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Abstract
We study sufficient conditions for the absence of positive eigenvalues of magnetic
Schrödinger operators in R

d , d ≥ 2. In our main result we prove the absence of eigen-
values above certain threshold energy which depends explicitly on the magnetic and electric
field. A comparison with the examples of Miller–Simon shows that our result is sharp as
far as the decay of the magnetic field is concerned. As applications, we describe several
consequences of the main result for two-dimensional Pauli and Dirac operators, and two and
three dimensional Aharonov–Bohm operators.

Mathematics Subject Classification 35Q40 · 35P05

1 Introduction and description of main results

The question of the absence of positive eigenvalues of Schrödinger operators has a long
history. In 1959 Kato proved that the operator−�+V in L2(Rd) has no positive eigenvalues
if V is continuous and such that

V (x) = o(|x |−1) |x | → ∞, (1.1)
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by deriving suitable lower bounds on solutions of the Schrödinger equation. His lower bound
showed that for positive energies these solutions decay so slowly at infinity that they are not
normalizable, see [24]. It is known that condition (1.1) is essentially optimal since there exist
oscillatory potentials of the Wigner-von Neumann type, decaying as |x |−1, which produce
positive eigenvalues of the associatedSchrödinger operator, see [37, 44] or [36, Ex.VIII.13.1].

Kato’s result was generalized by Simon [37], who considered, for d = 3, potentials of
the class L2+ L∞ which are smooth outside a compact set and allow there a decomposition
V = V1 + V2 with V1 = o(|x |−1), V2(x) = o(1), and

ω0 = lim sup
|x |→∞

x · ∇V2(x) < ∞. (1.2)

Under these conditions Simon proved the absence of eigenvalues of −�+ V in the interval
(ω0,∞). Note that ω0 ≥ 0 since V2(x) → 0 as |x | → ∞. Indeed, since V2(x) = V (0) +∫ |x |
0 sx̂ ·∇V2(sx̂)

ds
s with x̂ = x/|x | one sees that ifω0 were negative then lim|x |→∞ V2(x) =

−∞. Later it was shown by Agmon [1] that under similar assumptions the operator−�+V ,
in any dimension, has no eigenvalues in the interval (ω0/2,∞).

The use of virial identites to exclude positive eigenvalues for specific potentials V , such
as the Coulomb potential, has a long tradition in theoretical physics. Rigorous results can
be found in [43] and [2], the latter includes also magnetic operators, with strong regularity
conditions on the magnetic field B and the associated vector potential A, the latter being not
invariant under gauge transformations. By exploiting a clever exponentially weighted virial
identity, Froese, Herbst, and the Hoffmann–Ostenhofs proved the absence of all positive
eigenvalues of −� + V under relative compactness conditions on V and x · ∇V , [15, 16]
in the non–magnetic case. Their conditions on the regularity and decay on V and x · ∇V
were still global but much more general than the pointwise conditions of Kato, Simon, and
Agmon, or the approaches based on virial identities. The use of virial identities before the
work [16] is nicely explained in [12].

Yet another approach to the problem is based on Carleman estimates in L p-spaces. This
method allows to further weaken the regularity and decay conditions and to include rough
potentials, see the works of Jerison and Kenig [22], Ionescu and Jerison [19], and the article
[26] by Koch and Tataru.

Much less is known about the absence of positive eigenvalues for magnetic Schrödinger
operators of the form

H = (P − A)2 + V , P = −i∇, (1.3)

in particular in dimension two. In the above equation A stands for a magnetic vector potential
satisfying curl A = B. The results obtained byKoch andTataru in [26] cover also Schrödinger
operators with magnetic fields. But they impose decay conditions on the vector potential A
which are not gauge invariant and which imply, in the case of dimension two, that the total
flux of the magnetic field must vanish. Therefore they cannot be applied to two-dimensional
Schrödinger operators with magnetic fields of non-zero flux.

Certain implicit conditions for the absence of eigenvalues of the operator (1.3) inR2 were
recently found by Fanelli, Krejčiřík and Vega in [13], see also [14]. However, their result
guarantees absence of all eigenvalues of H , not only of the positive ones. Consequently the
hypotheses needed in [13] include some smallness conditions on V and B which are not
necessary for the absence of positive eigenvalues only. In [18] Ikebe and Saito proved a
limiting absorption principle for H under certain pointwise decay conditions on V and B,
see Remark 1.5.
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A particular case with V = 0 was considered by Iwatsuka in [20]. He proved that if B is
smooth, non-constant and translationally invariant in one direction, then the spectrum of H
in dimension two is purely absolutely continuous. We refer to [9, Sec. 6.5] for further reading
on this subject.

In this work we develop quadratic form methods which are an effective tool to rule
out positive eigenvalues for a large class of magnetic Schrödinger operators while at the
same time allowing the existence of negative eigenvalues, which one does not want to rule
out a priori. In addition, intuition from physics and experience from the rigorous study of
Schrödinger operators without magnetic fields clearly show that while eigenvalues depend
on global properties of the potential and the magnetic field, energies in the essential spectrum
depend only on asymptotic properties. Thus, the nonexistence of eigenvalues embedded in
the essential spectrum should depend only on the asymptotic behavior of the potential and
the magnetic field, as long as the local behavior of the potential and magnetic field is not
so singular such that it destroys the self–adjointness of the magnetic Schrödinger operator.
Our results make this intuition rigorous: the local behavior of the magnetic field and the
potential is largely irrelevant for the non-existence of positive eigenvalues. Our results also
cover cases where the magnetic field decays so slowly that no choice of vector potential
satisfies the conditions in [26].

In dimension two we identify the magnetic field with a scalar function which, in turn, can
be interpreted as a vector field in R

3 perpendicular to the plane R
2. In general dimension

the magnetic field is closed two–form, i.e., dB = 0, in the sense of distributions, with d the
exterior derivative. Hence B can be identified with an antisymmetric matrix–valued function
on R

d . The condition dB = 0 then is equivalent to the condition

∂ j Bk,i + ∂k Bi, j + ∂i B j,k = 0 ∀ i, j, k ∈ {1, . . . , d}. (1.4)

Here Bj,k(x) denotes the entries of B at a point x ∈ R
d . If d = 3, then B is an antisymmetric

3× 3 matrix
⎛

⎝
0 −B3 B2

B3 0 −B1

−B2 B1 0

⎞

⎠

which is in turn identified with a vector field B = (B1, B2, B3). Equation (1.4) thus coincides
with the usual divergence free condition

∇ · B = 0 [ d = 3 ], (1.5)

dictated by Maxwell’s equations.
It is well known that as soon as B satisfies (1.4) and certain mild regularity conditions, then
there exists a vector potential A, a one–form, such that B = curlA or B = d A, with the
exterior derivative.

1.1 Themethod

Let us briefly describe our method and its most important novel features. As already men-
tioned above we build upon the technique invented by R. Froese and I. Herbst and M. and
Th. Hoffmann–Ostenhof [16] and further developed in [15]. The latter is based on weighted
virial identities which require working with dilations and their generator. For non-magnetic
Schrödinger operators this is facilitated by the fact that the momentum operator P has very
simple commutation relations with dilations. In particular, the domain of P is invariant under
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dilations. This is not true anymore for themagnetic operators, since the vector potential spoils
the dilation invariance of the domain of P − A.

One of the crucial new features of our approach shows that to overcome this difficulty one
has to work with a vector potential A in the Poincaré gauge and exploit its connection with
the dilations and the virial theorem. This connection, which enables us to develop a quadratic
form version of the magnetic virial theorem, is explained in Sect. 3. We also show that the
rather different conditions of Kato and Agmon–Simon are, in fact, just two sides of the same
coin. Kato’s condition for the absence of positive eigenvalues can be easily recovered from
the quadratic form version of the virial of the potential, see Sect. 3.3 for details.

Moreover, the use of the Poincaré gauge leads to very natural decay conditions on B
required for the absence of positive eigenvalues. The well-known example by Miller and
Simon, see Sect. 5, shows that these conditions are sharp. In particular, it follows from the
Miller-Simon example that no choice of the gauge can provide better decay conditions on B.

1.2 A typical result

In order to describe a typical result with general and easy to verify conditions on the magnetic
field B and the potential V , we need some more notation. We denote by L p = L p(Rd),
1 ≤ p ≤ ∞ the usual scale of Lebesgue spaces. Moreover, we need their locally uniform
versions

L p
loc,unif =

{
V : sup

x∈Rd

∫

|x−y|≤1
|V (y)|p dy < ∞

}
(1.6)

with norms

‖V ‖L p
loc,unif

:= sup
x∈Rd

(∫

|x−y|≤1
|V (y)|p dy

)1/p

(1.7)

when 1 ≤ p < ∞ and the obvious modification for p = ∞. Clearly these spaces are nested,
that is, Lq

loc,unif ⊂ L p
loc,unif when 1 ≤ p ≤ q ≤ ∞. Moreover, we need

Definition 1.1 (Vanishing at infinity locally uniformly (in L p)) A function V ∈ L p
loc,unif with

lim
R→∞‖1≥RV ‖L p

loc,unif
= 0 (1.8)

vanishes at infinity locally uniformly in L p
loc,unif.

Here 1≥R is the characteristic function of the set {x ∈ R
d : |x | ≥ R}. In fact, we will

only need the p = 1, 2 versions of vanishing locally uniformly in L p at infinity.

This definition is inspired by Section 3 in [23]. It allows us to effectively treat magnetic fields
and potentials which can have severe singularities even close to infinity.

Given a magnetic field B and a point w ∈ R
d let B̃w(x):=B(x + w)[x]. More precisely,

B̃w is a vector–field on Rd with components

(B̃w) j (x):=(B(x + w)[x]) j =
d∑

m=1

Bj,m(x + w) xm , j = 1, . . . , d . (1.9)

Using translations, we will usually assume w = 0, in which case we will simply write B̃.
In dimension two, identifying the magnetic field with a scalar, the vector field B̃w is given
by B̃w(x) = B(x + w)(−x2, x1) and in three dimensions it is given by the cross product
B̃w(x + w) = B(x + w) ∧ x .
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In order to guarantee that there is a locally square integrable vector potential A with
d A = B, we need

Lemma 1.2 Given a magnetic field B and w ∈ R
d let B̃w be given by (1.9) and assume that

∫

|x−w|<R

|x − w|2−d
(

log
R

|x − w|
)2

|B̃w(x)|2 dx < ∞

for all R > 0. Then there exists a vector potential A ∈ L2
loc(R

d ,Rd) with B = d A in the
sense of distributions.

In the sequel, given a vector field X on R
d we write X ∈ Lq

loc,unif as a shorthand meaning

that the Euclidean norm of X belongs to Lq
loc,unif.

The simplest version of our results is given by

Theorem 1.3 (Simple version)Given a magnetic field B assume that B̃w ∈ L p
loc,unif for some

p > d and some w ∈ R
d . Then there exists a vector potential A ∈ L2

loc(R
d ,Rd) with

B = d A. Moreover, let V be a potential with V ∈ Lq
loc,unif for some q > d/2 that allows a

splitting V = V1 + V2 such that xV1 ∈ Lq1
loc,unif for some q1 > d and x · ∇V2 ∈ Lq2

loc,unif for

some q2 > d/2 and assume that B̃ and xV1 vanish at infinity locally uniformly in L2 and V ,
V1, and x · ∇V2 vanish at infinity locally uniformly in L1.

Then the magnetic Schrödinger operator (P − A)2 + V , defined via quadratic form
methods, has no positive eigenvalues.

Remarks 1.4 (i) The decay condition on xV1, respectively x · ∇V2, are generalizations, in
terms of local L p conditions, of the pointwise conditions of Kato [24], respectively
Agmon [1] and Simon [37]. For a generalization using only natural quadratic form
conditions, see Theorems 1.6 and 4.8 below.

(ii) Even in this simplest version the conditions on B and V allow for strong local singularities
and the decay condition at infinity is rather mild: for example, if one splits V in such a
way that V1 is compactly supported. Then xV1 is zero outside a compact set, so clearly
vanishing at infinity. The condition xV1 ∈ Lq1

loc,unif for some q1 > d allows for rather
large local singularities. In particular, the virial x ·∇V has only to exist in a neighborhood
of infinity in order to be able to apply Theorem 1.3. One can also include a long range
part of V in V1. Moreover, since |B̃w(x)| � |B(x + w)||x |, the magnetic field can have
strong local singularities, in particular at w. The decay of the magnetic field B has to be
faster than 〈x − w〉−1, which is, at leas in dimension two, in line of what one expects
from the Miller–Simon examples, see Sect. 5.1.

Let us now briefly describe our main results in full generality.

1.3 Full quadratic form version: absence of all positive eigenvalues

It turns out that the absence of positive eigenvalues depends, in a sense, only on the behavior
of B̃, xV and x · ∇V at infinity with respect to the operator (P − A)2. The latter are to be
understood in a weak sense according to the following

Definition 1.5 (Vanishing at infinity) We say that a potential W vanishes at infinity with
respect to (P − A)2 if for some R0 > 0 its quadratic form domain Q(W ) contains all
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ϕ ∈ D(P − A) with supp(ϕ) ∈ Uc
R0

and for R ≥ R0 there exist positive αR, γR with
αR, γR → 0 as R →∞ such that

|〈ϕ,Wϕ〉| ≤ αR‖(P − A)ϕ‖22 + γR‖ϕ‖22 for all ϕ ∈ D(P − A) with supp(ϕ) ⊂ Uc
R

(1.10)

Here UR = {x ∈ R
d : |x | < R} and Uc

R = R
d \ UR is its complement.

By monotonicity we may assume, without loss of generality, that αR and γR are decreasing
in R ≥ R0.
We then have

Theorem 1.6 Given a magnetic field B assume that it fulfills the condition of Lemma 1.2 for
some w ∈ R

d and that B̃2
w given by (1.9) is relatively form bounded and vanishes at infinity

with respect to (P − A)2. Moreover, assume that the potential V is form small and vanishes
at infinity with respect to (P − A)2 and allows for a splitting V = V1+ V2, such that |xV1|2
and x · ∇V2 are also form small and vanish at infinity with respect to (P − A)2.

Then the magnetic Schrödinger operator (P − A)2 + V , defined via quadratic form
methods, has essential spectrum [0,∞) and no positive eigenvalues.

Remarks 1.7 Some comments concerning Theorem 1.6:

(i) We only need relative form boundedness of B̃2
w with respect to (P − A)2. Its relative

form bound does not have to be less than one.
(ii) While the conditions on the potential V and themagnetic field B with respect to (P−A)2

might be difficult to check, the diamagnetic inequality
∣
∣P|ϕ|∣∣ ≤ ∣

∣(P − A)ϕ
∣
∣ a.e. for all ϕ ∈ D(P − A), (1.11)

see e.g. [25], shows that it is enough to check them with respect to the non-magnetic
kinetic energy P2, see [4].

(iii) One can again absorb strong local singularities of the potential in a suitable choice of V1.
Thus the local behavior of the potential V and the magnetic field B is largely irrelevant
for the non-existence of positive eigenvalues. Moreover, the virial x · ∇V2 has to exist
only in a weak quadratic form sense, see Lemma 3.7 and the discussion in Sect. 3.3.

(iv) An inspection of the proof shows that in Theorem 1.6 it is enough to assume that x ·∇V is
bounded from above at infinity by zero, seeDefinition 1.8 below for the precisemeaning.
Classically the force is given by F = −∇V . Thus x · F = −x · ∇V is negative, i.e., the
force is confining, if x · ∇V is positive, otherwise the force is repulsive, i.e., it pushes
the particle further to infinity. Thus in order to prevent localization of a quantum particle
only the positive part of x · ∇V should have to be small at infinity.

(v) We would like to stress that unlike many other results on the absence of positive eigen-
values for magnetic Schrödinger operators that we are aware of, with the exception of
[13] and [18], we impose only conditions on the magnetic field B and not directly on
the vector potential A. Decay and regularity conditions on the vector potential A are not
invariant under gauge transformations and thus unphysical. The conditions of [13], on
the other hand, are quite restrictive. For example, in [13] the authors need that various
global quantities related to the magnetic field B and to the potential V are absolute
form bounded with respect to (P − A)2, i.e. without allowing for lower order terms
in the respective bounds and they need an explicit smallness condition for the various
constants involved in their bounds. Consequently, the resulting assumptions turn out to
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be so strong that they rule out existence of any eigenvalue.

However, for a large class of physically relevant potentials and magnetic fields one
expects that the correspondingmagnetic Schrödinger operator has negative eigenvalues,
while it typically should not have positive eigenvalues, at least when the magnetic field
and the potential vanish in a suitable sense at infinity. This is exactly what our Theorem
1.6 and its generalizations below provide.

(vi) In order to prove invariance of the essential spectrum, one usually assumes that the
potential V is relatively (P − A)2 form compact. We do not assume this! In fact, we
show inTheorem4.8 that if the potential V is form small, i.e., formboundedwith relative
bound< 1, and vanishes at infinity with respect to (P− A)2, then σess((P− A)2+V ) =
σess((P − A)2). This shows invariance of the essential spectrum under a large class of
perturbations. In particular, it confirms the physical intuition that local singularities, as
long as they do not destroy form smallness, cannot influence the essential spectrum, at
least as a set. For example, one can have a potential with local Hardy type singularity
and even a sequence of suitably decreasing Hardy type singularities moving to infinity.
Moreover, using ideas of Combesure and Ginibre [6] and Maz’ya and Verbitzky [31],
we can allow perturbations with rather strong oscillations, both locally and at infinity.

(vii) Theorem 1.6 above is the most general formulation of our results, when one considers
magnetic fields and potentials vanishing at infinity, in a suitable sense. We can allow
for much ore general condition on the potential V and the magnetic field B, see the
following section and Sect. 2.3 below for more general assumptions.

1.4 Full quadratic form version: absence of eigenvalues above a positive threshold

If B̃2, |xV1|2 and x · ∇V2 do not vanish at infinity with respect to (P − A)2, we can still
exclude positive eigenvalues above a certain threshold. For this we need

Definition 1.8 (Bounded at infinity) A potential W is bounded from above at infinity with
respect to (P − A)2 if for some R0 > 0 its quadratic form domain Q(W ) contains all
ϕ ∈ D(P − A) with supp(ϕ) ∈ U c

R0
and for R ≥ R0 there exist positive αR, γR with

limR→∞ αR = 0 and lim infR→∞ γR < ∞ such that
〈
ϕ,Wϕ

〉 ≤ αR‖(P − A)ϕ‖22 + γR‖ϕ‖2 for all ϕ ∈ D(P − A) with supp(ϕ) ⊂ Uc
R .

(1.12)

By monotonicity we may assume, without loss of generality, that αR and γR are decreasing
in R ≥ R0 in which case we set γ+∞(W ):= limR→∞ γR = inf R γR , the asymptotic bound
upper bound of W (at infinity).

A potential W is bounded from below at infinity with respect to (P − A)2 if −W is
bounded from above at infinity. We set γ−∞(W ) = γ+∞(−W ).

A potential W is bounded at infinity with respect to (P − A)2 if ±W are bounded from
above at infinity. We set

γ∞(W ) := sup(γ+∞(W ), γ−∞(W )),

the asymptotic bound on W (at infinity).
We say that a quadratic form q , not necessarily given by a locally integrable potential

W , is bounded from above at infinity w.r.t. (P − A)2 if, for all large enough R > 0, its
domainD(q) contains all ϕ ∈ D(P − A) with supp(ϕ) ⊂ Uc

R and a bound of the form (1.12)
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holds with
〈
ϕ,Wϕ

〉
replaced by q(ϕ). We define γ+∞(q) similarly as for a potential W and

set γ−∞(q):=γ+∞(−q) and γ∞(q):= sup(γ+∞(q), γ−∞(q)).

Using the diamagnetic inequality, one can replace (P − A)2 by P2 in the definition of the
asymptotic bounds γ+∞(W ) and γ∞(W ). We split V = V1 + V2 and set

β2:=γ∞
(
B̃2), ω2

1:=γ∞
(
(xV1)

2), ω2:=γ+∞
(
x · ∇V2

)
. (1.13)

Of course, γ+∞
(
x · ∇V2

)
is a-priori only defined when the distributional derivative x · ∇V2

is given by a nice enough function. In the general case, we replace the formal expression〈
ϕ, x · ∇V2ϕ

〉
by the quadratic form qx ·∇V2 associated with this distribution. See (2.21),

Lemma 3.7, and the discussion in Sect. 3.3 for the precise meaning of this quadratic form.
Under mild regularity conditions the magnetic Schrödinger operator (P − A)2 + V has

[0,∞) as its essential spectrum and our main result, Theorem 4.8, implies that it has no
eigenvalues larger than


(B, V ) = 
 := 1

4

(

β + ω1 +
√

(β + ω1)2 + 2ω2

)2

. (1.14)

While the β, ω1, and ω2 might be difficult to compute directly from the definition it is easy
to see

β ≤ lim sup
|x |→∞

|B̃(x)|, ω1 ≤ lim sup
|x |→∞

|x | |V1(x)|, ω2 ≤ lim sup
|x |→∞

x · ∇V2(x) . (1.15)

once the limits are well-defined and finite.Wewould like to point out that Theorem 4.8 can be
applied also in situations in which the limits in (1.15) might not be defined. Morally, γ∞(W )

is the bounded part of W at infinity, modulo terms which are small at infinity uniformly
locally in L1(Rd): If a potential W is locally uniformly in L p near infinity, with p = 1 for
d = 1 and p > d/2 for d ≥ 2, and if W − Wb vanishes at infinity locally uniformly in
L1(Rd) for some bounded function Wb, then

γ∞(W ) ≤ ‖Wb‖∞ . (1.16)

A similar bound holds for γ+∞(W ). These bounds also hold if W is uniformly locally in L p ,
or in the Kato–class, outside of a compact set, see Section A. In particular, Remark A.6 and
Propositions A.4 and A.9.

1.5 Relation to previous works

If B = 0, then by choosing V1 = V and V2 = 0 we obtain a generalization of the result
of Kato [24]. On the other hand, by choosing V1 such that V1(x) = o(|x |−1), and setting
V2 = V − V1 we get 
 = ω0/2, see Eq. (1.2), and recover thus the results of Agmon [1]
and Simon [37]. Moreover, Theorem 4.8 extends all the above mentioned results to magnetic
Schrödinger operators with magnetic fields which decay fast enough so that β = 0, see
Appendix A for more details.

Vice-versa, if V = 0, then we have 
 = β which is in agreement with the well–known
example by Miller and Simon [32], cf. Sect. 5 if one corrects a calculation error in their
examples. The Miller–Simon examples show that our condition on the magnetic field for
absence of eigenvalues above a threshold is sharp.
It is tempting to split V = sV + (1 − s)V and to optimize the resulting expression for
the threshold energy (1.14) with respect to 0 ≤ s ≤ 1. This minimization problem can be
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explicitly done. It turns out that the minimum is always given by the minimum of the two
extreme cases s = 0 and s = 1, see Corollary C.2 in Appendix C.
Ikebe and Saito proved in [18] a limiting absorption principle, and hence also the absence
of eigenvalues of H under the condition that V allows the same decomposition as above
with |V1(x)| ≤ C |x |−1−δ, |V2(x)| ≤ C |x |−δ, |x · ∇V2(x)| ≤ C |x |−δ , and that B is
continuous and satisfies |B(x)| ≤ C |x |−1−δ . Here C and δ are positive constants. Note that
these pointwise conditions are covered by Theorem 4.8. Indeed, if V and B satisfy these
upper bounds, then β = ω1 = ω2 = 0, see (1.15).

Remarks 1.9 In [7] it was proved that if the magnetic fields has the form

B(x) = b(θ)

r
, x = (r cos θ, r sin θ), b ∈ L∞(S1),

then the operator HA, has no eigenvalues above ‖b‖2L∞(S1)
. Note that in this particular setting


 = ‖b‖2
L∞(S1)

.

Remarks 1.10 One of the authors of the present paper established in [27] dispersive estimates
for the propagator e−i t H in weighted L2−spaces under the condition that H has no positive
eigenvalues, see [27, Assumption 2.2]. Theorem 4.8 implies that the latter assumption can
be omitted. This was, in fact, one of the main motivations for the present work.

1.6 Essential spectrum

In Sect. 6 we establish new sufficient conditions on B under which

σess((P − A)2) = [0,∞).

Roughly speaking we require that B(x) → 0 not uniformly, but only along a certain path
connecting to infinity, see Theorem 6.5 and Definition 6.3 for details. For example, in R

2 it
suffices that B(x) → 0 in a sector of positive opening angle. As a consequence of this result
we show that under the assumptions stated in Sect. 2.3 we have σess((P − A)2) = [0,∞) ,
cf. Corollary 6.8. We also show that if the potential V is form small and vanishes at infinity
w.r.t (P − A)2, then σess((P − A)2 + V ) = σess((P − A)2), see Theorem 6.10. For this
one usually assumes that V is relative form compact w.r.t. (P − A)2 which is a considerably
stronger assumption, excluding, for example, Hardy–type singularities. Our result proves
invariance of the essential spectrum under a conditions which includes all physically relevant
examples, even exotic ones with strong singularities or oscillations.

