑦), to better explain the different formulations of the SWE adopted. 

The analytical solution to this problem for the fluid depth ℎ� and the velocity 𝑢�, in bottom 
oriented coordinates is given by 
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ℎ�(𝜂, 𝑡) =

⎩
⎪
⎨

⎪
⎧

0                                                                           𝜂 ≤ 𝜂�

1

9 𝑔 cos 𝜗
�

𝜂

𝑡
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1

2
𝑚 𝑡�

�
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                 𝑢(𝜂, 𝑡) =
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2

3
�

𝜂

𝑡
− 𝑐� + 𝑚 𝑡�                        𝜂� < 𝜂 < 𝜂�        

2

3
�

𝜂�

𝑡
− 𝑐� + 𝑚 𝑡�                                  𝜂 ≥ 𝜂�       

 

𝜂� = −2𝑐�𝑡 +
1

2
𝑚 𝑡�          𝜂� = 𝑐�𝑡 +

1

2
𝑚𝑡� 

(2.54) 

where 𝑐� = �𝑔ℎ�� cos 𝜗 is the speed of propagation of “small disturbances” relative to the 
moving stream (Stoker, 1957), 𝑚 = −𝑔 sin 𝜗 + 𝑔 cos 𝜗 𝜇, with 𝜇 being the friction coefficient 
appearing in the Voellmy’s rheology, 𝜂 and 𝑡 are the space and time coordinates respectively. 
The following test has been carried out using the 2D formulation of the DEBRA numerical 
scheme, using a large domain and extracting a cross-section in the middle to plot the flow 
behaviour. Transmissive boundary conditions are used in this simulation since the flow does 
not interact with the edges of the domain. A cutoff threshold of 10�� 𝑚  on the fluid depth is 
used to neglect excessively low fluid depths which are unphysical and cause numerical 
problems. Other parameters required to set up the simulation are reported below 

� ℎ� = 2 𝑚 
� 𝜗 = 30° 
� 𝜇 = tan(10°) = 0.176 
� 𝐿 (𝑑𝑜𝑚𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ) = 2 000 𝑚 
� Δ𝑥 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑒𝑙𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔) = 1 𝑚 
� ℎ������ = 10�� 𝑚 

Overall, see Figure 2.9, DEBRA is able to capture the global behaviour of the flow with 
reasonable accuracy. Notice how the velocity upstream the rarefaction wave is captured 
remarkably well by the model. The solution is plotted in the 𝜉 𝜂 frame of reference, therefore, 
the output of the numerical scheme must be corrected according both to the inclination of the 
bottom bed and the local slope of water surface, as showed in Maranzoni & Tomirotti (2023) 

ℎ������ =
ℎ

cos 𝜗�
�

1

1 + tan 𝜗� 𝑆���
� (2.55) 

where 𝑆���  is the slope of fluid surface in the streamwise direction.  
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Figure 2.9 Snapshots of the numerical simulation at different time instants. DEBRA (dashed red line) is able to 
closely follow the evolution of the flow, as confirmed by the analytical solution (solid black line). The slight 
underestimation of the propagation speed is mostly due to the extremely low fluid depths present at the 
discontinuity at the wet-dry interface. 

2.4.2 Flow over a sloping channel with multiple friction laws 

The following test case is taken from the contribution of Hergarten & Robl (2015). A block of 
material is suddenly released on an inclined plane, similarly to the previous test case. The 
movement of a granular material with a constant flow depth on a planar slope in one dimension 
in presence of the Voellmy’s friction law admits a simple analytical solution for the velocity as 
a function of time. If the flow depth is constant then the momentum equation in bottom oriented 
coordinates from a Lagrangian point of view can be written as 

𝑑𝑢

𝑑𝑡
= 𝑔�𝑆� − 𝑆�� (2.56) 

which, considering the Voellmy’s friction law, becomes 

𝑑𝑢

𝑑𝑡
= 𝑔 �sin 𝜗 − 𝜇 cos 𝜗 −

𝑢�

𝜉 ℎ�
� (2.57) 
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Eq. (2.57) is a Riccati equation which can be solved analytically to determine the unknown 
velocity as a function of time, as reported in Hergarten & Robl (2015) 

𝑢(𝑡) = 𝑢� tanh �
𝑡

𝑇
� 

𝑢� = �𝜉ℎ�(sin 𝜗 − 𝜇 cos 𝜗)           𝑇 =
𝜉 ℎ�

𝑔 𝑢�
 

(2.58) 

where 𝑢� is the uniform velocity, i.e. the steady-state velocity reached by the flow, where the 
stresses exactly balance the source term given by the slope, and 𝑇 is a characteristic time, 
describing how quickly the velocity reaches the asymptotic value 𝑢�. Actually, when 𝑡 = 2𝑇, 
the velocity is 96% of the asymptotic value. Eq. (2.58) is a simple and interesting piece of 
information to evaluate the appropriateness of the uniform flow approximation in real 
situations. The terminal velocity assumes a real value only when tan 𝜗 > 𝜇, meaning that the 
slope of the channel must be higher than the coefficient of friction in order for the uniform form 
to establish. This reflects the simple observation that the friction forces are higher than the 
energy that the flow acquires through gravity and therefore a balance between the two, i.e. the 
steady state velocity is impossible. Practically this flow existence property can be used to 
calibrate the friction parameter 𝜇 on the basis of the local slope angle in correspondence of 
which the debris flow has stopped propagating (assuming that monophasic assumptions are still 
valid). The implemented solver has been tested using the following data  

� ℎ� = 1 𝑚 
� 𝜗 = 30° 
� 𝜇 = 0.2 
� 𝜉 = 1000 𝑚/𝑠� 
� 𝐿 (𝑑𝑜𝑚𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ) = 2 000 𝑚 
� Δ𝑥 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑒𝑙𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔) = 1 𝑚 
� ℎ������ = 10�� 𝑚 

as initial conditions and parameters of the problem and the obtained results are shown in Figure 
2.10. 
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Figure 2.10 Snapshots of the numerical simulation at different time steps. The analytical solution (depicted with 
a dashed black line) represents the transient velocity which the flow reaches where the fluid depth is constant. 
Using the data reported in this test case the flow reaches the asymptotic velocity of about 18 𝑚/𝑠 in 𝑡 = 2𝑇 =

11.27 𝑠, where 𝑇 = 5.63 𝑠, as stated by the characteristic time of eq. (59). In the bottom right panel a comparison 
using RAMMS and DEBRA is displayed. Although both models agree very well on the position of the shock, 
RAMMS exhibits some oscillatory behaviour both in the fluid depth and in the velocity. 

