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Abstract

We present a unified framework ensuring well posedness and providing stability estimates to a class of 
Initial – Boundary Value Problems for renewal equations comprising a variety of biological or epidemio-
logical models. This versatility is achieved considering fairly general – possibly non linear and/or non local 
– interaction terms, allowing both low regularity assumptions and independent variables with or without a 
boundary. In particular, these results also apply, for instance, to a model for the spreading of a Covid like 
pandemic or other epidemics. Further applications are shown to be covered by the present setting.
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1. Introduction

In a variety of biological models, different species are typically described through their densi-
ties u1, u2, . . . , uk and, in general, each uh depends on time t ∈R+, on age a ∈ R+, on a spatial 
coordinate in R2 or R3 and possibly also on some structural variables. Thus, a unified treatment 
of these models finds its natural setting in the following general mixed Initial – Boundary Value 
Problem (IBVP) in X =Rm+ ×Rn

⎧⎨
⎩

∂tu
h + divx

(
vh(t, x)uh

)= gh (t, x,u(t, x), u(t)) (t, x)∈R+ ×X
uh(t, ξ) = uh

b (t, ξ, u(t)) (t, ξ)∈R+ × ∂X
uh(0, x) = uh

o(x) x ∈X ,

(1)

where h = 1, . . . , k. Aiming at a rather general setting while keeping sharp estimates, without 
any loss in generality, we write (1) in the form

⎧⎨
⎩

∂tu
h + divx

(
vh(t, x)uh

)= ph (t, x,u(t)) uh + qh (t, x,u,u(t)) (t, x)∈ I×X
uh(t, ξ) = uh

b (t, ξ, u(t)) (t, ξ)∈ I×∂X
uh(0, x) = uh

o(x) x ∈X ,

(2)

where h = 1, . . . , k. Note that the decomposition of the source term gh in (1) into ph and qh is 
neither unique nor in any sense restrictive.

We stress that both in (1) and in (2) the term u(t) appearing in the right hand sides is under-
stood as a function, so that both the source and boundary terms in (1), besides being non linear, 
also comprise quite general non local, i.e., functional, dependencies.

The current literature comprehends a multitude of well known models fitting into (1): we recall 
here for instance [1–9], leaving to Section 3 the highlighting of specific aspects of (1) in other 
recent or classical models. In particular, the well posedness and stability theorems below apply 
also to model (11) which, to our knowledge, does not fully fit into other well posedness results 
in the literature. At the same time, the literature covering particular instances of (1) dates back 
to classical milestones, such as [10–13]. Moreover, various textbooks introduce to the analytical 
study of models fitting into (1), see for instance [14–17,9,18].

A multitude of compartmental models share the key features of the chosen framework (1): 
they are the domain X of the x variable and the coexistence of rather general local and non local 
terms. Indeed, under the choice of X above, we comprise also bounded space/age domains [6], 
half lines [19], full vector spaces [7] as well as their combinations [3,5,20,21]. In all these cases, 
rather general conditions are assigned along the different types of boundaries that fit into (1), 
such as, for instance, natality terms [3,20,21]. The biological meaning imposes that these bound-
ary terms, as well as the sources in (1), may contain both local and non local terms. The former 
ones comprehend, for instance, mortality terms [4,5], while the latter can be motivated by na-
tality [3,20], predation [22] or interaction between populations [4], e.g., the propagation of an 
infection [5].

We underline that the present framework does not rely on any regularizing effect of diffusion. 
The general non local terms here considered need not have any smoothing effect, and can also be 
absent. The lack of diffusion operators ensures that any movement or evolution described by (1)
propagates with a finite speed. In particular, the present approach is consistent with deterministic 
modeling, while the Laplace operator may also serve to describe various sorts of random effects, 
see for instance [23,24].
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Within this general framework, we first prove well posedness, i.e., local existence, unique-
ness and continuous dependence of the solution to (1) on the initial datum. Then, we provide 
conditions ensuring the global in time existence and the stability with respect to functions and 
parameters defining (1). Throughout, the functional setting is provided by L1 and the distance 
between solutions is always evaluated through the L1 norm. As a consequence, we can deal with 
non smooth solutions, a necessary feature in view of control problems. Moreover, the bounded-
ness neither of the total variation nor of the L∞ norm of the data is required. Indeed, among 
the different notions of solutions to IBVPs for renewal equations, we choose to establish our 
framework on that introduced in [25,26]. This definition not only is stated in terms of integral 
inequalities, more convenient in any limiting procedure, but remarkably it does not require any 
notion of trace, allowing us to deal with merely L1 solutions.

Remark that in (1) both the source terms and the boundary terms are non linear. Thus, a key 
tool in the proofs is Banach Contraction Theorem, based on precise estimates on scalar equations. 
Merely requiring some sort of local Lipschitz regularity does not rule out the possibility of finite 
time blow ups (in any norm), as shown below by explicit examples. We thus resort to a Gronwall 
type argument to obtain global in time existence. As a byproduct, we also record a uniqueness 
result in the general setting of (1) based, as in the classical Kružkov case, on a carefully chosen 
definition of solution, see § 2.1.

We also note that particular instances of equations falling within (1) can be studied through 
other techniques, such as, for instance, analytic semigroup theory, generalized entropy methods 
or Laplace transform. We refer, for instance, to [14–16,9].

The present results, besides unifying the treatment of various models, provide tools useful 
in tackling control/optimization problems based on (1). Indeed, the stability estimates proved 
in Theorem 2.5 ensure that general integral functionals defined on the solutions are Lipschitz 
continuous functions of the data and parameters characterizing (1). A further direction that can be 
pursued using the present results is that of inverse problems, i.e., exhibiting conditions ensuring 
that an optimal choice of data and parameters in (1) is possible, in order to best fit sets of given 
experimental data.

This paper is organized as follows. In Section 2 we provide the basic well posedness and 
stability results. Then, Section 3 is devoted to specific applications that fit into (1). The technical 
analytic proofs are deferred to the final Section 4.

2. Assumptions, definitions and results

Throughout, we set R+ = [0, +∞[,

I = R+ or I = [0, T ] and X= Rm+ ×Rn (3)

for a positive T .
First, we state what we mean by solution to (1). To this aim, we extend to the present case the 

definitions in [25,26], see in particular [27, Definition 3.5].

Definition 2.1. A map u∗ ∈ C0(I ; L1(X; Rk)) is a solution to (1) if setting for h = 1, . . . , k, 
t ∈ I , x ∈X and ξ ∈ ∂X

Gh(t, x) = gh (t, x,u∗(t, x), u∗(t)) and Uh(t, ξ) = uh (t, ξ, u∗(t)) ,
b b
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for h = 1, . . . , k the map uh∗ is a semi–entropy solution to the IBVP

⎧⎨
⎩

∂tu + divx

(
vh(t, x)u

)=Gh(t, x) (t, x)∈ I ×X
u(t, ξ) =Uh

b (t, ξ) (t, ξ)∈ I × ∂X
u(0, x) = uh

o(x) x ∈X .

We recall in Definition 2.6 below the notion of semi-entropy solution.
The main result of this paper concerns the well posedness of the Cauchy Problem (2).

Theorem 2.2. Use the notation (3) and let the following assumptions hold:

(V) v ∈ (C1 ∩ L∞)(I ×X; Rk×(n+m)), divxv
h ∈ L1

loc(I ; L∞(X; R)) for h = 1, . . . , k and there 
exists a positive V such that

(
vh(t, x)

)
i
> V ∀ (t, x) ∈ I × ∂X and for

h=1, . . . , k ;
i =1, . . . ,m .

(P) For all w ∈ L1(X; Rk), the map (t, x) → p(t, x, w) is in C0(I × X; Rk) and there exist 
positive P1 and P2 such that for t ∈ I , x ∈X, w, w′ ∈ L1(X; Rk)

‖p(t, x,w)‖ ≤ P1 + P2 ‖w‖L1(X;Rk) ;∥∥p(t, x,w) − p(t, x,w′)
∥∥≤ P2

∥∥w − w′∥∥
L1(X;Rk)

.

(Q) For all w ∈ L1(X; Rk), the map (t, x, u) → q(t, x, u, w) is in C0(I × X × Rk; Rk) and 
there exist positive Q1 and Q3 and a function Q2 ∈ (L1 ∩ L∞)(X; R+) such that for t ∈ I , 
x ∈X, u, u′ ∈ Rk , w, w′ ∈ L1(X; Rk):

‖q(t, x,u,w)‖ ≤ Q1 ‖u‖ + Q2(x)‖w‖L1(X;Rk) + Q3 ‖u‖‖w‖L1(X;Rk) ;∥∥q(t, x,u,w) − q(t, x,u′,w′)
∥∥≤ Q1

∥∥u − u′∥∥+ Q3 ‖w‖L1(X;Rk)

∥∥u − u′∥∥
+Q3

∥∥u′∥∥∥∥w − w′∥∥
L1(X;Rk)

.

(BD) ub : R+ × ∂X × L1(X; Rk) → Rk is such that for any w ∈ L1(∂X; Rk), the map (t, ξ) →
ub(t, ξ, w) is measurable. Moreover, there exists a function B ∈ (L1 ∩ L∞)(∂X; R+) such 
that for every t ∈ I , ξ ∈ ∂X, w, w′ ∈ L1(X; Rk),

‖ub(t, ξ,w)‖ ≤ B(ξ)
(
1 + ‖w‖L1(X,Rk)

)
∥∥ub(t, ξ,w) − ub(t, ξ,w′)

∥∥≤ B(ξ)
∥∥w − w′∥∥

L1(X,Rk)
.

(ID) uo ∈ L1(X; Rk).

Then,

(WP.1) There exists a positive T∗ ∈ I such that, setting I∗ = [0, T∗], the IBVP (2) admits a 
solution in the sense of Proposition 2.1 defined on I∗.
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(WP.2) Assume u1 and u2 solve (2) in the sense of Definition 2.1 with u1, u2 ∈ L∞(I ×X; Rk). 
Then, u1 = u2.

(WP.3) Let ûo, ǔo ∈ L1(X; Rk). If û : Î → Rk , respectively ǔ : Ǐ → Rk , solve (2) in the sense 
of Definition 2.1 with initial datum uo = ûo, respectively uo = ǔo, then there exists a 
function L ∈ L∞

loc(Î ∩ Ǐ ; R) such that for all t ∈ Î ∩ Ǐ

∥∥û(t) − ǔ(t)
∥∥

L1(X;Rk)
≤L(t)

∥∥ûo − ǔo

∥∥
L1(X;Rk)

.

The proof is deferred to Section 4.
In several applications it is of interest to guarantee that each component in the solution attains 

non negative values. To this aim, we state the following Corollary.

Corollary 2.3. Let the same assumptions of Theorem 2.2 hold and assume moreover that for an 
index h ∈ {1, . . . , k}

(Q+) For t ∈ I , a.e. x ∈X, u ∈ Rk+, w ∈ L1(X; Rk+), qh(t, x, u, w) ≥ 0.

(BD+) For t ∈ I , ξ ∈ ∂X and w ∈ L1(X; Rk), uh
b (t, ξ,w) ≥ 0.

(ID+) For a.e. x ∈X, uh
o(x) ≥ 0.