1.7 Organization of the paper

The article is organized as follows. In Sect. 2 we prove some preliminary results on the
properties of the Poincaré gauge and its relation to magnetic Schrödinger operators. In Sect.
3 we establish a magnetic virial theorem together with a weighted version, which is our key
technical tool. The main results are stated and proved in Sect. 4. In Sect. 5 we present various
examples of applications including Pauli and Dirac operators. Auxiliary material is collected
in Appendices.

123



   63 Page 10 of 66 S. Avramska-Lukarska et al.

2 Magnetic Schrödinger operators and the Poincaré gauge

First let us fix some notation. Given a set M and two functions f1, f2 : M → R, we write
f1(x) � f2(x) if there exists a numerical constant c such that f1(x) ≤ c f2(x) for all x ∈ M .
The symbol f1(x) � f2(x) is defined analogously. Moreover, we use the notation

f1(x) ∼ f2(x) ⇔ f1(x) � f2(x) ∧ f2(x) � f1(x),

and

lim|x |→∞ f (x) = L ⇔ lim
r→∞ ess sup

|x |≥r
| f (x) − L| = 0. (2.1)

The quantities lim sup|x |→∞ f (x) and lim inf |x |→∞ f (x) are defined in a similar way. We

will use ∂ j = ∂
∂x j

for the usual partial derivatives in the weak sense, i.e., as distributions.

For any u ∈ Lr (Rd) with 1 ≤ r ≤ ∞ we will use the shorthand

‖u‖r := ‖u‖Lr (Rd )

for the Lr -norm of u and

‖T ‖r→r := ‖T ‖Lr (Rd )→Lr (Rd )

for a norm of a bounded linear operator T : Lr (Rd) → Lr (Rd). The space L loc(R
d) is

the space of all complex valued functions f such that f 1K ∈ Lr (Rd) for all compact sets
K ⊂ R

d . Here 1K stands for the indicator function of K . By Lr
loc(R

d ,Rd) we denote the
space of all vector fields v which are locally in Lr , that is, |v|:=(

∑d
j=1 v2j )

1/21K is Lr
loc(R

d).

The space C∞0 = C∞0 (Rd) is the space of all complex valued test–functions f which are
infinitely often differentiable and have compact support. Given measurable complex valued
functions f , g ∈ L2(Rd) we denote by

〈
f , g

〉 =
∫

Rd
f (x) · g(x) dx

the usual scalar product on L2(Rd). By the symbol

UR(x) = {y ∈ R
d : |x − y| < R}

we denote the ball of radius R centered at a point x ∈ R
d . If x = 0, we abbreviate

UR = UR(0).

2.1 Themagnetic Schrödinger operator

Given a magnetic vector potential A ∈ L2
loc(R

d ,Rd), the magnetic Sobolev space is defined
by

H1
A:=H1

A(Rd):=D(P − A) = {
u ∈ L2(Rd) : (P − A) u ∈ L2(Rd)

}
, (2.2)

equipped with the graph norm

‖u‖H1
A
=

(

‖(P − A)u‖22 + ‖u‖22
)1/2

. (2.3)
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Here P = −i∇ is the momentum operator. It is well-know that

qA,0(ϕ, ψ):=〈(P − A)ϕ, (P − A)ψ〉 (2.4)

is a closed sesqui–linear form on H1
A × H1

A, for any magnetic vector potential A ∈
L2
loc(R

d ,Rd), and that C∞0 (Rd) is dense in H1
A = D(P − A), and C∞0 (Rd) × C∞0 (Rd)

is dense inH1
A×H1

A. see [39, Thm. 2.2]. By a slight abuse of notation, given a sesqui–linear
form q with domain Q × Q, we will use the notation q(ϕ) = q(ϕ, ϕ), ϕ ∈ Q, for the
associated quadratic form. Hence

qA,0(ϕ) = qA,0(ϕ, ϕ):=〈(P − A)ϕ, (P − A)ϕ〉 = ‖(P − A)ϕ‖22 (2.5)

is a closed quadratic form on H1
A for any magnetic vector potential A ∈ L2

loc(R
d ,Rd), and

that C∞0 (Rd) is dense in D(P − A). We will only consider symmetric sesqui–linear forms
q : Q × Q → C, i.e., q(ϕ, ψ) = q(ψ, ϕ) for all ϕ,ψ ∈ Q. Thus the associated quadratic
forms will be real–valued.

Since every closed positive quadratic form on a Hilbert space corresponds to a unique
self-adjoint positive operators [35] [42, Theorem 2.14], the quadratic form qA,0 defines an
operator, which we denote by H0 = HA,0 = (P − A)2. Note that for u ∈ D(P − A) one
has Au ∈ L1

loc(R
d ,Rd). So we only know that Pu ∈ L1

loc(R
d) for a typical u ∈ D(P − A),

which is one of the sources for technical difficulties of Schrödinger operators with magnetic
fields. Nevertheless, Kato’s inequality shows |ϕ| ∈ D(P) for any ϕ ∈ D(P − A) and the
diamagnetic inequality (1.11), see also [17, 37], yields

|((P − A)2 + λ)−1ϕ| ≤ (P2 + λ)−1|ϕ| (2.6)

for all λ > 0 and ϕ ∈ L2(Rd).
ApotentialV is a locally integrable,measurable functionV : Rd → R.Hence its quadratic

form domain Q(V ) = D(|V |1/2) contains C∞0 (Rd). The quadratic form qV corresponding
to V is given by

qV (ϕ) = 〈|V |1/2ϕ, sgn(V )|V |1/2ϕ〉 . (2.7)

With a slight abuse of notation, we will often write qV (ϕ) = 〈
ϕ, Vϕ

〉
.

A quadratic form q with domainD(q) is form bounded w.r.t. (P− A)2 if its domainD(q)

contains D(P − A) and there exists α,Cα < ∞ such that

|q(ϕ)| ≤ α‖(P − A)ϕ‖22 + Cα‖ϕ‖22 for all ϕ ∈ D(P − A) . (2.8)

The infimum

α0 = inf{α > 0 : there exists Cα < ∞ such that (2.8) holds for all ϕ ∈ D(P − A)}

is called the (relative) form bound of q with respect to (P − A)2.
We say that q is (relative) form small w.r.t (P − A)2 if α0 < 1, i.e., the bound (2.8) holds

for some 0 ≤ α < 1 and Cα < ∞. If α0 = 0 one says that V is infinitesimally form small
w.r.t. (P − A)2.
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In a similar way this extends to other pairs of operators and their associated quadratic
forms. For example, a potential V is form bounded w.r.t (P − A)2 if the associated quadratic
form qV (ϕ) = 〈

ϕ, Vϕ
〉 = 〈

sgn V |V |1/2ϕ, |V |1/2ϕ〉 with domain D(qV ) = Q(V ) is form
bounded w.r.t. (P − A)2. The potential V is form small, respectively, infinitesimally form
bounded, w.r.t. (P− A)2 if qV is form small, repectively, infinitesimally form bounded, w.r.t.
(P − A)2.

If a quadratic form q1 is form small with respect to (P − A)2, the KLMN Theorem, see
e.g. [42, Theorem 6.24], [36], shows that the sum

qA,q1(ϕ):=‖(P − A)ϕ‖22 + q1(ϕ) = 〈
(P − A)ϕ, (P − A)ϕ

〉+ q1(ϕ) (2.9)

with domain D(qA,q1):=D(P − A) defines a closed quadratic form which is bounded from
below. It corresponds to a unique self-adjoint operator HA,q1 , which is called the form sum
of (P − A)2 and q1.

In case q1 = qV is the quadratic form associated to a potential V ∈ L1
loc(R

d), we write

qA,V (ϕ):=‖(P − A)ϕ‖22 + qV (ϕ) = 〈
(P − A)ϕ, (P − A)ϕ

〉+ 〈
ϕ, Vϕ

〉
(2.10)

for the formsumandand HA,V = (P−A)2+V for the associated operator.Wewill sometimes
drop the dependence of HA,V and simply write H for the full magnetic Schrödinger operator.

The diamagnetic inequality implies that if a quadratic form q is formbounded, respectively
form small w.r.t. P2, then it is also form bounded, respectively form small w.r.t. (P − A)2

with the same constants, see [4].
Except for Tiktopoulos’ formula (2.12), the following is well–known.

Lemma 2.1 Let q be a (real–valued) quadratic form with domain D(q) ⊃ D(P − A). Then
q is form bounded w.r.t. (P − A)2 if and only if for any λ > 0 the quadratic form given by

qλ(ϕ):=q

(
(
(P − A)2 + λ

)−1/2
ϕ

)

(2.11)

corresponds to a bounded linear operator Cq(λ) such that
〈
ϕ,Cq(λ)ϕ

〉 = qλ(ϕ) for all
ϕ ∈ L2. The bound (2.8) holds with

α = ‖Cλ‖2→2 and β = λ ‖Cλ‖2→2 ,

and the relative form bound α0 of q w.r.t. (P − A)2 is given by

α0 = lim
λ→∞‖Cλ‖2→2 .

If q(ϕ) = qV (ϕ) = 〈
sgn(V )|V |1/2ϕ, |V |1/2ϕ〉 for some potential V ∈ L1

loc(R
d), then

Cλ:=((P − A)2 + λ)−1/2V ((P − A)2 + λ)−1/2 (2.12)

Moreover, if α0 < 1 denote by H0 = (P − A)2 and by H the self-adjoint operator given
by the form sum of the quadratic forms qA,0(ϕ) = 〈

(P − A)ϕ, (P − A)ϕ〉 and q. Then
Tiktopoulos’ formula for the resolvent

(H + λ)−1 = (H0 + λ)−1/2 (1+ Cq(λ)
)−1

(H0 + λ)−1/2 (2.13)

holds for all large enough λ.

Proof This is well–known, see [36], [38, Chapter II.3], and, in particular, [42, Theorem 6.30].
Tiktopoulos’ formula (2.12) holds once λ > 0 and −λ ∈ ρ(H), the resolvent set of H (i.e.,
the resolvents (H + λ)−1 and (H0 + λ)−1 are defined) and ‖Cq(λ)‖2→2 < 1. ��
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One could extend the above setting by allowing a splitting V = V+ − V−, where the
positive and negative parts of V are given by V± = max(±V , 0). The discussion in [39]
shows that for arbitrary V+ ∈ L1

loc, the quadratic form

qA,V+(ϕ, ϕ):=‖(P − A)ϕ‖22 +
〈
ϕ, V+ϕ

〉 = ‖(P − A)ϕ‖22 + ‖√V+ϕ‖22 (2.14)

is well defined and closed on the form domain D(QA,V+) = D((P − A)) ∩Q(V+), where
Q(V+) = D(

√
V+) and that C∞0 is still dense in D(QA,V+) in the graph norm ‖ϕ‖A,V+ =

(QA,V+(ϕ)+‖ϕ‖22)1/2. Again this closed quadratic form corresponds to a unique self–adjoint
operator HA,V+ and in order to define a self–adjoint operator HA,V via the KLMN theorem.
It is enough to assume that V− is form small w.r.t. HA,V+ .

More important for us is the observation due to Combescure and Ginibre [6] that rather
singular potentials V can be form bounded with respect to P2, and by the diamagnetic
inequality then also with respect to (P − A)2.

Lemma 2.2 Assume that V = ∇ · � + W, where � ∈ L2
loc(R

d ;Rd), and W is locally
integrable. Suppose that �2 and W are form bounded w.r.t. (P − A)2, respectively P2. Then
the quadratic form

〈
ϕ, Vϕ

〉:= − 2 Im
〈
�ϕ, (P − A)ϕ

〉+ 〈
ϕ,Wϕ

〉
(2.15)

is also form bounded w.r.t. (P − A)2, respectively P2.

Proof For ϕ ∈ C∞0 , an integration by parts shows
〈
ϕ, (∇ ·�)ϕ

〉 = −2 Im
〈
�ϕ, Pϕ

〉 = −2 Im
〈
�ϕ, (P − A)ϕ

〉
.

Thus, for all ε > 0

|〈ϕ, (∇ ·�)ϕ
〉| ≤ 2‖�ϕ‖ ‖Pϕ‖ ≤ ε‖Pϕ‖2 + ε−1‖�ϕ‖2 ≤ (α + ε)‖Pϕ‖2 + ε−1Cα‖�ϕ‖2

when ‖�ϕ‖2 = 〈
ϕ,�2ϕ

〉 ≤ α‖Pϕ‖2 + Cα‖�ϕ‖2. The claim follows. ��

In the non–magnetic case, the beautiful work of Maz’ya and Verbitsky [32] shows that all
potential V which are relatively form bounded w.r.t. P2 are of the form (2.15).

2.2 The Poincaré gauge

The magnetic field at the point x ∈ R
d is given by an antisymmetric two-form B(x) :

R
d × R

d → R, which we identify with a matrix valued function B given by

B(x) = (Bj,m(x))dj,m=1,

which is antisymmetric, Bj,m(x) = −Bm, j (x) for all 1 ≤ j,m ≤ d, x ∈ R
d .

Any vector potential A, or more precisely a one form, generates a magnetic field via
the exterior derivative B = d A, in the distributional sense. In matrix notation, Bj,m =
∂ j Am − ∂m A j . In three space dimensions, one can identify the two form B with a vector
valued function B = curlA.
For a given magnetic field B and a point w ∈ R

d we define the vector field B̃w by equation
(1.9), and put
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Aw(x):=
∫ 1

0
B̃w(t x) dt =

∫ 1

0
B(t x + w)[t x] dt , (2.16)

which is the vector potential in the Poincaré gauge. Using translations, it is no loss of gener-
ality to assumew = 0, in which case we will simply write A for the vector potential given by
(2.16). By going to spherical coordinates, one easily checks at least for nice, say continuous
or even smooth, magnetic fields B, that the above vector potential is well defined and that
d A = B in the sense of distributions.

Since B is antisymmetric the vector B̃(x) = B(x)[x] is orthogonal to x . Hence, when
w = 0 the vector potential A given by (2.16) satisfies the transversal, or Poincaré, gauge

x · A(x) = 0 ∀ x ∈ R
d , (2.17)

whichwill be very important in our discussion of dilations and the virial theorem formagnetic
Schrödinger operators in Sect. 3. It is easy to see that for A given by (2.16) one has A ∈
L2
loc(R

d ,Rd) for bounded magnetic fields B and this extends to a large class of singular
magnetic fields, see Lemma 2.12 below. Except otherwise noted, we will always use the
Poincaré gauge in the following. For a nice discussion of the Poincaré gauge from a physics
point of view see [21] and from a more mathematical point of view, but still for rather regular
magnetic fields, see [41].

2.3 Hypotheses

Recall that we identify the magnetic two form B at a point x with an antisymmetric matrix
B(x) and define B̃w(x) = B(x + w)[x] in the sense of the matrix vector product. We will
use the following hypotheses on B and V :

Assumption 2.3 The magnetic field B is such that for some w ∈ R
d and

R
d � x �→ |x − w|2−d log2

(
R

|x − w|
)

B̃w(x)2 ∈ L1
loc(UR(w)) (2.18)

for all R > 0, where UR(w) = {x ∈ R
d : |x − w| < R} is the open ball of radius R around

w.

As already remarked, there is no loss of generality assuming w = 0 by using translations.
Together with Lemma 2.12 the above mild integrability condition then assures that the corre-
sponding vector potential in the Poincaré gauge is locally square integrable, which is essential
in order to define the magnetic Schrödinger operator. The magnetic field B can have severe
local singularities, while Assumption 2.3 still holds.

Assumption 2.4 The scalar field |B̃|2 is relatively form bounded w.r.t. (P − A)2, where A is
the Poincaré gauge vector potential corresponding to B, That is,

〈
ϕ, |B̃|2ϕ〉 = ‖B̃ϕ‖22 � ‖(P − A)ϕ‖22 + ‖ϕ‖22 ∀ϕ ∈ D(P − A). (2.19)

Assumption 2.5 The potential V is relatively form small w.r.t. (P − A)2, that is, there exist
constants α0 < 1 and γ > 0 such that

|〈ϕ, V ϕ
〉| ≤ α0 ‖(P − A)ϕ‖22 + γ ‖ϕ‖22 ∀ϕ ∈ H1

A(Rd). (2.20)
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We also need similar conditions on the virial x · ∇V of the potential. Since we don’t want
to impose strong differentiability conditions on V , one has to be a bit careful: The virial
x ·∇V is, at first, a distribution. When ϕ ∈ C∞0 (Rd), an formal integration by parts argument
similar to the one in the proof of Lemma 2.2 shows that

qx ·∇V (ϕ) = 〈
ϕ, x · ∇Vϕ

〉 = −d
〈
ϕ, Vϕ

〉− 2Re
〈
xVϕ,∇ϕ

〉

= −d
〈
ϕ, Vϕ

〉− 2 Im
〈
xVϕ, Pϕ

〉 = −d
〈
ϕ, Vϕ

〉− 2 Im
〈
xVϕ, (P − A)ϕ

〉

(2.21)

since
〈
xVϕ, Aϕ

〉
is real for all A ∈ L2

loc(R
d ,Rd). We assume that the form qx ·∇V extends

to a quadratic form whose domain contains all D(P − A) and, by a slight abuse of notation,
will write qx ·∇V for this extension. A careful discussion when qx ·∇V is form bounded w.r.t.
(P − A)2 is given in Lemma 3.7 and in Sect. 3.3.
For the assumptions which give us control of virial x · ∇V , we decompose the potential
V = V1+V2. How one splits V = V1+V2 is quite arbitrary, as long as the conditions below
are met.

Assumption 2.6 If the potential is split as V = V1 + V2, then V1, x2V 2
1 and x · ∇V2 are

relatively form bounded w.r.t. (P − A)2.

The above assumptions are all we need to prove a quadratic form version of the virial
theorem, see Theorem 5.3. In particular, B̃2

w and the virial x · ∇V do not have to be form
small but only form bounded w.r.t (P − A)2, for the virial theorem to hold.

Behaviour at infinity

We need to quantify the notion that the magnetic field B, the potential V and the virial x ·∇V
are bounded, or even vanish, at infinity.

From physical heuristics, one expect that ‘smallness’ should not be measured pointwise,
but only relative to the kinetic energy (P− A)2. The following conditions make this physical
intuition precise.

Assumption 2.7 (Vanishing at infinity) The potential V vanishes at infinity w.r.t. (P − A)2

in the sense of Definition 1.5. Moreover, if we split V = V1+ V2 as in Assumption 2.6, then
also V1 vanishes at infinity w.r.t. (P − A)2 in the sense of Definition 1.5.

To state the precise conditions on the magnetic field B and the potential V for being bounded
at infinity w.r.t. (P − A)2 we use Definition 1.8.

Assumption 2.8 (Boundedness of the magnetic field and the virial at infinity) The scalar field
|B̃w|2 is bounded at infinity w.r.t. (P− A)2 in the sense of Definition 1.8. Moreover, splitting
the potential V = V1 + V2 as in Assumption 2.6, we assume that x2V 2

1 and x · ∇V2, more
precisely, the quadratic form corresponding to x · ∇V2, are bounded from above at infinity
w.r.t. (P − A)2.
With the notation from Definition 1.8 we set

β:=(
γ∞(|B̃w|2)

)1/2
ω1:=

(
γ∞(x2V 2

1 )
)1/2 and ω2:=γ+∞(x · ∇V2) . (2.22)

The quantities β, ω1, and ω2 give a quantitative notion on how large the magnetic field B,
respectively, the virial x ·∇V , are at infinity, relative to (P− A)2. Their definition is inspired
by Section 3 in [23].
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Unique continuation at infinity
For a unique continuation type argument at infinity, we also need a quantitative version of
relative form boundedness.

Assumption 2.9 If V = V1 + V2, then we assume

‖B̃ϕ‖22 + ‖xV1ϕ‖22 ≤
α2
1

4
‖(P − A)ϕ‖22 + C1‖ϕ‖22, (2.23)

〈
ϕ, x · ∇V2 ϕ

〉 ≤ α2 ‖(P − A)ϕ‖22 + C2‖ϕ‖22, (2.24)

|〈ϕ, V1 ϕ
〉| ≤ α3 ‖(P − A)ϕ‖22 + C3‖ϕ‖22 (2.25)

for some α j ,C j > 0, j = 1, 2, 3, all ϕ ∈ D(P − A), and

α1 + α2 + dα3 < 1. (2.26)

The factor d in front of α3 comes from the Kato form of the virial x · ∇V1, see Lemma 3.12.

Remarks 2.10 Let us make two comments concerning the above list of conditions. First, all
the above hypothesis are either physically motivated or required to be able to define the
relevant objects. Secondly, the required conditions are quite weak. In Appendix A we show
that Assumptions 2.3–2.9 are satisfied under certain mild and easily verifiable regularity and
decay conditions on B and V , see Remark A.6 and Proposition A.2.

Remarks 2.11 In the conditions above, one can use the diamagnetic inequality in order to
replace P − A by the nonmagnetic momentum operator P in all relative form boundedness
conditions, see [4].

2.4 Regularity of the Poincaré gaugemap

Note that the Poincaré gauge map (2.16) is a-priori only well-defined when the magnetic
field B is sufficiently regular, say, continuous. Our first result shows that the map (2.16) can
be continuously extended to all magnetic field satisfying Assumption 2.3.

Lemma 2.12 Let B be the vector space of vector fields B̃ satisfying

∫

UR

|x |2−d
(

log
R

|x |
)2

|B̃(x)|2 dx < ∞

for all R > 0. The continuous vector fields are dense in B and the map B̃ �→ A:=T (B̃)

given by

A(x) = T (B̃)(x):=
∫ 1

0
B̃(t x) dt for x ∈ R

d ,

extends to a continuous map fromB into L2
loc(R

d ,Rd). In particular, the Poincaré gauge map
given in (2.16) is well defined for all magnetic fields satisfying Assumption 2.3. Moreover,

∫

UR

|x |2−d |A(x)|2 dx ≤ 4
∫

UR

|x |2−d
(

log
R

|x |
)2

|B̃(x)|2 dx , (2.27)

for any R > 0.
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Proof Given B ∈ B and R > 0 let

‖B̃‖B,R :=
(∫

UR

|x |2−d
(

log
R

|x |
)2

|B̃(x)|2 dx
)1/2

.

Also let A be the space of vector potentials A for which

‖|A‖A,R :=
(∫

UR

|x |2−d |A(x)|2 dx
)1/2

is finite for all R > 0. This makesA and B locally convex metric spaces and by construction,
A ⊂ L2

loc(R
d ,Rd). The metrics consistent with the topologies onA and B are, for example,

dA(A1, A2) =
∞∑

n=0

2−n ‖|A1 − A2‖A,2n

1+ ‖A1 − A2‖A,2n
and

dB(B̃1, B̃2) =
∞∑

n=0

2−n 2‖B̃1 − B̃2‖B,2n

1+ 2‖B̃1 − B̃2‖B,2n
.

The standard arguments show thatA and B are complete metric spaces, see e.g. [35, Sec. V.].
Moreover, the usual cutting and mollifying arguments show that the continuous functions
are dense in B. In addition, since the map 0 < s �→ s

1+s is increasing, T (B̃) is well defined
and locally bounded when B̃ is continuous, so T (B̃) ∈ A, when B̃ is continuous. Assuming
temporarily (2.27) then gives

dA(T (B̃1), T (B̃2)) =
∞∑

n=0

2−n ‖|T (B̃1 − B̃2)‖A,2n

1+ ‖T (B̃1 − B̃2)‖A,2n
≤ dB(B̃1, B̃2)

so T is uniformly continuous, thus it extends to a map from B into A which we continue to
denote by T . This shows that the Poincaré gauge map (2.16) is well defined for all magnetic
fields B satisfying Assumption 2.3.

Hence it is enough to prove the bound (2.27) and by density, it is enough to prove it for
continuous vector fields B̃. Let g be a radial function, which is positive and finite for almost
all |x | < R. Since A(x) = ∫ 1

0 B̃(t x) dt , we have using symmetry

∫

UR

g(|x |)|A(x)|2 dx =
∫ 1

0

∫ 1

0

∫

UR

g(|x |)B̃(t1x) · B̃(t2x) dxdt1dt2

= 2
∫∫

0≤t1<t2≤1

∫

|x |≤R
g(|x |)B̃(t1x) · B̃(t2x) dxdt1dt2

= 2
∫ 1

0

∫ 1

0

∫

Ut R

g(|y|/t)t1−d B̃(uy) · B̃(y) dydudt

= 2
∫

UR

(∫ 1

|y|/R
g(|y|/t)t1−d dt

)

A(y)B̃(y) dy

≤ 2

(∫

UR

g(|y|)|A(y)|2 dy
)1/2

(∫

UR

g(|y|)−1
(∫ 1

|y|/R
g(|y|/t)t1−d dt

)2

|B̃(y)|2 dy
)1/2
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where we also used the substitution t1 = ut2 and y = t2x and then the Cauchy-Schwarz
inequality. Thus as soon as

∫
|x |≤R g(|x |)|A(x)|2 dx is finite, we arrive at the a-priori bound

∫

UR

g(|x |)|A(x)|2 dx ≤ 4
∫

UR

g(|x |)−1
(∫ 1

|x |/R
g(|x |/t)t1−d dt

)2

|B̃(x)|2 dx . (2.28)

It remains to choose g in such a way that the integral weight on the left hand side coincides
with the expression in (2.27). Hence we set g(s) = s2−d , and calculate

g(|x |)−1
(∫ 1

|x |/R
g(|x |/t)t1−d dt

)2

= |x |2−d
(

log
R

|x |
)2

.