As one can observe, DEBRA is able to closely follow the predicted analytical velocity at every 
time instant. In Figure 2.10 a comparison with RAMMS software with the same parameters 
and initial conditions is presented. As it can be noticed, RAMMS exhibits some oscillatory 
pattern which is difficult to explain giving the simplicity of the test case. Such oscillations 
appear to grow in time and are dependent both on the mesh resolution and on the channel slope, 
highlighting a behaviour which is not present in the main equations solved by RAMMS at each 
time step. Figure 2.11 reports a contour plot of eq. (2.58), which is a representation of the 3D 
surface of the function 𝑢(𝜉, 𝜇) at fixed fluid depth ℎ� and 𝜗. Interestingly, the contour lines 
depicted in white highlight the path along which the terminal velocity is constant while 𝜉 and 
𝜇 vary. This behaviour stresses the property that there are multiple choices of (𝜉, 𝜇) that are 
characterized by the same uniform velocity. In other words, the choice of parameters (𝜉, 𝜇) that 
characterize a flow having a fixed terminal velocity is not unique, thus requiring some 
additional assumption or information about the flow, in order to avoid performing multiple 
simulations.  
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Figure 2.11 Contour plot of the terminal velocity reported in eq. (59) as a function of the Voellmy’s rheological 
parameters 𝜉 and 𝜇, for ℎ� = 1 and 𝜗 = 30°. 

A similar analytical solution can be found also considering the friction law proposed by 
O’Brien et al. (1993). This solution has not been considered in the literature yet, despite its 
usefulness in validating numerical schemes and for model calibration on simple test cases. 
Rewriting eq. (2.56) using the 1D simplification of eq. (2.52) in bottom oriented coordinates 
leads to 

𝑑𝑢

𝑑𝑡
= 𝑔 �sin 𝜗 −

 𝜏�

𝛾�ℎ�
−

𝐾 𝜂 𝑢

8 𝛾�ℎ��
−

𝑛�
�𝑢�

ℎ��/� 
� (2.59) 

which can be rewritten, using the following short-hand notation, as 

𝑢�(𝑡) = 𝐴 𝑢�(𝑡) + 𝐵 𝑢(𝑡) + 𝐶 

𝐴 = −
𝑔 𝑛�

�

ℎ��/�
           𝐵 = −

𝑔 𝐾 𝜂

8 𝛾�ℎ��
         𝐶 = 𝑔 sin 𝜗 −

𝑔 𝜏�

𝛾�ℎ�
 

(2.60) 

Eq. (2.60) is a complete Riccati equation and can be solved analytically using the method of 
separation of variables. First note that the steady state solution of the differential equation can 
be obtained by setting 𝑢�(𝑡) = 0 and solving eq. (2.60), which is just a second-degree 
polynomial. Such steady state velocity must exist for the flow to develop, which is equivalent 
to say that the discriminant of eq. (2.60), i.e. 𝐵� − 4𝐴𝐶 must be positive. As a first step, solve 
the integral given by 

�
𝑑𝑢

𝐴 𝑢� + 𝐵 𝑢 + 𝐶
= �𝑑𝑡

  

 (2.61) 

Focusing on the denominator of the left side of eq. (2.61), by completing the square it is 
possible to write 
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𝐴 𝑢� + 𝐵 𝑢 + 𝐶 = 𝐴 ��𝑢 +
𝐵

2𝐴
�

�

+
4 𝐴 𝐶 − 𝐵�

4 𝐴�
� (2.62) 

which, after some algebraic manipulation, can be expressed as  

𝐴 𝑢� + 𝐵 𝑢 + 𝐶 = 𝐴 𝜑 ��
𝑢 + 𝐵/2𝐴

�𝜑
�

�

+ 1� 

𝜑 =
4 𝐴 𝐶 − 𝐵�

4 𝐴�
 

(2.63) 

Finally eq. (2.63) is ready to be integrated leading to the solution 

𝑡 + 𝜀 =
�𝜑

𝐴 𝜑
arctan �

𝑢 + 𝐵/2𝐴

�𝜑
� (2.64) 

where 𝜀 is a constant of integration to be computed using the condition that the initial velocity 
is zero, i.e. 𝑢(0) = 0. Eq. (2.64) can be manipulated to express the velocity 𝑢 as a function of 
time 

𝑢(𝑡) = −
�

��
+ �𝜑 tan�𝐴�𝜑(𝑡 + 𝜀)�  (2.65) 

Note that the quantity 𝜑 is always negative when the flow exists. Accordingly, by invoking the 
trigonometric complex identity tanh(𝑥) = −𝑖 tan(𝑖 𝑥), where 𝑖 is the imaginary unit, one can 
rewrite eq. (2.65) as 

𝑢(𝑡) = −
�

��
+ �|𝜑| tanh �

(���)

�
�  

𝜀 = −
1

𝐴 �|𝜑|
atanh �

𝐵

2𝐴�|𝜑|
� 

𝑇 =
2

�|𝐵� − 4𝐴𝐶|
 

(2.66) 

where 𝑇 is the characteristic time of the flow, which, as observed above, measures how quickly 
the flow reaches the asymptotical value. The obtained results provide some important 
conclusions useful for the use of FLO-2D. Considering that the asymptotic velocity can be 
written as 

𝑢� = �𝐵 − �𝐵� − 4𝐴𝐶�
1

2𝐴
 (2.67) 

One can conclude that 
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� The role of 𝐾 and 𝛼� that appear in 𝜂 (see eq. 2.54) are indistinguishable and can be 
considered as a single parameter, therefore reducing the number of degrees of freedom 
of the O’Brien parametrization. 

� The asymptotic velocity larger than zero if and only if  

sin 𝜗 −
𝜏�

𝛾�ℎ�
> 0  (2.68) 

This limiting condition provides an important information for debris flow arrest 
together with a limit of the possible values that can be given to 𝛼� and 𝛽�, something 
that is not mentioned in any of the FLO-2D manuals.  

The following parameters are used to set up the simulation, using 𝛾� = 9 810 𝑁/𝑚� as the 
specific weight of the water and 𝛾������ = 26 500 𝑁/𝑚� as the specific weight of the granular 
part of the flow. The other parameters are a variation on the rheological set called “Aspen pit 
1” suggested by O’Brien (1993). 