Then the unique solution u to (2) also satisfies for every t ∈ I∗ and for a.e. x ∈X.

uh(t, x) ≥ 0 . (4)

The proof is deferred to Section 4.
The above result is of a local nature and, without further assumptions, it can not be extended 

to a global result, as the following examples show. Consider the Cauchy Problem (2) with k = 1, 
m = 0, n = 1, X = R, p(t, x, w) = ´ 1

0 w(x)dx, q ≡ 0, which results in

⎧⎨
⎩

∂tu = u
´ 1

0 u(t, x)dx

u(0, x) = χ[0,1](x)
solved by u(t, x) = 1

1 − t
χ[0,1](x) .

Note that (P) holds with P1 = 0 and P2 = 1. Clearly, u blows up in any norm at t = 1.
Similarly, setting k = 1, m = 1, n = 0, X = R+, p(t, x, w) = ´

R+ w(x)dx, q ≡ 0 in (2), 
which satisfies (P) with P1 = 0 and P2 = 1, leads to the Cauchy Problem

⎧⎪⎨
⎪⎩

∂tu + ∂xu = u
´
R+ u(t, x)dx

u(t,0) = 0
u(0, x) = χ[0,1](x) ,

solved by u(t, x) = 1

1 − t
χ[t,t+1](x) .

Again, the solution blows up in any norm at t = 1.
Typical biological/epidemiological models have further properties ensuring that solutions are 

defined globally in time. In particular, the model described in § 3.3 displays a quadratic right hand 
side similar to those in the examples above, differing in the sign. Nevertheless, in this example, 
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well posedness holds globally in time. Indeed, in general, a lower bound on the solutions is 
available since Corollary 2.3 ensures that the components of the solution attain non negative 
values. An upper bound, preventing finite time blow up, is obtained through assumption (BD) on 
the boundary datum and a further condition, see (5) below, that bounds the overall growth.

Corollary 2.4. Let I = R+. Let the assumptions of Corollary 2.3 hold for all h = 1, . . . , k. As-
sume moreover that for suitable C1 ∈ L∞

loc(R+; L1(X; R)) and C2 ∈ L∞
loc(R+; R),

k∑
h=1

ph(t, x,w)uh + qh(t, x,u,w) ≤ C1(t, x) + C2(t)

k∑
h=1

uh (5)

for all t ∈ R+, a.e. x ∈X, u, w ∈ Rk . Then, the solution to (2) is defined for all t ∈R+.

Finally, we provide the stability estimates essential to tackle, for instance, control problems. 
To this aim, we need to slightly specialize the functional dependence of p, q and ub on u(t). We 
thus obtain sufficient conditions to apply Theorem 2.2 and get stability estimates.

Theorem 2.5. Let assumptions (V) and (ID) hold. Assume that in (2), for t ∈ I , x ∈ X, u ∈ Rk , 
w ∈ L1(X; Rk),

ph(t, x,w) = P h
(
t, x,

´
XK

h
p(t, x, x′)w(x′)dx′

)
qh(t, x,u,w) = Qh

(
t, x, u,

´
XK

h
q (t, x, x′)w(x′)dx′

)
uh

b(t, ξ,w) = Uh
b

(
t, ξ,

´
XK

h
u (t, ξ, x′)w(x′)dx′) ,

(6)

where the functions above satisfy:

(P) There exist P̄1 ≥ 0 and P̄2 ≥ 0 such that, for every h = 1, . . . , k, the function P h : I ×X ×
Rkp →R (kp ≥ 1) satisfies

∣∣∣P h (t, x, η)

∣∣∣≤ P̄1 + P̄2‖η‖ and
∣∣∣P h (t, x, η1) − P h (t, x, η2)

∣∣∣≤ P̄2‖η1 − η2‖

for every t ∈ I , x ∈X, η, η1, η2 ∈Rkp ; Kh
p ∈ L∞(I ×X2; Rkpk).

(Q) There exist Q̄1, Q̄3 ≥ 0 and Q̄2 ∈ (L1 ∩ L∞) (X;R+) such that, for every h = 1, . . . , k, the 
function Qh : I ×X ×Rk ×Rkp → R+ (kq ≥ 1) satisfies

∣∣∣Qh (t, x,u, η)

∣∣∣≤ Q̄1‖u‖ + Q̄2(x)‖η‖ + Q̄3‖u‖‖η‖∣∣∣Qh (t, x,u1, η1)−Qh (t, x,u2, η2)

∣∣∣≤ Q̄1‖u1 − u2‖ + Q̄3‖η1‖‖u1 − u2‖
+ Q̄3‖u2‖‖η1 − η2‖

for every t ∈ I , x ∈X, u, u1, u2 ∈Rk , η, η1, η2 ∈Rkq ; Kh ∈ L∞(I ×X2; Rkqk).
q
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(BD) There exists B̄ ∈ (L1 ∩ L∞)(∂X; R+) such that for every h = 1, . . . , k, the function 
Uh

b : I × ∂X ×Rku → R+ satisfies

∣∣∣Uh
b (t, ξ, η)

∣∣∣≤ B̄(ξ) (1 + ‖η‖) and
∣∣∣Uh

b (t, ξ, η1) − Uh
b (t, ξ, η2)

∣∣∣≤ B̄(ξ)‖η1 − η2‖

for every t ∈ I , ξ ∈ ∂X and η, η1, η2 ∈ Rku ; Kh
u ∈ L∞(I × ∂X ×X; Rkuk).

Then, Theorem 2.2 applies. Moreover, if both systems⎧⎨
⎩

∂tu
h + divx

(
vh(t, x)uh

)= p̂h (t, x,u(t)) uh + q̂h (t, x, u,u(t)) (t, x)∈ I×X
uh(t, ξ) = ûh

b (t, ξ, u(t)) (t, ξ)∈ I×∂X
uh(0, x) = ûh

o(x) x ∈X ,

(7)

⎧⎨
⎩

∂tu
h + divx

(
vh(t, x)uh

)= p̌h (t, x,u(t)) uh + q̌h (t, x, u,u(t)) (t, x)∈ I×X
uh(t, ξ) = ǔh

b (t, ξ, u(t)) (t, ξ)∈ I×∂X
uh(0, x) = ǔh

o(x) x ∈X ,

(8)

satisfy the assumptions above, then the following stability estimates hold:

∥∥û(t) − ǔ(t)
∥∥

L1(X;Rk)

≤O(1)
[∥∥∥P̂ − P̌

∥∥∥
L∞

(
[0,t]×X×Rkp ;Rk

) +
∥∥∥K̂p − Ǩp

∥∥∥
L∞([0,t]×X2;Rkpk2

)

+
∥∥∥Q̂ − Q̌

∥∥∥
L1([0,t]×X;L∞(Rk×Rkq ;Rk))

+
∥∥∥K̂q − Ǩq

∥∥∥
L∞([0,t]×X2;Rkq k2

)

+
∥∥∥Ûb − Ǔb

∥∥∥
L1([0,t]×∂X;L∞(Rku ;Rk))

+
∥∥∥K̂u − Ǩu

∥∥∥
L∞([0,t]×∂X×X;Rkuk2

)

]
eO(1)t

for every t such that û and ǔ are defined on [0, t] and where the Landau symbol O(1) denotes a 
constant independent of the initial data.

The proof is deferred to Section 4.
Finally, we note that (V) and Definition 2.1 allow to immediately extend all results in the 

present section to the case X = (∏m
i=1 Ii

) × Rn, as soon as I1, . . . , Im are (non trivial) real 
intervals bounded below. In particular, any of the Ii may well be bounded also above.

2.1. The definition of semi–entropy solution ensures uniqueness

This paragraph provides a definition of solution and the consequent uniqueness statement in 
a setting more general than the one usually found in the literature. In particular, it extends the 
results in [25, Section 3] to the slightly more general case of the unbounded domain X. Indeed, 
with the notation (3), consider the fully nonlinear IBVP⎧⎨

⎩
∂tu + divxf (t, x,u) = g(t, x,u) (t, x)∈ I ×X
u(t, ξ) = ub(t, ξ) (t, ξ)∈ I × ∂X
u(0, x) = uo(x) x ∈X .

(9)

The following definition is the extension to (9) of [27, Definition 3.5], see also [25,26].
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Definition 2.6. A semi-entropy solution to the IBVP (9) on the real interval I is a map u ∈
L∞

loc(I ; L1(X; R)) such that for any κ ∈ R and for any test function ϕ ∈ C1
c(]−∞, sup I [ ×

Rn+m; R+)

ˆ

I

ˆ

X

(u(t, x) − κ)± ∂tϕ(t, x)dxdt

+
ˆ

I

ˆ

X

sgn±(u(t, x) − κ) (f (t, x,u) − f (t, x, κ)) · gradxϕ(t, x)dxdt

+
ˆ

I

ˆ

X

sgn±(u(t, x) − κ) [g (t, x,u(t, x)) − divxf (t, x, κ)] ϕ(t, x)dxdt (10)

+
ˆ

X

(uo(x) − κ)± ϕ(0, x)dx

+ Lip(f )

ˆ

I

ˆ

∂X

(ub(t, ξ) − κ)± ϕ(t, ξ)dξdt ≥ 0

where Lip(f ) is a Lipschitz constant of the map u → f (t, x, u), uniform in (t, x) ∈ I ×X.

Above, we use the notation w+ = max{w, 0} and w− = max{−w, 0}.
A key feature of (10) is its ensuring uniqueness, which we detail in the next Proposition to 

ease comparisons with the current literature.

Proposition 2.7. Consider the general scalar IBVP (9) under the assumptions

(f) f ∈ C0(I ×X × R; Rn+m) admits continuous derivatives ∂uf , ∂ugradxf , D2
xxf with ∂uf

and gradxf bounded in (t, x) ∈ I ×R+ locally in u ∈R; ∂ugradxf is bounded.

(g) g, ∂ug, ∂xi
g ∈ C0(I × X × R; R) and for all (t, x) ∈ I × X, |g(t, x,u)| ≤ G(u) for a map 

G ∈ L∞
loc(R; R+) and ∂ug is bounded.

(bd) The boundary datum satisfies ub ∈ L∞(I × ∂X; R).

(id) The initial datum satisfies uo ∈ L∞(X; R).

If u1, u2 ∈ L∞(I ×X; R) both satisfy (10), then they coincide.

This Proposition slightly extends [25, Theorem 18]. However, its proof relies on merely tech-
nical modifications to [25, Lemma 16 and Lemma 17], due to the present unboundedness of the 
domain X. Very similar techniques are employed also in [28, § 2.6 and § 2.7], which is devoted 
to a hyperplane.
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3. Sample applications

The structure of (1) is sufficiently flexible to comprise a variety of applications of mathematics 
to biology, in particular to epidemiology. The general results in the preceding section can be 
applied to well known models in the literature, see for instance [1,4,29,9]. In the next paragraphs, 
we select sample applications based on analytic structure that differ in the number of equations, 
in the number of independent variables, in the presence of (partial) boundaries and in the role 
of non local terms. In particular, § 3.1 deals with a recently proposed model, see [5], while the 
subsequent ones refer to other classical models that fit into (1).

