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Abstract
The aim of this study is to investigate the potential of radiomic features extracted from postmortem computed tomography 
(PMCT) scans of the lateral cerebral ventricles (LCVs) to provide information on the time since death, or postmortem interval 
(PMI), a critical aspect of forensic medicine. Periodic PMCT scans, referred to as “sequential scans”, were obtained from 
twelve corpses with known times of death, ranging from 5.5 to 273 h postmortem. Radiomics features were then extracted 
from the LCVs, and a mixed-effect model, specifically designed for sequential data, was employed to assess the association 
between feature values and PMI. Four model variants were fitted to the data to identify the best functional form to explain the 
relationship between the variables. Significant associations were observed for features, the most significant being the median 
Hounsfield Units (HU) within the LCVs (p < 9.47 × 10⁻⁹), LCVs surface area (p < 4.69 × 10⁻⁶), L-major axis (p < 2.17 × 10⁻⁵), 
L-minor axis (p < 1.30 × 10⁻⁴), and HU entropy (p < 4.16 × 10⁻⁴). Our findings align with previous studies, supporting a 
logarithmic model for PMI-related changes in LCV volume and mean HU intensity value. This study highlights the potential 
of PMCT-based radiomics as source of complementary information that could be integrated into existing methods for PMI 
estimation. Our results support the application of a quantitative imaging approach in forensic investigations.

Keywords  Postmortem interval · Time of death · Postmortem computed tomography · Lateral cerebral ventricle · 
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Introduction

Estimating the postmortem interval (PMI) is a crucial aspect 
of forensic medicine, aiming to precisely determine the 
time elapsed between death and the discovery of the body. 
This data is essential for guiding criminal investigations 
and providing information to law enforcement [1–3]. The 

complexity of PMI estimation arises from numerous factors 
affecting body changes after death, including the cause of 
death, environmental conditions (i.e., external temperature 
and body location), and individual characteristics (i.e., body 
mass, temperature, age, and gender) [4].

Over the years, various approaches have been developed 
to address this challenge, utilizing different parameters and 
techniques based on the body’s condition. In early post-
mortem periods, parameters deriving from physical and 
physicochemical processes are often used, while alternative 
techniques, such as forensic entomology or decomposition 
morphology classification, become more informative as the 
body undergoes advanced decomposition [1, 2, 5–13]. As 
new methods are developed, different parameters can be 
integrated into established techniques to create more com-
plex models [12, 14], resulting in more reliable and precise 
estimates of the time of death [15, 16]. Hence, the search for 
new methods in the field is ongoing [17–21].

The use of imaging techniques in death investigations 
has a long-established history [22, 23], with postmortem 
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computed tomography (PMCT) emerging as a standard prac-
tice, offering non-invasive alternatives to traditional autop-
sies [24–27]. However, while various postmortem changes 
observable through PMCT have been reported in different 
organs and body regions [28–31], the extent to which this 
information can be exploited to develop new PMI estimation 
methods remains largely unexplored.

Recent advancements in computing performance, recon-
struction software, image processing, and data storage have 
expanded the applicability of Machine Learning (ML) algo-
rithms for image analysis. In the medical imaging domain, 
radiomics has emerged as a popular approach [32], empha-
sizing that “images are more than pictures; they are data” 
[33]. Radiomics aims to develop automated and reproducible 
analysis methodologies, extracting previously inaccessible 
measurable attributes, known as features (i.e., shape, texture, 
or intensity), from images to provide objective information 
for analysis [32]. Initially designed to improve diagnosis, 
prognosis, and treatment planning in the field of oncology 
[34–43], radiomics has quickly proven to be applicable in 
broader contexts [44–48].

Specifically, in the context of PMI estimation, the infor-
mation extracted from PMCT images using a radiomic-based 
approach could be used to improve the reliability and preci-
sion of estimates. However, despite the undeniable potential 
of radiomics applied to PMCT [49], only a limited number 
of studies utilizing such an approach can be found in the 
literature. De-Giorgio et al. [50] used fractal analysis on 
sequential CT scans (multiple scans at different time points) 
of four subjects to characterize brain postmortem changes. 
Klontzas et al. [51] constructed a predictive model that com-
bines conventional IBSI-compliant radiomic features [52] 
from both the pancreas and liver to predict the PMI. The 
model was trained and tested using cross-sectional data, with 
a single scan available for each of the subjects included in 
the analysis. Given its potential, radiomics applied to PMCT 
could leverage extensive data from various organs to signifi-
cantly enhance forensic and medical insights.