� ℎ� = 3 𝑚 
� 𝜗 = 40° 
� 𝛼� = 3.6 ∙ 10�� 𝑃𝑎 ∙ 𝑠 
� 𝛼� = 1.81 ∙ 10�� 𝑁/𝑚� 
� 𝛽� = 22.1 
� 𝛽� = 25.7 
� 𝐶� = 0.43 
� 𝛾� = 16 987 𝑁/𝑚� = 𝛾������ ∙ 𝐶� + 𝛾� ∙ (1 − 𝐶�) 
� 𝑛 = 0.033 𝑠/𝑚�/� 
� 𝐾 = 2285 
� 𝐿 (𝑑𝑜𝑚𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ) = 2 000 𝑚 
� Δ𝑥 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑒𝑙𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔) = 1 𝑚 
� ℎ������ = 10�� 𝑚 
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Figure 2.12 Snapshots of the numerical simulation at different time instants. The analytical solution (depicted 
with a dashed black line) represents the transient uniform velocity which the flow reaches where the fluid depth 
is constant. Using the data reported in this test case the flow reaches the asymptotic velocity of about 6.81 𝑚/𝑠 
in 𝑡 = 2𝑇 = 4.42 𝑠, where 𝑇 = 2.21 𝑠 as stated by the characteristic time of eq. (2.66) 

Figure 2.12 shows the solution computed by DEBRA at different time steps. The good 
agreement between the analytical velocity and the computed one highlights the reliability of 
the implemented framework. Note that in correspondence of the wet/dry discontinuity a small 
tip in the fluid depth arises which appears to be stable in time and is caused by the rapid change 
in the conserved variables near the discontinuity. Although beyond the scope of this thesis, in 
the author’s opinion, the presented solution suggests a direction for a systematic discussion of 
the comparative behaviour of the Voellmy’s case and of the O’Brien case, as a function of the 
selected parameters set. Figure 2.13 reports a contour plot of eq. (68) which is a representation 
of the 3D surface of the function 𝑢(𝐶�, ℎ) with all the other parameters being fixed. 
Interestingly, the contour lines depicted in white highlight the path along which the terminal 
velocity is constant while 𝐶� and ℎ vary. Similarly to the Voellmy case, this behaviour stresses 
the property that there are multiple choices of 𝐶� and ℎ that are characterized by the same 
terminal velocity.  
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Figure 2.13 Contour plot of the terminal velocity reported in eq. (2.67) as a function of the O’Brien rheological 
parameters 𝐶� and ℎ. The other parameters present inside the O’Brien formulation are fixed and identical to the 
ones used to perform the numerical simulation with DEBRA, with the exception of 𝜗 = 10°, modified for 
graphical purposes. 

2.4.3 Multiplane test case 

The following test case is a fully 2D scenario in which an initially stationary idealized block 
of debris mixture is free to flow along a valley whose surface is characterized by the 
intersection of four converging planes with slopes ranging between 10° and 45°. This scenario 
aims to replicate the propagation of a debris flow which is suddenly triggered along a 
hypothetical slope and afterwards channelized into the drainage network (see Figure 2.14 for a 
3D representation). In order to compare the results provided by DEBRA with the ones provided 
by RAMMS software the friction law of Voellmy has been used to model the behaviour of the 
granular material. 
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Figure 2.14 3D representation of the idealized valley made by the intersection of four planes. The red square 
(10 000 𝑚�) highlights the triggering region where the fluid is initially at rest.  

The following data have been used for the described problem 

� Domain length �
700 𝑚 ≤ 𝑥 ≤ 1300 𝑚

1 000 𝑚 ≤ 𝑦 ≤ 1 800 𝑚
 

 
� Elevation data 𝑧(𝑥, 𝑦) 

𝜋� = (𝑦 − 1 000 𝑚) − 50 𝑚,     𝜋� = (𝑦 − 1 000 𝑚) − 50 𝑚      

𝜋� = −(𝑥 − 1 000 𝑚) ∙ tan(30°) + 200 𝑚,     𝜋� = −(𝑥 − 1000 𝑚) ∙ tan(10°) + 100 𝑚     

𝑧(𝑥, 𝑦) = max[𝜋�(𝑥), 𝜋�(𝑥), 𝜋�(𝑦), 𝜋�(𝑦)] 

(2.69) 

� Release area �
950 𝑚 ≤ 𝑥 ≤ 1 050 𝑚

1 050 𝑚 ≤ 𝑦 ≤ 1 150 𝑚
 

� ℎ� = 5 𝑚 
� 𝜇 = 0.18 
� 𝜉 = 500 𝑚/𝑠� 
� Δ𝑥����� (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑒𝑙𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔) = 2.5 𝑚 
� Δ𝑥����� = 2.5 𝑚 
� 𝑡��� (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) = 53 𝑠 
� ℎ������ = 10�� 𝑚 
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Figure 2.15 Snapshots of the results provided by DEBRA at different time steps, the vertical scale of the fluid has 
been enlarged for graphical reasons. 

 

 

a) b) 

c) 
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Figure 2.16 a) Deposition map using DEBRA software after 20 s. b) Deposition map using RAMMS software 
after 20 s. c) Difference between the computed deposition map of RAMMS and DEBRA. 

In Figures 2.15 the snapshots of the fluid depth computed by DEBRA are reported, describing 
the motion of the debris flow, having a volume of 50 000 𝑚�, as it propagates downstream. 
After the complete stop, which occurs after about 53 𝑠 as obtained by implementing the 
stopping criteria provided by RAMMS, it is possible to assess the differences between the two 
solvers (see Figure 2.16). Although some discrepancies can be observed near the discontinuous 
change in bed slope, likely caused by the different kind of space discretization adopted 
(structured mesh used by RAMMS and unstructured used by DEBRA), these are nevertheless 
very limited (around 0.1 𝑚 of difference). It can be noticed that DEBRA has a tendency to 
homogeneously deposit along the channel (see the blue pattern in the wider portion of the 
bottom channel and the red pattern in the narrow portion of the channel) while RAMMS 
predicts that most material deposits near the portion in which the debris flow stops (between 
the 1 500 𝑚 and the 1 600 𝑚 mark). Finally both models predict the runout consistently 
occurring about the 1 600 𝑚 mark. Computationally both models are able to finish the 
simulation in under a minute.  

2.4.4 Niardo event 

As a final comparative test case, a real debris flow occurred in Valle Camonica is considered. 
On the 27th of July 2022 the town of Niardo located in Valle Camonica (see Figure 2.17) has 
experienced an extreme rainfall event (maximum rainfall intensity of around 250 𝑚𝑚/ℎ, see 
Figure 2.18) in an area where the official 200 years return period rainfall is about 63 𝑚𝑚/ℎ. 
This downpour triggered a debris flow caused by multiple soil slips located in the catchment of 
Re and Cobello stream (see Figure 2.19). 

 

Figure 2.17 Study area location with an enlarged view of Northern Italy. 
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Figure 2.18 (Left) Visualization of the catchment of Re stream (A) and Cobello stream (B). (Right) Precipitation 
data recorded by an amatorial meteo station present in Niardo (https://www.meteopassione.com/webcam/niardo). 

 

Figure 2.19 A comparative view of the change in morphology of the catchments of Re (south) and Cobello (North), 
aerial view taken from Google Earth before the event and immediately afterwards. There are more than 40 unstable 
source areas that contributed to the debris flow that damaged the town of Niardo. 

 

Before After 

Cobello  

Re  
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Figure 2.20 Aerial view of Niardo after the event where the path of the debris flow is evident, image taken from 
Google Earth. 