3.1. The spreading of an epidemic

During the spreading of an epidemic, within a population we distinguish among individuals 
that are Susceptible, Infective, Hospitalized or Recovered, see [5]. Each of these populations 
is described through its time, age and space dependent density: S = S(t, a, y), I = I (t, a, y), 
H = H(t, a, y) and R = R(t, a, y), respectively. Remark that the distinction between I and 
H consists in the H individuals that, being hospitalized or quarantined, do not infect anyone 
although being ill. In its most general form, the model presented in [5, § 2] to describe the 
evolution of these populations, reads

⎧⎪⎪⎨
⎪⎪⎩

∂tS + ∂aS + divy(vS S) + μS S =−(ρ ⊗ I )S

∂t I + ∂aI + divy(vI I ) + μI I = (ρ ⊗ I )S −κ I −ϑ I

∂tH + ∂aH +μH H = +κ I −ηH

∂tR + ∂aR +divy(vR R)+ μR R = +ϑ I +ηH

t ∈R+
a ∈R+
y ∈R2

(11)

where the propagation of the infection is described by

(ρ ⊗ I (t)) (a, y) =
ˆ

R+

ˆ

R2

ρ(a, a′, y, y′) I (t, a′, y′)dy′ da′ . (12)

Here, the function ρ plays the key role of describing how infective individuals infect others, 
at which distance and with which dependence on age or time, see [5] for more details. In (11), 
vS = vS(t, a, y), vI = vI (t, a, y) and vR = vR(t, a, y) describe the time, age and, possibly, space 
dependent movements of the S, I and R individuals, while μS = μS(t, a, y), μI = μI (t, a, y), 
μH = μH (t, a, y) and μR = μR(t, a, y) are the mortalities. The term κ = κ(t, a, y) describes 
how quickly infected individuals are confined to quarantine; ϑ = ϑ(t, a, y), respectively η =
η(t, a, y), quantifies the speed at which infected, respectively quarantined, individuals recover.

System (11) needs to be supplemented by boundary and initial data:

⎧⎪⎪⎨
⎪⎪⎩

S(t, a = 0, y)=Sb(t, y)

I (t, a = 0, y)=0
H(t, a = 0, y)=0
R(t, a = 0, y)=0

and

⎧⎪⎪⎨
⎪⎪⎩

S(t = 0, a, y)=So(a, y)

I (t = 0, a, y)= Io(a, y)

H(t = 0, a, y)=Ho(a, y)

R(t = 0, a, y)=Ro(a, y) .

(13)

Note that a more precise boundary term, though not amenable to be used in the short term, might 
be a natality term of the form
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S(t, a = 0, y) =
ˆ

R+

b(t, a′, y)S(t, a′, y)da′

which also fits in the framework of Theorem 2.2 and Theorem 2.5. Note that (11)–(12)–(13)
is a system with independent variables (a, y) where a is bounded below while y is in R2 and 
no second order differential operator is present. The model (11)–(12)–(13) fits into (2) in the 
form (6) setting X = R+ ×R2, x = (a, y), ξ = (0, y) and

k = 4 m = 1 n = 2
u1 = S u2 = I u3 = H u4 = R

w1 = S(t) w2 = I (t) w3 = H(t) w4 = R(t)

v1 =
[

1
vS

]
v2 =

[
1
vI

]
v3 =

[
1
0

]
v4 =

[
1
vR

]
u1

b = Sb u2
b = 0 u3

b = 0 u4
b = 0

u1
o = So u2

o = Io u3
o = Ho u4

o = Ro

p1(t, x,
) = −μS − 


p2(t, x,
) = −μI − κ − ϑ

p3(t, x,
) = −μH − η

p4(t, x,
) = −μR

q1(t, x,u,
) = 0
q2(t, x,u,
) = 
 u1

q3(t, x,u,
) = κ u2

q4(t, x,u,
) = ϑ u2 + ηu3

and the only 2 non zero entries in Kp and Kq are valued ρ, so that

ˆ

X

K1
p

(
t, (a, y), (a′, y′)

)
w(a′, y′)da′dy′ = (ρ ⊗ I (t)) (a, y) ,

ˆ

X

K2
q

(
t, (a, y), (a′, y′)

)
w(a′, y′)da′dy′ = (ρ ⊗ I (t)) (a, y) .

Proposition 3.1. Set I = [0, T ] or I = R+. Let vS, vI , vR ∈ (C1 ∩ L∞)(I ×X; R2) with diver-
gence in L1(I; L∞(X; R)); ρ ∈ L∞(R2+ ×R4; R) and Sb ∈ (L1 ∩L∞)(I ×R2; R). Let μS , μI , 
μH , μR , ϑ , η and κ be positive and in L∞. Fix an initial datum (So, Io, Ho, Ro) in L1(X; R4). 
Then:

1. Problem (11)–(12)–(13) fits into Theorem 2.2 and Theorem 2.5 and hence it admits a solution 
(S, I, H, R) ∈ C0

([0, T∗];L1(X;R4)
)
, for a T∗ > 0.

2. If the initial and boundary data (So, Io, Ho, Ro) and Sb are non negative, if ρ ≥ 0 and if the 
constants κ, η, θ are non negative, then Corollary 2.3 applies, ensuring that the solution is 
non negative: (S, I, H, R)(t) ∈ L1(X; R4+), for all t ∈ [0, T∗].

3. If, in addition to what required at 2., the mortalities μS, μI , μH , μR are non negative, 
then Proposition 2.4 applies, so that the solution is defined globally in time.

4. If, in addition to what required at 3., (So, Io, Ho, Ro) in L∞(X; R4+), then the solution is 
locally bounded: (S, I, H, R) ∈ L∞(J ×X; R4+), for any bounded interval J ⊆ I. Hence, 
(S, I, H, R) is the unique solution to (11) in the sense of Definition 2.1.

The proof is deferred to Section 4.
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As pointed out in (11), a natural control parameter is the coefficient κ = κ(t, a, y), which 
determines how quickly infective individuals are isolated in quarantine.

A first natural choice for a cost to be minimized by a careful choice of κ is the total number 
of deaths on the time interval [0, T ], namely

D(κ) =
T̂

0

ˆ

R+

ˆ

R2

(μI (t, a, y) I (t, a, y) + μH (t, a, y)H(t, a, y)) dy da dt .

Proposition 3.1 ensures that the cost D is a continuous function of κ . Hence, standard com-
pactness arguments, for instance in the case of a constant κ , ensure the existence of an optimal 
control. Moreover, the Lipschitz continuity, again ensured by Proposition 3.1, allows to use stan-
dard optimization algorithms to actually find near–to–optimal controls.

A second reasonable choice is to minimize the maximal number of infected individuals 
‖I‖L∞([0,T ]×R+×R2;R), aiming at minimizing the maximal stress on the health care system. 
Again, the continuity proved in Proposition 3.1 allows to use Weierstrass type arguments to 
exhibit the existence of optimal controls, thanks to the lower semicontinuity of the L∞ norm 
with respect to the L1 distance.

3.2. Cell growth and division

Consider the classical model [3, Formula (2)] devoted to the description of cell growth and 
cell division, as extended in [21, Formulæ (1.5)–(1.7)]:

{
∂tN + ∂aN + divy(V (a, y)N) = −λ(a, y)N

N(t,0, y) = ´
R+

´
Rn β

(
(a′, y′), y,N(t, a′, y′)

)
dy′da′ (14)

where t ∈ R+ is time, a ∈ R+ is age, (y1, . . . , yn) ∈ Rn is an n–tuple of structure variables, 
λ = λ(a, y) is the age– and state–specific loss rate, N = N(t, a, y) is the population density and 
V = V (a, y) is the (time independent) individual cell’s growth rate. Therefore, (14) fits into (2)
setting

k = 1 , n ∈N , m = 1 , X= R+×Rn , x = (a, y) , ξ = (0, y) , u = N , w = N(t) ,

v (t, (a, y)) = V (a, y) , p (t, (a, y),N(t)) = −λ(a, y) , q (t, (a, y),N,N(t)) = 0 ,

ub(t, y,N,N(t)) =
ˆ

Rn

ˆ

R+

β
(
(a′, y′), y,N(t, a′, y′)

)
da′dy′ .

Concerning the assumptions of Theorem 2.2, we have that (V) is satisfied as soon as V ∈ (C1 ∩
L∞)(X; Rn) and divV ∈ L1(I ; L∞(X; R)). Condition (P) is met whenever λ ∈ C0 ∩ L∞, with 
P1 = ‖λ‖L∞(R+×Rn;R) and P2 = 0. Assumption (Q) trivially holds. To comply with (BD), we 
need β to be Lipschitz continuous and sublinear in its fourth argument, i.e., β((a′, y′), y, w) ≤
B(y) (1 + |w|) for a suitable B ∈ L1 ∩ L∞. Under these assumptions, Theorem 2.2 applies 
to (14).

As soon as β ≥ 0 and the initial datum is non negative, also Corollary 2.3 applies, ensuring the 
solution is non negative. It is reasonable to assume from the biological point of view that λ ≥ 0, 
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so that also Corollary 2.4 applies (with C1 = 0, C2 = 0), ensuring that the solution is globally 
defined in time. It is straightforward to see that, as soon as β is linear in its third argument, it is 
possible to apply also Theorem 2.5.

3.3. An age and phenotypically structured population model

Within the general form (1) we recover also the recent model [20, Formula (1)], namely

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε ∂tMε + ∂a (A(a, y)Mε) = −
⎛
⎜⎝ˆ

R+

ˆ

Rn

Mε(t, a
′, y′)da′dy′ + d(a, y)

⎞
⎟⎠Mε

Mε(t, a = 0, y) = 1

A(a = 0, y) εn

ˆ

R+

ˆ

Rn

M
(

y′ − y

ε

)
b(a′, y′)Mε(t, a

′, y′)da′dy′

Mε(t = 0, a, y) = M0
ε (a, y) .

(15)

Here, the dependent variable Mε = Mε(t, a, y) describes the population density at time t , of age 
a ∈ R+ and trait x ∈ Rn, so that 

´
R+

´
Rn Mε(t, a, y)dadx is the total population. The growth 

function A = A(a, y) describes the age and trait dependent aging. The mortality, on the right 
hand side of the first equation in (15), both depends on the crowding, due to intraspecies com-
petition, and on a given mortality d = d(a, y). The function b = b(a, y) quantifies the natality 
and is modulated by the mutation probability kernel M, both defining the boundary term along 
a = 0, see also [30].

Note that the IBVP (15) can be seen as a prototype equation for various other similar models, 
see for instance [8, Formula (2.8)].

The above system (15) fits into (2) setting X = R+ ×Rn and

k = 1 , m = 1 , n ≥ 1 , x = (a, y) , ξ = (0, y) , u = Mε , w = Mε(t) ,

v =
[
A(a,y)/ε

0

]
, p(t, x,w) = −1

ε

ˆ

Rn

w(x)dx − d(x)

ε
, q(t, x,u,w) = 0 ,

ub(t, y,w) = 1

A(a = 0, y) εn

ˆ

R+

ˆ

Rn

M
(

y′ − y

ε

)
b(a′, y′)w(a′, y′)da′dy′ .

(16)

Proposition 3.2. Let A ∈ (C1 ∩ L∞)(X; R) with infA > 0 and diva,yA ∈ L∞(X; R). Let 
d ∈ L∞(Rn; R), M ∈ L∞(Rn; R) such that M(η) = 0 whenever ‖η‖ ≥ r , for a fixed r > 0. 
Moreover, b ∈ L∞(R+ ×Rn; R) such that |b(a, y)| ≤ (1 + ‖y‖)−(n+1). Then, for any initial da-
tum uo ∈ (L1 ∩ L∞)(X; R), Theorem 2.2 applies to the Cauchy Problem for (15) with datum 
uo. If moreover uo ≥ 0, A(0, y) ≥ 0, M ≥ 0 and b ≥ 0, Corollary 2.3 and Corollary 2.4 apply, 
ensuring that the solution is non negative and defined on all R+.