In this framework, the lateral cerebral ventricles (LCVs) 
have been observed to undergo significant postmortem 
modifications visible on PMCT that might be useful for 
PMI determination [29, 53]. Hasegawa et al. [54] analysed 
sequential CT scans of three corpses in the range of 0–24 h 
postmortem and observed an increase in the average Houns-
field units (HU) of the cerebrospinal fluid within the LCVs, 
as well as a decrease in the volume of the ventricles over 
time. De-Giorgio et al. [55] confirmed these results using 
a larger cohort (ten corpses), as well as a wider range of 
PMIs (ranging from ~ 5.5–273 h postmortem). In addition, 
the authors showed that the HU changed in a logarithmic 
fashion, with a steeper increase at low PMIs that reduced as 
the PMI increased. While these results are promising, they 

constitute only a minimal part of the information that can be 
extracted through radiomics.

The aim of this work is to demonstrate how radiomic 
analysis can extract valuable information to complement 
current PMI estimation approaches. We chose the LCVs, 
which have been shown to undergo relevant changes after 
death that can be quantified via PMCT. We analysed twelve 
bodies that were sequentially scanned over a range of 
4.5–219 h postmortem. We extracted IBSI-compliant radi-
omic features [52] from the LCVs and assessed whether 
there is a statistically significant association between these 
radiomic features and the PMI, using a model well-suited for 
sequential data. Additionally, we investigated different types 
of functional associations.

Materials and methods

Subject recruitment and CT measurements

The research retrospectively included bodies that arrived 
at our Forensic Medicine Institute between May 2021 and 
May 2022. A total of 12 subjects were included in the study, 
with a mean age at the time of death of 62.5 years (age 
range = 23–86 years; SD = 18.7). Of the 12 subjects, 2 were 
females and 10 were males (Table 1). Inclusion criteria were 
a known time of death (presence of witnesses) and age above 
18 years. Exclusion criteria comprised the presence of clini-
cally and/or radiologically significant brain pathologies and/
or brain traumatic lesions. All bodies were transferred to our 
Institute within 6 h from death. Upon arrival, the clothes 
were removed, and the corpses were positioned horizontally 
on the CT table within the CT room, in the supine position 
with their arms at their sides and wrapped in body bags. 
The corpses were kept in the same position throughout the 
entire procedure and remained in the CT room for the entire 
series acquisition, at a controlled temperature of 20 °C and 
air humidity of 49%.

Each corpse underwent a variable number of sequen-
tial CT scans before autopsy, with a total of 72 CT scans 
and an average of 6 scans (number of scans range = 3–14, 
SD = 3.7) per subject. Each acquisition was performed at 
different PMIs. The average PMI acquisition time was 31.8 
h postmortem (PMI range = 4.5–219 h, SD = 35.3). The aver-
age PMI at which the first scan was performed was 13.1 h 
postmortem (first scan PMI range = 4.1–32.8, SD = 10.2). 
All CT examinations were conducted on a Somatom Scope 
16-slice CT scanner, Siemens Healthineers Italia, using the 
following parameters: 130 kV, 150 mA, 2.4-mm slice thick-
ness, H31S head-district kernel reconstruction. Cranial CT 
scans from the skull vertex to the sternal notch (1-mm recon-
structions) were acquired. No contrast agent was used in this 
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procedure. Scans were then evaluated by a senior radiologist 
to ensure reliability and quality, and repeated in case of arti-
facts. Following CT analysis, all corpses underwent autopsy 
and standard histological/toxicological analyses. All inves-
tigations (PMCT examination, autopsy, histological/toxico-
logical analyses) were authorized by the Judicial Authority.