Plugging this into (2.28) gives (2.27). We note that A(x) = ∫ 1
0 B̃(t x) dt is locally bounded

as long as B̃ is locally bounded. Thus for the above choice of g
∫

UR

|x |2−d |A(x)|2 dx

is, as required, finite for all continuous B̃. Hence the a-priori bound (2.27) holds for all
continuous B̃ and extend by density to all of B. ��
For future purposes we will need also a translated and generalized version of inequality
(2.27);

Corollary 2.13 Let assumptions of Lemma 2.12 be satisfied and let h : R+ → R+ be a
non-increasing bounded function. Then

∫

UR(x0)
|x − x0|2−d h(|x − x0|) |Ax0(x − x0)|2 dx

≤ 4
∫

UR

|y|2−d
(

log
R

|y|
)2

h(|y|)|B̃x0(y)|2 dy , (2.29)

holds for any x0 ∈ R
d . Recall that Ax0(x − x0) is given by (2.16).

Proof Since h(|y|/t) ≤ h(|y|) for all y ∈ R
d and t ≤ 1, the result follows from (2.28) upon

setting g(s) = s2−d h(s) and translating. ��
Together with the quadratic form QA,V we will also need the associated sesqui-linear form

qA,V (u, v) = 〈
(P − A) u, (P − A) v

〉+ 〈
u, V v

〉 = qA,0(u, v) + 〈
u, V v

〉
, u, v ∈ H1

A(Rd)

(2.30)

and denote by H = HA,V the self-adjoint operator associated with QA,V .

3 Dilations and themagnetic virial theorem

As already mentioned in the introduction, the aim of this section is to establish a weighted
virial theorem for weak eigenfunctions which will be needed later in the proof of absence of
positive eigenvalues. This is done in Sects. 3.2 and 3.4 .Wewill write HA,V = (P− A)2+V ,
even though, strictly speaking, the operator is only defined via the sum of the corresponding
quadratic forms.
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3.1 Dilations and the Poincaré gauge

In this subsection we will study the behavior of the magnetic Schrödinger form QA,V under
the action of the dilation group.
Let D0 be the operator defined on C∞

0 (Rd) by

D0 = 1

2
(P · x + x · P) , D(D0) = C∞

0 (Rd). (3.1)

Remarks 3.1 Note that D0 = 1
2 ((P − A) · x + x · (P − A)), when A is in the Poincaré

gauge (2.17). This is one of the reasons why dilations and the Poincaré gauge work well
together.

Lemma 3.2 D0 is essentially self-adjoint.

Proof For t ∈ R define the unitary dilation operator Ut by

(Ut f )(x) = etd/2 f (et x) x ∈ R
d . (3.2)

It is easy to see that Ut is unitary on L2(Rd) and forms a group, UtUs = U (t + s), for all
t, s ∈ R. In particular, the adjoint is given byU∗

t = U−t . Moreover, eachUt leaves C∞
0 (Rd)

invariant and a direct calculation shows that t �→ Ut is strongly differentiable on C∞
0 (Rd)

with
(
d

dt
Ut f

)∣
∣
∣
t=0

= i D0 f , ∀ f ∈ C∞
0 (Rd). (3.3)

The claim now follows from [35, Thm. VIII.10]. ��
We denote by D the closure of D0, which is self-adjoint, and by Dt the operator given by

i Dt = Ut −U−t

2t
. (3.4)

Dt is bounded and symmetric. We will use it to approximate D in the limit t → 0.
Let ϕ ∈ D(P). It is easy to check the commutation formula

U∗
t PUt = et P , (3.5)

since (PUtϕ)(x) = −i∇(etd/2ϕ(et x)) = −iet etd/2(∇ϕ)(et x) = et (Ut (Pϕ))(x). In a
similar way, one checks that for a multiplication operator V

V−t :=U∗
t V (·)Ut = V (e−t ·) (3.6)

holds on its domain, i.e., for all ϕ ∈ D(V ) we have (V (Utϕ))(x) = etd/2V (x)ϕ(et x) =
(Ut (V ∗

t ϕ))(x) for almost all x ∈ R
d . A similar result also holds for vector valued

multiplication operators, for example,

A−t :=U∗
t A(·)Ut = A(e−t ·). (3.7)

For the virial theorem, we want to define the commutator [HA,V , i D], where D is the
generator of dilations. Since the two operators involved are unbounded, this usually leads
to involved domain considerations. Even worse, in our case we do not know the domain
D(HA,V ) exactly, nor do we intend to know it, since we prefer to work only with quadratic
forms. This seems tomake a usable virial theorem impossible to achieve, however, a quadratic
form approach turns out to be feasible.

123



   63 Page 20 of 66 S. Avramska-Lukarska et al.

Assume that u ∈ D(HA,V ) and approximate the unbounded generator of dilations D by
the bounded approximations Dt . A slightly formal calculation, for u ∈ D(HA,V )∩C∞0 which
might be the empty set, however, gives

〈u, [HA,V , i Dt ]u〉 = 〈HA,V u, i Dtu〉 + 〈i Dtu, HA,V u〉 = 2Re(〈HA,V u, i Dtu〉) (3.8)

since i Dt is antisymmetric. Assume thatD(P− A) is invariant under dilations. Then i Dtu ∈
D(P− A) and the right hand side of (3.8) can be identified with 2 Re(qA,V (u, i Dtu)), where
qA,V is the quadratic form given by (2.10), which defines the magnetic Schrödinger operator
HA,V . Since D(HA,V ) is dense in D(qA,V ) = Q(HA,V ), the latter expression extends to
all of Q(HA,V ), the quadratic form domain of HA,V . So we simply define the commutator
[HA,V , i Dt ] as the quadratic form with domain Q(HA,V ) given by

〈u, [HA,V , i Dt ]u〉:=2Re
(
qA,V (u, i Dtu)

)
, u ∈ Q(HA,V ). (3.9)

Moreover, we can define the commutator [H , i D], again in the sense of quadratic forms, by
〈
u, i [H , D] u〉:= lim

t→0
〈u, [HA,V , i Dt ]u〉:= lim

t→0
2 Re

(
qA,V (u, i Dtu)

)
, (3.10)

provided the limit on the right hand side exists. In the remaining part of this section, we will
deal with the proof that the limit in (3.10) exists for all ϕ ∈ D(P− A), the calculation of this
limit, and, in particular, the claim that D(P − A) is invariant under dilations under natural
conditions on the magnetic field.

By (3.5), the Sobolev space D(P) is invariant under dilations. To see how one can also
get this for the magnetic Sobolev spaceD(P − A) let ϕ ∈ D(P − A). Then, as distributions,

(P − A)Utϕ = etUt Pϕ −Ut Atϕ = etUt (P − A)ϕ +Ut (e
t A − A−t )ϕ . (3.11)

Since Ut : L2(Rd) → L2(Rd) is unitary and (P − A)ϕ ∈ L2(Rd), we have etUt (P −
A)ϕ ∈ L2(Rd) for all t ∈ R. So in order that Utϕ ∈ D(P − A) we have to check if
(et A − A−t )ϕ ∈ L2(Rd). This is the content of the next proposition.

Proposition 3.3 Suppose that the magnetic field B satisfies Assumption 2.3, the vector poten-
tial A corresponding to B is in the Poincaré gauge, and B̃ 2 is relatively form bounded
w.r.t. (P − A)2.
If ϕ ∈ D(P − A) = H1

A(Rd), then (et A − A−t )ϕ ∈ L2(Rd) for all t ∈ R and the map
R � t �→ (et A− A−t )ϕ is continuous. In particular, D(P − A) is invariant under dilations.

The main tool for the proof of Proposition 3.3 is the following

Lemma 3.4 Under the assumptions of Proposition 3.3, if ϕ ∈ D(P − A) = H1
A(Rd), then

‖(et A − A−t )ϕ‖ ≤ et
(
eCz |t | − 1

)‖(P − A)ϕ‖ + z Cz

Cz ± 1

(
e(Cz±1)|t | − 1

)‖ϕ‖ (3.12)

for all t ∈ R and z > 0, where the + sign holds for t ≥ 0 and the − sign for t < 0 and the
constant Cz is given by

Cz =
√
d
∥
∥B̃

(
(P − A)2 + z2

)− 1
2
∥
∥
2→2 .

Remarks 3.5 In the above bound we use the convention Cz
Cz−1

(
e(Cz−1)|t | − 1

) = |t | when
Cz = 1.
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Given Lemma 3.4, the proof of Proposition 3.3 is simple.

Proof of Proposition 3.3 Given ϕ ∈ D(P − A), Lemma 3.4 shows that (et A − A−t )ϕ ∈
L2(Rd) for all t ∈ R and then (3.11) shows that Utϕ ∈ D(P − A) for all t ∈ R. Thus
D(P − A) is invariant under dilations.

Moreover, the bound (3.12) shows that the map t �→ (et A− A−t )ϕ is continuous at t = 0.
Since, for any s, t ∈ R,

et+s A − A−(t+s) = es
(
et A − A−t

)+ es A−t − (A−s)−t

= es
(
et A − A−t

)+U∗
t

(
es A − (A−s)

)
Ut (3.13)

and Utϕ ∈ D(P − A) for any ϕ ∈ D(P − A), continuity of t �→ (
et A − A−t

)
ϕ at t = 0

implies continuity at all t ∈ R. ��
Proof of Lemma 3.4 First of all, it is enough toprove (3.12) forϕ ∈ C∞0 (Rd), since this is dense
in D(P − A) in the graph norm: If (3.12) holds for ϕ ∈ C∞0 (Rd), then given ϕ ∈ D(P − A),
choose a sequence ϕn ∈ C∞0 (Rd) such that (P − A)ϕn → (P − A)ϕ and ϕn → ϕ. By
taking a subsequence, if necessary, we can also assume that ϕn → ϕ almost everywhere,
hence (et A− A−t )ϕn → (et A− A−t )ϕ almost everywhere, in particular, |(et A− A−t )ϕ| =
limn→∞ |(et A− A−t )ϕn | = lim infn→∞ |(et A− A−t )ϕn | almost everywhere. Then Fatou’s
Lemma and (3.12) imply

‖(et A − A−t )ϕ‖ = ‖ lim inf
n→∞ |(et A − A−t )ϕn |‖ ≤ lim inf

n→∞ ‖(et A − A−t )ϕn‖

≤ et
(
eCz |t | − 1

)‖(P − A)ϕ‖ + z Cz

Cz ± 1

(
e(Cz±1)|t | − 1

)‖ϕ‖

for all ϕ ∈ D(P − A).
Let t ∈ R. Since A is in the Poincaré gauge, using the change of variables t = e−s , we

have

A =
∫ ∞

0
e−s B̃(e−s ·) ds =

∫ ∞

0
e−sU∗

s B̃ Us ds . (3.14)

From the definition of A−t and (3.14) we get

et A − A−t = et
∫ ∞

0
e−sU∗

s B̃ Us ds −
∫ ∞

0
e−s U∗

t U
∗
s B̃ UsUt ds

= et
∫ ∞

0
e−s U∗

s B̃ Us ds − et
∫ ∞

t
et−sU∗

s B̃ Us ds

= et
∫ t

0
e−s U∗

s B̃ Us ds. (3.15)

Let ϕ ∈ C∞
0 (Rd). The above identity then gives

v(t) := (et A − A−t )ϕ = et
∫ t

0
e−s U∗

s B̃ Us ϕ ds. (3.16)

Define the operator Rz : D(P − A) → D(H0)
d by

Rz := ((P − A)2 + dz2)−1 (P − A − i z). (3.17)

Here (P − A − i z) is a vector operator, which maps ϕ ∈ D(P − A) to the vector function
(P − A − i z)ϕ = (

(Pj − A j − i z)ϕ) j=1,...,d . Then Rz(P − A + i z)ϕ = ϕ, so
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B̃ Us ϕ = B̃ Rz(P − A + i z)Us ϕ = B̃ Rz Us
[
es(P − A) ϕ + (es A − A−s) ϕ + i zϕ

]

= B̃ Rz Us
[
es(P − A) ϕ + v(s) + i zϕ

]
,

which in view of (3.16) implies

v(t) =
∫ t

0
et−s U∗

s B̃ Rz Us
(
es(P − A) ϕ + v(s) + i zϕ

)
ds. (3.18)

Note that the map t �→ v(t) ∈ L2(Rd) is continuous due to the presence of ϕ. Hence, if
t ≥ 0,

w(t):=‖v(t)‖ ≤ Kz

∫ t

0
et−s (es‖(P − A) ϕ‖2 + w(s) + z‖ϕ‖) ds

= E(t) + Kz

∫ t

0
et−s w(s) ds,

where

Kz := ‖B̃ Rz‖2→2 , (3.19)

and

E(t) = Kz

∫ t

0
et−s (es‖(P − A) ϕ‖2 + z‖ϕ‖2

)
ds .

We will derive a suitable bound on Kz at the end of this proof. The Gronwall–type Lemma
B.1 in the Appendix yields

w(t) ≤ E(t) + Kz

∫ t

0
e(1+Kz)(t−s) E(s) ds . (3.20)

Note
∫ t

0
e(1+Kz)(t−s) E(s) ds

= Kz

∫∫

0<s<s′<t

e(1+Kz)(t−s′)es
′
dsds′ ‖(P − A) ϕ‖2

+ zKz

∫∫

0<s<s′<t

e(1+Kz)(t−s′)es
′−s dsds′ ‖ϕ‖2

=
(
et

Kz
(eKzt − 1) − tet

)

‖(P − A) ϕ‖2 + z

(
1

Kz + 1

(
e(Kz+1)t − 1

)− (
et − 1

)
)

‖ϕ‖2

and a straightforward calculation gives

E(t) = Kzte
t‖(P − A)ϕ‖2 + zKz

(
et − 1

)‖ϕ‖2.
Inserting this into (3.20) gives

‖(et A − A−t )ϕ‖ = w(t) ≤ et
(
eKzt − 1

)‖(P − A) ϕ‖2 + zKz

Kz + 1

(
e(Kz+1)t − 1

)‖ϕ‖2

which gives (3.12), at least for ϕ ∈ C∞0 (Rd).
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If t < 0, then setting τ = −t > 0, we get from (3.18)

w̃(τ ):=‖v−τ‖2 ≤ Kz

∫ τ

0
es−τ

(
e−s‖(P − A) ϕ‖2 + w(s) + z‖ϕ‖2

)
ds

= Ẽ(τ )+ Kz

∫ τ

0
es−τ w̃(s) ds,

with

Ẽ(τ ):=Kz

∫ τ

0
es−τ

(
e−s‖(P − A) ϕ‖2 + z‖ϕ‖2

)
ds

and the second Gronwall–type bound from Lemma B.1 now gives

w̃(τ ) ≤ Ẽ(τ ) + Kz

∫ τ

0
e(Kz−1)(τ−s) Ẽ(s) ds . (3.21)

Similarly as above one calculates
∫ τ

0
e(Kz−1)(τ−s) Ẽ(s) ds

= Kz

∫∫

0<s<s′<τ

e(Kz−1)τ−Kzs′ dsds′ ‖(P − A) ϕ‖2

+ zKz

∫∫

0<s<s′<t

e(Kz−1)τ−Kzs′+s dsds′ ‖ϕ‖2

=
(
e−τ

Kz
(eKzτ − 1) − τe−τ

)

‖(P − A) ϕ‖2

+ z

(
1

Kz − 1

(
e(Kz−1)τ − 1

)− (
1− e−τ

)
)

‖ϕ‖2

and

Ẽ(τ ) = Kzτe
−τ‖(P − A) ϕ‖2 + zKz(1− e−τ )‖ϕ‖2 ,

and plugging this back into (3.21), using t = −τ < 0 we arrive at

‖(et A − A−t )ϕ‖2 = w̃(τ ) ≤ et
(
eKz |t | − 1

) ‖(P − A) ϕ‖2
+ zKz

Kz − 1

(
e(Kz−1)|t | − 1

)‖ϕ‖2 .

Recalling that we can replace Kz by any upper bound in the above arguments, this proves
(3.12), we only have to bound Kz . Let ψ ∈ C∞

0 (Rd). From the definition (3.19) one easily
gets

Kz = ‖B̃ Rz‖2→2 ≤ ‖B̃ ((P − A)2 + dz2)−
1
2 ‖2→2 ‖((P − A)2 + dz2)−

1
2

(P − A − i z)‖2→2.

On the other hand, letting T = ((P − A)2 + dz2)− 1
2 (P − A − i z) one sees

T T ∗ = ((P − A)2 + dz2)−
1
2 (P − A − i z) · (P − A + i z)((P − A)2 + dz2)−

1
2

= ((P − A)2 + dz2)−
1
2 ((P − A)2 + dz2)((P − A)2 + dz2)−

1
2 = 1 .

(3.22)
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Hence by duality ‖((P − A)2 + dz2)− 1
2 (P − A − i z)‖2→2 = ‖T ‖2→2 = 1 and thus

Kz ≤ ‖B̃(H0 + z2)−
1
2 ‖2→2=:Cz . (3.23)

��
Since we have defined the commutator [H , i D] as the limit of [H , i Dt ], see (3.10) and (3.4),
we have to calculate the terms appearing in the latter. The next result concerns the calculation
of d

dt

(
et A− A−t

)
ϕ
∣
∣
t=0 for ϕ ∈ D(P − A). Recall that given a magnetic field B, the vector

field B̃ is given by B̃ = B(x)[x], see also Eq. (1.9).

Proposition 3.6 Suppose that the magnetic field B satisfies Assumption 2.3, the vector poten-
tial A corresponding to B is in the Poincaré gauge. Suppose moreover that B̃ 2 is relatively
form bounded w.r.t. (P− A)2, i.e. B̃ · ∈ Lc

(D(P− A), L2(Rd)
)
. Then for all ϕ ∈ D(P− A)

the map R � t �→ (et A − A−t )ϕ is differentiable and

d

dt
(et A − A−t )ϕ

∣
∣
t=0 = lim

t→0

1

t
(et A − A−t )ϕ = B̃ ϕ (3.24)

where the limit is taken in L2(Rd).

Proof Assume that for ϕ ∈ D(P − A) the map t �→ (
et A− A−t

)
ϕ is differentiable in t = 0

with derivative given by (3.24). Then (3.13) shows that it is also differentiable in any point
t ∈ R with derivative

d

dt
(et A − A−t )ϕ = (

et A − A−t
)
ϕ +U∗

t B̃Utϕ (3.25)

By assumption, B̃ : D(P − A) → L2(Rd) is bounded. Thus the right hand side of (3.25) is
in L2(Rd) by Proposition 3.3. Hence it is enough to show differentiability at t = 0. We will
prove, for all ϕ ∈ D(P − A),

lim
t→0

1

|et − 1|
∥
∥(et A − A−t ) ϕ − (et − 1) B̃ ϕ

∥
∥ = 0 in L2(Rd), (3.26)

which is equivalent to (3.24). First assume that ϕ ∈ C∞
0 (Rd). Using (3.15) we have

δt := (et A − A−t − (et − 1) B̃) ϕ =
∫ t

0
et−s U∗

s B̃ Usϕ ds − (et − 1) B̃ ϕ

=
∫ t

0
et−s (U∗

s B̃ Us − B̃
)
ϕ ds. (3.27)

Using (3.11) we rewrite the integrand on the right hand side as
(
U∗
s B̃ Us − B̃

)
ϕ = U∗

s B̃(Us − 1)ϕ + (U∗
s − 1)B̃ϕ

= U∗
s B̃ Rz

(
(P − A + i z)Us − (P − A + i z)

)
ϕ + (U∗

s − 1)B̃ϕ

= U∗
s B̃ Rz

[
Us

(
es(P − A)+ es A − A−s + i z

)
ϕ − (P − A + i z)ϕ

]
+ (U∗

s − 1)B̃ϕ

= U∗
s B̃ Rz

[
Us

(
(es − 1)(P − A)ϕ + (es − 1)B̃ϕ + δs

)+ (Us − 1)(P − A + i z)ϕ
]

+ (Us − 1)B̃ϕ .

Setting w(s):=‖δs‖2, and recalling ‖B̃ Rz‖2→2 ≤ √
d‖B̃((P − A)2 + z2)−1/2‖=:Cz , see

(3.23), we get

‖(U∗
s B̃ Us − B̃

)
ϕ‖2

123



Absence of positive eigenvalues of magnetic Schrödinger… Page 25 of 66    63 

≤ Cz

[
|es − 1|(‖(P − A)ϕ‖2 + ‖B̃ϕ‖2

)+ w(s) + ‖(Us − 1)(P − A + i z)ϕ‖2
]

+ ‖(Us − 1)B̃ϕ‖2.
This implies the integral inequalities

w(t) ≤ E(t) + Cz

∫ t

0
et−s w(s) ds for t ≥ 0

and

w(t) ≤ E(t) + Cz

∫ |t |

0
et+s w(−s) ds for t ≤ 0,

where now

E(t) =
∫ t

0
et−s

[
Cz‖(Us − 1)(P − A + i z)ϕ‖2 + ‖(Us − 1)B̃ϕ‖2

]
ds

+
∫ t

0
et−s (es − 1)Cz

(‖(P − A)ϕ‖2 + ‖B̃ϕ‖2
)
ds ,

for t ≥ 0, and

E(t) =
∫ |t |

0
et+s

[
Cz‖(Us − 1)(P − A + i z)ϕ‖2 + ‖(Us − 1)B̃ϕ‖2

]
ds

+
∫ |t |

0
et+s (1− e−s)Cz

(‖(P − A)ϕ‖2 + ‖B̃ϕ‖2
)
ds ,

for t ≤ 0. Lemma B.1 then yields the upper bounds

w(t) ≤ E(t) + Cz

∫ t

0
e(1+Cz)(t−s) E(s) ds for t ≥ 0 (3.28)

and

w(t) ≤ E(t) + Cz

∫ |t |

0
e(Cz−1)(t−s) E(−s) ds for t ≤ 0 . (3.29)

To continue it is convenient to use, for τ ≥ 0,

κ(τ) := sup
|s|≤τ

‖(Us − 1)B̃ϕ‖2 + Cz sup
|s|≤τ

‖(Us − 1)(P − A + i z)ϕ‖2,

so that for t ≥ 0

E(t) ≤
∫ t

0
et−s κ(s) ds + (‖(P − A)ϕ‖2 + ‖B̃ϕ‖2

)
∫ t

0
et−s (es − 1) ds

≤ κ(t)(et − 1) + (‖(P − A)ϕ‖2 + ‖B̃ϕ‖2
)
(et − 1)2,

since κ is increasing. Analogously, for t ≤ 0 we have

E(t) =
∫ |t |

0
et+sκ(s) ds + (‖(P − A)ϕ‖2 + ‖B̃ϕ‖2

)
∫ |t |

0
et+s (1− e−s) ds

≤ κ(|t |)(1− et ) + (‖(P − A)ϕ‖2 + ‖B̃ϕ‖2
)
(1− et )2 .

So by monotonicity, for t ≥ 0,
∫ t

0
e(1+Cz)(t−s) E(s) ds ≤

(

κ(t)(et − 1)+ (‖(P − A)ϕ‖2 + ‖B̃ϕ‖2
)
(et − 1)2

)
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∫ t

0
e(1+Cz)(t−s) ds

= (e(1+Cz)t − 1)(et − 1)

1+ Cz

[
κ(t)+(et−1)

(‖(P−A)ϕ‖2+‖B̃ϕ‖2
)]

and, similarly, for t ≤ 0 we have
∫ |t |

0
e(Cz−1)(t−s) E(−s) ds ≤ (1− e(Cz−1)t )(1− et )

Cz − 1
[
κ(|t |) + (1− et )

(‖(P − A)ϕ‖2 + ‖B̃ϕ‖2
)]

which in combination with (3.28) and (3.29) implies

w(t)

|et − 1| =
∥
∥
∥
et A − A−t

et − 1
ϕ − B̃ϕ

∥
∥
∥

≤
(

1+ Cz |e(Cz±1)t − 1|
Cz ± 1

)[
κ(|t |) + |et − 1|(‖(P − A)ϕ‖2 + ‖B̃ϕ‖2

)]
, (3.30)

where the+ sign holds when t ≥ 0 and the− sign when t < 0. Since P − A : D(P − A) →
L2(Rd) and B̃ : D(P − A) → L2(Rd) are bounded, (3.30) extends to all ϕ ∈ D(P − A),
by density. Since κ(t) → 0 as t → 0, this proves (3.26). ��
We will need a version Proposition 3.6 for the electric potential. Recall that i Dt = (Ut −
U−t )/(2t), cf. (3.4).