The proof is deferred to Section 4. Thus, the above result ensures existence on [0, +∞[ as soon 
as all the assumptions are available therein, recovering the well posedness results in [30,20].
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3.4. Further applications

We briefly recall here further models considered in the literature that fit within (1). In each 
of the cases below, we refer to the original sources for detailed descriptions of the modeling 
environments.

The model presented in [7, Formula (5)], devoted to the modeling of leukemia development, 
reads (here, i = 2, . . . , M − 1 for a fixed M ∈N , M ≥ 3):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tn1 =
(

2a1(x)

1 + K
´ 1

0 nM(t, x′)dx′ − 1

)
p1(x)n1

∂tni = 2

(
1− ai−1(x)

1+K
´ 1

0 nM(t, x′)dx′

)
pi−1(x)ni−1+

(
2ai(x)

1+K
´ 1

0 nM(t, x′)dx′ −1

)
pi(x)ni

∂tnM = 2

(
1 − aM−1(x)

1 + K
´ 1

0 nM(t, x′)dx′

)
pM−1(x)nM−1 − d nM

ni(0, x) = no
i (x) .

(17)
Remark that (17) can be seen as a system of ordinary differential equations on functions defined 
on [0, 1] or, alternatively, as a system of ordinary differential equations coupled also through a 
non local dependence on the x variable. Nevertheless, it fits within (1): indeed, set k = M , m = 0, 
n = 1, X = R, u = (n1, . . . , nM), v ≡ 0, the other terms being obviously chosen.

It is worth noting that the recent model [2, Formula (13)], though devoted to an entirely dif-
ferent scenario, is analytically analogous to (17) and also fits within the framework formalized 
in Section 2. The use of Theorem 2.2 and Theorem 2.5 thus extends the results in [2,7] compre-
hending L1 solutions and providing a full set of stability estimates.

Another example is the model recently presented in [6, Formula (1.1)], devoted to an age–
structured population described by the time, age and space dependent density u = u(t, a, y):

⎧⎨
⎩

∂tu + ∂au = d(J ∗ u(t) − u) + G(u(t))

u(t,0, y) = F (u(t))

u(0, a, y) = �(a,y)

(18)

considered in [6] for a ∈ [0, a+] and y ∈ �, where a+ ∈ ]0,+∞[ and � ⊆RN are given. Above, 
J is a convolution kernel, while the functionals F and G are locally Lipschitz continuous with 
respect to the L1 norm. Model (18) fits into (1) setting k = 1, m = 1, n = N , X = R+ × RN , 

x = (a, y), v =
[

1
0

]
, the choice of the other terms being immediate. The results in Section 2

immediately apply even if the age interval [0, a+] and the space domain are bounded, thanks 
to the generality of the assumptions required on v. This allows to have qualitative information 
on the dependence of the solutions exhibited in [6] on the various parameters and functions 
defining (18).

We recall also the following competitive population model with age structure as an example 
of a system of equations. It was introduced and studied from the optimal management point of 
view in [19, Formula (1.1)]:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu
1 + ∂au

1 = −μ1(a,u1)u1 − f 1(t, a)u1 − u1

Â

0

c1(a
′, a)u2(t, a′)da′

∂tu
2 + ∂au

2 = −μ2(a,u2)u2 − f 2(t, a)u2 − u2

Â

0

c2(a
′, a)u1(t, a′)da′

u1(t,0) =
Â

0

β1(a
′)u1(t, a′)da′

u2(t,0) =
Â

0

β2(a
′)u2(t, a′)da′

u1(0, a) = u1
o(a)

u2(0, a) = u2
o(a) .

(19)

Here, we have k = 2, m = 1, n = 0, X = R+, v = 1. Under the assumptions of Theorem 2.2 and 
Theorem 2.5 we recover the continuity of the profit functional [19, Formula (1.2)]

J (f ) =
T̂

0

Â

0

(
K1(a)f 1(t, a)u1(t, a) + K2(a)f 2(t, a)u2(t, a)

)
dadt ,

now also in the setting of L1 solutions.

4. Analytic proofs

4.1. The scalar case

We now consider in detail the affine scalar case, namely (9) with f (t, x, u) = v(t, x) u and 
g(t, x, u) = p(t, x) u + q(t, x), i.e.,

⎧⎨
⎩

∂tu + divx (v(t, x)u) = p(t, x)u + q(t, x) (t, x)∈R+ ×X
u(t, ξ) = ub(t, ξ) (t, ξ)∈R+ × ∂X
u(0, x) = uo(x) x ∈X .

(20)

Recall the following standard notation. A characteristic of (20) is the solution t → X(t; to, xo)

to the following Cauchy Problem for the system of ordinary differential equations

{
ẋ = v(t, x)

x(to) = xo .

(t, x)∈ I ×X
(to, xo)∈ I ×X .

(21)

For τ, t ∈ I and for x ∈X, define

E(τ, t, x) = exp

⎛
⎝ tˆ

(p (s,X(s; t, x)) − divxv (s,X(s; t, x)))ds

⎞
⎠ (22)
τ
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and for all (t, x) ∈ I ×X, if x ∈ X(t; [0, t[, ∂X), we set

T (t, x) = inf {s ∈ [0, t[ : X(s; t, x) ∈X} . (23)

With the notation introduced above, we recall the well known formula

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uo (X(0; t, x))E(0, t, x)

+
tˆ

0

q (τ,X(τ ; t, x)) E(τ, t, x)dτ x ∈X(t;0,X)

ub (T (t, x),X (T (t, x); t, x)) E (T (t, x), t, x)

+
tˆ

T (t,x)

q (τ,X(τ ; t, x)) E(τ, t, x)dτ x ∈X(t; [0, t[, ∂X)

(24)

obtained from the integration along characteristics, a standard tool at least since the classical 
paper [10]. The following relations are of use below, for a proof see for instance [31, Chapter 3],

∂tX(t; to, xo) = v (t,X(t; to, xo)) (25)

∂toX(t; to, xo) = −v(to, xo) exp

tˆ

to

divxv (s;X(t, to, xo))ds (26)

DxoX(t; to, xo) = M(t), the matrix M solves

{
Ṁ = Dxv (t,X(t; to, xo))M

M(to) = Id .
(27)

In order to prove that (24) solves (20) in the sense of Definition 2.6 and to provide the basic 
well posedness estimates, a few technical lemmas are in order. First introduce the following 
notation: where misunderstandings might arise, we use the positional notation for derivatives. 
For instance, with reference to the map (t; to, xo) → X(t; to, xo), we denote

∂2X(t; to, xo) = ∂toX(t; to, xo) = lim
τ→0

X(t; to + τ, xo) − X(t; to, xo)

τ
.

We also set X = (X1, . . . , Xm+n), with Xi = X · ei , where (e1, . . . , em+n) is the canonical base 
of Rm+n. Recall also that ∂lXi = ∂l(X · ei) = (∂lX) · ei , for l = 1, 2, 3 and i = 1, . . . , m + n.

Lemma 4.1. Under assumption (V) with k = 1, the map in (23)

T : {(t, x) ∈R+ ×X : x ∈ X(t; [0, t[ , ∂X)} → R+
(t, x) �→ inf {s ∈ [0, t[ : X(s; t, x) ∈X} (28)

is well defined. Moreover, for all t ∈ R+ and a.e. x ∈X such that x ∈ X(t; [0, t[, ∂X), there exists 
a unique i ∈ {1, . . . , m}, depending on t and x, such that

Xi(T (t, x); t, x) = 0. (29)
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Given t ∈ R+, for i ∈ {1, . . . , m}, call Xt
i the set of x ∈X such that i is the unique index satisfy-

ing (29). Then, the map

Mi : Xt
i → R+ ×Rn+m−1

x �→
(
T (t, x),

(
Xj(T (t, x), t, x)

)
j �=i

) (30)

is a local diffeomorphism. The derivatives of the function T are given by

∂tT (t, x) = − ∂2Xi(T (t, x); t, x)

vi (T (t, x),X(T (t, x); t, x))
(31)

∂x�
T (t, x) = − ∂3�

Xi (T (t, x); t, x)

vi (T (t, x),X (T (t, x); t, x))
� = 1, . . . , n + m. (32)

Finally the absolute value of the determinant of the Jacobian matrix DMi at x is

1

vi (T (t, x),X(T (t, x); t, x)
exp

T (t,x)ˆ

t

m+n∑
j=1

∂xj
vj (s,X (s; t, x))ds. (33)

Proof. By (V), the usual Cauchy Theorem for systems of ordinary differential equations ensures 
that, for all (to, xo) ∈ R+ ×X, the Cauchy Problem (21) admits a unique solution defined on a 
maximal interval [T(to,xo), +∞[, with T(to,xo) ∈ [0, to]. Then, the map T defined in (23) can be 
written T (t, x) = T(t,x) whenever T(t,x) > 0 and T (t, x) = 0 otherwise. Hence, the map (28) is 
well defined.

Once x ∈ X(t; [0, t[, ∂X), it is clear that there exists at least one index i such that (29) holds. 
The uniqueness follows, since X(t; ·, ·) is a diffeomorphism.

Fix t > 0, i ∈ {1, . . . , m}, and x ∈ Xt
i . Locally around (t, x), the constraint (29) remains valid. 

To compute the derivatives of the map (t, x) → T (t, x), differentiating (29) with respect to t

yields

∂1Xi (T (t, x); t, x) ∂tT (t, x) + ∂2Xi (T (t, x); t, x) = 0

and so, using (25),

vi (T (t, x),X (T (t, x); t, x)) ∂tT (t, x) + ∂2Xi (T (t, x); t, x) = 0

which proves (31), while a differentiation with respect to x� (� ∈ {1, . . . ,m + n}) yields

∂1Xi (T (t, x); t, x) ∂x�
T (t, x) + ∂3�

Xi (T (t, x); t, x) = 0

and so, using (25),

vi (T (t, x),X (T (t, x); t, x)) ∂x�
T (t, x) + ∂3�

Xi (T (t, x); t, x) = 0,

which proves (32).
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Consider the (n + m) × (n + m) Jacobian matrix DMi . By (32), the first row is

(
∂x1T (t, x), · · · , ∂xn+mT (t, x)

)=
(

−∂31Xi

vi

, · · · ,−∂3n+mXi

vi

)
,

where, for simplicity, we omitted the arguments of the functions Xi and vi . The remaining rows, 
indexed by j ∈ {1, . . . , n + m}, j �= i, of DMi are given by

(
∂x1Xj(T (t, x); t, x), · · · , ∂xn+mXj (T (t, x); t, x)

)
=
(

−vj

∂31Xi

vi

+ ∂31Xj , · · · ,−vj

∂3n+mXi

vi

+ ∂3n+mXj

)
.

We compute the determinant of DMi using Gauss method. We modify all the rows, except the 
first one, by adding to each row a multiple of the first one. In this way the determinant of DMi

equals the determinant of the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

− ∂31Xi

vi
− ∂32Xi

vi
· · · − ∂3n+mXi

vi

∂31X1 ∂32X1 · · · ∂3n+mX1

...
...

...
...

∂31Xn+m ∂32Xn+m · · · ∂3n+mXn+m

⎞
⎟⎟⎟⎟⎟⎟⎠

in the case i �= 1, n + m, the other cases being entirely similar. Therefore |det (DMi)| =
1
vi

|det (D3X)|. Using (27) and Liouville Theorem [32, Theorem 1.2, Chapter IV], we deduce

|det (DMi(x))| = 1

vi (T (t, x);X(T (t, x); t, x))
exp

T (t,x)ˆ

t

tr (Dxv (s,X (s; t, x)))ds

= 1

vi (T (t, x);X(T (t, x); t, x))
exp

T (t,x)ˆ

t

m+n∑
j=1

∂xj
vj (s,X (s; t, x))ds

which proves (33). �
The next two lemmas provide the basic a priori and stability estimates on (20).