Image segmentation

An experienced neuroradiologist imported the PMCT 
series of each subject in DICOM format files using the 
3D Slicer platform (https://​www.​slicer.​org),  v5.4.0 [56]. 
A region of interest (ROI) was drawn by manually con-
touring the LCVs for each subject timepoint (Fig. 1). The 
segmentation was performed primarily on axial scans, as 

Table 1   A comprehensive list 
of the studied cases, including 
baseline parameters (gender, 
age), cause of death, and 
postmortem interval (PMI) 
at first and last postmortem 
computed tomography (PMCT) 
scan

Case Gender Age Cause of death PMI at first 
PMCT scan
(hours)

PMI at last 
PMCT scan
(hours)

1 F 78 Sudden cardiac death 6,85 19,05
2 M 83 Sudden cardiac death 26,42 50,43
3 M 58 Frostbite in subject with pneumonia 16,18 108,90
4 M 86 Sudden cardiac death 4,72 42,82
5 M 75 Acute respiratory failure 5,48 19,32
6 M 55 Sudden cardiac death 5,67 9,17
7 M 78 Sudden cardiac death 7,18 9,87
8 M 61 Sudden cardiac death 4,18 12,02
9 M 23 Sudden cardiac death 22,02 80,83
10 M 62 Sudden cardiac death 21,53 73,53
11 F 49 Sepsis 32,82 219,27
12 M 42 Suicidal death from slaughter 4,50 49,00

Fig. 1   Lateral cerebral ventricles (LCVs) segmentation and post-
mortem changes. We report the segmentation and visualization of 
the LCVs at two different postmortem time points for a representa-
tive subject. The presented scans have been acquired at about 7- and 
33-hours postmortem (hpm). A shows an axial section of the two CT 
images with the corresponding segmentations of the LCVs overlayed 

in yellow. B shows a 3D rendering of the LCVs segmentations. The 
volume of the LCVs appears to decrease as the postmortem interval 
(PMI) increases. C  shows the values of the Hounsfield units (HU) 
from the CT acquisitions within the LCVs. The intensity appears to 
increase as the PMI increases

https://www.slicer.org
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they provide the most reliable resolution for this region, 
while the coronal and sagittal views were used to cross-
check and refine the segmentation when necessary. The 
ROIs were then exported into an RTSTRUCT file format 
via the SlicerRT plug-in (v4.1.1).

Radiomics feature extraction

The IBSI-compliant software MODDICOM [57] imple-
mented in R (v4.3.0) was used for the extraction of radi-
omic features from PMCT images. Features were extracted 
specifically from the manually segmented regions of inter-
est (ROIs) corresponding to the lateral cerebral ventricles 
(LCVs). This approach ensures that the analysis focuses on 
the targeted anatomical structures, excluding surrounding 
tissues that could introduce bias and noise into the feature 
extraction process. A total of 117 features were extracted 
from the LCVs. This set of features included first-order 
statistics features (21), shape-based 3D features (14), and 
second-order statistics features (82). The latter can be fur-
ther divided into grey level co-occurrence matrix (GLCM) 
features (50) and grey level size zone matrix (GLSZM) fea-
tures (32). GLCM and GLSZM features included feature 
versions computed 2D (i.e. separately on each slice and then 
averaged across the slices), and features computed on 2.5D, 
an approach that attempts to integrate the information over 
multiple slices [52].

Statistical methods

To assess whether any of the extracted radiomic features 
could be used for PMI estimation, we computed the degree 
of association between the features and the PMI. Previous 
studies focusing on how the HU and the volume of LCVs 
vary with time postmortem [54, 55] performed this assess-
ment separately for each of the subjects. In this work, we 
opted for an approach based on a mixed-effects model. This 
model is more appropriate for our dataset composed of 
sequential scans, as it can effectively handle the hierarchi-
cal structure of the data where multiple observations (time 
points) are nested within subjects. The mixed model that we 
used was defined as follows:

In this model, the dependent variable is one of the 
extracted radiomic features, while the independent variable 
is a function of the PMI, f(PMI). The last part of the equation 
indicates that we use a random intercept, while the slope is 
considered as fixed effect. By including the random inter-
cepts, this mixed-effects model accommodates the within-
subject variability, providing a more accurate understanding 

(1)featuref (PMI) + (1|subject)

of the association between features and PMI, while consider-
ing the repeated measures nature of the data. The use of a 
generic function of the PMI allows to model the relationship 
between variables without limiting it to a simple linear asso-
ciation. For example, the logarithmic trend observed by De-
Giorgio et al. [55] between mean HU values and the PMI can 
be modelled with this approach setting f(PMI) = ln(PMI). 
The statistical analyses were performed with the software 
package R (v4.1.0). The mixed-effects model fit was per-
formed using the lmer function of package lme4 (v1.1–35.3).