Lemma 3.7 Let A, B, and B̃ satisfy the same assumptions as in Proposition 3.6 and let V be
any electric potential, with form domainD(P−A) ⊂ Q(V ), such that the distribution x ·∇V
extends to a quadratic form qx ·∇V which is form bounded with respect to (P− A)2. Then with
V−t = U∗

t VUt = V (e−t ·) and qV , respectively, qV−t , the quadratic form corresponding to
V , respectively, V−t , we have

lim
t→0

1

t

(
qV (ϕ, ψ)− qV−t (ϕ, ψ)

) = qx ·∇V (ϕ, ψ) (3.31)

and

lim
t→0

2 Re qV (ϕ, i Dtϕ) = −qx ·∇V (ϕ, ϕ) (3.32)

for all ϕ,ψ ∈ D(P − A).

Proof We always have V ∈ L1
loc(R

d). Since V−t = U∗
t VUt , we have the identity

qV−t (ϕ, ψ) = 〈
ϕ, V−tψ

〉 = 〈
Utϕ, VUtψ

〉 = qV (Utϕ,Utψ).
If V is a nice differentiable function, e.g., V ∈ C∞0 (Rd), then d

dt V−t = −e−t x ·
∇V (e−t ·) = −e−tU∗

t (x · V )Ut so

d

dt

〈
ϕ, V−tψ

〉 = −e−t 〈Utϕ, x · ∇VUtψ
〉 = −e−t qx ·∇V (Utϕ,Utψ) . (3.33)

Given ϕ ∈ C∞0 (Rd), the map C∞0 (Rd) � ψ �→ qV−t (ϕ, ψ) yields a distribution. Approxi-
mating V in L1

loc by C∞0 functions and using (3.33) shows that the distributional derivative
Wt := d

dt V−t is given by

〈ϕ,Wtψ〉 = d

dt
〈ϕ, V−tψ〉 = −e−t qx ·∇V (Utϕ,Utψ
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for all ϕ,ψ ∈ C∞0 (Rd), with qx ·∇V the sesqui–linear form corresponding to the distribution
x · ∇V .

By assumption, the sesqui–linear form qx ·∇V extends to sesqui–linear form, again denoted
by qx ·∇V , which is relatively form bounded with respect to (P − A)2.
We claim that for any ϕ,ψ ∈ D(P − A) the map

R � s �→ qx ·∇V (Usϕ,Usψ) is continuous. (3.34)

Assuming this for the moment, the fundamental theorem of calculus shows

qV (ϕ, ψ)− qV−t (ϕ, ψ) = −
∫ t

0

d

ds
qV−t (ϕ, ψ) ds =

∫ t

0
e−sqx ·∇V (Usϕ,Usψ) ds (3.35)

for any ϕ,ψ ∈ C∞0 (Rd) ⊂ D(P − A). Since C∞0 (Rd) is dense in D(PA) with respect to
the graph norm and the involved quadratic forms are form bounded w.r.t (P − A)2, equation
(3.35) extend to all ϕ,ψ ∈ D(P − A). But then (3.35) implies

d

dt
qV−t (ϕ, ψ)|t=0 = lim

t→0

1

t

(
qV (ϕ, ψ)− qV−t (ϕ, ψ)

) = qx ·∇V (ϕ, ψ)

which proves (3.31). For (3.32) we note

2t Re qV (ϕ, i Dtϕ) = Re
(
qV (ϕ,Utϕ)− qV (ϕ,U−tϕ)

) = Re
(
qV (Utϕ, ϕ)− qV (ϕ,U−tϕ)

)

= Re
(
qV−t (ϕ,U−tϕ)− qV (ϕ,U−tϕ)

)

and

qV−t (ϕ,U−tϕ)− qV (ϕ,U−tϕ = −
∫ t

0
e−sqx ·∇V (Usϕ,UsU−tψ) ds

again by (3.35). By a simple continuity argument this shows

2Re〈ϕ, V iDtϕ〉 = −1

t

∫ t

0
e−s Re qx ·∇V (Usϕ,UsU−tψ) ds → qx ·∇V (ϕ, ϕ)

as t → 0, which yields (3.32).
It remains to prove (3.34): Lemma 2.1 the sesqui–linear form qx ·∇V being relatively (P−A)2

form bounded is equivalent to the fact that the sesqui–linear form

ϕ,ψ �→ qx ·∇V (
(
(P − A)2 + dz2

)−1/2
ϕ,

(
(P − A)2 + dz2

)−1/2
ψ)

extends, for z > 0, to a bounded sesqui–linear form to all (ϕ, ψ) ∈ L2(Rd). Recalling the
definition (3.17) for Rz and (3.22), this is equivalent to

ϕ,ψ �→ qx ·∇V (
(
Rzϕ, Rzψ)=:̃q(ϕ, ψ)

being a bounded quadratic form, more precisely, extending to a bounded quadratic form on
all of L2(Rd), for all z > 0. Using sesqui–linearity, it is easy to see that for all continuous
maps s �→ ϕs, s �→ ψs ∈ L2(Rd) the map s �→ q̃(ϕs, ψs) is continuous for any bounded
sesqui–linear form q̃ on L2(Rd).
For ϕ,ψ ∈ D(P − A) we have

q(Usϕ,Usψ) = q̃((P − A − i z)Usϕ, (P − A − i z)Usψ)

and

Usϕ = Rz(P − A − i z)Usϕ = RzUs
(
es(P − A)+ (es A − A−s) − i z)

)
ϕ .
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The map s �→ es(P − A)ϕ is clearly continuous for all ϕ ∈ D(P − A) and so is the map
s → (es A− As)ϕ by Proposition 3.3. Thus s �→ ϕ̃s :=

(
es(P − A)+ (es A− A−s)− i z)ϕ is

continuous for all ϕ ∈ D(P − A). Using s �→ Us being strongly continuous and unitary, and

Ut ϕ̃t −Us ϕ̃s = (Ut −Us)ϕ̃t +Us(ϕ̃t − ϕ̃s)

one sees that the map s �→ ϕs :=Us ϕ̃s is continuous. Similarly when ϕ is replaced by ψ ∈
D(P − A). Thus

R � s �→ q(Usϕ,Usψ) = q̃(ϕs, ψs)

is continuous, since q̃ is a bounded sesqui–linear form. This proves (3.34) and hence the
lemma. ��

3.2 The commutator as a quadratic form

This section deals with one of our main results, the rigorous identification of the right hand
side of (3.10).

Theorem 3.8 (Magnetic virial theorem) Let B and V satisfy Assumptions 2.3–2.5 and A be
the vector potential in the Poincaré gauge corresponding to the magnetic field B. Assume
also that the distribution x · ∇V extends to a quadratic form which is form bounded with
respect to (P − A)2. Then for all ϕ ∈ D(P − A), the limit limt→0 2 Re

(
qA,V (ϕ, i Dtϕ)

)

exists. Moreover,
〈
ϕ, [H , i D]ϕ〉:= lim

t→0
2 Re

(
qA,V (ϕ, i Dtϕ)

)

= 2‖(P − A)ϕ‖22 + 2 Re
〈
B̃ϕ, (P − A) ϕ

〉− 〈
ϕ, x · ∇Vϕ

〉
.

(3.36)

In particular, for any weak eigenfunction ψ of HA,V with eigenvalue E, i.e.,
〈
ϕ, Eψ,

〉 =
qA,V (ϕ, ψ) for all ϕ ∈ D(P − A), we have the virial identity

2‖(P − A)ψ‖22 + 2 Re
〈
B̃ψ, (P − A) ψ

〉− 〈
ψ, x · ∇Vψ

〉 = 0 . (3.37)

Remarks 3.9 See the proof of Lemma 3.7 for the precise meaning of the quadratic form
〈ϕ, x · ∇Vϕ〉.
Proof Recall that, as a quadratic form, we defined 〈ϕ, [HA,V , i Dt ]ϕ〉:=2Re qA,V (ϕ, i Dtϕ),
using the notation from (2.30). See (3.9) and the discussion before it. Once one knows this
limit, and its existence, the proof of (3.37) is straightforward. Sinceψ is a weak eigenfunction
we also have

〈
Eψ, ϕ

〉 = qA,V (ψ, ϕ) for all ϕ ∈ D(P − A). Since multiplication with E ∈ R

and i Dt are boundedoperators andmultiplicationwith a constant commuteswith anybounded
operator, 2 Re(qA,V (ψ, i Dtψ)) = 2Re(

〈
Eψ, i Dtψ) = 2Re

〈
ψ, [E, i Dt ]ψ

〉 = 0.
Now we will show that the limit in (3.36) exists for all u ∈ D(P − A) and is given by the

right hand side of (3.36). By (3.11)

(P − A)Ut u = etUt (P − A) u + Xt u, (3.38)

where

Xt u = Ut (e
t A − A−t ) u , (3.39)

where we recall A−t = U∗
t A Ut = A(e−t ·). Since

2t Re
(
qA,V (ϕ, i Dtϕ)

) = Re
(
qA,V (ϕ,Utϕ)− qA,V (U−t ϕ, ϕ)

)
,
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and

qA,0(ϕ,Utϕ) = 〈(P − A)ϕ,Ute
t (P − A)ϕ〉 + 〈(P − A)ϕ, Xtϕ〉 ,

qA,0(U−tϕ, ϕ) = 〈(P − A)ϕ,Ute
−t (P − A)ϕ〉 + 〈X−tϕ, (P − A)ϕ〉 ,

we get

2 Re qA,0(ϕ, i Dtϕ) = et − e−t

t
〈(P − A)ϕ,Ut (P − A)ϕ〉 +

〈

(P − A)ϕ,
1

t
Xtϕ

〉

−
〈
1

t
X−tϕ, (P − A)ϕ

〉

→ 2〈(P − A)ϕ, (P − A)ϕ〉 + 2Re〈B̃ϕ, (P − A)ϕ〉
as t → 0, because by Proposition 3.6 we have

lim
t→0

1

t
X±t u = ±B̃u in L2(Rd).

Lemma 3.7 gives limt→0 Re qV (ϕ, i Dtϕ)〉 = −qx ·∇V (ϕ, ϕ)=: − 〈ϕ, x · ∇Vϕ〉 and since

qA,V (ϕ, i Dtϕ) = qA,0(ϕ, i Dtϕ)+ qV (ϕ, i Dtϕ) ,

this finishes the proof. ��
Remarks 3.10 Equation (3.36) is known for smooth magnetic and electric fields, see e.g. [2].
As for its physical interpretation, we note that the virial theorem in classical mechanics states
that

〈
2T + x · F 〉 = 0 (3.40)

where T denotes the kinetic energy, F denotes the external force, and
〈 〉
stands for an average

over (infinitely) large times. The identity (3.40) holds for all initial conditions for which the
velocity and position of the system stay bound in time, i.e., the classical version of a bound
state.

In our case F is given by the Lorentz force, hence F = −q∇V + qv ∧ B, and therefore

x · F = −qx · ∇V + q x · (v ∧ B) = −q x · ∇V + q v · (B ∧ x) = −q x · ∇V + q v · B̃,

where we have used the vector identity a ·(b∧c) = b ·(c∧a). Since we have v = 1
m (P−q A)

and T = 1
2m (P − q A)2, the quantum analog of (3.40) reads

0 = 1

m
‖(P − q A)ϕ‖22 +

q

m
Re

〈
(P − A) ϕ, B̃ϕ

〉− 〈
ϕ, x · ∇Vϕ

〉
,

which in our system of units, where q = 1 and m = 1
2 , coincides with (3.36) when the

commutator vanishes.
A proof of (3.40) follows immediately from the observation

2T = mv2 = ẋ · p = d

dt
(x · p) − x · p = d

dt
(x · p) − x · F

where v is the velocity, p = mv the momentum and ṗ = F by Newton’s equation.

An immediate consequence of our magnetic virial theorem is
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Corollary 3.11 Let the assumptions of the magnetic virial Theorem 3.8 above be satisfied. If
ψ ∈ D(P − A) is a normalised weak eigenfunction of the magnetic Schrödinger operator
HA,V corresponding to the energy E ∈ R, in the sense that ψ ∈ D(P − A), ψ �= 0, and

E〈ϕ,ψ〉 = qA,V (ϕ, ψ) (3.41)

for all ϕ ∈ D(P − A), or all ϕ ∈ C∞0 (Rd), then

0 = 2E
〈
ψ,ψ

〉+ 2Re
〈
(P − A) ψ, B̃ ψ

〉− 〈
ψ, (2V + x · ∇V )ψ

〉
(3.42)

Proof This follows immediately from (3.37) since ‖(P−A)ψ‖22 = qA,V (ψ,ψ)−〈
ψ, Vψ

〉 =〈
ψ, Eψ

〉− 〈
ψ, Vψ

〉
. ��

Now, of course, the question is for what class of potentials V one can calculate the virial
x · ∇V in a simple way. A typical example is given in the next section.

3.3 The Kato form of the virial

Our standing assumption is that the virial of the potential, given by the distribution x · ∇V ,
yields a quadratic form qx ·∇V which is form bounded w.r.t. (P − A)2. If x · ∇V is given by
a function which corresponds to a nice quadratic form, then qx ·∇V is given by the classical
expression 〈ϕ, x · ∇Vϕ〉. On the other hand, the virial given by the formal expression 〈ϕ, x ·
∇Vϕ

〉
can exist even if V is not at all classically differentiable.

Our next result shows that this can be the case, even without any kind of differentiability
of V . Lemma 3.12 result also identifies the quadratic form qx ·∇V with an expression similar
to one already used by Kato in his proof of absence of positive eigenvalues.

Lemma 3.12 Assume that the magnetic field B satisfies Assumptions 2.3 and 2.4, A is the
magnetic vector-potential in the Poincaré gauge, and V and |x |2V 2 are relatively form
bounded with respect to (P − A)2. Then the quadratic form qx ·∇V corresponding to the
distribution x · ∇V extends from C∞0 (Rd) to a quadratic form which is form bounded w.r.t.
(P − A)2. It is given by

〈
ϕ, x · ∇Vϕ

〉 := qx ·∇V (ϕ, ϕ) = 2 Im
〈
xVϕ, (P − A)ϕ

〉− d
〈
ϕ, Vϕ

〉

= 2 Im
〈
ϕ, (P − A)ϕ

〉− dqV (ϕ, ϕ)
(3.43)

for all ϕ ∈ D(P − A).

Remarks 3.13 Since x2V 2 is formboundedw.r.t. (P−A)2, |x |Vϕ ∈ L2 for allϕ ∈ D(P−A).
We call (3.43) the Kato form of the virial. Kato did not consider magnetic fields and used the
pointwise conditions V bounded and limx→∞ |x |V (x) = 0 to conclude absence of positive
eigenvalues for non-magnetic Schrödinger operators. Lemma 3.12 allows us not only to
extend this to magnetic Schrödinger operators but to replace Kato’s pointwise condition by
a rather weak and natural smallness condition on the quadratic form 〈ϕ, |x |2V 2ϕ〉 at infinity.

Of course, since the vector potential is in the Poincaré gauge x · A(x) = 0, so
〈
xVϕ, (P−

A)ϕ
〉 = 〈

Vϕ, x · Pϕ
〉
, hence the right hand side of (3.43) does not depend on vector potential

A. In fact, since A is a real-valued vector function and V is real-valued
〈
xVϕ, Aϕ

〉
is real for

any function ϕ ∈ C∞0 (Rd). Keeping P− A in the right hand side of (2.21) is useful, however,
see the proof of Lemma 4.4, in particular, the proof of (4.15).
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Proof By definition, the virial is given by
〈
ϕ, x · ∇Vϕ

〉:= − qx ·∇V (ϕ, ϕ) =
limt→0 Re qV (ϕ, i Dtϕ) with qV the quadratic form corresponding to the multiplication
operatorV .Wewill calculate this limit slightly differently than inLemma3.7.As distributions

2i t Dtϕ =
∫ t

−t
Usi Dϕ ds =

∫ t

−t
Usi x · Pϕ ds + d

2

∫ t

−t
Usϕ ds

and

1

|x |
∫ t

−t
Usi x · Pϕ ds = i

∫ t

−t
esUs

( x
|x | · Pϕ

)
ds = i

∫ t

−t
esUs

( x
|x | · (P − A)ϕ

)
ds

since any vector potential in the Poincaré gauge is transversal, that is, x · A(x) = 0 for all
x ∈ R

d . Altogether, we have

i Dtϕ = i

2t
|x |

∫ t

−t
esUs

( x
|x | · (P − A)ϕ

)
ds + d

4t

∫ t

−t
Usϕ ds

at least when ϕ ∈ C∞0 (Rd). Thus, in this case,

qV (ϕ, i Dtϕ) = i

〈

|x |Vϕ,
1

2t

∫ t

−t
esUs

( x
|x | · (P − A)ϕ

)
ds

〉

+ d

2

〈

Vϕ,
1

2t

∫ t

−t
Usϕ ds

〉

= i

〈

|x |Vϕ,
1

2t

∫ t

−t
esUs

( x
|x | · (P − A)ϕ

)
ds

〉

+ d

2
qV

(

ϕ,
1

2t

∫ t

−t
Usϕ ds

)

(3.44)

Since x
|x | · (P − A)ϕ ∈ L2(Rd) for all ϕ ∈ D(P − A), the maps s �→ Us(

x
|x | (P − A)ϕ)

and s �→ Usϕ are continuous. Moreover, the map s �→ Usϕ is continuous in the graph norm
corresponding to P − A for any ϕ ∈ D(P − A) by a similar argument as in the proof of
Lemma 3.7. Also |x |Vϕ ∈ L2(Rd) for any ϕ ∈ D(P − A), since xV is relatively P − A
bounded, that is, |x |2V 2 is relatively (P− A)2 form bounded, by assumption. But then (3.44)
also extends to all ϕ ∈ D(P − A) by continuity.

Since forϕ ∈ D(P−A) themap s �→ Us is continuous in the graph normof P−A, we also
have 1

2t

∫ t
−t Usϕ ds → ϕ in the graph norm. In addition, 1

2t

∫ t
−t e

sUs
( x
|x | · (P − A)ϕ

)
ds →

x
|x | · (P − A)ϕ in L2(Rd) as t → 0. Then (3.44) and continuity of the quadratic form qV in
the graph norm of P − A yields

lim
t→0

〈ϕ, V iDtϕ〉 = i〈|x |Vϕ, x
|x | · (P − A)ϕ

〉+ d

2
qV (ϕ, ϕ)

which, taking real parts, finishes the proof of Lemma 3.12. ��
Remarks 3.14 Slightly informally, an alternatively way to derive (3.43) is as follows: For
u, w ∈ C∞0 (Rd), which is dense in the domain of P − A, the quadratic form

〈
u, x · ∇Vw

〉
is

given as a distribution by
〈
u, x · ∇Vw

〉 = 〈
u, x · ∇(Vw)− V x · ∇w

〉 = −〈∇ · (xu), Vw
〉− 〈

Vu, x · ∇w
〉

= −d
〈
u, Vw

〉− 〈
Vu, x · ∇w

〉− 〈
x · ∇u, Vw

〉

= −d
〈
u, Vw

〉− i
(〈
xVu, (P − A)w

〉− 〈
(P − A)u, xVw

〉)
(3.45)

since the vector potential A is in the Poincaré gauge and P = −i∇. Under the conditions on
V this extends to all ϕ ∈ D(P − A).
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Corollary 3.15 Assume that the magnetic field B satisfies Assumptions 2.3 and 2.4, A is the
magnetic vector-potential in the Poincaré gauge, and the potential V splits as V = V1 + V2
where V1 and |x |2V 2

1 are relatively formboundedwith respect to (P−A)2 and the distribution
x · ∇V2 extend to a quadratic form which is form bounded with respect to (P − A)2. Then,
with a slight abuse of notation,

− 〈
ϕ, x · ∇Vϕ

〉 = −2 Im
〈
xV1ϕ, (P − A)ϕ

〉+ d
〈
ϕ, V1ϕ

〉− 〈
ϕ, x · ∇V2 ϕ

〉
(3.46)

for all ϕ ∈ D(P − A).

Proof Simply combine Lemmas 3.7 and 3.12. ��

3.4 The exponentially weightedmagnetic virial

The proof of our main result, see Theorem 4.8 below, is based on finding two different
expressions for the commutator 〈eFψ, [H , i D]eFψ〉, when F is a suitable weight function
and ψ is a weak eigenfunction, see (3.41). This is done in

Lemma 3.16 Assume that the magnetic field B and the electric potential V satisfy Assump-
tions 2.3, 2.4, and 2.5, and A is the vector potential corresponding to B in the Poincaré
gauge. Moreover assume that the distribution x · ∇V extend to a quadratic form, which is
form bounded with respect to (P − A)2. Let F : Rd → R be a smooth and bounded radial
function, such that∇F(x) = g(x)x, and assume that g ≥ 0 and that the functions∇(|∇F |2),
(1+ | · |2)g, x · ∇g and (x · ∇)2g are bounded. Let ψ ∈ D(P − A) be a weak eigenfunction
of the magnetic Schrödinger operator HA,V , i.e., E〈ϕ,ψ〉 = qA,V (ϕ, ψ) for some E ∈ R

and all ϕ ∈ D(P − A), where qA,V is the sesqui–linear form corresponding to the magnetic
Schrödiner operator HA,V and set ψF = eF ψ . Then

〈
ψF , [H , i D]ψF

〉 = 〈
ψF ,

(
E + |∇F |2)ψF

〉+ 2Re
〈
(P − A) ψF , B̃ ψF

〉

+ ‖(P − A)ψF‖22 − 〈
ψF , (V + x · ∇V ) ψF

〉
, (3.47)

and
〈
ψF , [H , i D]ψF

〉 = −4 ‖√g D ψF‖22 +
〈
ψF ,

(
(x · ∇)2g − x · ∇|∇F |2)ψF

〉
. (3.48)

Remarks 3.17 Of course,
〈
ϕ, (V + x ·∇V ) ϕ

〉
is given by the sum qV +qx ·∇V of the quadratic

forms. Rearranging the terms in the derivation of (3.47) a little bit also shows that
〈
ψF , [H , i D]ψF

〉 = 〈
ψF , 2

(
E + |∇F |2)ψF

〉+ 2Re
〈
(P − A) ψF , B̃ ψF

〉

− 〈
ψF , (2V + x · ∇V ) ψF

〉
.

Thus (3.47) and (3.48) are a quadratic form version of the bounds of [16], in which the authors
considered only the nonmagnetic case. Also note that the conditions in [16] are stronger, since
they work with operators and not with forms.
To get an idea why the bounds from Lemma 3.16 are useful for excluding eigenfunctions
for positive energies E > 0, think of

〈
ψF ,

(
E + |∇F |2)ψF

〉
, respectively −4 ‖√g D ψF‖2,

as the main terms in (3.47) and (3.48), and the other terms as lower order. Then (3.47) and
(3.48) contradict each other when E > 0 unless ψ = 0.

Before we prove Lemma 3.16 we first collect some auxiliary results, to simplify the
calculations. First note that as distributions,

(P − A)ψF = eF (P − A)ψ − ieF∇Fψ . (3.49)
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Hence since F and ∇F are bounded we have ψF ∈ D(P − A) for any ψ ∈ D(P − A), so〈
ψF , i [H , D]ψF

〉
is well-defined.

Secondly, note that the operators ∇F · P and P · ∇F are well defined on D(P − A).
Indeed, since F is radial we have ∇F = gx for some function g depending only on |x |. This
implies ∇F · A = 0, see also (2.17). Hence, as distributions,

∇F · Pu = gx · Pu = gx · (P − A)u ∈ L2(Rd) (3.50)

for all u ∈ D(P − A). Similarly,

P · ∇F u = P · (gx)u = gP · xu − i(x · ∇g)u

= gx · (P − A)u − igdu − i(x · ∇g)u ∈ L2(Rd) ,

〈x〉−1D u = 1

2〈x〉
(
x · P + P · x)u = x

〈x〉 · P u − i

2〈x〉u

= 〈x〉−1x · (P − A) u − i

2〈x〉u ∈ L2(Rd),

gD u = g

2

(
x · P + P · x)u

= gx · P u − ig

2
u = gx · (P − A) u − ig

2
u ∈ L2(Rd),

√
gD u = √

gx · (P − A) u − i
√
g

2
u ∈ L2(Rd),

〈x〉gD u = 〈x〉gx · (P − A) u − i〈x〉g
2

u ∈ L2(Rd),

(3.51)

and

D∇F u:=1

2

(∇F · P + P · ∇F
)
u = gDu − i

2
(x · ∇g)u ∈ L2(Rd) (3.52)

for all u ∈ D(P − A), by the assumptions on g. Note also that D∇F is symmetric.
The next result is needed also later, so we single it out.

Lemma 3.18 Under the conditions of Lemma 3.16 we have

qA,V (u, v) = qA,V (e−Fu, eFv) + 2i〈D∇F u, v〉 + 〈∇F u,∇F v
〉

(3.53)

for all u, v ∈ D(P − A). In particular, if ψ is a weak eigenfunction corresponding to the
energy E of the magnetic Schrödinger operator HA,V , then

qA,V (ψF , ψF ) = 〈
ψF , (E + |∇F |2)ψF

〉
. (3.54)

Proof A straightforward calculation using the above equations and (3.49) yields

qA,0(e
−Fu, eFv) = 〈

(P − A + i∇F)u, (P − A − i∇F)v
〉

= qA,0(u, v) − i
(〈∇Fu, (P − A)v

〉+ 〈
(P − A)u,∇Fv

〉)

− 〈∇Fu,∇Fv
〉

= qA,0(u, v) − 2i
〈
D∇F u, v

〉− 〈∇Fu,∇Fv
〉
.