The reported event can be used to assess the performances of the numerical models RAMMS 
and DEBRA (considering the Voellmy’s frictional law) on a real topography. As it can be 
noticed from Figure 2.20, two distinct debris flows have occurred in Niardo which originated 
from the catchments of Re and Cobello stream. While the timing of the events is unknown, it 
is evident from Figure 2.20 that the deposition by the overflow of Re stream is much severe 
with respect to the one caused by the overflow of Cobello stream. For this reason the debris 
flow caused by Re stream only will be numerically investigated. Due to the many uncertainties 
intrinsic to any debris flow which occurs in ungauged catchments, the correct representation of 
the flow by numerical models is difficult and often requires many steps to calibrate all 
parameters involved in the available numerical model. With reference to Niardo, it is known 
from local witnesses that the propagation of the debris flow (from when the Re stream 
overflowed and caused major damages) did not outlast half an hour. Furthermore depositional 
height in several areas of the domain impacted by the debris flow allowed the estimation of the 
solid volume of the event to be in the order of 60 000 𝑚�. Since no information is available 
on the debris flow hydrograph at the apex of the alluvial fan of the Re catchment and 
considering that the purpose of this test is mostly comparative, two idealized boundary 
condition will be used to replicate the event. First an idealized block of debris flow will be 
released in the upper portion of the catchment of Re stream, allowing the flow to propagate 
both inside and outside the channel bed. RAMMS software allows two kinds of initial 
conditions: block release (which is used in the following section) and input hydrograph. The 
latter seems more suitable for this application but, due to the poorly documented manual and 
lack of implementation details, it was not possible to reach an agreement between RAMMS 
and DEBRA. Furthermore, the specification of a planimetric area instead of a cross section in 
the domain for the region in which the hydrograph enters is not well motivated and documented 
in the manual. Therefore, in the following section a block release has been used as initial 
condition where a rigorous comparison is possible since the starting configuration is the same 
in both models. Lastly, a hydrograph boundary condition will be used to replicate the Niardo 
event using DEBRA only. In all simulations the railway bridge (see Figure 2.21, location A) is 
treated as a solid wall from the beginning as a simple and straightforward way to model the 
bridge obstruction during the event. In RAMMS it not possible to dynamically change the 
domain during a simulation, therefore the easiest way to model the flow interaction was to treat 
it as a solid wall from the start. To avoid differences in the two models also in DEBRA the 
same approach to model the railway bridge is adopted.  
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Figure 2.21 Helicopter view of Niardo the day after the debris flow event. From the image it is possible to assess 
the critical points in which the Re stream overflowed, which are located in correspondence of the railway bridge 
(downstream, A) and the highway bridge (upstream, B). 

2.4.4.1 Block release 

The initial condition of a block release was initially used to provide a comparative test case. It 
aims to replicate the sudden loss of stability of a soil block located in the steep portions of the 
catchment. Unfortunately no data about the soil depth is available at a reasonable resolution in 
the areas in which the soil instability occurred. Therefore in this application a fictitious uniform 
channel tilted 30° is attached to the DTM of the town of Niardo on which the block of debris 
material is suddenly released. 

A 

B 
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Figure 2.22 Domain schematics for the Niardo block release test case. The dashed blue line highlights the domain 
extension while the solid red line indicates the position of the block release depicted in orange. Lastly the yellow-
dashed line is the position of the enlargement displayed in Figure 2.23.  

 

Figure 2.23 Zoom on the computational mesh adopted in DEBRA. To closely follow the channel geometry, two 
break lines are introduced to provide a mesh refinement inside the channel (mesh size 0.5 m) with respect to the 
outside floodplain (mesh size 2 m). 
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The following initial conditions and parameters are used for the setup of the simulation 

� Δ𝑥�����(𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒) = �
0.5 𝑚 (𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑒𝑑)
2 𝑚 (𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑒𝑑)

 

� Δ𝑥�����(𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒) = 1.5 𝑚 (𝑒𝑣𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒) 
� 𝐴�(𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑎𝑟𝑒𝑎) = 10 000 𝑚� 
� ℎ� (𝑟𝑒𝑙𝑒𝑎𝑠𝑒 ℎ𝑒𝑖𝑔ℎ𝑡) = 5 𝑚 
� 𝜇 = 0.05 
� 𝜉 = 1000 𝑚/𝑠� 
� 𝑡���(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) = 500 𝑠 
� ℎ������ = 10�� 𝑚 
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Figure 2.24 Snapshots of the numerical solution computed by DEBRA. Looking at the different images it is 
possible to observe how the presence of the structures on the topography, i.e. houses, highways and roads, strongly 
influences the propagation of the flow through the town of Niardo. The maximum depositional height can be 
observed near the highway and inside the river channel of Re stream, reaching up to 5 m. 

 

Figure 2.25 Deposition pattern of DEBRA at the end of the simulation. 
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Figure 2.26 Deposition pattern of RAMMS at the end of the simulation. 

 

Figure 2.27 Deposition difference between RAMMS and DEBRA at the end of the simulation. For a clearer picture 
differences in absolute value less than 0.3 m are not displayed. 

In Figure 2.24 it is possible to visualize several simulation snapshots provided by DEBRA at 
different time steps. It is clear how the bathymetry strongly influences the path of the flow, in 
particular the railway bridge, acting as a dam to the flow and causing deposition. Having 
overcome the railway bridge, the flow continued to propagate across one of the main roads of 
Niardo, eventually stopping after a 90° turn, following the morphology of the area. Laterally, 
the flow expands and deposits near the highway which passes through Niardo. Using the same 
initial conditions and parameters, the same simulation is performed also using RAMMS 
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allowing a direct comparison of the depositional height at the end of the simulation. In Figures 
2.25 and 2.26 the deposition maps are displayed. Even though the general trend is the same in 
both maps, there are some inconsistencies which need to be underlined and addressed. Figure 
2.27 helps to better visualize this issue, where the difference between the deposition computed 
by RAMMS and the deposition computed by DEBRA is displayed. To enhance the quality of 
the map, every difference (in absolute value) less than 0.3 𝑚 is not depicted. The maximum 
differences across the whole map are around 2 𝑚 near the channel of Re stream, which can be 
explained by the different kind of mesh and discretization adopted. In DEBRA the channel is 
modelled with a higher accuracy with respect to RAMMS, thanks to the adoption of the 
unstructured mesh. This leads to a higher deposition in DEBRA, thus the blue/light blue colour 
inside the channel. Other differences can be found near the houses in the northern part of Niardo 
where RAMMS predicts much lower depositional height. Finally it is worth noting that both 
models agree on the maximum propagation extend in all directions, in particular the 90° bend 
where the match is very good, although the debris flow in DEBRA is more homogeneously 
distributed. A qualitative comparison between both depositional maps of the numerical models 
and the observed map reveals that the behaviour of the occurred debris flow was in fact very 
different but this is not relevant considering the comparative role of the present numerical test 
on a real bathymetry to assess the potential differences between the two mathematical and 
numerical models. First the deposited material extended much less in the area upstream the 
railway bridge, just barely touching the house located between the railway and the highway. 
Therefore the simulation with the block release initial condition with the described parameters 
seems unsuitable to replicate the debris flow that effectively occurred in Niardo. It is evident 
from the observed deposition that the flow, initially, was entirely channelled inside the Re 
stream.  