Experiments

We aimed to select a subset of radiomic features strongly 
associated with the PMI and that could, therefore, poten-
tially be used as predictors for PMI estimation. For each of 
the extracted features we fitted four different variants of the 
model described in the Eq. (1). The model variants differ in 
the definition of the function f(PMI). We used the following 
options: f(PMI) = PMI, PMI2, PMI1/2, ln(PMI). The statisti-
cal significance of the association between the f(PMI) and 
the features was assessed via a t-test, evaluating whether 
the fixed effect coefficients (slopes) were significantly dif-
ferent from zero. To account for the multiple comparisons, 
the p-values obtained by fitting each variant of the four 
models to the data were adjusted using the false discovery 
rate (FDR) method. The adjusted p-values were considered 
significant when smaller than 0.05.

To understand which of the model variants was the most 
appropriate to explain the association between each of the 
features and the PMI, we estimated the model fitting per-
formance in terms of quality of the fit. Specifically, the log-
likelihood of the fitted models was used.

After identifying the set of features with a statistically 
significant association with the PMI, we performed an addi-
tional feature selection step to discard features that showed 
strong correlations with each other. This process ensured 
that we retained only those features that provided unique 
information. This step was performed by assessing the linear 
correlation between the selected features, pairwise. For each 
pair, if the correlation coefficient was greater than 0.7, the 
feature with the lowest degree of association with the PMI 
in terms of p-value was discarded.

Results

A total of 468 models (117 features × 4 model variants) were 
fitted to the data. We found a statistically significant associa-
tion between radiomic feature and the PMI for 106 of these 
models. There were 37 different features that showed a sta-
tistically significant association for at least one of the model 
variants. Of these, 8 were first-order statistics features, 10 
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were shape-based features, 12 were GLCM features, and 
7 were GLSZM features. Table 2 reports the results of the 
feature selection in which we discarded the features with 
high correlations, retaining only those that exhibit exclusive 
information about the processes that the LCVs undergo as 
the PMI increases. Of the 37 features found in the previous 
step, only 12 were retained. Of these, 4 were first-order sta-
tistics features, 5 were shape-based features, 2 were GLCM 
features, and 1 was a GLSZM feature.

Among the retained features, those with the strong-
est association with the PMI in terms of p-value were the 
median HU value within the LCVs, which increased with 
the PMI (p < 1e-8); the surface area of the LCVs, which 
decreased with the PMI (p < 5e-6); L-major and L-minor, 
the largest and second-largest axes length of the ROI-enclos-
ing ellipsoid, which both decreased with the PMI (p < 1e-4 
and p < 1e-3, respectively); the 10th percentile of the HU 
in the LCVs (p < 1e-3) and HU entropy, which measures 
the uncertainty/randomness of the HU values (p < 1e-3), 
which both increased with the PMI. Other significant fea-
tures were: the 2.5D Small Area High Gray Level Emphasis 
(SAHGLE), which measures the proportion of smaller size 
zones with higher grey-level values in the image of the joint 
distribution; the 2.5D Inverse Difference Moment (IDM), 
a measure of the local homogeneity of the image; the 2.5D 
Cluster Tendency, a measure of groupings of voxels with 
similar grey-level values; the skewness of HU values; the 
type 2 compactness, a measure of how closely the shape of 
the ventricles approximates a sphere; the elongation, which 
indicates the relationship between the two largest principal 
components in the ROI shape.

For each of the selected features, Table 2 also reports 
the model variant which provided the best fit performance, 
i.e. the model variant with the highest log-likelihood. For 
all shape-based features, except for the LCVs surface area, 
a perfect linear relationship best described the data. A log-
arithmic relation best described all the first-order statistics 
features, except for the entropy. All the second-order sta-
tistics features were best described by a square-root rela-
tionship between the feature and the PMI. In none of the 
cases was the quadratic relationship between features and 
PMI found to be the most appropriate.