(3.55)

In particular, since
〈
e−F u, VeF v

〉 = 〈
u, V v

〉
and qA,0(u, v) = qA,0(u, v) + 〈

u, V v
〉
this

gives (3.53).
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If ψ is a weak eigenfunction of HA,V then qA,V (ψ, v) = E
〈
ψ, v

〉
for all v ∈ D(P − A).

Since D∇F is symmetric,
〈
D∇FψF , ψF

〉
s real and (3.53) implies

qA,V (ψF , ψF ) = Re qA,V (ψF , ψF ) = Re qA,V (ψF , eFψF ) + Re
〈∇FψF ,∇FψF

〉

= Re E
〈
ψF , eFψF

〉+ Re
〈∇FψF ,∇FψF

〉 = Re
〈
ψF , (E + |∇F |2)ψF

〉

��
Proof of Lemma 3.16 From (3.49) we know that ψF ∈ D(P − A) = Q(HA,V ). Thus for any
ψ ∈ Q(HA,V ) our magnetic virial Theorem 3.8 shows

〈
ψF , [H , i D]ψF

〉 = 2qA,0(ψF , ψF ) + 2 Re
〈
B̃ψF , (P − A) u

〉− 〈
ψF , x · ∇VψF

〉
.

with qA,0(ψF , ψF ) = 〈
(P− A)ψF , (P− A)ψF

〉
. If ψ is a weak eigenfunction of HA,V with

energy E , then
〈
ψF , i [H , D]ψF

〉 = qA,V (ψF , ψF ) − 〈
ψF , VψF

〉+ qA,0(ψF , ψF )

+ 2 Re
〈
B̃ψF , (P − A) ψF

〉− 〈
ψF , x · ∇VψF

〉

= 〈
ψF , (E + |∇F |2)ψF ) + qA,0(ψF , ψF )

+ 2 Re
〈
B̃ψF , (P − A) ψF

〉− 〈
ψF , (V + x · ∇V )ψF

〉

by (3.54). This proves the first claim of Lemma 3.16.
Applying (3.53) with u = ψF and v = i DtψF one sees

q(ψF , i DtψF ) = q(ψ, eF i DtψF ) + 2i〈D∇FψF , i DtψF 〉 +
〈∇F ψF ,∇F iDtψF

〉

= E
〈
ψF , i Dtψ

〉− 2〈D∇FψF , DtψF 〉 +
〈
ψF , |∇F |2i DtψF

〉
,

wherewe again usedqA,V (ψ, v) = E〈ψ, v〉 for all v ∈ D(P−A) and anyweak eigenfunction
ψ with energy E . Notice that 〈ψF , i DtψF 〉 = i〈ψF , DtψF 〉 is purely imaginary since Dt

is symmetric, so taking the real part above shows

2Re q(ψF , i DtψF ) = −4Re〈D∇F ψF , DtψF 〉 + 2Re〈ψF , |∇F |2i DtψF 〉. (3.56)

Lemma 3.7 gives 2 Re〈ψF , |∇F |2i DtψF 〉 → −〈ψF , x · ∇(|∇F |2)ψF 〉 as t → 0. Hence
(3.56) implies (3.48) as long as

lim
t→0

Re〈D∇F ψF , DtψF 〉 = ‖√gDψF‖22 −
1

4
〈ψF , ((x · ∇)2g)ψF 〉. (3.57)

Using D∇Fu = gDu − i
2 (x · ∇g)u for all u ∈ D(P − A), we get

〈D∇F u, Dtu〉 =
〈
gD u, Dtu

〉+ 1

2

〈
(x · ∇g)u, i Dtu

〉

and we already know from Lemma 3.7 that 1
2 Re

〈
(x · ∇g)u, i Dtu

〉 → − 1
4

〈
u, ((x · ∇)2g)u

〉

as t → 0. Moreover,

〈x〉−1Dtu = 1

2t

∫ t

−t
〈x〉−1Us

(
Du

)
ds = 1

2t

∫ t

−t

〈es x〉
〈x〉 Us

(〈x〉−1Du
)
ds

initially for u ∈ C∞0 (Rd), but by density and since 〈x〉−1D : D(P − A) → L2(Rd) is
bounded, this extends to all u ∈ D(P − A). Thus, by continuity, 〈x〉−1Dtu → 〈x〉−1Du in
L2(Rd) as t → 0 and

123



Absence of positive eigenvalues of magnetic Schrödinger… Page 35 of 66    63 

〈gD u, Dtu〉 = 〈〈x〉gD u, 〈x〉−1Dtu〉 → 〈〈x〉gD u, 〈x〉−1Du〉 = ‖√gDu‖22
as t → 0 for all u ∈ D(P − A). This completes the proof of (3.57) and of the Lemma. ��

For a type of unique continuation at infinity argument, we will also need the following

Lemma 3.19 Let B and V satisfy Assumptions 2.3, 2.5, and 2.9. Assume thatψ and F satisfy
conditions of Lemma 3.16. Then there exists κ > 0 and cκ > 0 such that

〈
ψF , [H , i D]ψF

〉 ≥ κ
〈
ψF , |∇F |2 ψF

〉− cκ‖ψF‖22 . (3.58)

Proof In what follows the value of a constant c might change from line to line. Since ψF ∈
H1

A(Rd), Lemma 3.16, the Cauchy-Schwarz inequality and Assumption 2.6 give
〈
ψF , [H , i D]ψF

〉 ≥ ‖(P − A)ψF‖22 − 2‖(P − A)ψF‖2
(‖B̃ψF‖2 + ‖xV1ψF‖2

)

− (α2 + d α3)‖(P − A)ψF‖22 − c‖ψF‖22 .

Therefore using (3.54) and Assumption 2.5 we find that for any κ > 0
〈
ψF , [H , i D]ψF

〉 ≥ (1− κ)‖(P − A)ψF‖22 + κ
〈
ψF , |∇F |2 ψF

〉

− (α2 + dα3 + κα0) ‖(P − A)ψF‖22
− 2‖(P − A)ψF‖2

(‖B̃ψF‖2 + ‖xV1ψF‖2
)− c‖ψF‖22.

On the other hand Assumption 2.6 implies that

2‖(P − A)ψF‖2
(‖B̃ψF‖2 + ‖xV1ψF‖2

) ≤ α1‖(P − A)ψF‖22
+ 2 c1‖(P − A)ψF‖2 ‖ψF‖2

≤ (α1 + κ) ‖(P − A)ψF‖22 +
c1
κ
‖ψF‖22.

Hence
〈
ψF , [H , i D]ψF

〉 ≥ (1− 2κ − κα0 − α1 − α2 − d α3) ‖(P − A)ψF‖22
+ κ

〈
ψF , |∇F |2 ψF

〉− (c + κ−1c1) ‖ψF‖22,
and the result follows upon setting

κ = 1− α1 − α2 − d α3

2+ α0
> 0,

see (2.26). ��

4 Absence of positive eigenvalues

Wewill give the proof of absence of positive eigenvalues in two steps. The first is that putative
eigenfunctions corresponding to positive energies have to decay faster than exponentially. In
a second step, we prove that any such eigenfunction has to be zero.

4.1 Ridiculously fast decay

We set 〈x〉λ:=
√

λ + |x |2 for x ∈ R
d , λ > 0. For λ = 1, we write simply 〈x〉1 = 〈x〉. We

have
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Proposition 4.1 (Fast decay) Assume that B and V satisfy Assumptions 2.3–2.8 and that the
magnetic field A corresponding to B is in the Poincaré gauge. Furthermore, assume that ψ
is a weak eigenfunction of the magnetic Schrödinger operator HA,V corresponding to the
energy E ∈ R, and that there exist μ ≥ 0 and λ > 0 such that x �→ eμ 〈x〉λ ψ(x) ∈ L2(Rd).
If E + μ2 > 
 with 
 given by (1.14), then

x �→ eμ〈x〉λ ψ(x) ∈ L2(Rd) ∀μ > 0, ∀ λ > 0. (4.1)

Before we start with the proof, we make some preparations. Obviously it suffices to prove
the statement for λ = 1. We will first consider the case μ = 0, i.e., we only know that
ψ ∈ D(P − A) ⊂ L2(Rd). The choice

Fμ,ε(x) = μ

ε

(
1− e−ε 〈x〉) , (4.2)

for the weight function, for some μ ≥ 0 and ε > 0, will be convenient. We have Fμ,ε(x) →
μ〈x〉 as ε → 0. Also, since

∇Fμ,ε = μ〈x〉−1e−ε〈x〉x (4.3)

we have

gμ,ε(x) = μ〈x〉−1e−ε〈x〉 . (4.4)

Moreover, let

μ∗ = sup
{
μ ≥ 0 : eμ〈x〉ψ ∈ L2(Rd)

}
,

the maximal exponential decay rate of the weak eigenfunction ψ . The bound (4.1) is equiv-
alent to μ∗ = ∞, so we have to exclude 0 ≤ μ∗ < ∞. If 0 ≤ μ∗ < ∞, then there exist
sequences μn ↘ μ∗, εn ↘ 0 as n →∞, i.e., both sequences are decreasing and μn → μ∗,
εn → 0, as n →∞, with

an := ‖eFn ψ‖2 → ∞ as n →∞, (4.5)

where we put Fn :=Fμn ,εn . Moreover, we let gn(x):=gμn ,εn and define ϕn by

ϕn = eFn ψ

‖eFn ψ‖ . (4.6)

Since

Fn(x) ≤ μn〈x〉 , (4.7)

the function eFn is bounded uniformly in n ∈ N on compact subsets of Rd . This implies that
for any compact subset K ⊂ R

d one has
〈
ϕn,1Kϕn

〉 → 0 as n →∞
where 1K is the characteristic function of K . In turn, this implies that for any bounded
function W with W (x) → 0 as x →∞ one has

〈
ϕn,Wϕn

〉 → 0 as n →∞. (4.8)

The last equation is the central point of the argument used in the proof of Proposition 4.1. It
will allow us to show that in the virial identity applied to ϕn certain terms vanish as n →∞.
This turns crucial when applying 3.16 to prove Proposition 4.1 by contradiction.
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Lemma 4.2 Let Fn, gn, ψ , and ϕn be given as above. If 0 < μ∗ < ∞, then

lim
n→∞〈e

Fnψ, εn〈x〉eFnψ〉 = 0 . (4.9)

Moreover, if 0 ≤ μ∗ < ∞, then

lim
n→∞

〈∇Fnϕn,∇Fnϕn
〉 = μ2∗ (4.10)

and

lim
n→∞

〈
ϕn,

(
(x · ∇)2gn − x · ∇|∇Fn |2

)
ϕn

〉 = 0 (4.11)

Remarks 4.3 Ifμ∗ > 0, thenψ decays exponentially and since Fn is bounded for fixed n ∈ N

we have 〈eFnψ, 〈x〉eFnψ〉 < ∞ for all n.

Lemma 4.4 Let 0 ≤ μ∗ < ∞ and Fn, gn, and ϕn be given as above. If the potential V is
relative form small and vanishes at infinity w.r.t (P − A)2, i.e satisfies Assumptions 2.5 and
2.7, then

lim
n→∞〈ϕn, Vϕn〉 = 0 (4.12)

lim
n→∞〈(P − A)ϕn, (P − A)ϕn〉 = E + μ2∗ . (4.13)

Moreover, if the magnetic field B satisfy Assumptions 2.4, and 2.8, then

lim sup
n→∞

|〈B̃ ϕn, (P − A) ϕn
〉| ≤ β(E + μ2∗)1/2 . (4.14)

and if one splits V = V1 + V2, with V1 and V2 satisfying Assumptions 2.6 and 2.8 then

lim sup
n→∞

〈
ϕn, x · ∇Vϕn

〉 ≤ 2ω1(E + μ2∗)1/2 + ω2. (4.15)

Here β, ω1, and ω2 from (1.13) measure the strength of the magnetic field and the virial of
the potential near infinity.

Remarks 4.5 For the proof of similar results in [16], the assumption that V and x · ∇V are
relatively form compact with respect to P2 ismade. Thus they only deal with potentials which
are relatively form bounded with relative bound zero. They also do not consider conditions
on the Kato form of the virial x · ∇V .

We will prove these two Lemmas later in this section.

Proof of Proposition 4.1 Assume that 0 ≤ μ2∗ < ∞. It is easy to check that Fn and gn satisfy
the assumptions of the exponentially weighted magnetic virial Lemma 3.16. Thus Lemmas
3.16 and 4.2 show

lim sup
n→∞

〈
ϕn, [H , i D]ϕn

〉 ≤ 0 . (4.16)

On the other hand the first equality from Lemma 3.16 together with Lemma 4.4 shows

lim inf
n→∞

〈
ϕn, [H , i D]ϕn

〉 ≥ 2(E + μ2∗) − 2(β + ω1)(E + μ2∗)1/2 − ω2

= 2

[(√
E + μ2∗ −

β + ω1

2

)2

−
(

β + ω1

2

)2

− ω2

2

]

> 0
(4.17)

if
√
E + μ2∗ > 1

2

(
β+ω1+

√
(β + ω1)2 + 2ω2

) = √

. Clearly, (4.16) and (4.17) contradict

each other. Thus μ∗ = ∞, which is equivalent to (4.1). ��
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It remains to prove Lemmas 4.2 and 4.4.

Proof of Lemma 4.2 Clearly, for any δ > 0
〈
ϕn, εn〈x〉ϕn

〉 = 〈
ϕn,1{εn〈x〉<δ} ϕn

〉+ 〈
ϕn,1{εn〈x〉≥δ} εn〈x〉ϕn

〉

≤ δ + 〈
ϕn,1{εn〈x〉>δ} εn〈x〉ϕn

〉

One easily checks that the mapping t �→ 1−e−t

t is decreasing on (0,∞). Thus

γ δ := sup
t≥δ

1− e−t

t
= 1− e−δ

δ
< 1 (4.18)

which shows

Fn = μn〈x〉
εn〈x〉 (1− e−εn〈x〉) ≤ μnγ δ〈x〉 for all x with εn〈x〉 ≥ δ .

Given δ > 0 choose any κ with γ δ < κ < 1. If 0 < μ∗ < ∞ then ψ decays exponentially
with any rate μ with κμ∗ < μ < μ∗, by the definition of μ∗. Thus

lim sup
n→∞

〈
eFnψ,1{εn〈x〉>δ} 〈x〉eFnψ

〉 ≤ lim sup
n→∞

〈
eμnγ δ〈x〉ψ, 〈x〉eμnγ δ〈x〉ψ

〉

≤ 〈
eκμ∗〈x〉ψ, 〈x〉eκμ∗〈x〉ψ

〉
< ∞

since, μnγδ → γδμ∗ < κμ∗ as n →∞. In view of (4.5) this implies (4.9).
For the proof of the remaining part of Lemma 4.2, we note that from (4.3) one gets

|∇Fn |2 = μ2
n

(
1− 〈x〉−2)e−2εn〈x〉 . (4.19)

Since ϕn is normalized this gives

μ2
n −

〈∇Fnϕn,∇Fnϕn
〉 = 〈

ϕn,
(
μ2
n − |∇Fn |2

)
ϕn

〉

= μ2
n

(〈
ϕn,

(
1− e−2εn〈x〉)ϕn

〉+ 〈
ϕn, 〈x〉−2e−2εn〈x〉ϕn

〉)
.
(4.20)

Recall that μn ↘ μ∗. If μ∗ = 0, then (4.20) shows
∣
∣μ2

n −
〈∇Fnϕn,∇Fnϕn

〉∣∣ ≤ 2μ2
n → 0 as n →∞ .

If 0 < μ∗ < ∞, then using 0 ≤ 1− e−2εn〈x〉 ≤ 2εn〈x〉 in (4.20) gives
∣
∣μ2

n −
〈∇Fnϕn,∇Fnϕn

〉∣∣ ≤ μ2
n

(
2
〈
ϕn, εn〈x〉ϕn

〉+ 〈
ϕn, 〈x〉−2ϕn

〉) → 0 as n →∞
due to (4.9) and (4.8). This proves (4.10).

Using the definitions of Fn and gn a relatively short calculation shows
∣
∣(x · ∇)2gn − x · ∇|∇F |2∣∣ � μn(μn + 1)

[〈x〉−2 + 〈x〉−1 + εn〈x〉 + ε2n〈x〉
]
e−εn〈x〉

(4.21)

Since 0 ≤ t �→ te−t is bounded, (4.21) implies, if μ∗ = 0,
∣
∣〈ϕn,

(
(x · ∇)2gn − x · ∇|∇F |2)ϕn

〉∣∣ � μn(μn + 1) → 0 as n →∞.

If 0 < μ∗ < ∞, then (4.21) shows
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∣
∣〈ϕn,

(
(x · ∇)2gn − x · ∇|∇F |2)ϕn

〉∣∣ �
〈
ϕn,

(

〈x〉−2 + 〈x〉−1
)

ϕn
〉

+ 〈
ϕn, εn〈x〉ϕn

〉 → 0 as n →∞
using again (4.9) and (4.8). This proves (4.11). ��
In the proof of Lemma 4.4 we need the following auxiliary tool.

Lemma 4.6 Assume that the potential V is relatively form bounded w.r.t (P − A)2. Then for
any family of real-valued bounded function ξ j ∈ C∞0 (Rd), j ∈ I , for which sup j∈I ‖ξ j‖∞
and sup j∈I ‖∇ξ j‖∞ are finite, we have

sup
j∈I

sup
n∈N

‖(P − A)ξ jϕn‖ < ∞ . (4.22)

where ϕn is the sequence defined in (4.6). Moreover, if ξ ∈ C∞0 (Rd) is a real-valued function
with compact support, then

lim sup
n→∞

‖(P − A)ξϕn‖ = 0 . (4.23)

We give the proof of this Lemma after the

Proof of Lemma 4.4 One easily checks that if ξ is an infinitely often differentiable cut–off
function with bounded derivative, then ξϕ ∈ D(P − A) for any ϕ ∈ D(P − A).

Let χl : [0,∞) → R+, l = 1, 2, be infinitely often differentiable on (0,∞) with
χ1(r) = 1 for 0 ≤ r ≤ 1, χ1(r) > 0 for r ≤ 3/2, χ1(r) = 0 for r ≥ 7/4, and χ2(r) = 0 for
r ≤ 5/4, χ2(r) > 0 for r ≥ 3/2, χ2(r) = 1 for r ≥ 2. Then infr≥0(χ2

1 (r)+ χ2
2 (r)) > 0 and

thus

ξ1:= χ1√
χ2
1 + χ2

2

, ξ2:= χ2√
χ2
1 + χ2

2

are infinitely often differentiable with bounded derivatives and ξ21 + ξ22 = 1. Given R ≥ 1
we set

ξ<R(x):=ξ1(|x |/R), ξ≥R(x):=ξ2(|x |/R)

which yields a family of infinitely often differentiable real-valued localization functions on
R
d with bounded derivatives. Note that ξ<R has compact support and supp(ξ≥R) ⊂ U c

R =
{x ∈ R

d : |x | ≥ R}. By construction, we have
〈
ϕn, Vϕn

〉 = 〈
ξ2<R ϕn, Vϕn

〉+ 〈
ξ2≥R ϕn, Vϕn

〉

and, recalling that V is form bounded with respect to (P − A)2, we have for fixed R ≥ 1

|〈ξ2<R ϕn, Vϕ
〉| = |〈ξ<R ϕn, V ξ<R ϕn

〉| � ‖(P−A)ξ<R ϕn‖22 + ‖ξ<R ϕn‖22 → 0 , as n→∞
by Lemma 4.6 and (4.8), since ξ<R has compact support. Since V vanishes at infinity
w.r.t. (P − A)2, there exist αR, γR with αR, γR → 0 as R →∞ such that

|〈ξ2≥R ϕn, Vϕn
〉| = |〈ξ≥R ϕn, V ξ≥R ϕn

〉| ≤ αR‖(P − A)ξ≥R ϕn‖22 + γR‖ξ≥Rϕn‖22 .

Lemma 4.6 then shows
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lim sup
n→∞

|〈ξ2≥R ϕn, Vϕn
〉| � αR + γR → 0 , as R →∞ ,

which proves (4.12).
Moreover, from Lemma 3.18, we get

〈
(P − A)ϕn, (P − A)ϕn

〉 = E + 〈∇Fnϕn,∇Fnϕn
〉− 〈

ϕn, Vϕn
〉

→ E + μ2∗ as n →∞
using also (4.12) and (4.9). This proves (4.13).
For B̃2 one can argue exactly the same way as above for V to see that for fixed R

lim sup
n→∞

〈
ϕn, |B̃|2ϕn

〉 ≤ lim sup
n→∞

〈
ξ2≥R ϕn, |B̃|2ϕn

〉 ≤ CεR + β2
R

where we also used Assumption 2.8 and put C = sup j∈N lim supn→∞ ‖(P − A)ξ jϕn‖22,
which due to Lemma 4.6 is finite. Since εR → 0 and βR → β, as R →∞, we get

lim sup
n→∞

‖B̃ϕn‖ ≤ β ,

Because of |〈B̃ ϕn, (P − A) ϕn
〉| ≤ ‖B̃ ϕn‖‖(P − A) ϕn‖ and (4.13) this proves (4.14).

If the potential splits as V = V1 + V2 with V1, V2 satisfying Assumptions 2.6 and 2.8, then
one can argue exactly as above to see that

lim sup
n→∞

|〈xV1ϕn, (P − A)ϕn
〉| ≤ ω1

and

lim sup
n→∞

|〈ϕn, x · ∇V2ϕn
〉| ≤ ω2 .

Moreover, if V1 and (xV1)2 are form bounded w.r.t. (P − A)2 and ϕ ∈ D(P − A) with
supp(ϕ) ⊂ {|x | ≥ R}, then

|〈ϕ, V1 ϕ
〉| = |〈|x |−1ϕ, |x |V1ϕ

〉| ≤ ‖|x |−1ϕ‖‖|x |V1ϕ‖
� R−1‖ϕ‖ (‖(P − A)ϕ‖22 + ‖ϕ‖22

)1/2
,

so V1 vanishes at infinity w.r.t. (P− A)2. Thus limn→∞
〈
ϕn, V1 ϕn

〉 = 0 and using the mixed
form of the virial from Corollary 3.15 yields

lim sup
n→∞

〈
ϕ, x · ∇Vϕ

〉 ≤ 2ω1(E + μ2∗)1/2 + ω2 .

��
Remarks 4.7 Note that 
 < β + ω as soon as ω > 0.

Now we give the

Proof of Lemma 4.6 Letψ ∈ D(P−A) be a weak eigenfunction of themagnetic Schrödinger
operator HA,V with eigenvalue E and Fn , ψn = eFnψ and ϕn = ψn/‖ψn‖ as in (4.6). In
particular, we have supn ‖∇Fn‖ ≤ supn μn < ∞. Since V is relatively form bounded with
respect to (P − A)2

‖(P − A)ϕ‖22 = qA,V (ϕ, ϕ)− 〈
ϕ, Vϕ

〉 ≤ qA,V (ϕ, ϕ)+ α0‖(P − A)ϕ‖22 + C‖ϕ‖22
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for some 0 ≤ α0 < 1, C > 0, and all ϕ ∈ D(P − A). Thus

‖(P − A)ϕ‖22 ≤ (1− α0)
−1 (qA,V (ϕ, ϕ)+ C‖ϕ‖22

)

From the IMS localization formula (D.1) we get

qA,V (ξψn, ξψn) = Re qA,V (ξ2e2Fnψ,ψ)+ 〈
ψ, |∇(ξeFn )|2ψ 〉

≤ E‖ξψn‖22 + 2‖(∇ξ)ψn‖22 + 2‖(∇Fn)ξψn‖22
since ψ is a weak eigenfunction with energy E . Thus

‖(P − A)ξ jϕn‖22 � ‖ξ jϕn‖22 + ‖(∇ξ j )ϕn‖22
where the implicit constant is independent of j ∈ I and n ∈ N. Since ϕn is normalized, this
proves the first claim.

On the other hand, if ξ has compact support then so does ∇ξ . Thus, from (4.8) we get
‖ξϕn‖ → 0 and ‖(∇ξ)ϕn‖ → 0, as n →∞. Hence,

‖(P − A)ξϕn‖22 � ‖ξϕn‖22 + ‖(∇ξ)ϕn‖22 → 0 ,

as n →∞. ��

4.2 Absence of positive eigenvalues

Now we are in position to prove our main result.

Theorem 4.8 Let B and V satisfy Assumptions 2.3–2.8. Then the magnetic Schrödinger
operator HA,V has no eigenvalues in the interval (
,∞), where 
 is given by (1.14).