2.4.4.2 Solid discharge boundary condition 

Another possible way to simulate a debris flow is the imposition of a solid discharge hydrograph 
at a given inlet, aiming to reproduce an event with similar characteristics to a flood, i.e. starting 
from a channel. In flood related applications, fixing a discharge boundary condition requires 
the knowledge of the kind of flow being modelled, i.e. supercritical or subcritical, depending 
on local flow characteristics. Using this knowledge, it is customary to introduce a stage 
discharge curve from which, for each assigned discharge value, it is possible to compute a 
uniform fluid depth. Although the identification of a stage discharge relationship in presence of 
granular flow is difficult to estimate, simply by using the relation provided by Hergarten & 
Robl (2015), one obtains a 𝑢(ℎ), i.e. the terminal or uniform velocity as a function of the fluid 
depth, which can be used to obtain the discharge. Inverting eq. (2.58) leads to 

ℎ� = �
𝑄

𝐿�𝜉 sin 𝜗 − 𝜇 cos 𝜗
�

�/�

 (2.70) 

where ℎ� is the fluid depth measured normally with respect to the bottom bed, 𝑄 is the discharge, 
𝐿 is the channel width while 𝜇 and 𝜉 are the Voellmy’s friction law parameters. 



76 
 

 
Figure 2.28 (Left) Solid discharge hydrograph used to simulate the event of  Niardo. Following local testimonies, 
the event has been assumed to be very quick, reaching the peak discharge in 50 𝑠, for a total volume of 50 000 𝑚� 
of sediments. (Right) Stage discharge relationship for the assumed cross section in Niardo, obtained using eq. 
(2.70) using 𝜗 = 30°, 𝐿 = 10 𝑚, 𝜇 = 0.15 and  𝜉 = 500 𝑚/𝑠�. 

DEBRA uses the curve reported in Figure 2.28 (right) to dynamically assign a fluid depth for 
the incoming discharge. At each time step, if the flow is in supercritical regime, both fluid depth 
and flow velocity are imposed while only the water depth is imposed if the regime is subcritical. 
The inlet slope 𝜗 is a parameter which influences the regime in which the flow enters in the 
domain, in this application, an average slope of the channel has been considered. The chosen 
Voellmy’s rheological parameters used to model the hydrograph and the debris flow are the 
ones which best reproduced the observed depositional pattern in Niardo. 
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Figure 2.29 Series of simulation snapshots computed by DEBRA. Thanks to the hydrograph boundary condition, 
now the flow propagates entirely through the channel. The presence of the obstructed bridge allows to better 
capture the deposition pattern near the railway. 

In Figure 2.29 it is possible to see the propagation of the debris flow using the hydrograph 
boundary condition computed by DEBRA. According to the stopping criteria described 
previously, the debris flow stops its propagation after around 980 s. The deposition pattern is 
now much more similar to the observed one in Niardo after the event. It was observed that the 
channel portion between the railway and the highway was filled completely by debris after the 
event. The channel is around 5 m deep, and DEBRA predicts a deposition in that area of around 
4.5 m. Furthermore, from Figure 2.29, it is possible to notice how the observed deposition 
pattern and the output of DEBRA are similar in the area located downstream the historical part 
of Niardo. Still, in the historical part of Niardo, DEBRA predicts that some flooding occurred 
while in reality it was observed that the debris flow did not overflow. The reason behind this 
inconsistency, in the author’s opinion, can be attributed either to the poor quality of the digital 
elevation model present in that area, which may reduce its conveyance and lead to overflow, 
or an incorrect estimate of the incoming hydrograph or its shape. Unfortunately, the absence of 
information about the event complicates the modelling process.  
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Conclusions 
The fundamental building blocks of an integrated early warning system for debris flows have 
been described in the previous chapters. In the first one an integrated hydrologic slope stability 
model for debris flow inception has been presented. The slope stability model is a variation of 
the Janbu’s method, aiming to improve the described limitations of the IS model. The novel 
methodology has been validated on simple slopes using the output of a complete equilibrium 
analysis as ground truth. In all the reported simple cases, the proposed Janbu’s method was 
able to improve the prediction of the unstable areas of the IS model, performing similarly to a 
complete equilibrium method. The hydrological component of the model has been also 
discussed and a simple application on a series of conceptualized slopes is presented. Finally, 
using a well-known study case and dataset located in Coos Bay, Oregon, it was possible to 
assess the performances of the stability model without incurring in calibration of parameters or 
data uncertainty, which is an issue which greatly influences the results in any application. This 
contribution presents an application of the slope stability analysis having fixed the input data 
and validating it against a known dataset, choosing not to use the mentioned hydrological 
model to ensure clarity and reproducibility of the results. Further work will address a full-scale 
application of the proposed coupled methodology (hydrological + slope stability model). The 
complete application to a case study requires extensive calibration and in-situ measurements 
which would lead to further discussion. The second chapter focuses instead on the propagation 
of the debris flow, introducing the finite volume numerical scheme DEBRA (Debris-flow 
Evolution and Behaviour for Risk Assessment). DEBRA solves the monophasic SSSWE, based 
on a recently introduced formulation of the SWE on steep terrains (Maranzoni & Tomirotti, 
2022). The code works on unstructured grids allowing the user to select multiple friction laws 
to simulate the evolution of flows which ranges from water to granular material. The numerical 
scheme has been presented and applied to a selection of test cases both analytical and taken 
from a recently occurred event. The new formulation solves and improves some limitations 
intrinsically present inside a standard SWE model, extending the range of applications in which 
the governing equations are strictly valid. Despite the new advantages of the new SSSWE 
formulation, further studies must be carried out to shed light on how to rigorously enforce the 
well balanced property, i.e. also called the C-property, which is the ability possessed by the 
scheme to preserve the equilibrium state of the flow on uneven terrains in absence of motion. 
Physically this corresponds to the lake at rest situation, in which the hydrostatic fluxes balance 
exactly the source term given by the bathymetry. This situation, although less common in debris 
flows with respect to flood propagation, is very difficult to model numerically and requires 
special treatment. Existing methodologies often rely either on hydrostatic reconstruction 
(Audusse & Bristeau, 2005), or in considering the bed slope source term directly inside the 
fluxes, thus introducing the water elevation as a new variable (Liang & Marche, 2009). Both 
methodologies preserve the C-property of the underlying numerical scheme and are 
straightforward to implement on any type of grid. Since the SSSWE are a relatively new 
formulation, a way to adapt existing methodologies to handle this numerical issue still remains 
a challenge due to the discontinuous coefficients 𝜗� and 𝜗�  present inside the hydrostatic 
pressure term. Further studies must be carried out in order to develop a method which works 
also in presence of discontinuous coefficients between the states. Numerical tests confirm that 
also RAMMS does not satisfy the C-property when challenged using the classical tests 
available in literature. Modelling the flow of debris flows requires inevitably to consider 
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entrainment and deposition of the granular material along the path of the flow. Considering the 
event occurred in Niardo, it is evident from the reported pictures that the flow eroded the 
channel during the propagation, thus incorporating part of the bed into the flow. Multiple 
approaches are possible to deal with this phenomenon ranging in complexity, from the static 
approach suggested by Medina et al. (2008), where a static equilibrium is assumed with the 
terrain during the flow, or a dynamic approach, where the eroded new material is accelerated 
to the mean velocity of the flow, in which the quantity of new incorporated mass depends on 
the availability of momentum (Medina et al., 2008). The introduction of an unstructured grid 
is an important upgrade which, at the expense of a major complexity, enables on one hand the 
possibility to follow any structures present along the flow, i.e. houses, roads and existing 
channels, by the introduction of appropriate break lines, on the other hand ensures a directional 
isotropy of the grid by construction. DEBRA has been compared with the commercial software 
RAMMS yielding similar results in simple situations and improving on an analytical case 
where DEBRA does not show the unphysical oscillatory pattern shown by RAMMS. On the 
test case of Niardo, using the block release, it is possible to notice some discrepancies between 
the models, even though the initial conditions and parameters are the same. The reason behind 
these differences can be attributed, as already stated above, in the kind of mesh adopted, in the 
different formulation of the governing equations which are solved at each time step and to the 
reasons that lead to the oscillatory behaviour present inside RAMMS discussed previously. 
Computational times are another important issue to be tackled, since the Matlab environment 
clearly offers many advantages in terms of data handling and visualization, avoiding the user 
to explicitly deal with memory allocation for instance, with the downside of higher 
computational times in performing numerical tasks. Accordingly, future developments will 
focus on porting the whole source code into a compiled language for maximum efficiency in 
terms of computational times. 