Lemma 4.2. Let (V) with k = 1 hold, let p ∈ L∞(I × X; R), q ∈ L1(I × X; R), ub ∈ L1(I ×
∂X; R) and uo ∈ L1(X; R). Then, for every t ∈ I the solution to problem (20) defined through 
formula (24) satisfies the following a priori estimates:

‖u(t)‖L1(X;R) ≤ (‖q‖L1([0,t]×X;R) + ‖uo‖L1(X)

)
e‖p‖L∞([0,t]×X;R)t

+
⎛
⎜⎝ m∑

i=1

¨
|ub(τ, ξ)|vi(τ, ξ)dτdξ

⎞
⎟⎠ e‖p‖L∞([0,t]×X;R)t ,

(34)
�i
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where �i = Mi(Xt
i ) with Mi as in (30) and Xi

t is as in Lemma 4.1. If moreover q ∈
L1 (I ;L∞ (X;R)), uo ∈ L∞ (X;R), and ub ∈ L∞(I × ∂X; R), then

‖u(t)‖L∞(X;R) ≤ (‖uo‖L∞(X;R) + ‖ub‖L∞([0,t]×∂X;R)) + ‖q‖L1([0,t];L∞(X;R))

)
× exp

⎛
⎝ tˆ

0

(‖p(τ)‖L∞(X;R) + ‖divxv(τ )‖L∞(X;R)

)
dτ

⎞
⎠ .

(35)

Proof. The proof of the L∞ bound directly follows from

E(τ, t, x) ≤ exp
(‖p‖L1([τ,t];L∞(X;R)) + ‖divxv‖L1([τ,t];L∞(X;R))

)
,

and (24). In order to get the L1 bound, observe that ‖u(t)‖L1(X;R) = ‖u(t)‖L1(X(t;0,X);R) +
‖u(t)‖L1(X(t;[0,t[,∂X);R). We thus consider two cases and apply a suitable change of variable.

By (24), for t ∈ I , we have that

ˆ

X(t;0,X)

|u(t, x)|dx ≤
ˆ

X(t;0,X)

|uo (X(0; t, x))|E (0, t, x)dx

+
ˆ

X(t;0,X)

tˆ

0

|q (τ,X (τ ; t, x))|E (τ, t, x)dτdx.

(36)

Consider the first term in the right hand side of (36). Using Liouville Theorem [32, Theorem 1.2, 
Chapter IV], the change of variables ξ = X(0; t, x) and the assumptions on p,

ˆ

X(t;0,X)

|uo (X(0; t, x))|E (0, t, x)dx =
ˆ

X

|uo(ξ)| exp

⎛
⎝ tˆ

0

p (s,X (s;0, ξ))ds

⎞
⎠dξ

≤ ‖uo‖L1(X) e
‖p‖L∞([0,t]×X;R)t .

Consider the second term in the right hand side of (36). Using the change of variable ξ =
X (τ ; t, x),

ˆ

X(t;0,X)

tˆ

0

|q (τ,X (τ ; t, x))|E (τ, t, x)dτdx

=
tˆ

0

ˆ

X(τ ;0,X)

|q(τ, ξ)| exp

⎛
⎝ tˆ

τ

p (s,X(s; τ, ξ))ds

⎞
⎠dξdτ

≤‖q‖L1(X([0,t];0,X);R)e
‖p‖L∞([0,t]×X;R)t .

Therefore, using (36), for t ∈ I , we deduce
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ˆ

X(t;0,X)

|u(t, x)|dx ≤ (‖uo‖L1(X) + ‖q‖L1(X([0,t];0,X);R)

)
e‖p‖L∞([0,t]×X;R)t . (37)

To estimate now the term depending on the boundary conditions, for t ∈ I , use (24):

ˆ

X(t;[0,t[,∂X)

|u(t, x)|dx =
m∑

i=1

ˆ

Xt
i

|u(t, x)|dx

≤
m∑

i=1

ˆ

Xt
i

|ub (T (t, x),X (T (t, x); t, x))|E (T (t, x), t, x)dx

+
m∑

i=1

ˆ

Xt
i

tˆ

T (t,x)

|q (τ,X (τ ; t, x))|E (τ, t, x)dτdx. (38)

For i ∈ {1, . . . , m}, use the diffeomorphism Mi in (30) as change of variables, i.e., τ = T (t, x), 
ξ = X (T (t, x); t, x) and we set �i = Mi(Xt

i ). Thus, we have

ˆ

Xt
i

|ub (T (t, x),X (T (t, x); t, x))|E (T (t, x), t, x)dx

=
¨

�i

|ub(τ, ξ)| exp

⎛
⎝ tˆ

τ

p (s,X(s; τ, ξ))ds

⎞
⎠ vi(τ, ξ)dτ dξ

≤e‖p‖L∞([0,t]×X;R)t

¨

�i

|ub(τ, ξ)|vi(τ, ξ)dτ dξ .

For i ∈ {1, . . . , m}, using again the change of variables ξ = X (τ ; t, x), define

�i
t =

{
(τ, ξ) ∈ R1+m+n : τ ∈ [t, T (t, x)] , x ∈ Xi

t , ξ = X(τ ; t, x)
}

(39)

and we have

ˆ

Xi
t

tˆ

T (t,x)

|q (τ,X (τ ; t, x))|E (τ, t, x)dτdx

=
¨

�i
t

|q(τ, ξ)| exp

⎛
⎝ tˆ

τ

p (s,X(s; τ, ξ))ds

⎞
⎠dτdξ

≤ ‖q‖ 1 i e‖p‖L∞([0,t]×X;R)t .
L (�t ;R)
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Therefore, using (38), for t ∈ I , we deduce

ˆ

X(t;[0,t[,∂X)

|u(t, x)|dx ≤ e‖p‖L∞([0,t]×X;R)t

m∑
i=1

⎡
⎢⎣¨

�i

|ub(τ, ξ)|vi(τ, ξ)dτdξ + ‖q‖L1(�i
t ;R)

⎤
⎥⎦ .

This concludes the proof. �
Lemma 4.3. Fix v satisfying (V) with k = 1. Let p1, p2 ∈ L∞(I ×X; R), q1, q2 ∈ L1(I ×X; R)

with ub,1 and ub,2 as in Proposition 4.2 and let uo,1, uo,2 satisfy (ID). Define u1 and u2 respec-
tively the solutions to

⎧⎨
⎩

∂tu1 + divx (v u1) = p1 u1 + q1
u1(t, ξ) = ub,1(t, ξ)

u1(0, x) = uo,1(x)

and

⎧⎨
⎩

∂tu2 + divx (v u2) = p2 u2 + q2
u2(t, ξ) = ub,2(t, ξ)

u2(0, x) = uo,2(x).

Then, for every t ∈ I , the following stability estimate holds

‖u1(t) − u2(t)‖L1(X;R)

≤P(t)
∥∥uo,1 − uo,2

∥∥
L1(X;R)

+P(t)‖v‖L∞([0,t]×X;Rn+m)

∥∥ub,1 − ub,2
∥∥

L1(I×∂X;R)

+P(t)‖q1 − q2‖L1([0,t]×X;R)

+P(t)
(∥∥uo,1

∥∥
L1(X;R)

+‖v‖L∞([0,t]×X;Rn+m)

∥∥ub,2
∥∥

L1([0,t]×∂X;R)

)
‖p1−p2‖L1([0,t];L∞(X;R))

+P(t)‖q2‖L1([0,t]×X;R) ‖p1 − p2‖L1([0,t];L∞(X;R)) , (40)

where P(t) = exp
(
t max

{‖p1‖L∞([0,t]×X;R),‖p2‖L∞([0,t]×X;R)

})
.

Proof. Consider u1 and u2 the solutions to the two systems and fix t ∈ I . Define for i = 1, 2

Ei (τ, t, x) = exp

⎛
⎝ tˆ

τ

(pi (s,X(s; t, x)) − divxv (s,X(s; t, x)))ds

⎞
⎠ .

We have the decomposition

‖u1(t) − u2(t)‖L1(X;R) =
ˆ

X(t;0,X)

|u1(t) − u2(t)|dx +
ˆ

X(t;[0,t[,∂X)

|u1(t) − u2(t)|dx . (41)

We treat the two terms in the right hand side of (41) separately. The first one is dealt with the 
explicit formula (24):
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ˆ

X(t;0,X)

|u1(t) − u2(t)|dx

≤
ˆ

X(t;0,X)

∣∣uo,1 (X (0; t, x))E1 (0, t, x) − uo,2 (X (0; t, x))E2 (0, t, x)
∣∣dx

+
ˆ

X(t;0,X)

tˆ

0

|q1 (τ,X (τ ; t, x))E1 (τ, t, x) − q2 (τ,X (τ ; t, x))E2 (τ, t, x)|dτdx

≤
ˆ

X(t;0,X)

E1 (0, t, x)
∣∣uo,1 (X (0; t, x)) − uo,2 (X (0; t, x))

∣∣dx

+
ˆ

X(t;0,X)

∣∣uo,2 (X (0; t, x))
∣∣|E1 (0, t, x) − E2 (0, t, x)|dx

+
ˆ

X(t;0,X)

tˆ

0

E1 (τ, t, x) |q1 (τ,X (τ ; t, x)) − q2 (τ,X (τ ; t, x))|dτdx

+
ˆ

X(t;0,X)

tˆ

0

|q2 (τ,X (τ ; t, x))||E1 (τ, t, x) − E2 (τ, t, x)|dτdx.

Using the two changes of variable ξ = X (0; t, x) and ξ = X (τ ; t, x), we obtain that

ˆ

X(t;0,X)

|u1(t) − u2(t)|dx

≤
ˆ

X

exp

⎛
⎝ tˆ

0

p1 (s,X(s;0, ξ))ds

⎞
⎠∣∣uo,1 (ξ) − uo,2 (ξ)

∣∣dξ

+
ˆ

X

∣∣uo,2 (ξ)
∣∣
∣∣∣∣∣∣exp

⎛
⎝ tˆ

0

p1 (s,X(s;0, ξ))ds

⎞
⎠− exp

⎛
⎝ tˆ

0

p2 (s,X(s;0, ξ))ds

⎞
⎠
∣∣∣∣∣∣dξ

+
tˆ

0

ˆ

X(τ ;0,X)

|q1 (τ, ξ) − q2 (τ, ξ)| exp

⎛
⎝ tˆ

τ

p1 (s,X(s; τ, ξ))ds

⎞
⎠dξ dτ

+
tˆ

0

ˆ

X(τ ;0,X)

|q2 (τ, ξ)|

×
∣∣∣∣∣∣exp

⎛
⎝ tˆ

p1 (s,X(s; τ, ξ))ds

⎞
⎠− exp

⎛
⎝ tˆ

p2 (s,X(s; τ, ξ))ds

⎞
⎠
∣∣∣∣∣∣dξdτ
τ τ
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≤P(t)
(∥∥uo,1 − uo,2

∥∥
L1(X;R)

+ ‖q1 − q2‖L1
(
X([0,t];0,X);R)

)
+P(t)

∥∥uo,2
∥∥

L1(X;R)
‖p1 − p2‖L1([0,t];L∞(X;R))

+P(t)‖q2‖L1
(
X([0,t];0,X);R)‖p1 − p2‖L1([0,t];L∞(X;R)) ,

where we set

P(t) = exp
(
max

{‖p1‖L∞([0,t]×X;R)t , ‖p2‖L∞([0,t]×X;R)t
})

. (42)

Pass now to the second term in the right hand side of (41), splitting among the different faces Xt
i

for i ∈ {1, . . . , m} as defined in (30):

ˆ

X(t;[0,t[,∂X)

|u1(t) − u2(t)|dx =
m∑

i=1

ˆ

Xt
i

|u1(t) − u2(t)|dx.