Moreover, if E ≤ 
 is an eigenvalue of HA,V then any weak eigenfunction ψ with energy

E cannot decay faster than e
√


−E |x |, in the sense that if x �→ eμ|x |ψ(x) ∈ L2(Rd) for some
μ >

√

− E, then ψ is the zero function.

Proof Let qA,V be the quadratic from corresponding to HA,V and assume that E
〈
ϕ,ψ

〉 =
qA,V (ϕ, ψ) for all ϕ ∈ D(qA,V ) = D(P − A). Furthermore, assume that either E > 
 or
E +μ2 > 
 for some μ > 0 and x �→ eμ|x |ψ(x) ∈ L2(Rd). Then from Proposition 4.1 we
know that

x �→ eμ〈x〉λ ψ(x) ∈ L2(Rd) ∀μ > 0, ∀ λ > 0.

where 〈x〉λ = (λ+ x2)1/2.
Let μ > 0, ε > 0, λ > 0, and define

F(x) = Fμ,ε,λ(x) = μ

ε

(
1− e−ε 〈x〉λ

)
,

so that

∇Fμ,ε,λ(x) = xgμ,ε,λ(x), gμ,ε,λ(x) = μ e−ε 〈x〉λ
√

λ + |x |2 .

Denote ψμ,ε,λ = eFμ,ε,λ ψ . Lemma 3.19 and Eq. (3.48) then give

κ
〈
ψμ,ε,λ, |∇Fμ,ε,λ|2 ψμ,ε,λ

〉 ≤ 〈
ψμ,ε,λ,

(
(x · ∇)2gμ,ε,λ − x · ∇|∇Fμ,ε,λ|2

)
ψμ,ε,λ

〉

+ C ‖ψμ,ε,λ‖22 (4.24)
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for all μ, ε, λ > 0 and some constant C independent of μ, λ and ε. Moreover, a direct
calculation shows

lim
ε→0

x · ∇|∇Fμ,ε,λ(x)|2 = 2λμ2〈x〉−1
λ (1 − 〈x〉−2

λ ) > 0 (4.25)

and

lim
ε→0

(x · ∇)2gμ,ε,λ(x) = −2λμ〈x〉−3
λ |x |2 < 0 . (4.26)

Since

lim
ε→0

Fμ,ε,λ(x) := Fμ,λ(x) = μ〈x〉λ ,

in view of Proposition 4.1 we can pass to limit ε → 0 in (4.24) to obtain

κ μ2 〈ψμ,λ,
|x |2

λ+ |x |2 ψμ,λ

〉 ≤ C ‖ψμ,λ‖22 ∀μ, λ > 0, (4.27)

where

ψμ,λ(x) := eμ〈x〉λ ψ(x) .

Using Proposition 4.1 again and the monotone convergence theorem we finally obtain, by
letting λ → 0,

κ μ2 ‖ψμ‖22 ≤ C ‖ψμ‖22 ∀μ > 0, (4.28)

where ψμ(x) = eμ|x | ψ(x). This is of course impossible for μ large enough. Hence ψμ = 0.
The the first part of the claim, i.e. the absence of eigenvalues above 
, thus follows from the
case E > 
. The second part of the claim is covered by the case E + μ2 > 
 for some
μ > 0. ��
Remarks 4.9 Notice that in view of Corollary 6.8 we have (
,∞) ⊆ σess(H). Hence
Theorem 4.8 excludes the presence of all embedded eigenvalues of H above 
.

On the other hand, the possibility of 
 being an eigenvalue of H cannot be in general
excluded. Indeed, if B is continuous and compactly supported with | ∫

R2 B| > 2π , and if
V = −B, then by theAharonov-Casher theorem, see e.g. [9, Sec. 6.4],
 = 0 is an eigenvalue
of H = (P − A)2 − B. Sufficient conditions for the absence of positive eigenvalues of the
Pauli operator are proved in Sect. 5.4 , see 5.5.

5 Examples

We recall a couple of examples which show that the decay assumptions on B and V stated
in Theorems 1.3, 1.6, and 4.8, and Proposition A.2 cannot be improved.

5.1 Miller–Simon revisited

In [32] Miller and Simon considered, in dimension two, the case V = 0 and radial magnetic
field B(x) = b(r), r = |x |. They proved that

(1) If b(r) = r−α + O(r−1−ε) with 0 < α < 1 and ε > 0 then the spectrum of H is dense
pure point,
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(2) If b(r) = b0 r−1+O(r−1−ε) for some ε > 0 then the spectrum of H is dense pure point
in [0, b20) and absolutely continuous in [b20,∞),

(3) If b(r) = O(r−α) with α > 1 then the spectrum of H is purely absolutely continuous in
(0,∞).

Remarks 5.1 Note that β = lim sup|x |→∞ |B̃(x)| = +∞ in the case (1). On the other hand,
Theorem 4.8 guarantees the absence of eigenvalues in the interval (b20,∞) for the case (2),
in which case β = b0, and in the interval (0,∞) for the case (3), even for non–radial
magnetic fields. In particular, the Miller–Simon examples show that our result on absence of
eigenvalues is sharp. These examples even have dense point spectrum in [0, b20].
Since there is a calculation error in the original Miller-Simon paper and also in the book
[9], we sketch their argument: Assume that the radial magnetic field b is reasonable, e.g.,
bounded and use x, y as coordinates in R

2 and r = (x2 + y2)1/2.
The first observation ofMiller and Simon is that if the magnetic field, radial or not, B goes

pointwise to zero at infinity, then σess((P − A)2) = [0,∞) (this is sharpened in Theorem
6.5).

For radial magnetic fields we have B̃(x) = (−y, x)b(r), so the Poincaré gauge the
magnetic vector potential is

A(x, y) = (−y, x)
∫ 1

0
b(tr)t dt = (−y, x)

r
h(r)

with h(r) = r−1
∫ r
0 b(s)s ds. Expanding (P − A)2 one sees

(P − A)2 = (Px − Ax )
2 + (Py − Ay)

2 = P2 + h(r)2 − 2
h(r)

r
L

where L = x Py − yPx is the angular momentum in the plane. It is well-known that L has
eigenvalues (0,±1,±2, . . .) and it commutes with P2 and with the radial potential h(r)2.
So restricted to the angular momentum channel {L = m}, the operator (P − A)2 is given by

Hm :=(P − A)2
∣
∣{L=m} =

(
P2 + Vm

)|{L=m} with Vm(r) = h(r)2 − 2mh(r)

r

Due to the angular momentum barrier the divergence of Vm for small r when m �= 0 is
irrelevant.

If b0 = limr→∞ r b(r) = ∞, then h(r) → ∞, so Vm is trapping and all operators Hm

have discrete spectrum. But if also b(r) → 0 as r → ∞, then σess(HA) = [0,∞), so
(P − A)2 has necessarily dense point spectrum in [0,∞), proving the first claim (1) above.

If b0 = limr→∞ r b(r) < ∞, then h(r) → b0 and Vm(r) → b20 as r → ∞, so Hm has
only discrete spectrum below b20 for any m ∈ Z. Since b(r) → 0 for r → ∞, the operator
has essential spectrum [0,∞], which must be dense point spectrum in [0, b20].

For any reasonable choice of radial magnetic field b, the effective potential Vm is smooth
with decaying derivatives for large r , so the spectrumof Hm above b20 is absolutely continuous
for all m ∈ Z. Thus (P − A)2 has absolutely continuous spectrum in (b20,∞), which proves
the last two claims.

Remarks 5.2 In [32] the choice of the vector potential contains a wrong factor of 1/2 and
in the example in [9] there is a mistake in the calculation of the magnetic field. Thus in
their examples they concluded incorrectly that the effective potential has the asymptotic
Vm(r) → b20/4 for large r .
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5.2 Wigner–von Neumann potential

Suppose that B = 0. Wigner and von Neumann showed that the operator−�+V in L2(R3)

with the radial potential

V (r) = −32 sin r
[
g(r)3 cos r − 3g2(r) sin3 r + g(r) cos r + sin3(r)

]

(1+ g(r)2)2
,

g(r) = 2r − sin(2r), (5.1)

has eigenvalue +1, see [37, 44] and [36, Ex. VIII.13.1]. As pointed out in [37] for large r

V (r) = −8 sin(2r)

r
+O(r−2). (5.2)

Theorem 4.8 implies that −�+ V = −�+ V1 + V2 has no eigenvalues larger than


 = 1

2

(

ω1 + ω2 +
√

ω2
1 + 2ω1ω2

)

,

with ω1 and ω2 defined by Eq. (1.15). We can thus optimize the splitting V = V1 + V2
in order to minimize 
. A quick calculation using (5.2) shows that the optimal choice is
V1 = 0, V2 = V , see also Lemma C.1. With this choice we get 
 = 8 which coincides with
[1, Thm. 4]. Note that [37, Thm. 2] implies absence of eigenvalues in the interval (16,∞).
TheWigner-von Neumann example was further generalized in [3] where Arai and Uchiyama
constructed, for each |k| > 2, bounded radial potentials which are asymptotically of the form

V (x) = k sin(2|x |)
|x | + O(|x |−1−ε) as |x | → ∞ (5.3)

for some ε > 0 such that P2+V has eigenvalue 1. In these examples also x ·∇V is bounded
and ω1 = lim sup|x |→∞(x · ∇V (x))+ = 2|k|. Thus we can conclude that P2 + V has no
eigenvalues E > |k|2/2.

5.3 Aharonov Bohm vector potentials

In two dimensions the prototypical Aharonov Bohm magnetic vector potential is given by

Aab(x, y) = (−y, x)

x2 + y2
B0 , (5.4)

for some B0 ∈ R. This yields a locally square integrable vector potential on R
2 \ {0}, it

corresponds to a singular magnetic field, which is concentrated in zero, i.e., B = ∂x Aab
y −

∂y Aab
x = 0 inR2 \{0}, but for any smooth curve S circling once around zero, the line integral

along S is given by
∫

S
(Axdx + Aydy) = 2πB0

that is, the ‘magnetic field’ corresponding to A has total flux 2πB0. The corresponding
magnetic Schrödinger operator Hab

0 is now defined as the closure of the quadratic form qab,0
defined first on C∞0 (R2 \ {0}) as

qab,0(ϕ, ϕ) = 〈
(P − Aab)ϕ, (P − Aab)ϕ)

〉
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and for any potential V which is form small w.r.t. Hab
0 , the operator Hab

V is defined as the
form sum

qab,V (ϕ, ϕ):=qab,0(ϕ, ϕ)+ 〈
ϕ, Vϕ

〉
.

For such type of singular magnetic Schrödinger operators we still have a virial theorem and
a result on absence of positive eigenvalues for the following simple reasons:

For dilation, it makes no difference if one works on R
2 or on R

2 \ {0}. Thus we can still
use dilations to derive a virial theorem. In fact, this is easy.

The first thing one has to check if D(P − Aab) is invariant under dilations. Recall Eq.
(3.11), which for the Aharonov Bohm vector potential reads

(P − Aab)Utϕ = etUt Pϕ −Ut A
ab
t ϕ = etUt (P − Aab)ϕ +Ut (e

t Aab − Aab−t )ϕ

= etUt (P − Aab)ϕ (5.5)

since, the Aharonov Bohm vector potential is homogeneous of degree−1, we have et Aab −
Aab−t = 0 for all t > 0. That is, theAharonovBohmmagneticmomentumoperator P−Aab has
the same commutation properties with dilations as the free momentum P , which drastically
simplifies the analysis!

Theorem 5.3 (Aharonov Bohm magnetic virial theorem) Let Aab be the Aharonov Bohm
vector potential and V satisfy Assumptions 2.5. Assume also that the distribution x · ∇V
extends to a quadratic form which is form bounded with respect to (P − Aab)2. Then for all
ϕ ∈ D(P − Aab), the limit limt→0 2 Re

(
qab(ϕ, i Dtϕ)

)
exists. Moreover,

〈
ϕ, [Hab

V , i D]ϕ〉:= lim
t→0

2 Re
(
qab,V (ϕ, i Dtϕ)

) = 2‖(P − Aab)ϕ‖22 −
〈
ϕ, x · ∇Vϕ

〉
. (5.6)

This is proven exactly as Theorem 3.8, the extra term from the magnetic field disappears
because of the scaling of the Aharonov Bohm vector potential.

Of course, this theorem then also implies absence of positive eigenvalues under the same
conditions on the potential V as in Theorem 4.8, now with β = 0. For the Aharonov–Bohm
Hamiltonian Hab

V no eigenvalues E with

E >
1

4

(

ω1 +
√

ω2
1 + 2ω2

)2

(5.7)

exist.

Remarks 5.4 (i) One can also allow for an angular dependence in the Aharonov–Bohm type
potential as in [29].

(ii) In addition to theAharonov–Bohmpotential, one can also allow for an additional regular
magnetic field B satisfying Assumptions 2.3 and 2.4. One has to modify the right hand
sides of (5.6) and of (5.7) accordingly.

(iii) On can also consider the Aharonov–Bohm effect in R
3 where the magnetic field is

singular along a line l through the origin.
We leave the straightforward modifications of the technical details to the interested reader.
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5.4 Pauli andmagnetic Dirac operators

In this section we state two consequences of Theorem 4.8 and Proposition A.2. Let B : R2 →
R be given and consider the Pauli operator

P(A) =
(

(i∇ + A)2 + B 0
0 (i∇ + A)2 − B

)

in L2(R2,C2). It is well-known that the operator P(B) is non-negative, and that if | ∫
R2 B| >

2π , then zero is an eigenvalue of P(B), see also Remark 4.9.

Corollary 5.5 Assume that B ∈ L p
loc(R

2) for some p > 2 and that B(x) = O(|x |−1) as
|x | → ∞. Let A ∈ L2

loc(R
2) be such that curl A = B. Then the operator P(A) has no

eigenvalues in the interval (4β2,∞), with β given by (1.15).
If moreover there exists a compact set K ⊂ R

2 such that B ∈ C1(R2 \ K ), then the operator
P(A) has no eigenvalues in the interval

(

P ,∞)

, with


P := min
{
4β2,

1

4
(β + ω +

√
(β + ω)2 + 2ω)2

}
(5.8)

and

ω = max
{
lim sup
|x |→∞

x · ∇B(x), − lim inf|x |→∞ x · ∇B(x)
}

.

Proof The first part of the statement follows from Theorem 4.8, the definition 1.13 of the
asymptotic bounds and Proposition A.2, applied to the components of the Pauli operator with
the splitting V1 = ±B, V2 = 0. The second part follows from the first part and from the
application of Theorem 4.8 and Proposition A.2 with the splitting V1 = 0, V2 = ±B. ��
Remarks 5.6 A couple of comments are in order:

(i) The example of Miller and Simon [32], see Sect. 5.1, applies to two-dimensional Pauli
operators aswell. In particular, a quick inspection shows that if B(r) = b0 r−1+O(r−2),
then the spectrum of P(A) is dense pure point in [0, b20) and absolutely continuous in
[b20,∞). Note that in this case Corollary 5.5 guarantees the absence of eigenvalues for
P(A) in the interval (b20,∞), so this result is sharp.

(ii) Under the hypotheses of Corollary 5.5 the essential spectrum of P(A) coincides with
[0,∞), see Corollary 6.8 below.

(iii) Using themain results of our paper, one can significantly relax the regularity assumption
on the magnetic field B. We leave this to the interested reader.

(iv) Absence of positive eigenvalues of the Pauli operator in R3 will be treated elsewhere.

The second application of Theorem 4.8 concerns magnetic Dirac operators in L2(R2,C2)

which in the standard representation have the form

D =
(
m Q
Q∗ −m

)

, Q = (P1 − A1) + i(P2 − A2) , (5.9)

where m is the mass of the particle. We have

Corollary 5.7 Let B satisfy the assumptions of Corollary 5.5 and let A ∈ L2
loc(R

2) be such
that curl A = B. Then the Dirac operator D defined on D(P − A) has no eigenvalues in

(−∞,−
√


P + m2
) ∪ (√


P + m2, ∞)
.
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Proof Note that

D
2 = P(A)+ m21 (5.10)

in the sense of sesqui-linear forms onD(P − A)⊗D(P − A). Hence if Dψ = Eψ for some
ψ ∈ D(P − A)⊗D(P − A), then ψ is a weak eigenfunction of P(A) relative to eigenvalue
E2 − m2. In view of Corollary 5.5 we thus have E2 − m2 ≤ 
P . ��
Remarks 5.8 Sufficient conditions for the absence of the entire point spectrum of Pauli and
Dirac operators with electromagnetic fields where recently found in [8], see also Remark
1.7.(v).

6 The essential spectrum

We have the following dichotomy.

Lemma 6.1 (Dichotomy) Let A ∈ L2
loc(R

d ,Rd). Then either inf σ((P − A)2) > 0 or
σ((P − A)2) = [0,∞).

Remarks 6.2 TheLandauHamiltonian,where the vector potential A corresponds to a constant
magnetic field, provides an example where inf σ((P − A)2) > 0, see [28].

Proof Write H0 = (P − A)2. It suffices to prove the implication

0 ∈ σ(H0) ⇒ σ(H0) = [0,∞). (6.1)

Let D(H0) denote the domain of H0. To prove (6.1) suppose that 0 ∈ σ(H0). Hence there
exits a sequence {ϕ̃n}n∈N ⊂ D(H0) such that ‖ϕ̃n‖2 = 1 for all n ∈ N and

‖H0 ϕ̃n‖2 → 0 n →∞. (6.2)

Now we define

φn(x) = eik·x ϕ̃n(x), (6.3)

where k ∈ R
d is arbitrary. Then φn ∈ D(H0) for every n ∈ N, and we have

(P − A) φn(x) = eik·x (P − A + k) ϕ̃n(x),

and

H0 φn(x) = (P − A)2 φn(x) = eik·x H0 ϕ̃n(x) + 2eik·x k · (P − A)ϕ̃n(x) + |k|2φn(x).

with the derivatives meant in the sense of distributions. Since ‖ϕ̃n‖2 = 1, it follows that
H0 φn ∈ L2(Rd). Hence φn ∈ D(H0). Moreover the above calculations and the Cauchy-
Schwarz inequality show that

‖(H0 − |k|2) φn‖2 ≤ ‖H0 ϕ̃n‖2 + 2|k| ‖(P − A)ϕ̃n‖2 = ‖H0 ϕ̃n‖2 + 2|k|
√〈

ϕ̃n, H0 ϕ̃n
〉

≤ ‖H0 ϕ̃n‖2 + 2|k| ‖H0 ϕ̃n‖1/22 .

By (6.2) we thus have ‖(H0 − |k|2) φn‖2 → 0 for any k ∈ R
d . Hence [0,∞) ⊆ σess(H0)

and since H0 ≥ 0, we conclude that σ(H0) = σess(H0) = [0,∞). ��
Next we formulate a condition on B under which σ((P − A)2) = [0,∞) for any locally
square integrable vector potential A with B = d A.
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Definition 6.3 (Vanishing somewhere at infinity) We say that the magnetic field B vanishes
somewhere at infinity if there exist sequences {Rn}n∈N ⊂ R and {xn}n∈N ⊂ R

d such that
Rn →∞, |xn | → ∞ as n →∞, and

lim
n→∞ R−d

n

∫

URn

( |y|
Rn

)2−d (

1− |y|
Rn

)2 (

log
Rn

|y|
)2 ∣

∣B̃xn (y)
∣
∣2 dy = 0. (6.4)

Remarks 6.4 This vanishing condition is quite weak. For example, if d = 2 and if B decays
uniformly in a cone Sω with an opening angleω ∈ (0, π), meaning that sup|θ |<ω |B(r , θ)| →
0 as r →∞, then B vanishes somewhere at infinity. Indeed, given a sequence Rn →∞ one
can choose xn = (xn1 , 0) with xn1 growing fast enough, depending on B and Rn , such that
URn (xn) ⊂ Sω for all n, and such that

R−d
n

∫

URn (0)

(

log
Rn

|y|
)2 ∣

∣B̃xn (y)
∣
∣2 dy � R2

n

(

sup
URn (xn)

|B|2
)

→ 0 , n →∞.

Also, we do not require that the magnetic field B = d A exists as a classical vector field
outside the sequence of balls URn (xn).

Theorem 6.5 Suppose that A is a locally square integrable magnetic vector potential such
that the magnetic field B = d A vanishes somewhere at infinity in the sense of Definition 6.3.
Then

σ((P − A)2) = σess((P − A)2) = [0,∞).

Remarks 6.6 In case that the magnetic field goes to zero pointwise at infinity, the above result
was already shown by Miller and Simon, [9, 32]. As pointed out in [32] the invariance of
the essential spectrum is quite remarkable, since the the vector potential A corresponding to
the magnetic field B might not have any decay at infinity, i.e., the magnetic kinetic energy
(P − A)2 is not a small perturbation of the non–magnetic kinetic energy P2, in general.

Proof Let Rn and xn be the sequences defined in Definition 6.3 and let

An(x) =
∫ 1

0
B(xn + t(x − xn)) [t(x − xn)] dt (6.5)

be the vector potential related to B via the Poincaré gauge centred at xn . Then curl An =
curl A = B for all n ∈ N, and therefore there exits a scalar gauge field χn ∈ H1

loc(R
2;R)

with ∇χn ∈ L2(R2) such that

An = A − ∇χn, (6.6)

and for all ϕ ∈ L2(R2) with (P − An)ϕ ∈ L2(R2) we have eiχϕ ∈ D(P − A) and
(P − A)eiχnϕ = eiχn (P − An)ϕ, see [30]. To simplify the notation we denote

Un = URn (xn).

Due to the Dichotomy Lemma 6.1 we only have to show that 0 ∈ σ((P − A)2). To this
end we will construct a sequence {φn}n ⊂ D(P − A) with supp(φn ∈ Un) and ‖φn‖2 = 1
such that

‖(P − A) φn‖22 → 0 n →∞. (6.7)
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We choose φn = eiχn ϕn, where

ϕn(x) = Cd R
− d

2
n

( |x − xn |
Rn

) 2−d
2

(

1− |x − xn |
Rn

)

+
,

where the constant Cd depends only on d and is chosen such that ‖φn‖ = ‖ϕn‖ = 1. Then
by the above gauge invariance

‖(P − A) φn‖22 = ‖(P − An) ϕn‖22 ≤ (‖Pϕn‖ + ‖Anϕn‖
)2

. (6.8)

We have

‖Pϕn‖22 � R−2
n → 0 n →∞.

Hence by setting h(s) = (1− s/R)2+ in (2.29) we obtain, in view of (6.5),

‖Anϕn‖22 � R−2
n

∫

Un

(

1− |x − xn |
Rn

)2

|x − xn |2−d |An(x)|2 dx

≤ 4R−d
n

∫

URn (0)

( |y|
Rn

)2−d (

1− |y|
Rn

)2

log2(Rn/|y|)
∣
∣B̃xn (y)

∣
∣2 dy. (6.9)

Thus the assumption that B vanishes somewhere at infinity implies ‖Anϕn‖2 → 0 as
n →∞. By (6.8) this shows

‖(P − A) φn‖22 → 0

as n → ∞, which proves (6.7). Since ‖φn‖2 = ‖ϕn‖2 = 1 for all n ∈ N, it follows that
0 ∈ σ(H0) and applying Lemma 6.1 then gives σess((P − A)2) = [0,∞). ��
To prove that the magnetic B vanishes somewhere at infinity it is convenient to impose
following additional condition.

Assumption 6.7 Suppose that there exist κ > 0 and sequences {xn} ⊂ R
d , {Rn} ⊂

R+, {αn} ⊂ R+ and {γn} ⊂ R+ such that |xn | → ∞, Rn → ∞, αn → 0, γn → 0,
and such that

〈
ϕ, | · −xn |κ

∣
∣B̃xn (· − xn)

∣
∣2 ϕ

〉 ≤ αn‖(P − A)ϕ‖22 + γn‖ϕ‖22 (6.10)

for all ϕ ∈ D(P − A) with suppϕ ⊂ URn (xn).

Corollary 6.8 Suppose that the magnetic field satisfies Assumptions 2.3 and 6.7. Then for any
locally square integrable magnetic vector potential A with d A = B we have

σess((P − A)2) = [0,∞) . (6.11)

Proof Let R̃n, xn, αn and γn be the sequences given by Assumption 6.7. We define

un = R̃
− d

2
n

( |x − xn |
R̃n

) 2−d+κ
2

(

1− |x − xn |
R̃n

)

+
log+(R̃n/|x − xn |) .

and

C̃n = R̃ κ
n

〈
un, | · −xn |−κ

∣
∣B̃xn (· − xn)

∣
∣2 un

〉
.