 

 

 

  



84 
 

3.1 Future works 

This thesis introduced some novel techniques used to model the inception and propagation of 
debris flows. Despite being complete, this thesis described the fundamental building blocks of 
an innovative physically based early warning system for debris flows in mountain regions. The 
idea is to create a so-called digital twin of a particular catchment (consider for instance the 
catchment of Re stream, near Niardo) which is able to respond to an external forcing, i.e. 
rainfall, similarly to the real catchment. To obtain this kind of response some calibration is 
required which, if the catchment has some gauging station of physically relevant quantities 
(rainfall, water level, ecc…), can be done using past observations during regular rainfall events. 
The outflowing discharge history therefore can be used to calibrate the hydrological response 
of the catchment, similarly, to model the soil stability response of the catchment, one can use 
the knowledge that during past events no unstable areas have been detected, thus allowing the 
calibration of the geotechnical parameters that characterize the catchment. Having now a model 
which behaves similarly to the real one, it is possible to let it run continuously using rainfall 
forecast as a forcing, in order to detect much in advance if a certain event may cause soil slips 
inside the catchment. If this is detected then an initial warning can be issued, alerting 
authorities. Afterwards, if the danger persists, a debris flow model can be used to predict the 
propagation of the flow in the catchment and whether urbanized areas are at risk of being 
impacted by the debris flow. Using this modelling chain would in principle extend the warning 
time sufficiently and reliably by several hours, according to the quality of the rainfall forecast, 
contrary to currently used methods. 
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Appendix A 

Equivalence of the Janbu method and the IS model 
for a single slice slope 
The Janbu method and the IS model furnish the same safety factor if the slope under 
investigation is made just by one slice. To prove this consider a slope made just by one slice 
and write eq. (1.15) setting 𝑛 = 1: 

𝐹𝑆 =
{𝑐� 𝑎 + [𝑁(𝐹𝑆) − 𝑢 𝑎+𝑘�ℎ(𝛾�ℎ − 𝛾�𝑟)Δ𝑥 cos� 𝛽] tan 𝜙� + 2𝑐′�ℎΔ𝑥} cos 𝛽

𝑁(𝐹𝑆) sin 𝛽
 (A1) 

Inserting the expression of 𝑁(𝐹𝑆) reported in eq. (1.12) into eq. (A1), after some algebra and 
using the shorthand 𝑀 = 𝑐�𝑎 − 𝑢𝑎 tan 𝜙� + 2𝑐�

�ℎΔ𝑥 + 𝑘�(𝛾�ℎ − 𝛾�𝑟) ℎ Δ𝑥 cos� 𝛽 tan 𝜙′, 
one obtains: 

𝐹𝑆 (𝑀 + 𝐺 tan 𝜙� cos 𝛽) − 𝐺 𝐹𝑆� sin 𝛽

sin 𝛽 (𝐺 𝐹𝑆 − 𝑀 sin 𝛽)
= 0 (A2) 

which can be reduced to the following equation provided that the denominator does not vanish: 

𝑀 + 𝐺 tan 𝜙� cos 𝛽 − 𝐺 𝐹𝑆 sin 𝛽 = 0 (A3) 

by retrieving the safety factor 𝐹𝑆: 

𝐹𝑆 =
𝑀 + 𝐺 tan 𝜙� cos 𝛽

𝐺 sin 𝛽
 (A4) 

which is the safety factor of the IS model reported in eq. (1.5) using 𝐺 = 𝛾� ℎ 𝑎 cos 𝛽, 𝑢 =

𝛾�𝑟 cos� 𝛽 and neglecting all lateral contributions. 
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Appendix B 

Monotonicity proof 
The proposed Janbu method involves the resolution of the following equation for each block 
along the slope: 

𝐹𝑆 =
� {𝑐� 𝑎� + [𝑁�(𝐹𝑆) − 𝑢� 𝑎�+𝑘�(𝛾�ℎ� − 𝛾�𝑟�)ℎΔ𝑥 cos� 𝛽�] tan 𝜙� + 2𝑐′�ℎ�Δ𝑥} cos 𝛽�

�

���

� 𝑁�(𝐹𝑆) sin 𝛽�
�

���

 (B1) 

This computation can be avoided if one is interested if one wishes only to assess whether the 
slope is stable (𝐹𝑆 > 1) or unstable (𝐹𝑆 < 1). In the present proof each quantity that can vary 
along the slope is indicated by the pedex 𝑖, while constant quantities for the whole slope are 
unmarked, e.g. 𝜙′ and 𝑐�. The safety factor for any portion of the slope is assumed to be stricktly 
positive and the base inclination angle is supposed to vary only between 0° < 𝛽� < 90°. By 
carrying all terms to the right side of the equation: 

𝑄(𝐹𝑆) =
� {𝑐� 𝑎� + [𝑁�(𝐹𝑆) − 𝑢� 𝑎�+𝑘��𝛾�ℎ�

� − 𝛾�𝑟�
��Δ𝑥 cos� 𝛽�] tan 𝜙� + 2𝑐′�ℎ�Δ𝑥} cos 𝛽�

�

���

� 𝑁�(𝐹𝑆) sin 𝛽�
�

���

− 𝐹𝑆 = 0 (B2) 