Figure 2 depicts three examples illustrating the plotting 
of feature values against the PMI. Each example represents 
a case where one of the model variants performed the best. 
In these plots, data points are represented as dots, with 
data from the same subject sharing the same colour and 
connected by dashed lines. Additionally, the plots include 
fitted models represented by solid lines. The number of 
lines corresponds to the number of subjects included in the 
study, with each line coloured consistently with the corre-
sponding subject. These plots demonstrate how the model 
accounts for inter-subject variability through the random 
effect (the model intercepts), while the overall variation 
of the feature values as a function of the PMI value is 
accounted for by the fixed effect (the slope of the curves).

 Table 3 reports the same information as Table 2, but 
for the mean HU of the LCVs, as well as for the ventri-
cle’s volume. These two features were previously reported 
having a significant correlation with PMI [54, 55]. In 
this study, both features were found to have a significant 
association with the PMI (p < 0.01e-6 and p < 0.05e-5, 
respectively), and were included in the initially selected 37 

Table 2   Feature selection results. The features retained after the fea-
ture selection process are reported in the table. In addition, the table 
reports the class type the feature belongs to (first-level statistical, sec-
ond-level statistical, shape-based), the model variant which gave the 
best results in terms of fit performance (simple linear, logarithmic, 
square-root), the p-value obtained testing whether the model fixed 

effect was different from zero, the fit performance in terms of the log-
likelihood (Log-like), the conditional R2 of the model and the fixed 
effect obtained from the fit. SAHGLE 2.5D = 2.5D Small Area High 
Gray Level Emphasis; IDM 2.5D = 2.5D Inverse Difference Moment. 
Clust. Tend. = Cluster Tendency

Name Feature Class Model Variant p-val Log-like Cond R2 Fixed Eff Std Err

Median 1st Lev. Stat. Log 9.47E-09 −149.46 0.97 2.68E + 00 3.29E-01
Surface Shape-Based Log 4.69E-06 −627.79 0.89 −1.33E + 03 1.97E + 02
L-major Shape-Based Lin 2.17E-05 −243.08 0.85 −1.74E-01 2.85E-02
L-minor Shape-Based Lin 1.30E-04 −195.18 0.97 −7.03E-02 1.25E-02
10th Percentile 1st Lev. Stat. Log 3.68E-04 −172.83 0.96 2.27E + 00 4.70E-01
Entropy 1st Lev. Stat. Sqrt 4.16E-04 −12.13 0.81 8.42E-02 1.66E-02
SAHGLE 2.5D 2nd Lev. Stat. Sqrt 1.10E-02 −432.13 0.90 2.36E + 01 6.29E + 00
IDM 2.5D 2nd Lev. Stat. Sqrt 2.29E-02 226.40 0.74 −1.77E-03 7.09E + 00
Clust. Tend. 2.5D 2nd Lev. Stat. Sqrt 2.29E-02 −437.07 0.76 −2.31E + 01 5.68E-04
Skewness 1st Lev. Stat. Log 2.61E-02 −161.84 0.90 −1.30E + 00 3.42E-01
Compactness (2) Shape-Based Lin 2.90E-02 203.18 0.89 1.47E-04 4.77E-05
Elongation Shape-Based Lin 4.86E-02 99.03 0.88 6.07E-04 2.16E-04
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features. However, they were excluded from the features 
reported in Table 2 as they exhibited strong correlations 
with other features, but weaker statistical significance. In 
both cases we found that the best model variant was the 
one assuming a logarithmic relation between the variables 
(Fig. 3).

Discussion

In the present study we identified several features extracted 
from the LCVs that exhibit a strong correlation with the 
PMI. This finding suggests that these features can effectively 
detect and quantify subtle changes occurring postmortem 
and highlights the potential that PMCT-based radiomics to 
positively impact the development of novel techniques for 
determining the PMI.