Note that un ∈ L2(Rd), |∇un | ∈ L2(Rd) and

‖un‖2 = O(1), ‖P un‖2 = O(R̃−1
n ) n →∞.
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Hence by (6.10) and (6.5)

C̃n ≤ 2R̃ κ
n αn‖P un‖22 + 2R̃ κ

n αn‖Anun‖22 + R̃ κ
n γn‖un‖22

� R̃ κ−2
n αn + R̃ κ

n γn + R̃ κ
n αn‖Anun‖22. (6.12)

Now, the bound sup0<s<1 s
κ | log s|2 < ∞ in combination with inequality (2.29) implies

‖Anun‖22 = R̃−d
n

∫

UR̃n

( |x − xn |
R̃n

)2−d+κ

(

1− |x − xn |
R̃n

)2 (

log+(R̃n/|x − xn |)
)2

|A(xn + y)|2 dy

� R̃−d
n

∫

UR̃n

( |x − xn |
R̃n

)2−d (

1− |x − xn |
R̃n

)2

|A(xn + y)|2 dy

� R̃−d
n

∫

UR̃n

( |y|
R̃n

)2−d (

1− |y|
R̃n

)2 (

log+(R̃n/|y|)
)2

|Bxn (y)|2 dy = C̃n .

Inserting this into (6.12) gives

C̃n � R̃ κ−2
n αn + R̃ κ

n γn + R̃ κ
n αn C̃n .

At this point we redefine

Rn := min
{
R̃n, α

− 1
2κ

n , γ
− 1

2κ
n

}
, (6.13)

and

ϕn(x) = R
− d

2
n

( |x − xn |
Rn

) 2−d
2

(

1− |x − xn |
Rn

)

+
log+(Rn/|x − xn |) .

Note that Rn →∞ as n →∞. Repeating the above bounds with R̃n replaced by Rn and un
replaced by ϕn then leads to

Cn :=
〈
ϕn, B̃xn (· − xn) ϕn

〉
� R κ−2

n αn + R κ
n γn + R κ

n αn Cn

� R−2
n

√
αn +√

γn +√
αn Cn,

where, in the second step, we have used Rκ
n αn ≤ √

αn and Rκ
n γn ≤ √

γn , which follows
from (6.13). Hence Cn → 0 as n →∞, and since

Cn = R−d
n

∫

URn

( |y|
Rn

)2−d (

1− |y|
Rn

)2 (

log
Rn

|y|
)2 ∣

∣B̃xn (y)
∣
∣2 dy,

the claim follows from Theorem 6.5. ��
Remarks 6.9 The condition imposed by Assumption 6.7 rather weak. Indeed, if we set

Wn(x) = 1Un (x) |x − xn |−κ
∣
∣B̃xn (x − xn)

∣
∣2,

then by the discussion in Section A.4 it follows that (6.10) holds ifWn is, uniformly for large
n, in L p

loc,unif (R
d) and vanishes at infinity locally uiniformly in L1. The discussion in Section

A.4 also shows that (6.10) holds with

αn = ‖(P2 + λ)−1 Wn‖∞, γn = λ‖(P2 + λ)−1 Wn‖∞,

123



Absence of positive eigenvalues of magnetic Schrödinger… Page 51 of 66    63 

and any λ > 0. Hence Assumption 6.7 is satisfied whenever

lim
n→∞‖(P2 + λ)−1 Wn‖∞ = 0.

This allows for strong local singularities of the magnetic field near infinity.

Theorem 6.10 Suppose that A is a locally square integrable magnetic vector potential and
the potential V is form small and vanishes at infinity w.r.t (P − A)2. Then

σess(HA,V ) = σess((P − A)2). (6.14)

Proof Since V is form small with respect to (P− A)2, the quadratic form qA,V is closed and
bounded from below on the form domain D(P − A). Hence there exists λ ≥ 1 such that the
operators HA,0 + λ and HA,V + λ are invertible in L2(Rd). We are going to prove that the
resolvent difference

(HA,0 + λ)−1 − (HA,V + λ)−1 is compact in L2(Rd). (6.15)

for some large enough s ≥ 1, which by Weyl’s theorem implies that the essential spectra of
HA,V and (P − A)2 coincide.

In the following, we will abbreviate H0 = HA,0. Let C(λ):=(H0 + λ)−1/2V (H0 + λ),
more precisely, C(λ)) is the bounded operator associated with the bounded form

qλ(ϕ, ϕ):=qV ((H0 + λ)−1/2ϕ, (H0 + λ)−1/2ϕ) ,

and the relative form bound of V w.r.t (P − A)2 is given by limλ→∞ ‖C(λ)‖2→2 < 1, see
Lemma 2.1. Choose λ large enough, such that ‖C(λ)‖ < 1. Then Tiktopoulos’ formula (2.12)
shows

(HA,V + λ)−1 = (H0 + λ)−1/2(1− C(λ))−1(H0 + λ)−1/2 .

Hence

(H0 + λ)−1 − (H0 + λ)−1 = (H0 + λ)−1/2(1− Cs)
−1Cs(H0 + λ)−1/2

so we only have to show that

C(λ)(H0 + λ)−1/2 = (H0 + λ)−1/2V (H0 + λ)−1

is a compact operator. For this let ξ<R, ξ≥R the smooth partition from the proof of Lemma
4.4 with ξ2<R+ξ2≥R = 1, supp(ξ<R) ⊂ U2R , supp(ξ≥R) ⊂ U c

R , and ‖∇ξ<R‖∞, ‖∇ξ≥R‖∞ �
R−1. With

J<R :=(H0 + λ)−1/2ξ2<RV (H0 + λ)−1 (6.16)

J≥R :=(H0 + λ)−1/2ξ2≥RV (H0 + λ)−1 (6.17)

we obviously have (H0 + λ)−1/2V (H0 + λ)−1 = J<R + J≥R .

We will show that limR→∞ ‖J≥R‖2→2 = 0. So (H0 + λ)−1/2V (H0 + λ)−1 is the norm
limit of J<R as R → ∞, in particular, it is a compact operators if J<R is compact for all
large R. Since

‖J≥R‖2→2 = sup
‖ f ‖=1

|〈 f , J≥R f
〉| (6.18)

and with ϕ = (H0 + λ)−1/2 f

|〈 f , J≥R f
〉| = |〈ξ≥Rϕ, V ξ≥Rϕ

〉| ≤ αR‖(P − A)ξ≥Rϕ‖22 + γR‖ξ≥Rϕ‖22
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≤ αR

(

‖(P − A)ϕ‖ + ‖∇ξ≥R‖‖ϕ‖
)2

+ γR‖ϕ‖22
�

(
αR(1+ R−1)2 + γR

)‖ f ‖22
since (P− A)ξ≥Rϕ = ξ≥R(P− A)ϕ− i(∇ξ≥R)ϕ, ‖(P− A)ϕ‖ ≤ ‖ f ‖ and ‖ϕ‖ ≤ λ−1‖ f ‖.
From this and (6.18) one immediately gets ‖J≥R‖2→2 � αR(1 + R−1)2 + γR → 0 for
R →∞.

To prove that J<R is compact, we first note that the domain of H0 = (P − A)2 is given
by all ϕ ∈ D(P − A) for which with ψ = (P − A)ϕ the distribution (P − A)ψ is also in
L2(Rd). Thus for all ϕ ∈ D((P − A)2) we have

(H0 + λ)−1(P − A + is) · (P − A − is)ϕ = (H0 + λ)−1(H0 + ds2)ϕ = ϕ

when λ = ds2. Moreover, when ϕ ∈ D((P − A)2) and χ is a bounded C2 function such that
∇χ and �χ are bounded, then

(P − A − is)χϕ = χ(P − A − is)ϕ − i(∇χ)ϕ ∈ L2(Rd) ,

(P − A + is) · (P − A − is)χϕ = χ(P − A + is) · (P − A − is)ϕ − 2i(∇χ)·
(P − A)ϕ − (�χ)ϕ

= χ(H0 + ds2)ϕ−2i(∇χ) · (P−A)ϕ − (�χ)ϕ∈ L2(Rd)

so also χϕ ∈ D((P − A)2).
Use ϕ = (H0 + λ)−1 f with f ∈ L2(Rd) and choose ds2 = λ. Then the last equality

yields

χ(H0 + λ)−1 f = χϕ = (H0 + λ)−1(P − A + is) · (P − A − is)χϕ

= (H0 + λ)−1χ f − 2i(H0 + λ)−1(∇χ) · (P − A)(H0 + λ)−1 f

− (H0 + λ)−1(�χ)(H0 + λ)−1 f .

Setting χ = ξ2<R one sees that J<R can be written as

J<R = C(λ)

(

J1 − 2i J2 · (P − A)(H0 + λ)−1 − J3(H0 + λ)−1
)

. (6.19)

where we abbreviated J1 = (H0 + λ)−1/2χ , J2 = (H0 + λ)−1/2(∇χ), and J3 = (H0 +
λ)−1/2(�χ).

Note thatC(λ) is bounded and so are (P−A)(H0+λ)−1 and (H0+λ)−1. Moreover, since
χ = ξ2<R has compact support, it is well–know that the operators χ(P2+λ)−1/2, (∇χ)(P2+
λ)−1/2, and (�χ)(P2 + λ)−1/2 are compact operators on L2(Rd), see [10, Thm. 5.7.3], for
example. The diamagnetic inequality and the Dodds–Fremlin–Pitt theorem [11, 33] then
imply that the operators χ(H0+λ)−1/2, (∇χ)(H0+λ)−1/2, and (�χ)(H0+λ)−1/2 are also
compact, and by duality so are J1, J2, and J3. Thus by (6.19) the operator J<R is a compact
operator for all R > 0. ��
Corollary 6.11 Suppose that B satisfies Assumptions 2.3, 6.7, and that V satisfies Assump-
tions 2.5 and 2.8. Then

σess(HA,V ) = [0,∞). (6.20)

Proof Combine Theorem 6.5 and Corollary 6.8. ��
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Appendix A. Pointwise conditions and the Kato–class

Below we show that Assumptions 2.3–2.9 are satisfied under mild explicit regularity and
decay conditions on the magnetic field B and the potential V . In particular, we give local L p

conditions, which in a natural way extend the pointwise bounds on the potential from in [1,
37].

A.1. Uniformly local Lp conditions

Recall that the space L p
loc,uni f (R

d) of uniformly local real-valued L p functions is given by

(measurable) functions f : Rd → R ∪ {−∞,∞} such that for 1 ≤ p < ∞

‖ f ‖L p
loc,uni f

:= sup
x∈Rd

(∫

|x−y|≤1
| f (y)|p dy

)1/p

< ∞ , (A.1)

with the obvious replacement for p = ∞, L∞loc,unif (Rd) = L∞(Rd).

We note that unlike the L p spaces, the spaces L p
loc,unif (R

d) are nested in the sense that for

1 ≤ q ≤ p ≤ ∞ one has L p
loc,unif (R

d) ⊂ Lq
loc,unif (R

d) ⊂ L1
loc,unif (R

d).

Proposition A.1 Let p = 1 if d = 1 and p > d/2 when d ≥ 2. If |B̃|2 ∈ L p
loc,unif (R

d) then

Assumptions 2.3 and 2.4 are satisfied. If V ∈ L p
loc,unif (R

d) then Assumption 2.5 is satisfied.
Moreover, assume that one can split V = V1+V2, where the distributional derivative x ·∇V2
is given by a function and V1, x2V 2

1 , x · ∇V2 ∈ L p
loc,unif (R

d) then Assumptions 2.6 and 2.9
are satisfied.

Before we prove this, we give a simple additional pointwise condition on |B̃|, V1, V2
which guarantees that the remaining assumptions on being bounded at infinity are satisfied.

We say that V is bounded at infinity, if there exists a compact set K ⊂ R
d such that

V ∈ L∞(Rd \ K ). We also say that V goes to zero pointwise at infinity, if it is bounded at
infinity and lim supx→∞ |V (x)| = 0.

Proposition A.2 Assume that V goes to zero pointwise at infinity and that V splits as V =
V1 + V2 where V1 goes to zero pointwise at infinity. Then Assumption 2.7 is satisfied.

Moreover, if the distribution x · ∇V2 is given by a function and |B̃|, x2V 2
1 , x · ∇V2 are

bounded from above at infinity, then Assumption 2.8 is satisfied and we have the bounds

β ≤ lim sup
|x |→∞

|B̃(x)|, ω1 ≤ lim sup
|x |→∞

|x V1(x)|2, ω2 ≤ lim sup
|x |→∞

x · ∇V2(x) . (A.2)

Remark A.3 So, under the assumptions of Propositions A.1 and A.2 all our Assumptions
2.3–2.9 are satisfied and the upper bounds from (A.2) hold for β, ω1, and ω2.

Of course, the above pointwise conditions are in general way too strong. Below we
show how some of the assumptions of Proposition A.2 can be relaxed for potentials
V ∈ L p

loc,unif (R
d), or even potentials in the Kato-class, see Remark A.6 and Propositions

A.4 and A.9.
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Proof of Proposition A.2 LetW be bounded at infinity and setM := lim supx→∞ W (x). Given
δ > 0 there exists R = Rδ < ∞ such that

〈ϕ,Wϕ〉 ≤ (M + δ)‖ϕ‖2 (A.3)

for any ϕ ∈ L2(Rd) with supp(ϕ) ⊂ Uc
Rδ
. From this observation, the claims of Propostion

A.2 follow straightforwardly. ��
Proof of Proposition A.1 Of course, magnetic fields exist only in dimensions d ≥ 2. Never-
theless, for any d ≥ 1 and w ∈ R

d , Assumption 2.3 follows from |B̃|2 ∈ L p
loc(R

d), with
p = 1 if d = 1 and p > d/2 when d ≥ 2, by a simple application of Hölder’s inequality.

In the following, let p ≥ 1 for d = 1 and p > d/2 when d ≥ 2. It is well-know, at least
for specialists, that a potential V ∈ L p(Rd) is infinitesimally form bounded with respect to
P2. That is, for any choice α0 > 0 there exists Cε < ∞ such that

|〈ϕ, Vϕ〉| ≤ 〈ϕ, |V |ϕ〉 ≤ ε‖Pϕ‖2 + Cε‖ϕ‖2 for all ϕ ∈ D(P) . (A.4)

Using the diamagnetic inequality this also implies

|〈ϕ, Vϕ〉| ≤ 〈|ϕ|, |V ||ϕ|〉 ≤ ε‖(P − A)ϕ‖2 + Cε‖ϕ‖2 for all ϕ ∈ D(P − A) , (A.5)

for any magnetic vector potential A ∈ L2
loc(R

d ,Rd).
Less known is the fact that (A.4), hence also (A.5), continue to hold for V ∈ L p

loc,unif (R
d).

This follows, for example, from the fact that under the above conditions on p in terms of the
dimension d one knows that L p

loc,unif (R
d) ⊂ Kd , where Kd is the Kato–class of potentials,

and all potentials V ∈ Kd are infinitesimally form bounded w.r.t. P2, see [9, 40] .
Given this observation, one sees that Assumption 2.5 is satisfied when V ∈ L p

loc,unif (R
d)

andAssumptions 2.6 and2.9 are satisfiedwhenwe splitV = V1+V2 withV1, x2V 2
1 , x ·∇V2 ∈

L p
loc,unif (R

d). This proves all claims of Proposition A.1.
However, in order to derive a simple local L p condition for a potential to vanish at infinity

w.r.t. P2 we need a quantitative bound for dependence of the constantCε in the bounds (A.4)
and (A.5) depends on ε and on the norm ‖V ‖L p

loc,unif
. For this reason, and the convenience of

the reader, we sketch the derivation of a quantitative version of (A.4):
If p ≥ 1 for d = 1 and p > d/2 when d ≥ 2, an argument similar to the proof of

Theorem X.20 in [36] shows that there exists a function G : R+ × R+ → [0,∞), with
G(s1, s2) separately increasing in (s1, s2) ∈ R2+ and lims2→0 G(s1, s2) = 0 for all s1 > 0,
such that

|〈ϕ, Vϕ〉| ≤ 〈ϕ, |V |ϕ〉 ≤ ε‖Pϕ‖2 + G
(
ε−1, ‖V ‖p

)‖ϕ‖2 for all ϕ ∈ D(P) . (A.6)

Indeed, Hölder’s inequality gives 〈ϕ, |V |ϕ〉 ≤ ‖V ‖p‖ϕ‖22p
p−1

. Since 2p
p−1 ≥ 2 the Hausdorff–

Young inequality shows 〈ϕ, |V |ϕ〉 ≤ ‖V ‖p‖ϕ̂‖2q with ϕ̂ the Fourier transform of ϕ and
1
q = 1 − p−1

2p = 1
2 + 1

2p ≤ 1. Let t > 0 and write ϕ̂ = (1 + tη2)−1/2(1 + tη2)1/2ϕ̂. Since
1
q = 1

2p + 1
2 we can use again Hölder’s inequality to get

‖ϕ̂‖2q ≤ ‖(1+ tη2)−1/2‖22p‖(1+ tη2)1/2ϕ̂‖22 ≤ Cp,q t
−d/2p(t‖Pϕ‖22 + ‖ϕ‖22)

withCp,d = ‖(1+η2)−1/2‖22p . Note thatRd � η �→ (1+η2)−1/2 ∈ L2p(Rd) for any p ≥ 1
if d = 1 and p > d/2 if d ≥ 2. Altogether we have

〈ϕ, |V |ϕ〉 ≤ 2Cp,d‖V ‖pt−d/(2p)(t‖Pϕ‖2 + ‖ϕ‖2)
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for any t > 0 and all ϕ ∈ D(P). Rescaling in t > 0 one sees that a bound of the form (A.6)

holds with G(s1, s2) = Cs
− d

2p−d
1 s

2p−d
2p

2 for some constant C depending only on d and p.
Now we extend this to potentials V ∈ L p

loc,unif (R
d). Let χ ∈ C∞0 (Rd) with 0 ≤ χ ≤ 1

and χ(x) = 1 for ‖x‖∞ ≤ 3/2 and χ(x) = 0 when ‖x‖∞ ≥ 2. For j ∈ Z
d define

χ j (x) = χ(x − j) for x ∈ R
d . Then χ j ∈ C∞0 (Rd) for all j ∈ Z

d . Since the supports
of the χ j have the finite intersection property, there exist a constant c > 1 such that 1 ≤∑

j∈Zd χ2
j ≤ c. Moreover,

∑
j∈Zd χ2

j ∈ C∞(Rd) and all partial derivatives of
∑

j∈Zd χ2
j are

bounded functions. We define

ξ j := χ j

(
∑

k∈Zd χ2
k )1/2

. (A.7)

Since 1 ≤ ∑
k∈Zd χ2

k ≤ c1 the cutoff functions ξ j are well–defined and ξ j ∈ C∞0 (Rd). By
construction

∑

j∈Zd

ξ2j = 1 . (A.8)

Hence the family of cutoff functions (ξ j ) j∈Zd is a smooth quadratic partition of unity. Using
again that the supports of the χ j have the finite intersection property, it is also easy to see
that there exists a constant 0 < L < ∞ such that

∑

j∈Zd

|∇ξ j |2 ≤ L. (A.9)

Lastly, let K j = supp(ξ j ) = supp(χ j ) and notice that there exist 0 < κ < ∞ such that

sup
j∈Zd

‖1K j V ‖p ≤ κ‖V ‖L p
loc,unif

(A.10)

for all V ∈ L p
loc,unif(R

d). In fact, it is straightforward to show that the two norms in (A.10)
are equivalent.

Given ϕ ∈ C∞0 (Rd), we have ϕ = ∑
j∈Zd ξ2j ϕ because of (A.8). Note also that we can

arbitrarily rearrange this sum, and similar sums below, since supp(ξ j ) ∩ supp(ϕ) �= ∅ for
only finitely many j ∈ Z

d . In particular, we have 〈ϕ, |V |ϕ〉 = ∑
j 〈ξ jϕ, |Vj |ξ jϕ〉 with

Vj = 1K j V . Using (A.6) one gets

|〈ϕ, Vϕ〉| ≤ 〈ϕ, |V |ϕ〉 ≤
∑

j∈Zd

(
ε‖P(ξ jϕ)‖22 + G

(
ε−1, ‖Vj‖p

)‖ξ jϕ‖22
)
. (A.11)

Because of (A.10) and since G is increasing in its second variable, we have
sup j∈Zd G

(
ε−1, ‖Vj‖p

) ≤ G
(
ε−1, κ‖V ‖L p

loc,unif

)
for some constant 0 < κ < ∞ and all

V ∈ L p
loc,unif(R

d). Moreover, because of (A.8) we have
∑

j∈Zd

‖ξ jϕ‖2 = 〈ϕ, ξ2j ϕ〉 = 〈ϕ,
∑

j∈Zd

ξ2j ϕ〉 = ‖ϕ‖2 .

The IMS localization formula D.1 together with (A.8) and (A.9) yields
∑

j∈Zd

‖P(ξ jϕ)‖2 =
∑

j∈Zd

〈P(ξ jϕ), P(ξ jϕ)〉 =
∑

j∈Zd

(
Re〈P(ξ2j ϕ), Pϕ〉 + 〈ϕ, |∇ξ j |2ϕ〉

)

= Re

〈

P(
∑

j∈Zd

ξ2j ϕ), Pϕ

〉

+
〈

ϕ,
∑

j∈Zd

|∇ξ j |2ϕ
〉

≤ ‖Pϕ‖22 + L‖ϕ‖22 .
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Using (A.11) we arrive at

|〈ϕ, Vϕ〉| ≤ 〈ϕ, |V |ϕ〉 ≤ ε‖Pϕ‖22 +
(
εL + G

(
ε−1, κ‖V ‖L p

loc,unif

)) ‖ϕ‖22 (A.12)

for all ϕ ∈ C∞0 (Rd) and all ε > 0, as soon as a local bound of the form (A.6) holds. Since
C∞0 (Rd) is dense in D(P) with respect to the graph norm, the bound (A.12) extends to all
ϕ ∈ D(P). This shows that any potential V ∈ L p

loc,unif (R
d) is infinitesimally form bounded

w.r.t. P2. The bound (A.12) also holds with P replaced by P − A and ϕ ∈ D(P − A) for
any vector potential A ∈ L2

loc(R
d ,Rd) thanks to the diamagnetic inequality (1.11). ��

A.2. Potentials vanishing at infinity

Recall the Definitions 1.5, respectively 1.8, for a potential V to vanish, respectively being
bounded, at infinity w.r.t. (P − A)2. Assume that V can be split as V = W1 + W2 with
the quadratic form domains Q(W1) and Q(W2) containing, for all large enough R > 0, all
ϕ ∈ D(P − A) with supp(ϕ) ⊂ Uc

R . Then it is straightforward to see that

γR(V ) ≤ γR(W1) + γR(W2) and γ+
R (V ) ≤ γ+

R (W1) + γ+
R (W2)

for all large enough R > 0. Hence

0 ≤ γ∞(V ) = lim
R→∞ γR(V ) ≤ γ∞(W1) + γ∞(W2) (A.13)

and

γ+∞(V ) = lim
R→∞ γ+

R (V ) ≤ γ+∞(W1)+ γ+∞(W2) . (A.14)

IfW1 andW2 vanish at infinty w.r.t. (PA)2, then γ∞(W1) = γ∞(W2) = 0. Thus γ∞(V ) = 0,
that is, V vanishes at infinity w.r.t (P − A)2. Moreover, the bound (A.14) shows that V is
bounded from above at infinity w.r.t. (P − A)2 with upper bound γ+∞(W1) + γ+∞(W2). This
simple observation proves the first part of

Proposition A.4 a) If V = W1 + W2 and W1 and W2 vanish at infinity, respectively, are
bounded from above at infinity, w.r.t. (P − A)2, then V vanishes at infinity, respectively,
is bounded from above at infinity, w.r.t. (P − A)2. Moreover, in the latter case (A.14)
holds.

b) If V = ∇ ·� for some real-valued vector field � and if �2 is form bounded respectively
vanish at infinity w.r.t. (P− A)2, then V is form bounded respectively vanishes at infinity
w.r.t. (P − A)2.

Remark A.5 (i) Again, the diamagnetic inequality implies that one only has to check form
boundedness and vanishing w.r.t. P2.

(ii) It is not true, in general, that �2 bounded at infinity implies that ∇ · � is bounded at
infinity w.r.t (P − A)2.

(iii) The choice �(x) = x〈x〉−ε sin(e1/|x |) = O(〈x〉)−ε , for some ε > 0, yields a potential
V = ∇ ·� with

V (x) = −|x |−1e1/|x |〈x〉−ε cos(e1/|x |) + O(〈x〉−ε) (A.15)

which has a severe singularity at zero. Since �2 is infinitesimally for bound and van-
ishing at infinity w.r.t P2, the above result shows that so does V . That V vanishes at
infinity w.r.t. P2, which might not be too surprising, since the singularity is local.
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(iv) The choice �(x) = x〈x〉−ε sin(e|x |) = O(〈x〉)−ε, for some ε > 0, yields a potential
V = ∇ ·� with

V (x) = |x |e|x |〈x〉−ε cos(e|x |) + O(〈x〉−ε) (A.16)

which has again severe oscillations, now at infinity. Nevertheless, it is infinitesimally
form bounded and vanishes at infinity w.r.t. P2 since �2 does. In particular, despite the
severe oscillations of V at infinity, our Theorem 6.10 below shows that the perturbation
V does not change the essential spectrum.