Fix i ∈ {1, . . . , m}, i.e. consider each term in the sum separately:

ˆ

Xt
i

|u1(t) − u2(t)|dx

≤
ˆ

Xt
i

∣∣ub,1 (T (t, x),X (T (t, x); t, x))E1 (T (t, x), t, x)

−ub,2 (T (t, x),X (T (t, x); t, x))E2 (T (t, x), t, x)
∣∣dx

+
ˆ

Xt
i

tˆ

T (t,x)

|q1 (τ,X (τ ; t, x))E1 (τ, t, x) − q2 (τ,X (τ ; t, x))E2 (τ, t, x)|dτdx

≤
ˆ

Xt
i

E1 (T (t, x), t, x)

×∣∣ub,1 (T (t, x),X (T (t, x); t, x)) − ub,2 (T (t, x),X (T (t, x); t, x))
∣∣dx

+
ˆ

Xt
i

∣∣ub,2 (T (t, x),X (T (t, x); t, x))
∣∣|E1 (T (t, x), t, x) − E2 (T (t, x), t, x)|dx

+
ˆ

Xt
i

tˆ

T (t,x)

E1 (τ, t, x) |q1 (τ,X (τ ; t, x)) − q2 (τ,X (τ ; t, x))|dτdx

+
ˆ

Xt

tˆ

T (t,x)

|q2 (τ,X (τ ; t, x))| |E1 (τ, t, x) − E2 (τ, t, x)|dτdx.
i
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We now use the diffeomorphism Mi as defined in (30), for i ∈ {1, . . . , m}, and we use the set �i
t

as in (39). We thus obtain, using (42), that

ˆ

Xt
i

|u1(t, x) − u2(t, x)|dx

≤
¨

�i

exp

⎛
⎝ tˆ

τ

p1 (s,X(s; τ, ξ))ds

⎞
⎠∣∣ub,1(τ, ξ) − ub,2(τ, ξ)

∣∣vi(τ, ξ)dξdτ

+
¨

�i

∣∣ub,2(τ, ξ)
∣∣

×
∣∣∣∣∣∣exp

⎛
⎝ tˆ

τ

p1 (s,X(s; τ, ξ))ds

⎞
⎠− exp

⎛
⎝ tˆ

τ

p2 (s,X(s; τ, ξ))ds

⎞
⎠
∣∣∣∣∣∣vi(τ, ξ)dξdτ

+
¨

�i
t

exp

⎛
⎝ tˆ

τ

p1 (s,X(s; τ, ξ))ds

⎞
⎠ |q1(τ, ξ) − q2(τ, ξ)|dτdξ

+
¨

�i
t

|q2(τ, ξ)|

×
∣∣∣∣∣∣exp

⎛
⎝ tˆ

τ

p1 (s,X(s; τ, ξ))ds

⎞
⎠− exp

⎛
⎝ tˆ

τ

p2 (s,X(s; τ, ξ))ds

⎞
⎠
∣∣∣∣∣∣dτdξ

≤P(t)‖v‖L∞([0,t]×X;Rn+m)

∥∥ub,1 − ub,2
∥∥

L1(�i ;R)

+P(t)‖v‖L∞([0,t]×X;Rn+m)

∥∥ub,2
∥∥

L1(�i ;R)
‖p1 − p2‖L1([0,t];L∞(X;R))

+P(t)‖q1 − q2‖L1(�i
t ;R)

+P(t)‖q2‖L1(�i
t ;R) ‖p1 − p2‖L1([0,t];L∞(X;R))

≤P(t)
(
‖v‖L∞([0,t]×X;Rn+m)

∥∥ub,1 − ub,2
∥∥

L1(�i ;R)
+ ‖q1 − q2‖L1(�i

t ;R)

)
+P(t)‖v‖L∞([0,t]×X;Rn+m)

∥∥ub,2
∥∥

L1(�i ;R)
‖p1 − p2‖L1([0,t];L∞(X;R))

+P(t)‖q2‖L1(�i
t ;R) ‖p1 − p2‖L1([0,t];L∞(X;R)) .

Therefore, using (41), we deduce that

‖u1(t) − u2(t)‖L1(X;R)

≤P(t)
(∥∥uo,1 − uo,2

∥∥
L1(X;R)

+ ‖q1 − q2‖L1(X;([0,t];0,X);R)

)
+P(t)

∥∥uo,2
∥∥

1 ‖p1 − p2‖L1([0,t];L∞(X;R))
L (X;R)
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))
+P(t)‖q2‖L1(X;([0,t];0,X);R) ‖p1 − p2‖L1([0,t];L∞(X;R))

+
m∑

i=1

P(t)
(
‖v‖L∞([0,t]×X;Rn+m)

∥∥ub,1 − ub,2
∥∥

L1(�i ;R)
+ ‖q1 − q2‖L1(�i

t ;R)

)

+
m∑

i=1

P(t)‖v‖L∞([0,t]×X;Rn+m)

∥∥ub,2
∥∥

L1(�i ;R)
‖p1 − p2‖L1([0,t];L∞(X;R))

+
m∑

i=1

P(t)‖q2‖L1(�i
t ;R) ‖p1 − p2‖L1([0,t];L∞(X;R))

≤P(t)
∥∥uo,1 − uo,2

∥∥
L1(X;R)

+P(t)‖v‖L∞([0,t]×X;Rn+m)

∥∥ub,1 − ub,2
∥∥

L1([0,t]×∂X;R)

+P(t)‖q1 − q2‖L1([0,t]×X;R)

+P(t)
(
‖uo‖L1(X;Rk) + ‖v‖L∞([0,t]×X;Rn+m)

∥∥ub,2
∥∥

L1([0,t]×∂X;R)

)
‖p1 − p2‖L1([0,t];L∞(X;R

+P(t)‖q2‖L1([0,t]×X;R) ‖p1 − p2‖L1([0,t];L∞(X;R)) ,

proving (40). �
Proposition 4.4. Let v satisfy (V) with k = 1, p ∈ L∞(I ×X; R), q ∈ L1(I ×X; R), ub ∈ L1(I ×
∂X; R) and uo satisfy (ID) with k = 1. Then, formula (24) defines a solution u = u(t, x) to (20)
in the sense of Definition 2.6. Moreover, u ∈ C0(I ; L1(X; R)).

Proof. The first part of the proof amounts to a careful piecing together various proofs found in 
the literature. In particular, the part of the solution depending on the initial data is dealt with 
exactly as in [22, Lemma 2.7] and [33, Lemma 5.1]. The part depending on the boundary datum 
is treated in the same way, exploiting the change of variables detailed in Lemma 4.1.

To prove the C0 regularity of the solution with respect to time, fix a t̄ ∈ I and a sequence th, 
with th ∈ I , converging to t̄ . Then, assuming first that th > t , we have

∥∥u(th) − u(t̄)
∥∥

L1(X;R)
=

ˆ

X(th;0,X)

∣∣u(th, x) − u(t̄, x)
∣∣dx

+
ˆ

X\(X(th;0,X)∪X(t̄;[0,t̄[,∂X))

∣∣u(th, x) − u(t̄, x)
∣∣dx

+
ˆ

X(t̄;[0,t̄[,∂X)

∣∣u(th, x) − u(t̄, x)
∣∣dx .

The second term vanishes as h → +∞, since it is the integral of a bounded quantity over a set 
of vanishing measure. Consider now the first term, the third one can be treated similarly.

ˆ ∣∣u(th, x) − u(t̄, x)
∣∣dx
X(th;0,X)
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=
ˆ

X

∣∣u(th, x) − u(t̄, x)
∣∣χ

X(th;0,X)
(x)dx

≤
ˆ

X

∣∣uo (X(0; th, x)) E(τ, th, x) − uo

(
X(0; t̄ , x)

)
E(τ, t̄ , x)

∣∣χ
X(th;0,X)

(x)dx

+
ˆ

X

∣∣∣∣∣∣
thˆ

0

q (τ,X(τ ; th, x)) E (τ, th, x) dτ

−
t̄ˆ

0

q
(
τ,X(τ ; t̄ , x)

)
E
(
τ, t̄ , x

)
dτ

∣∣∣∣∣∣∣ χ
X(th;0,X)

(x)dx

As h → +∞, we have that

uo (X(0; th, x)) E(τ, th, x) → uo

(
X(0; t̄ , x)

)
E(τ, t̄ , x)

thˆ

0

q (τ,X(τ ; th, x)) E (τ, th, x) dτ →
t̄ˆ

0

q
(
τ,X(τ ; t̄ , x)

)
E
(
τ, t̄ , x

)
dτ

for a.e. x ∈ X, so that the corresponding integrals vanish by Lebesgue Dominated Convergence 
Theorem, which we can apply thanks to the L1 a priori bound (34). �
4.2. The general case of a system

Below, in the various estimates we use the following norms:

‖u‖L1(X;Rk) =
∑k

h=1

´
X
∣∣uh(x)

∣∣dx ‖u‖L∞(I×X;Rk) =
∑k

h=1

∥∥uh
∥∥

L∞(I×X;R)

‖u‖L∞(I ;L1(X;Rk)) =
∑k

h=1

∥∥uh
∥∥

L∞(I ;L1
(
X;R)) .

Proof of Theorem 2.2. The proof is divided in several steps. Let I = [0, T ] for T > 0.

Construction of the Operator T . In the Banach space C0(I ; L1(X; Rk)), for

M > ‖uo‖L1(X;Rk) + 1, (43)

introduce the closed subset X and the norm ‖·‖X :

X =
{
w ∈ C0(I ;L1(X;Rk)) : ‖w‖L∞(I ;L1(X;Rk)) ≤ M

}
, (44)

‖w‖X =
k∑

h=1

∥∥∥wh
∥∥∥

L∞(I ;L1
(
X;R)) . (45)

Define the operator
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T : X −→ X

w �−→ u ≡ (u1, . . . , uk
) (46)

where, for every h ∈ {1, . . . , k}, uh solves

⎧⎪⎪⎨
⎪⎪⎩

∂tu
h + divx

(
vh(t, x)uh

)= ph (t, x,w(t))uh

+qh (t, x,w(t, x),w(t)) (t, x)∈ I ×X
uh(t, ξ) = uh

b (t, ξ,w(t)) (t, ξ)∈ I × ∂X
uh(0, x) = uh

o(x) x ∈X .