One can say that if the function in eq. (B2) is monotonically decreasing in the interval [0, +∞] 
then the quantity 𝑄(1) contains the information about the location of the desired root of eq. 
(B1). In particular if 𝑄(1) > 1 then 𝐹𝑆 > 1, on the other hand, if 𝑄(1) < 1 then 𝐹𝑆 < 1. To 
prove the monotonicity of function (B2), it is sufficient to prove that 𝑄�(𝐹𝑆) < 0 in the interval 
[0, +∞]. First let us recall the expression of the quantity 𝑁�(𝐹𝑆) where the term 𝑀� = 𝑐�𝑎� −

𝑢�𝑎� tan 𝜙� + 2𝑐�
�ℎ� Δ𝑥 + 𝑘�ℎ�(𝛾�ℎ� − 𝛾�𝑟�)Δ𝑥 cos� 𝛽� tan 𝜙′ is used as a shorthand: 

𝑁�(𝐹𝑆) =
𝐺� ∙ 𝐹𝑆 − 𝑀� sin 𝛽�

𝐹𝑆 cos 𝛽� + tan 𝜙′ sin 𝛽�
 (B3) 

By inspection of 𝑁�(𝐹𝑆) one can say that 𝑁�(𝐹𝑆) > 0 if 𝐹𝑆 > 𝑀� sin 𝛽� /𝐺� thus giving a lower 
bound for the safety factor since the force vector 𝑁� cannot be lower than zero in the present 
applications. Inserting the expression for 𝑁� reported in eq. (B3) into eq. (B2), one can obtain 
the following expression after some algebra: 

𝑄(𝐹𝑆) =

� �
𝐹𝑆 cos 𝛽� (𝐺� tan 𝜙� + 𝑀� cos 𝛽�)

𝐹𝑆 cos 𝛽� + tan 𝜙′ sin 𝛽�
�

�

���

� �
sin 𝛽�(𝐺�𝐹𝑆 − 𝑀� sin 𝛽�)
𝐹𝑆 cos 𝛽� + tan 𝜙′ sin 𝛽�

�

�

���

− 𝐹𝑆 = 0 (B4) 

which is equivalent to: 
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𝑄(𝐹𝑆) = � �
cos 𝛽� (𝐺� tan 𝜙� + 𝑀� cos 𝛽�)

𝐹𝑆 cos 𝛽� + tan 𝜙′ sin 𝛽�

�

�

���

− � �
sin 𝛽�(𝐺�𝐹𝑆 − 𝑀� sin 𝛽�)

𝐹𝑆 cos 𝛽� + tan 𝜙′ sin 𝛽�

�

�

���

= 0 (B5) 

Differentiating eq. (B5) with respect to 𝐹𝑆 leads to the equation: 

𝑄�(𝐹𝑆) = � �−
cos� 𝛽� (𝐺� tan 𝜙� + 𝑀� cos 𝛽�)

(𝐹𝑆 cos 𝛽� + tan 𝜙′ sin 𝛽�)
�

�

�

���

− � �
𝐺� sin 𝛽� (𝐹𝑆 cos 𝛽� + tan� 𝜙 sin 𝛽�) − sin 𝛽� cos 𝛽� (𝐺�𝐹𝑆 − 𝑀� sin 𝛽�)

(𝐹𝑆 cos 𝛽� + tan 𝜙′ sin 𝛽�)
�

�

�

���

 (B6) 

Both denominators in eq. (B6) are positive and different from zero in the present application, 
so by setting  𝑄�(𝐹𝑆) < 0 one can say: 

𝑄�(𝐹𝑆) = �[− cos� 𝛽�(𝐺� tan 𝜙� + 𝑀� cos 𝛽�) − 𝐺� sin 𝛽� (𝐹𝑆 cos 𝛽� + tan 𝜙� sin 𝛽�) + sin 𝛽� cos 𝛽� (𝐺�𝐹𝑆 − 𝑀� sin 𝛽�)]

�

���

< 0 (B7) 

If the quantity in eq. (B7) is satisfied slice by slice, i.e. for every index 𝑖, then it is true for the 
sum and therefore for the whole slope. By rearranging the terms inside the summation sign in 
eq. (B7): 

−𝐺� tan 𝜙� cos� 𝛽� − 𝑀� cos� 𝛽� − 𝐺� tan 𝜙� sin� 𝛽� − 𝑀� sin� 𝛽� cos 𝛽� < 0 (B8) 

Eq. (B8) is always satisfied provided that 𝑀� > 0, which means: 

𝑐�𝑎� + 2𝑐′�ℎ� Δ𝑥 + 𝑘�𝛾�ℎ�
�Δ𝑥 cos� 𝛽� tan 𝜙′ > 𝑢�𝑎� tan 𝜙′ + 𝑘�𝛾�𝑟�

�Δ𝑥 cos� 𝛽� tan 𝜙′ (B9) 

The term 𝑘�ℎ�(𝛾�ℎ� − 𝛾�𝑟�)Δ𝑥 cos� 𝛽� tan 𝜙′ is either positive or equal to zero in the present 
application, however 𝑀� < 0 can still occur, in that scenario the following relation must hold: 

𝑀� cos� 𝛽� + 𝑀� sin� 𝛽� cos 𝛽� < 𝐺� tan 𝜙′ (B9) 

which is equivalent to: 

𝐺� tan 𝜙�

𝑀� cos 𝛽�
> 1 (B10) 

By replacing 𝐺� = 𝛾�ℎ�𝑎� cos 𝛽�  and 𝑀� = 𝑢�𝑎� tan 𝜙′ = 𝛾�𝑟�𝑎� cos� 𝛽� tan 𝜙′, meaning that 
no cohesion term is present (neither basal or lateral) together with completely saturated soil 
(𝑟� = ℎ�  and 𝛾� = 𝛾���), without loss of generality one can say: 
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𝛾��� > 𝛾� cos� 𝛽�  (B11) 

which is always true provided that 𝛾��� > 𝛾�.  
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Appendix C 

Approximate solution for the Janbu method 
A possible alternative to solve the full Janbu equation by means of an iterative Newton Raphson 
method is to use an explicit estimate for the location of the root of eq. (15) in chapter 1. Starting 
from eq. (B5) reported below for clarity:  

𝑄(𝐹𝑆) = � �
cos 𝛽� (𝐺� tan 𝜙� + 𝑀� cos 𝛽�)

𝐹𝑆 cos 𝛽� + tan 𝜙′ sin 𝛽�

�

�

���

− � �
sin 𝛽�(𝐺�𝐹𝑆 − 𝑀� sin 𝛽�)