Proof The first claim was already proven in the discussion just before the proposition. For
the second claim let ϕ ∈ C∞0 , and note that Lemma 2.2 shows that the distribution ∇ · �
yields the quadratic form

〈
ϕ,∇ ·�ϕ

〉 = −2 Im
〈
�ϕ, Pϕ

〉 = −2 Im
〈
�ϕ, (P − A)ϕ

〉

since
〈
�ϕ, Aϕ

〉
is real. Thus the right hans side above extend to all ϕ ∈ D(P − A) if �2

is form bounded w.r.t. (P − A)2 and |〈ϕ,∇ · �ϕ
〉| ≤ ‖�ϕ‖‖(P − A)ϕ‖. So if ‖�ϕ‖22 ≤

α‖(P − A)ϕ‖22 + γ ‖ϕ‖22, then
|〈ϕ,∇ ·�ϕ

〉| ≤ 2(α‖(P − A)ϕ‖22 + γ ‖ϕ‖22)1/2‖(P − A)ϕ‖
≤ (ε−1α + ε)‖(P − A)ϕ‖22 + ε−1γ ‖ϕ‖22

(A.17)

for all ε > 0, which proves that ∇ · � is form bounded w.r.t. (P − A)2. If W is also form
bounded w.r.t (P − A)2, then so is their sum V = ∇ ·� +W .

Lastly, because of the first part, we only have to show that∇ ·� vanishes at infinity as soon
as �2 vanishes at infinity w.r.t (P − A)2. So assume that there exist αR and γR decreasing
with αR, γR → 0 as R →∞ and

‖�ϕ‖22 ≤ αR‖(P − A)ϕ‖22 + γR‖ϕ‖22
for all ϕ ∈ D(P − A) with supp(ϕ) ∈ U c

R . Setting ε = max(αR, γR)1/2 in (A.17) yields

|〈ϕ,∇ ·�ϕ
〉| ≤ max(αR, γR)1/2

(

2‖(P − A)ϕ‖22 + ‖ϕ‖22
)

for all ϕ ∈ D(P− A)with supp(ϕ) ⊂ U c
R and large enough R. This shows that∇ ·� vanishes

at infinity w.r.t. (P − A)2. ��

Remark A.6 The two bounds (A.13) and (A.14) also show that

γ∞(V ) = inf{γ∞(V −W ) : γ∞(W ) = 0} (A.18)

and

γ+∞(V ) = inf{γ+∞(V −W ) : γ+∞(W ) = 0} . (A.19)

As upper bounds these statements follow immediately from (A.13) and (A.14). The reverse
inequality follows by choosingW = 0. Thus when trying to calculate the asymptotic bounds
β, ω1, ω2 from (1.13), see also Assumption 2.8 one can modify the involved potentials by
arbitrary vanishing potentials. Efficient criteria for this are derived in the next two sections.
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A.3. A local Lp condition for vanishing at infinity

We say that V is locally uniformly L p near infinity, or V ∈ L p
loc,unif near infinity if there

exists a compact set K ⊂ R
d such that 1KcV ∈ L p

loc,unif (R
d).

In the following we will always assume that p = 1 for d = 1 and p > d/2 for d ≥ 2. If
V ∈ L p

loc,unif near infinity, then (A.12) and the diamagnetic inequality shows that the quadratic

form domain Q(V ) contains all ϕ ∈ D(P − A) with supp(ϕ) ⊂ Uc
R = {x ∈ R

d : |x | ≥ R}
as soon as R > 0 is large enough.

Recalling the notation of Definition 1.5, the bound (A.12) also shows that for any R large
enough and all ε > 0 we have

αR ≤ ε and γR ≤ εL + G
(
ε−1, κ‖VR‖L p

loc,unif

)
(A.20)

with VR = 1Uc
R
V .

Now assume that V vanishes at infinity locally uniformly in L p , that is,

lim
R→∞‖VR‖L p

loc,unif
= 0 . (A.21)

Since lims2→0 G(s1, s2) = 0 for any s1 > 0 we can, for any n ∈ N, inductively choose
Rn → ∞ such that G

(
n, κ‖VR‖L p

loc,unif

) → 0 as n → ∞. Clearly, (A.20) shows that

αRn → 0 and γRn → 0 as n → ∞. Since we can also assume, without loss of generality,
that αR and γR are decreasing in R ≥ R0, once they exist for some R0 > 0, this shows that
V vanishes at infinity w.r.t. (P − A)2 as soon as it vanishes at infinity locally uniformly in
L p .

With an additional trick it turns out that it is enough to only assume that V is locally
uniformly L p at infinity and vanished at infinity locally uniformly in L1.

Proposition A.7 Let p = 1 for d = 1 and p > d/2 for d ≥ 2. Assume that the potential
W ∈ L p

loc,unif near infinity and that it vanishes at infinity locally uniformly in L1, that is,

with 1Uc
R
the characteristic function of Uc

R = {x ∈ R
d : |x | ≥ R} and WR :=1Uc

R
W we have

lim
R→∞‖WR‖L1

loc,unif
= 0 . (A.22)

Then W vanishes at infinity w.r.t. P2 in the sense of Definition 1.5.
Moreover, if V = ∇ · � + W for some vector field � ∈ L2

loc and a potential W ∈ L1
loc

and �2 and W satisfy the above assumptions, then V also vanishes at infinity w.r.t. P2 in the
sense of Definition 1.5.

Proof The discussion just before Proposition A.7 shows thatW vanishes at infinity w.r.t. P2

in the sense of Definition 1.5 if we use the norm ‖ · ‖L p
loc,unif

instead of the norm ‖ · ‖L1
loc,unif

in (A.22). If p = 1, i.e., d = 1, then there is nothing to prove.
So assume d ≥ 2 and p > d/2 ≥ 1. Pick R0 > 0 so large that WR0 ∈ L p

loc,unif(R
d).

Since p > d/2 ≥ 1, there exist 1 ≤ d/2 < q < p. Replacing p by q in the discussion just
before Proposition A.7 shows thatW vanishes at infinity w.r.t (P− A)2 as soon as one knows
limR→∞ ‖WR‖Lq

loc,unif
= 0. This is easy. Since 1 ≤ d/2 < q < p there exists 0 < θ < 1

with q = θ1+ (1− θ)p. Thus for all R ≥ R0 Hölder’s inequality implies

‖WR‖Lq
loc,unif

≤ ‖WR‖1−θ

L p
loc,unif

‖WR‖θ

L1
loc,unif

≤ ‖W‖1−θ

L p
loc,unif

‖WR‖θ

L1
loc,unif

→ 0 as R →∞
The second claim of Proposition A.7 follows from the first and the second part of

Proposition A.4. ��

123



Absence of positive eigenvalues of magnetic Schrödinger… Page 59 of 66    63 

A.4. Vanishing at infinity for potentials in the Kato–class

To get a replacement for the borderline case p = d/2 one can use the Kato–class, which we
recall.

Definition A.8 (Kato–class) A real-valued and measurable function V on Rd is in the Kato–
class Kd if

lim
α→0

sup
x∈Rd

∫

|x−y|≤α

gd(x − y)|V (y)| dy = 0 (A.23)

where

gd(x):=
{ |x |2−d if d ≥ 3
| ln |x || if d = 2

. (A.24)

One also defines the Kato–norm

‖V ‖Kd :=
{
supx∈Rd

∫
|x−y|≤1 |x − y|d−2|V (y)| dy , if d ≥ 3

supx∈R2

∫
|x−y|≤1/2 | ln(|x − y|)||V (y)| dy , if d = 2

. (A.25)

It is well-known that anyKato–class potential is infinitesimally form boundedwith respect
to P2, see e.g. [5, Thm. 1.4], thus also with respect to (P − A)2 for any vector potential
A ∈ L2

loc(R
d ,Rd). It is also clear that Kd ⊂ L1

loc,unif(R
d) and using Hölder’s inequality one

easily sees L p
loc,unif(R

d) ⊂ Kd for all p > d/2.
Lastly, we say that a potential V is in the Kato–class outside a compact set, if there exists

a compact set K ⊂ R
d such that 1KcV ∈ Kd . Here 1Kc is the characteristic function of the

complement of K .
For potentials which are in the Kato–class outside of a compact set we also desire a simple

criterium for vanishing.

Proposition A.9 Given a potential W assume that it is in the Kato–class outside a compact
set and that it vanishes at infinity locally uniformly in L1, that is,

lim
R→∞‖1≥RW‖L1

loc,unif
= 0 . (A.26)

with 1≥R the characteristic function of {x ∈ R
d : |x | ≥ R}. Then W vanishes at infinity

w.r.t. P2 in the sense of Definition 1.5.
Moreover, if V = ∇ · � + W for some vector field � ∈ L2

loc and a potential W ∈ L1
loc

and �2 and W satisfy the above assumptions, then V also vanishes at infinity w.r.t. P2 in the
sense of Definition 1.5.

In the proof of Proposition A.9 we need

Lemma A.10 Given a potential W in the Kato-class assume that there exist R0 > 0 and
αR,λ, γR,λ ≥ 0 for R0 > 0 and R ≥ R0, λ > 0 such that

〈
ϕ,Wϕ

〉 ≤ αR,λ‖(P − A)ϕ‖22 + γR,λ‖ϕ‖22 (A.27)

for all ϕ ∈ D(P − A) with supp(ϕ) ∈ Uc
R. Moreover, assume that R0 ≤ R �→ αR,λ, γR,λ

are decreasing for fixed λ > 0 and limλ→∞ αR,λ = 0 for fixed R ≥ R0.
Then W is bounded from above at infinity w.r.t (P − A)2 with asymptotic bound

γ+∞(W ) ≤ lim inf
λ→∞ lim

R→∞ γR,λ . (A.28)
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Remark A.11 The order of the limits in (A.28) is important, since typically one has
lim infλ→∞ γR,λ = ∞ for any fixed R.

Given anyαR,λ, γR,λ for which (A.27) holds, one can, by a simplemonotonicity argument,
replace them with α′R,λ:= inf R0≤L≤R αL,λ and γ ′

R,λ:= inf R0≤L≤R, γL,λ, i.e., the required
monotonicity in R in Lemma A.10 is not a restriction.

Proof Let γ̃λ = limR→∞ γR,λ. Pick any λ0 > 0 and given Rn, λn for n ∈ N0 choose
inductively λn+1 ≥ λn + 1 with αRn ,λn+1 ≤ 1

n+1 and then Rn+1 ≥ Rn + 1 with γRn+1,λn+1 ≤
1

n+1 + γ̃λn+1 .

Take a subsequence n j with γ̃ j :=γ̃n j → lim infn→∞ γ̃n as j → ∞ and set αR := 1
n j+1

and γR := 1
n j+1 + γ̃ j for R ∈ [Rn j , Rn j+1). With this choice Definition 1.8 is satisfied, so

W is asymptotically bounded at infinity w.r.t. (P − A)2 and γ∞(W ) = limR→∞ γR =
lim j→∞ γ̃ j = lim infλ→∞ limR→∞ γR,λ. ��
Proof of Proposition A.9 Given a locally square integrable magnetic vector potential A we
abbreviate H0 = (P − A)2 for the free magnetic Schrödinger operator defined by quadratic
form methods. Given a potential W in the Kato–class, ϕ ∈ D(P − A) = Q(H0), and λ > 0
let f = (H0 + λ)1/2ϕ ∈ L2. Then

|〈ϕ,Wϕ
〉| ≤ 〈

ϕ, |W |ϕ〉 = 〈
f , (H0 + λ)−1/2|W |(H0 + λ)−1/2 f

〉

≤ ‖(H0 + λ)−1/2|W |(H0 + λ)−1/2‖2→2‖ f ‖22
= ‖(H0 + λ)−1/2|W |(H0 + λ)−1/2‖2→2

(‖((P − A)2ϕ‖22 + λ‖ϕ‖22
)

By duality, ‖(H0+λ)−1/2|W |(H0+λ)−1/2‖2→2 = ‖|W |1/2(H0+λ)−1|W |1/2‖2→2. Assume
that |W | is bounded, then for 0 ≤ Re(z) ≤ 1 the operator family Tz = |W |z(H0+λ)−1|W |1−z

is analytic and bounded.
Using the diamagnetic inequality and duality we have

‖|W |(H0 + λ)−1‖1→1 = ‖(H0 + λ)−1|W |‖∞→∞ = ‖(H0 + λ)−1|W |‖∞
≤ ‖(P2 + λ)−1|W |‖∞ ,

which is finite for any λ > 0 and bounded W . Thus Tz is bounded from L1 → L1 for
Re(z) = 0 and from L∞ → L∞ for Re(z) = 1 and as in [9] one can use the Stein
interpolation theorem [35] to see

‖(H0 + λ)−1/2|W |(H0 + λ)−1/2‖2→2 ≤ ‖(P2 + λ)−1|W |‖∞ .

at least for bounded W . If supp(ϕ) ⊂ Uc
R , one can replace W by WR = 1≥RW . Thus

|〈ϕ,Wϕ
〉| = |〈ϕ,WRϕ

〉| ≤ αR,λ‖(P − A)ϕ‖22 + γR,λ‖ϕ‖22
for all ϕ ∈ D(P − A) with supp(ϕ) ⊂ Uc

R , choosing

αR,λ = ‖(P2 + λ)−1|WR |‖∞ ,

γR,λ = λ‖(P2 + λ)−1|WR |‖∞ .
(A.29)

If WR is unbounded, replace WR by min(|WR |, n) and take the limit n → ∞ to see that the
above bounds work also for unbounded W , as long as the right hand side of (A.29) is finite.

Clearly, αR,λ and γR,λ are decreasing in R for fixed λ > 0. One even has limλ→∞ ‖(P2+
λ)−1|W |‖∞ = 0 if and only if W is in the Kato–class, which is well–known, see [9, 40].
However, we also clearly have limλ→∞ γR,λ = ‖WR‖∞, which is finite, if and only if WR
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is bounded. Nevertheless, if WR is in the Kato class for some, hence all, large enough R and
limR→∞ ‖WR‖L1

loc,unif
= 0 then

lim
R→∞‖(P2 + λ)−1|WR |‖∞ = 0 , (A.30)

which together with LemmaA.10 shows γ∞(W ) = 0. This proves the first part of Proposition
A.9. The other claim of Proposition A.9 follows from the above since by Proposition A.4
W = ∇ ·� vanishes w.r.t (P − A)2 as soon as �2 does.

For the proof of (A.30), we claim that for any potential W and any 0 < α ≤ 1

‖(P2 + λ)−1|W |‖∞ � sup
x∈Rd

∫

|x−y|≤α

gd(x − y)|W (y)| dy + e−
√

λα/4

√
λα

‖W‖L1
loc,unif

(A.31)

where the implicit constant depend only on d . This clearly proves (A.30), since replacingW
by WR = 1≥RW it yields

lim sup
R→∞

‖(P2 + λ)−1|WR |‖∞ ≤ Cλ,d sup
x∈Rd

∫

|x−y|≤α

gd(x − y)|WR0(y)|

for any fixed R0, λ > 0 and all 0 ≤ α ≤ 1 as soon as limR→∞ ‖WR‖L1
loc,unif

= 0. Since WR0

is in the Kato–class, we can then take the limit α → 0 to get (A.30).
It remains to prove (A.31). Note

‖(P2 + λ)−1|W |‖∞ = sup
x∈Rd

∫

Rd
G(x, y, λ)|W (y)| dy

where G(x, y), λ = (P2+λ)−1(x, y) is the Green’s function, i.e., the kernel of (P2+λ)−1.
We split the integral above in the two regions |x − y| ≤ α and |x − y| > α. The bounds

G(x, y, λ) � λ−1|x − y|−de−
√

λ|x−y|/2 (A.32)

and for |x − y| ≤ 1/2 and λ ≥ 1

G(x, y, λ) �
{ |x − y|2−d if d ≥ 3
| ln |x − y|| if d = 2

(A.33)

are well-know. The second bound immediately gives

sup
x∈Rd

∫

|x−y|≤α

G(x, y, λ)|W (y)| dy � sup
x∈Rd

∫

|x−y|≤α

gd(x − y)|W (y)| dy

at least for all 0 < α ≤ 1/2 and the first one shows
∫

|x−y|>α

G(x, y, λ)|W (y)| dy � λ−1
∫

|x−y|≥α

|x − y|−de−
√

λ|x−y|/2|W (y)| dy .

Integrating over shells αn ≤ |x − y| < α(n + 1) leads to

sup
x∈Rd

∫

|x−y|>α

G(x, y, λ)|W (y)| dy � λ−1
∞∑

n=1

e−
√

λαn/2 (α(n + 1))d − (αn)d

(αn)d
‖W‖L1

loc,unif

� λ−1
∞∑

n=1

e−
√

λαn/2‖W‖L1
loc,unif

= e−
√

λα/2

λ(1− e−
√

λα/2)
‖W‖L1

loc,unif
� e−

√
λα/4

√
λα

‖W‖L1
loc,unif

since 0 < t �→ te−t/2

1−e−t is bounded. This proves (A.31).
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We sketch the proof of the bounds (A.32) and (A.33), for the convenience of the reader:

The kernel of the heat semigroup is e−P2t (x, y) = (4π t)−d/2e−
|x−y|2

4t . Since (P2 + λ)−1 =∫∞
0 e−P2s−λs ds we have

G(x, y, λ) =
∫ ∞

0
(4πs)−d/2e−

|x−y|2
4s e−λs ds

= |x − y|2−d
∫ ∞

0
(4πu)−d/2e−

1
4u e−λ|x−y|2u du

Moreover, 1
4u + λ|x − y|2u ≥ √

λ|x − y| for all u > 0, so

G(x, y, λ) ≤ |x − y|2−de−
√

λ|x−y|/2
∫ ∞

0
(4πu)−d/2e−

1
8u e−λ|x−y|2u/2 du

= |x − y|−de−
√

λ|x−y|/2

λ

∫ ∞

0
(4πu)−d/2e−

1
8u λ|x − y|2ue−λ|x−y|2u/2 du

u

� |x − y|−de−
√

λ|x−y|/2

λ

since 0 < t �→ te−t is bounded and cd = ∫∞
0 (4πu)−d/2e− 1

4u du
u < ∞ for all d ≥ 1. This

proves (A.32).
On the other hand,

G(x, y, λ) = |x − y|2−d
∫ ∞

0
(4πu)−d/2e−

1
4u e−λ|x−y|2u du ≤ c̃d |x − y|2−d

where c̃d =
∫∞
0 (4πu)−d/2e− 1

4u du < ∞ if d ≥ 3, which proves (A.33) when d ≥ 3.
If d = 2, then for 0 < |x − y| ≤ 1/2, one has

G(x, y, λ) = (4π)−1
∫ ∞

0
e

1
4u e−λ|x−y|2u du

u
�

∫ 1

0
e

1
4u

du

u

+
∫ |x−y|−2

1

du

u
+

∫ ∞

|x−y|−2
e−λ|x−y|2u du

u

Since
∫ 1
0 e

1
4u du

u � 1 and
∫∞
|x−y|−2 e−λ|x−y|2u du

u = ∫∞
1 e−λu du

u ≤ 1 for λ ≥ 1, this proves
(A.33) when d = 2. ��

Appendix B. Gronwall type bounds

Lemma B.1 Let T > 0 and let w, E : [0, T ] → [0,∞). If for some c > 0

w(t) ≤ E(t) + c
∫ t

0
et−s w(s) ds, (B.1)

for all t ∈ [0, T ], then

w(t) ≤ E(t) + c
∫ t

0
e(1+c)(t−s) E(s) ds ∀ t ∈ [0, T ]. (B.2)
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Moreover, if

w(t) ≤ E(t) + c
∫ t

0
es−t w(s) ds, (B.3)

for all t ∈ [0, T ], then

w(t) ≤ E(t) + c
∫ t

0
e(c−1)(t−s) E(s) ds ∀ t ∈ [0, T ]. (B.4)

Proof Put v(t) := ∫ t
0 e

t−s w(s) ds. Then v(0) = 0 and, assuming (B.1),

v′(t) = v(t) + w(t) ≤ E(t) + (1+ c)v(t)

Hence

d

dt

(
e−(1+c)t v(t)

)

= e−(1+c)t (v′(t) − (1+ c)v(t)) ≤ e−(1+c)t E(t).

It follows that

e−(1+c)t v(t) =
∫ t

0

d

ds

(
e−(1+c)s v(s)

)

ds ≤
∫ t

0
e−(1+c)s E(s) ds .

This implies

v(t) ≤
∫ t

0
e(1+c)(t−s) E(s) ds,

and (B.2) follows, cf. (B.1). ��

Appendix C. Optimizing the threshold

It is tempting to split the potential V = V1+ V2 at infinity in order to optimize the threshold
above which one can exclude existence of eigenvalues. Using V1 = sV and V2 = (1− s)V ,
Theorem 4.8 shows the non–existence of eigenvalues with

E >
1

4

(

β + ω1s +
√

(β + ω1s)2 + 2ω2(1− s)

)2

= ω2
1

4
(g(s))2

where for 0 ≤ s ≤ 1 we set

g(s):=b + s +
√

(b + s)2 + 2c(1− s) (C.1)

with b = β/ω1 and c = ω2/ω
2
1. The goal is to minimize g over s ∈ [0, 1].

Lemma C.1 (Bang–Bang type Lemma) For g given in (C.1) we have min0≤s≤1 g(s) =
min(g(0), g(1)). More precisely,

min
0≤s≤1 g(s) =

{
g(0) if c < 2b + 2
g(1) if c > 2b + 2

(C.2)

and g is constant if c = 2b + 2.
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Proof Write c = 2b+ 2+ r . Then (b+ s)2 + 2c(1− s) = (b+ 2− s)2 + 2r(1− s), hence

g(s) = b + s +
√

(b + 2− s)2 + 2r(1− s)

for all 0 ≤ s ≤ 1. Note that g is clerly constant on [0, 1] if r = 0. On [0, 1] the derivative of
g is given by

g′(s) = 1+ ((b + 2− s)2 + 2r(1− s))−1/2(s − (b + 2+ r)
)
.

Fix 0 ≤ s ≤ 1. A calculation shows
(
((b + 2− s)2 + 2r(1− s))−1/2(s − (b + 2+ r)

))2
> 1

if and only if 0 < r(r+2b+2) = rc. Since c ≥ 0, this implies that if r < 0, i.e., c < 2b+2,
we have g′ > 0 on [0, 1], i.e., g is strictly increasing on [0, 1].

On the other hand, if c > 2b + 2, then also c − b > b + 2 ≥ 2 and r < 0, so g′ < 0 on
[0, 1], i.e., g is strictly decreasing on [0, 1]. This proves the lemma. ��
Corollary C.2 Setting

β2:=γ∞
(
B̃2), ω2

1:=γ∞
(
(xV )2

)
, ω2:=γ+∞

(
x · ∇V

)
(C.3)

the threshold 
(B, V ) defined in (1.14) optimized for splitting the potential as V = V1+V2
with V1 = sV , V2 = (1− s)V and 0 ≤ s ≤ 1 is given by


̃(B, V ) =
{ 1

2

(
β2 + ω2 + β

√
β + 2ω2

)
if ω2 ≤ 2ω1(β + ω1)

(β + ω1)
2 if ω2 > 2ω1(β + ω1)

(C.4)

Proof Given Lemma C.1 this is just a simple calculation. ��

Appendix D. IMS localization formula

In one step in the proof of Lemma 4.6 we need a quadratic form version of the well-known
IMS localization formula under minimal assumptions on the quadratic form of the magnetic
Schrödinger operator. This result is not new, see e.g. [34, pp. 98, Prop. 4.2]. For the sake of
completeness we include a short proof.

Theorem D.1 (IMS localization formula) Let A be a locally square integrable magnetic
vector potential and V form small w.r.t. (P − A)2. Then for all bounded real–valued ξ ∈
C∞(Rd) such that ∇ξ is also bounded and all ϕ ∈ D(P − A), also ξϕ and ξ2ϕ ∈ D(P − A)

and

Re qA,V (ξ2ϕ, ϕ) = qA,V (ξϕ, ξϕ)− 〈
ϕ, |∇ξ |2ϕ〉 (D.1)

Proof As before, one easily checks that ξϕ and ξ2ϕ are in the domain of P − A when ϕ

is. Moreover, the potential V commutes with the multiplication operator ξ , so as quadratic
forms

〈
ξ2ϕ, Vϕ

〉 = 〈
ξϕ, V ξϕ

〉
and we only have to check the kinetic energy term. Since

(P − A)(ξ2ϕ) = ξ(P − A)(ξϕ)+ (Pξ)ξϕ a short calculation reveals
〈
(P − A)(ξ2ϕ), (P − A)ϕ

〉 = 〈
(P − A)(ξϕ), (P − A)(ξϕ)

〉+ 〈
(Pξ)ϕ, (P − A)(ξϕ)

〉

− 〈
(P − A)(ξϕ), (Pξ)ϕ)

〉− 〈
ϕ, |∇ξ |2ϕ〉 ,

123



Absence of positive eigenvalues of magnetic Schrödinger… Page 65 of 66    63 

so

Re qA,0(ξ
2 ϕ, ϕ) = Re

〈
(P − A)(ξ2ϕ), (P − A)ϕ

〉

= 〈
(P − A)(ξϕ), (P − A)(ξϕ)

〉 + 〈
ϕ, |∇ξ |2ϕ〉

which proves (D.1). ��
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