(47)

T is Well Defined. We prove that, for w ∈ X and h ∈ {1, . . . , k}, the source term in (47)

Gh(t, x,uh) =Ph(t, x)uh +Qh(t, x) where
Ph(t, x)=ph (t, x,w(t))

Qh(t, x)=qh (t, x,w(t, x),w(t))

is such that Ph ∈ L∞(I ×X; R) and Qh ∈ L1(I ×X; R).
By (P), for every t ∈ I and x ∈X, using also (44), we have

∣∣∣Ph(t, x)

∣∣∣= ∣∣∣ph (t, x,w(t))

∣∣∣ ≤ P1 + P2 ‖w(t)‖L1(X;Rk) ;∥∥∥Ph
∥∥∥

L∞(I×X;R)
≤ P1 + P2 M, (48)

proving that (t, x) �→Ph(t, x) is in L∞(I ×X; R). On the other hand, by (Q) we have

∥∥∥Qh
∥∥∥

L1([0,T ]×X;R)

=
T̂

0

ˆ

X

∣∣∣Qh(t, x)

∣∣∣dx dt

=
T̂

0

ˆ

X

∣∣∣qh (t, x,w(t, x),w(t))

∣∣∣dx dt

≤ Q1

T̂

0

ˆ

X

‖w(t, x)‖dx dt

+
T̂

0

ˆ

X

Q2(x)‖w(t)‖L1(X;Rk)dx dt + Q3

T̂

0

ˆ

X

‖w(t, x)‖‖w(t)‖L1(X;Rk)dx dt

≤ Q1T ‖w‖X + ‖Q2‖L1(X;R)T ‖w‖X + Q3T ‖w‖2
X, (49)

proving that (t, x) �→Qh(t, x) is in L1(I ×X; R).
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Now we prove that, for every w ∈ X and h ∈ {1, . . . , k}, the boundary term Uh
b (t, ξ) =

uh
b (t, ξ,w(t)) in (47) satisfies Uh

b ∈ L1(I × ∂X; R). By (BD) we have

∥∥∥Uh
b

∥∥∥
L1(I×∂X;R)

=
T̂

0

ˆ

∂X

∣∣∣uh
b (t, ξ,w(t))

∣∣∣dξdt

≤
T̂

0

ˆ

∂X

B(ξ)‖w(t)‖L1(X;Rk)dξdt +
T̂

0

ˆ

∂X

B(ξ)dξdt

≤ ‖B‖L1(∂X;R) (‖w‖X + 1) T .

Hence Proposition 4.4 applies to (47). To conclude this step, we show that the solution u(t, x) ≡(
u1(t, x), . . . , uk(t, x)

)
belongs to X in (44). By (34), (48), (49) and since w ∈ X, for t ∈ I ,

∥∥∥uh(t)

∥∥∥
L1(X;R)

≤ e(P1+P2M)t

(∥∥∥Qh
∥∥∥

L1([0,t]×X;R)
+
∥∥∥uh

o

∥∥∥
L1(X;R)

)

+e(P1+P2M)t
m∑

i=1

¨

�i

∣∣∣uh
b (τ, ξ,w(τ))

∣∣∣vh
i (τ, ξ)dτdξ

≤
[ (

Q1 + ‖Q2‖L1(X;R) + Q3 ‖w‖X

)
T ‖w‖X +

∥∥∥uh
o

∥∥∥
L1(X;R)

+‖B‖L1(∂X;R) ‖v‖L∞(I×X;Rk×(n+m)) T (‖w‖X + 1)
]
e(P1+P2M)t

≤
[ (

Q1 + ‖Q2‖L1(X;R) + Q3 M
)
T M +

∥∥∥uh
o

∥∥∥
L1(X;R)

+‖B‖L1(∂X;R) ‖v‖L∞(I×X;Rk×(n+m)) T (M + 1)
]
e(P1+P2M)t

≤
(∥∥∥uh

o

∥∥∥
L1(X;R)

+ 1

2k

)
e(P1+P2M)T ,

whence ‖u(t)‖L1(X;Rk) ≤ M , once T is sufficiently small, thanks to the choice (43) of M .

T is a Contraction. Fix ŵ and w̌ in XM and call û = T ŵ, ǔ = T w̌. Use the notation

P̂h(t, x)=ph
(
t, x, ŵ(t)

)
, Q̂h(t, x)=qh

(
t, x, ŵ(t, x), ŵ(t)

)
, Ûh

b (t, ξ)=uh
b

(
t, ξ, ŵ(t)

)
,

P̌h(t, x)=ph
(
t, x, w̌(t)

)
, Q̌h(t, x)=qh

(
t, x, w̌(t, x), w̌(t)

)
, Ǔh

b (t, ξ)=uh
b

(
t, ξ, w̌(t)

)
.

Then, by Lemma 4.3 and by (48), we have:∥∥∥ûh(t) − ǔh(t)

∥∥∥
L1(X;R)

≤ e(P1+P2M)t ‖v‖L∞([0,t]×X;Rn+m)

∥∥∥Ûh
b − Ǔh

b

∥∥∥
L1([0,t]×∂X;R)

+ e(P1+P2M)t
∥∥∥Q̂h − Q̌h

∥∥∥
1
L ([0,t]×X;R)
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+
(

M + ‖v‖L∞(I×X;Rk×(n+m))

∥∥∥Ǔh
b

∥∥∥
L1([0,t]×∂X;R)

+
∥∥∥Q̌h

∥∥∥
L1([0,t]×X;R)

)

× e(P1+P2M)t
∥∥∥P̂h − P̌h

∥∥∥
L1([0,t];L∞(X;R))

. (50)

By (P) we have:

∥∥∥P̂h − P̌h
∥∥∥

L1([0,t];L∞(X;R))
≤

tˆ

0

∥∥∥P̂h(s) − P̌h(s)

∥∥∥
L∞(X;R)

ds

≤ P2

tˆ

0

∥∥ŵ(s) − w̌(s)
∥∥

L1(X;Rk)
ds

≤ P2
∥∥ŵ − w̌

∥∥
X

T . (51)

By (Q) we have:∥∥∥Q̂h − Q̌h
∥∥∥

L1([0,t]×X;R)

≤ Q1
∥∥ŵ − w̌

∥∥
L1([0,t]×X;Rk)

+ Q3
∥∥ŵ∥∥L∞([0,t];L1(X;Rk))

∥∥ŵ − w̌
∥∥

L1([0,t]×X;Rk)

+Q3
∥∥w̌∥∥L∞([0,t];L1(X;Rk))

∥∥ŵ − w̌
∥∥

L1([0,t]×X;Rk)

≤ (Q1 + 2M Q3)
∥∥ŵ − w̌

∥∥
X

T . (52)

Similarly, by (BD), we have:∥∥∥Ûh
b − Ǔh

b

∥∥∥
L1([0,t]×∂X;R)

≤ ‖B‖L1(∂X;R)

∥∥ŵ − w̌
∥∥

X
T . (53)

Therefore T is a contraction as soon as T is sufficiently small.

Existence of a Solution for Small Times. Proving that the unique fixed point of T solves (1) in 
the sense of Definition 2.1 amounts to pass to the limit in the integral inequality (10). This is 
possible thanks to the strong convergence ensured by the choice (45) of the norm in X. The 
proof of (WP.1) is completed.

Uniqueness. Assume that (2) admits the solutions û and ǔ in the sense of Definition 2.1. Then, 
their difference δ = û − ǔ solves

⎧⎨
⎩

∂t δ
h + div

(
vh(t, x) δh

)= Ĝh(t, x) − Ǧh(t, x)

δh(t, ξ) = Ûh
b (t, ξ) − Ǔh

b (t, ξ)

δh(0, x) = 0

in the sense of Definition 2.1, where

Ĝh(t, x)=ph
(
t, x, û(t)

)
ûh + qh

(
t, x, û, û(t)

)
Ûh

b (t, ξ)= ûh
b

(
t, ξ, û(t)

) ;
Ǧh(t, x)=ph

(
t, x, ǔ(t)

)
ǔh + qh

(
t, x, ǔ, ǔ(t)

)
Ǔh(t, ξ)= ǔh

(
t, ξ, ǔ(t)

)
.
b b
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.

A straightforward application of the classical doubling of variable method [34], see [25, 
Lemma 16, Lemma 17], [28, Theorem 7.28], and also [22, Proposition 2.8], leads to the sta-
bility estimate

∥∥∥δh(t)

∥∥∥
L1(X;R)

≤
tˆ

0

∥∥∥Ĝh(τ ) − Ǧh(τ )

∥∥∥
L1(X;R)

dτ

+
∥∥∥vh

∥∥∥
L∞(I×X;Rn+m)

tˆ

0

∥∥∥Ûh
b (τ ) − Ǔh

b (τ )

∥∥∥
L1(∂X;R)

dτ .

The assumptions (P) and (Q) allow now to use Gronwall Lemma, proving that δ ≡ 0.

Continuous Dependence on the Initial Datum. With the notation in (WP.3), define

P̂h(t, x)=ph
(
t, x, û(t)

)
, Q̂h(t, x)=qh

(
t, x, û(t, x), û(t)

)
, Ûh

b (t, ξ)=uh
b

(
t, ξ, û(t)

)
,

P̌h(t, x)=ph
(
t, x, ǔ(t)

)
, Q̌h(t, x)=qh

(
t, x, ǔ(t, x), ǔ(t)

)
, Ǔh

b (t, ξ)=uh
b

(
t, ξ, ǔ(t)

)
,

for t ∈ I and h ∈ {1, . . . , k}. A further application of Lemma 4.3 allows to estimate the difference 
between the solutions û and ǔ.∥∥∥ûh(t) − ǔh(t)

∥∥∥
L1(X;R)

≤ e(P1+P2M)t

(∥∥ûo,h − ǔo,h

∥∥
L1(X;R)

+ ‖v‖L∞([0,t]×X;Rn+m)

∥∥∥Ûh − Ǔh
∥∥∥

L1([0,t]×∂X;R)

)

+ e(P1+P2M)t

(∥∥∥Q̂h − Q̌h
∥∥∥

L1([0,t]×X;R)
+ K

∥∥∥P̂h − P̌h
∥∥∥

L1([0,t];L∞(X;R))

)
,

(54)

where, by (Q) and (BD),

K = ∥∥ûo,h

∥∥
L1(X;R)

+ ‖v‖L∞([0,t]×X;Rn+m)

∥∥∥Ǔh
∥∥∥

L1([0,t]×∂X;R)
+
∥∥∥Q̌h

∥∥∥
L1([0,t]×X;R)

≤ M + ‖v‖L∞([0,t]×X;Rn+m)‖B‖L1(∂X;R) (M + 1) T + Q1T M + ‖Q2‖L1(X;R)T M + Q3T M2

Using (BD), (Q) and (P), we have:∥∥∥Ûh − Ǔh
∥∥∥

L1([0,t]×∂X;R)
≤ ‖B‖L1(∂X;R)

∥∥û − ǔ
∥∥

L1([0,t]×X;Rk)
,∥∥∥Q̂h − Q̌h

∥∥∥
L1([0,t]×X;R)

≤ Q1

∥∥∥ûh − ǔh
∥∥∥

L1([0,t]×X;R)

+Q3

(∥∥û∥∥L∞([0,t];L1(X;Rk))
+ ∥∥ǔ∥∥L∞([0,t];L1(X;Rk))

)
×∥∥û − ǔ

∥∥
L1([0,t]×X;Rk)

≤ Q1

∥∥∥ûh − ǔh
∥∥∥

1
+ 2MQ3

∥∥û − ǔ
∥∥

L1([0,t]×X;Rk)
,

L ([0,t]×X;R)
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∥∥∥P̂h − P̌h
∥∥∥

L1([0,t];L∞(X;R)) ≤
tˆ

0

∥∥∥P̂h(s) − P̌h(s)

∥∥∥
L∞(X;R)

ds

≤
tˆ

0

∥∥∥ph
(
s, ·, û(s)

)− ph
(
s, ·, ǔ(s)

)∥∥∥
L∞(X;R)

ds

≤ P2

tˆ

0

∥∥û(s) − ǔ(s)
∥∥

L1(X;Rk)
ds

= P2
∥∥û − ǔ

∥∥
L1([0,t]×X;Rk)

.