The feature that showed the strongest association with 
the PMI was the median of the PMCT intensity, computed 
within the LCVs. The increase in mean HU values over time 
after death has been previously reported and is associated to 
various postmortem mechanisms, such as CSF proteins and/
or ependymal layer decomposition, CSF condensation, and 
the inflow of protein-like substances from the periventricular 
brain tissues into the CSF [54]. Compared to the mean, the 
median has the advantage of being more robust to outlier 
values. As already observed by De-Giorgio et al. [55], the 
logarithmic function used to fit the data diverges for infinite 
times. This is not physically meaningful and a saturation to 
approximately 40–50 HU, corresponding to the grey mat-
ter values, is expected at very long times. The increase of 
10th percentile feature is in line with the increase in HU 
values, suggesting that the variation is mainly driven by the 
lowest value of the distribution. The positive correlation 
between entropy and PMI indicates greater complexity and 
heterogeneity in the texture of the LCVs postmortem, while 
the skewness decrease suggests that the distribution of the 

intensities tends to become more symmetric with respect to 
the centre of the distribution.

We found a strong correlation between the PMI and dif-
ferent shape-based features. These results are consistent with 
those previously reported, indicating a decrease in the over-
all LCVs volume over time after death [54, 55]. This pro-
cess has been associated with the swelling of the brain soon 
after death, as well as with the softening of the brain and 
subsequent settling in the most gravity-dependent portions 
of the skull at more advanced decomposition stages [28, 29, 
53, 54]. While the process is known, our results provide a 
more detailed understanding of the underlying mechanisms 
involved: first, we found that the surface area of LCVs is the 
most sensitive shape-based indicator of variations with the 
PMI. Furthermore, we found that morphological changes are 
mainly driven by the L-major, which represents the largest 
axis length of the ROI-enclosing ellipsoid. In the context 
of the ventricles, this axis can be considered to lay on the 
anterior-posterior head direction, with a good approxima-
tion. Hence, our results show that, in our cohort, the post-
mortem LCVs’ shrinkage is mainly driven by an antero-
posterior reduction of the ventricles. Since all our subjects 
were placed in the supine position, it is reasonable to assume 
that this is the effect of the brain settling in the most gravity-
dependent portions of the skull. The PMI-related increase in 
compactness confirms this hypothesis, while the increase in 
elongation reflects the differential variation of the L-major 
and L-minor.

Our results are consistent with those previously reported 
in the literature [54, 55]. We observed a decrease in the 
volume of the LCVs, while the mean intensity value reg-
istered within the ventricles tended to increase. As already 
reported by De-Giorgio et al. [55], we found that the associa-
tion between mean intensity and PMI was best described by 
a logarithmic function. The linear slope (using a logarith-
mic scale) we estimated (2.53 +/- 0.37) was slightly lower 
than the one reported by De-Giorgio et al. (3.91 +/- 0.19), 
but the two results are comparable. The difference could be 
due to the different approach used to fit the data. We found 
that the relationship between LCVs’ volume and PMI was 
best described by a logarithmic function, whereas previous 
reports used a simple linear function.

While the changes detected and reported in this paper 
show that a radiomic-based analysis of the LCVs may be 
applicable for PMI estimation, we did not propose a direct 
method to achieve this. To date, based on our knowledge, 
there is one example in the literature proposing a predic-
tive model based on features extracted from PMCT images. 
Klontzas et al. [51] developed a ML model combining fea-
tures extracted from the pancreas and the liver and reported 
promising results demonstrating the feasibility of this 
approach. The study was based on cross-sectional data in 
which a single scan was available for each analysed subject. 

Fig. 2   Radiomic features vs. PMI plots. The figure shows the asso-
ciation between some representative radiomic features extracted from 
the lateral cerebral ventricles (LCVs) and the postmortem interval 
(PMI) expressed in hours. Three features are reported: the L-minor, 
the median of the LCVs intensities and their entropy. The features 
are exemplar of the model variants used to fit the data. The L-major 
was best represented by a perfect linear relationship with the PMI, 
the median had a logarithmic trend, while the entropy had a squared-
root association with the PMI. For each feature we report two plots: 
on the left we plot the feature value as a function of the PMI, to 
show the different trends; on the right, we report the feature values 
as a function of f(PMI), where f(x) is equal to x, ln(x), and sqrt(x), 
respectively. Furthermore, in this latter plot we use log-scale axes 
to improve the data readability. In each plot, the data from the same 
subjects have same colours and are connected by dashed lines. The 
solid lines represent the fitted models. Different lines correspond to 
the different random effects estimated by the model, while the slope 
(the fixed effect) is shared by the subjects

◂
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Therefore, this approach allows to predict the PMI given a 
single unseen scan.