𝐹𝑆 cos 𝛽� + tan 𝜙′ sin 𝛽�

�

�

���

= 0 (C1) 

where 𝑀� = 𝑐�𝑎� − 𝑢�𝑎� tan 𝜙� + 2𝑐′�ℎ� Δ𝑥 + 𝑘�(𝛾�ℎ�
� − 𝛾�𝑟�

�)Δ𝑥 cos� 𝛽� tan 𝜙′. It is 
possible to rewrite the denominators as: 

𝑄(𝐹𝑆) = � �
(𝐺� tan 𝜙� + 𝑀� cos 𝛽�)

𝐹𝑆 + tan 𝜙′ tan 𝛽�

�

�

���

− � �
tan 𝛽�(𝐺�𝐹𝑆 − 𝑀� sin 𝛽�)

𝐹𝑆 + tan 𝜙′ tan 𝛽�

�

�

���

= 0 (C2) 

One can notice that the denominators in both terms are exactly the same, and if 𝛽�  varies very 
little along the slope considered, or varies very smoothly, one can say that tan 𝛽� ≈ tan 𝛽� only 
in the denominator term, where 𝛽� is a constant quantity along the slope, therefore the following 
step is valid: 

𝑄(𝐹𝑆) =
1

𝐹𝑆 + tan 𝜙′ tan 𝛽�
��[𝐺� tan 𝜙� + 𝑀� cos 𝛽�]

�

���

− �[tan 𝛽�(𝐺�𝐹𝑆 − 𝑀� sin 𝛽�)]

�

���

� = 0 (C3) 

Simplifying the common term leads to: 

𝑄(𝐹𝑆) = �[𝐺� tan 𝜙� + 𝑀� cos 𝛽�]

�

���

− �[tan 𝛽�(𝐺�𝐹𝑆 − 𝑀� sin 𝛽�)]

�

���

= 0 (C4) 

Eq. (C4) can be rearranged to give a simple explicit estimate for the safety factor 𝐹𝑆: 

𝐹𝑆 =
∑ [𝐺� tan 𝜙′ + 𝑀� cos 𝛽� + 𝑀� sin 𝛽� tan 𝛽�]�

���

∑ [𝐺� tan 𝛽�]�
���

 (C5) 
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Appendix D 

Validation test cases for DEBRA using the classical 
SWE formulation 

D.1 Stoker dam break problem 
The dam break problem over a wet bed, also called Stoker problem (1957), allows the 
validation of the shock-capturing capabilities of the proposed scheme. The domain is 100 m 
long and 10 m wide, discretized using 57 916 triangles having a maximum edge length of 0.2 
m. The CFL condition is fixed at 0.9 during the simulation. Figure D1.1 shows a comparison 
of the analytical solution provided by Stoker and the computed numerical solution at different 
times. Initial conditions are defined by water depths of 10 m and 5 m respectively upstream 
and downstream. 

 

 

 

 

 

Figure D1.1 Comparison between the analytical and the numerical solution of the Stoker dam break case. Cross 
sections of the 2D numerical domain are extracted at 𝑦 = 2.5 𝑚. The initial discontinuity in the water depth is 
located at 𝑥 = 50 𝑚. 

D.2 Ritter dam break problem 

The dam break problem over a dry bed, also called Ritter problem (1892), assesses the 
capabilities of the numerical scheme to handle wet/dry frontiers that may develop in flood 
propagation analysis. The same numerical domain and mesh has been adopted with respect to 
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the previous case. As customary in any explicit numerical scheme, a cutoff threshold to 
distinguish between wet and dry cells is set to 10��� 𝑚 for this test case. 

 

 

 

 

 

Figure D2.1. Comparison between the analytical and the numerical solution of the Ritter dam break case. Cross 
sections of the 2D numerical domain are extracted at 𝑦 = 2.5 𝑚. The initial discontinuity in the water depth is 
located at 𝑥 = 50 𝑚.  

D.3 Radially symmetrical paraboloid 

The two-dimensional case presented here is a radially symmetrical oscillating paraboloid, also 
presented in Delestre et al. (2016). Thacker (1981) and Sampson (2006) proposed an analytical 
solution which is periodic in time (without damping, i.e. no friction) with moving wet/dry 
transitions. A hump of water oscillates expanding towards the edges of the boundary and then 
contracting into the center. The topography is a paraboloid of revolution defined by: 

𝑧(𝑟) = −ℎ� �1 −
𝑟�

𝑎�
� 

𝑟 = �(𝑥 − 2)� + (𝑦 − 2)� 

(D3.1) 

Which is valid inside the domain defined by (𝑥, 𝑦) in [0; 𝐿] × [0; 𝐿], where ℎ� is the water 
depth at the central point of the domain in correspondence of a zero elevation and 𝑎 is the 
distance from the central point to the zero elevation of the shoreline. The analytical solution is 
given by: 
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Where the frequency 𝜔 is defined as 𝜔 = �8𝑔ℎ�/𝑎, 𝑟� is the distance from the central point 

to the point where the shoreline is initially located (see figure D3.1) and  𝐴 = (𝑎� − 𝑟�
�)/(𝑎� +

𝑟�
�). In this application it has been selected 𝑎 = 1 𝑚, 𝑟� = 0.8 𝑚, ℎ� = 0.1 𝑚, 𝐿 = 4 𝑚. The 

initial condition is given by the analytical solution at 𝑡 = 0. 

 

 

 

 

Figure D3.1 Notation used for the radially symmetrical paraboloid. 
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(D3.2) 
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Figure D3.2. Comparison between the analytical and the numerical solution of the Thacker test case at different 
times. The motion is characterized by a period of 2.24 seconds. 

D.4 Malpasset dam break 

The last example chosen to test the capabilities of the proposed numerical scheme is the well-
known Malpasset dam break. The Malpasset dam is located on the Reyran River, north of 
Frejus on the French Riviera. A report by Goutal (1990) contains the topography of the 
floodplain and the storage level of the reservoir at the moment of the collapse. The propagation 
of the dam break flow has been modelled using 32 676 cells as shown in Figure D4.1, while 
the Manning coefficient is set to 0.033 𝑠/𝑚�/� as reported by many authors (e.g. Zhao et al. 
2019). The boundaries of the domain are all solid walls with the exception of the downstream 
one near the sea which is transmissive. Experimental work was carried out by Electricité de 
France to measure maximum water level at the gauge points and the police points, allowing the 
validation of the numerical scheme. 
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Figure D4.1. Visualization of the computational mesh, the red dots indicate the location of the points surveyed 
by the police while the green marks highlight the position of the gauge points in the laboratory experiment.  

 

 

 

 

 

 

Figure D4.2. (Left) Maximum water levels at experiment gauges. (Right) Maximum water levels at survey points. 
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Figure D4.3. Comparison of the dam break discharge at the location of the dam between the proposed numerical 
scheme (in red) and the numerical scheme showed in Aureli et al. 2014 (in blue). 
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Figure D4.4. Predicted water depth map at various time steps after the collapse of the Malpasset dam. 
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