The data available in this study were sequential scans, 
also known as longitudinal data, i.e. multiple scans acquired 
at different PMIs for each subject. Compared to cross-sec-
tional data, longitudinal data provides insights into changes 
over time within the same subjects, allowing for the analy-
sis of temporal patterns and causality, which cross-sectional 
data cannot achieve. However, this type of data cannot be 
straightforwardly used to construct predictive models such 
the one proposed by Klontzas et al. [51]. Nonetheless, this 
time-based perspective is extremely relevant as it enhances 
the understanding of individual trajectories, potentially unre-
vealing the effects of interventions or exposures. Further-
more, this type of studies has the potential of establishing 
a set of features that are more sensitive to changes, and that 
could be used in the design of predictive models such the 
one proposed by Klontzas et al.

This study employed rigorous protocols for PMCT image 
acquisition; the use of standardized imaging acquisition pro-
tocols in future studies might further enhance the reproduci-
bility of radiomics biomarkers. Standardized protocols would 
ensure that the identified radiomic features are consistently 

applicable across different platforms and forensic contexts, 
facilitating broader implementation and validation.

One of the limitations of the study is the assumption that all 
the subjects share the same rate of feature variation with PMI, 
i.e. the identification of the slope as a fixed effect. This choice 
was mainly due to the relatively small size of the dataset. 
Including the slope as random effect would have most likely 
led to an overfitting of the data. A wider cohort and a denser 
sample acquisition in terms of time points could be used to 
fit more complex models. A subject specific slope could be 
used to study the association of specific feature changes with 
particular body conditions or clinical information.

Conclusions

This study presents a quantitative analysis of postmortem 
modifications in LCVs detectable via PMCT assessment, 
based on the extraction of radiomic features. We showed 
that several features are strongly associated with the changes 
occurring after death, suggesting that these features have the 
potential to give relevant information for PMI estimation. 
The use of a radiomic-based analysis in this framework has 

Table 3   Previously reported significant features. Same as Table 2 but reporting the results for the features found significant in previous works 
[54, 55]

Name Feature Class Model Variant p-val Log-like Cond R2 Fixed Eff Std Err

Mean 1st Lev. Stat. Log 6.22E-07 −158.16 0.97 2.53E + 00 3.73E-01
Volume Shape-Based Log 3.17E-05 −655.38 0.97 −4.29E + 03 7.55E + 02

Fig. 3   Previously reported radiomic feature trends. Figure 3 is similar 
to Fig. 2, but reports the mean values of the lateral cerebral ventricles 
(LCVs) intensities and their volumes as a function of the postmortem 

interval (PMI). The two features have been previously reported to be 
associated with the PMI [54, 55]. We fitted the data with the logarith-
mic model variant. A logarithmic scale was used on the x-axis
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several advantages: the quantitative nature of the approach 
provides a more objective and precise assessment compared 
to traditional visual examination, reducing subjective bias 
and improving the reliability of PMI estimation; furthermore, 
radiomics can detect subtle textural and structural changes 
in tissues occurring after death, which might be impercep-
tible to the naked eye; the wide range of features extracted 
(shape, intensity, texture) provides a comprehensive profile of 
postmortem changes. This richness of data can help capture 
various aspects of decomposition, leading to a more robust 
PMI model; finally, radiomics protocols can be standardized, 
ensuring consistent and reproducible results across different 
studies and settings. This consistency is crucial for reliable 
PMI estimation. This study highlights the potential of PMCT-
based radiomics as a source of complementary information 
that can be integrated into existing methods for estimating 
PMI. Our results support the application of quantitative 
imaging approaches in forensic investigations, suggesting 
that incorporating radiomics could enhance the accuracy and 
reliability of postmortem interval estimations.
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