Inserting these estimates into (54) we deduce that

∥∥∥ûh(t) − ǔh(t)

∥∥∥
L1(X;R)

≤ e(P1+P2M)t
∥∥ûo − ǔo

∥∥
L1(X;Rk)

+ e(P1+P2M)t
(‖v‖L∞([0,t]×X;Rn+m)‖B‖L1(∂X;R)+Q1+2MQ3+KP2

)∥∥û − ǔ
∥∥

L1([0,t]×X;Rk)
.

Sum over h = 1, . . . , k and use Gronwall Lemma to prove (WP.3), completing the proof. �
Proof of Corollary 2.3. For every w ∈ X, with X as in (44), define u = Tw as the image of 
w through the operator T , defined in (46). By (24), we deduce that uh(t, x) ≥ 0 for a.e. x ∈ X. 
This implies that also the unique fixed point of the operator T has the same property, thus (4)
holds. �
Proof of Corollary 2.4. By Theorem 2.2, we know that there exists a solution u ∈ C0([0, T ];
L1(X; Rk)) and that this solution can be uniquely extended beyond time T as long as 
‖u(T )‖L1(X;Rk) is bounded. By Corollary 2.3, ‖u(t)‖L1(X;Rk) =∑k

h=1

´
X uh(t, x)dx. Using (2), 

the Divergence Theorem and (BD), we have

d

dt
‖u(t)‖L1(X;Rk)

= d

dt

k∑
h=1

ˆ

X

uh(t, x)dx

=
k∑

h=1

ˆ

X

(
ph (t, x,u(t)) u(t) + qh (t, x,u(t, x), u(t))

)
dx +

k∑
h=1

ˆ

∂X

uh
b (t, ξ, u(t))dξ

≤
ˆ

X

(
C1(t, x) + C2(t)

k∑
h=1

uh(t, x)

)
dx +

ˆ

∂X

B(ξ)
(
k + ‖u(t)‖L1(X;Rk)

)
dξ

= (‖C1‖L∞([0,t];L1(X;R))+k ‖B‖L1(∂X;R)

)+ (‖C2‖L∞([0,t];R)+‖B‖L1(∂X;R)

)‖u(t)‖L1(X;Rk)
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and usual ODE estimates ensure that ‖u(t)‖L1(X;Rk) is bounded on bounded intervals. �
Proof of Theorem 2.5. We divide the proof in several steps. Theorem 2.2 applies. We first check 

that the assumptions of Theorem 2.2 hold.
(P) holds. Fix h ∈ {1, . . . , k}, t ∈ I and x ∈X. If w ∈ L1(X; Rk), then

∣∣∣ph (t, x,w)

∣∣∣≤ P̄1 + P̄2

∥∥∥∥∥∥
ˆ

X

Kh
p

(
t, x, x′)w(x′)dx′

∥∥∥∥∥∥
≤ P̄1 + P̄2

∥∥∥Kh
p

∥∥∥
L∞([0,t]×X2;Rkpk)

‖w‖L1(X;Rk).

If w1, w2 ∈ L1(X; Rk), then

∣∣∣ph (t, x,w1) − ph (t, x,w2)

∣∣∣≤ P̄2

∥∥∥∥∥∥
ˆ

X

∣∣∣Kh
p

(
t, x, x′)∣∣∣∣∣w1(x

′) − w2(x
′)
∣∣dx′

∥∥∥∥∥∥
≤ P̄2

∥∥∥Kh
p

∥∥∥
L∞([0,t]×X2;Rkpk)

‖w1 − w2‖L1(X;Rk).

Therefore (P) holds with P1 = P̄1 and P2 = P̄2

∥∥∥Kh
p

∥∥∥
L∞([0,t]×X2;Rkpk)

.

(Q) holds. Fix h ∈ {1, . . . , k}, t ∈ I and x ∈X. If u ∈ Rk and w ∈ L1(X; Rk), then

∣∣∣qh (t, x,u,w)

∣∣∣=
∣∣∣∣∣∣Qh

⎛
⎝t, x, u,

ˆ

X

Kh
q

(
t, x, x′)w(x′)dx′

⎞
⎠
∣∣∣∣∣∣

≤ Q̄1‖u‖+Q̄2(x)

∥∥∥∥∥∥
ˆ

X

Kh
q

(
t, x, x′)w(x′)dx′

∥∥∥∥∥∥+Q̄3‖u‖
∥∥∥∥∥∥
ˆ

X

Kh
q

(
t, x, x′)w(x′)dx′

∥∥∥∥∥∥
≤ Q̄1‖u‖ + (Q̄2(x) + Q̄3‖u‖)∥∥∥Kh

q

∥∥∥
L∞([0,t]×X2;Rkq k)

‖w‖L1(X;Rk).

If u1, u2 ∈Rk and w1, w2 ∈ L1(X; Rk), then∣∣∣qh (t, x,u1,w1) − qh (t, x,u2,w2)

∣∣∣
≤ Q̄1‖u1 − u2‖ + Q̄3

∥∥∥Kh
u

∥∥∥
L∞([0,t]×X2;Rkq k)

‖w1‖L1(X;Rk)‖u1 − u2‖

+ Q̄3‖u2‖
∥∥∥Kh

u

∥∥∥
L∞([0,t]×X2;Rkq k)

‖w1 − w2‖L1(X;Rk).

Therefore, condition (Q) holds with Q1 = Q̄1, Q2(x) = Q̄2(x)

∥∥∥Kh
q

∥∥∥
L∞([0,t]×X2;Rkq k)

, and Q3 =
Q̄3(x)

∥∥∥Kh
q

∥∥∥ ∞ 2 kq k
. (Q+) is straightforward.
L ([0,t]×X ;R )
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(BD) holds:

∣∣∣uh
b(t, ξ,w)

∣∣∣≤ B̄(ξ)

⎛
⎝1 +

∥∥∥∥∥∥
ˆ

X

Kh
u (t, ξ, x′)w(x′)dx′

∥∥∥∥∥∥
⎞
⎠

≤ B̄(ξ)

(
1 +

∥∥∥Kh
u

∥∥∥
L∞([0,t]×∂X×X;Rkuk)

‖w‖L1(X;Rk)

)
.

∣∣∣uh
b(t, ξ,w) − uh

b(t, ξ,w′)
∣∣∣≤ B̄(ξ)

∥∥∥Kh
u

∥∥∥
L∞([0,t]×∂X×X;Rkuk)

∥∥w − w′∥∥
L1(X;Rk)

so (BD) holds with B(ξ) = B̄(ξ) 
(

1 + ‖Ku‖L∞([0,t]×∂X×X;Rkuk2
)

)
. Clearly, also (BD+) holds.

Stability Estimates. We now pass to the stability estimates. In each of the following cases, we 
keep t ∈ I fixed and h ∈ {1, . . . , k}. Define

Ûh
b (t, ξ)= ûh

b

(
t, ξ, û(t)

)
, Q̂h(t, x)= q̂h

(
t, x, û(t, x), û(t)

)
, P̂h(t, x)= p̂h

(
t, x, û(t)

)
,

Ǔh
b (t, ξ)= ǔh

b

(
t, ξ, ǔ(t)

)
, Q̌h(t, x)= q̌h

(
t, x, ǔ(t, x), ǔ(t)

)
, P̌h(t, x)= p̌h

(
t, x, ǔ(t)

)
.

(55)
In order to use Proposition 4.3, compute preliminarily

P(t) = exp

(
t max

{∥∥∥P̂h
∥∥∥

L∞([0,t]×X;R)
,

∥∥∥P̌h
∥∥∥

L∞([0,t]×X;R)

})
≤ exp (t (P1 + P2M)) ,

where M is an upper bound for the L∞ in time and L1 in space norms of both solutions. There-
fore, Proposition 4.3 implies that∥∥∥ûh(t) − ǔh(t)

∥∥∥
L1(X;R)

≤P(t)‖v‖L∞([0,t]×X;Rn+m)

∥∥∥Ûh
b − Ǔh

b

∥∥∥
L1([0,t]×∂X;R)

+P(t)

∥∥∥Q̂h − Q̌h
∥∥∥

L1([0,t]×X;R)

+P(t)

(
‖uo‖L1(X;Rk) +

∥∥∥Q̌h
∥∥∥

L1([0,t]×X;R)

)∥∥∥P̂h − P̌h
∥∥∥

L1([0,t];L∞(X;R))

+P(t)‖v‖L∞([0,t]×X;Rk×(n+m))

∥∥∥Ǔb

∥∥∥
L1([0,t]×∂X;Rk)

∥∥∥P̂h − P̌h
∥∥∥

L1([0,t];L∞(X;R))
.

(56)

Then, we estimate the terms in (56). Using (BD) and (55) we deduce that∥∥∥Ûh
b − Ǔh

b

∥∥∥
L1([0,t]×∂X;R)

=
tˆ

0

ˆ

∂X

∣∣∣ûh
b

(
τ, ξ, û(τ )

)− ǔh
b

(
τ, ξ, ǔ(τ )

)∣∣∣dξdτ

≤
tˆ ˆ ∣∣∣ûh

b

(
τ, ξ, û(τ )

)− ûh
b

(
τ, ξ, ǔ(τ )

)∣∣∣dξdτ
0 ∂X
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+
tˆ

0

ˆ

∂X

∣∣∣ûh
b

(
τ, ξ, ǔ(τ )

)− ǔh
b

(
τ, ξ, ǔ(τ )

)∣∣∣dξdτ

≤ ‖B‖L1(∂X;R)

∥∥û − ǔ
∥∥

L1([0,t]×X;Rk)

+
tˆ

0

ˆ

∂X

∣∣∣∣∣∣Ûh
b

⎛
⎝τ, ξ,

ˆ

X

K̂h
u (τ, ξ, x′) ǔ(τ, x′)dx′

⎞
⎠− Ûh

b

⎛
⎝τ, ξ,

ˆ

X

Ǩh
u (τ, ξ, x′) ǔ(τ, x′)dx′

⎞
⎠
∣∣∣∣∣∣dξ dτ

+
tˆ

0

ˆ

∂X

∣∣∣∣∣∣Ûh
b

⎛
⎝τ, ξ,

ˆ

X

Ǩh
u (τ, ξ, x′) ǔ(τ, x′)dx′

⎞
⎠− Ǔh

b

⎛
⎝τ, ξ,

ˆ

X

Ǩh
u (τ, ξ, x′) ǔ(τ, x′)dx′

⎞
⎠
∣∣∣∣∣∣dξ dτ

≤ ‖B‖L1(∂X;R)

∥∥û − ǔ
∥∥

L1([0,t]×X;Rk)

+
tˆ

0

ˆ

∂X

B̄(ξ)

∥∥∥K̂h
u − Ǩh

u

∥∥∥
L∞([0,t]×∂X×X;Rkuk)

∥∥ǔ(τ )
∥∥

L1(X;Rk)
dξdτ

+
∥∥∥Ûh

b − Ǔh
b

∥∥∥
L1([0,t]×∂X;L∞(Rku ;R))

≤ ‖B‖L1(∂X;R)

∥∥û − ǔ
∥∥

L1([0,t]×X;Rk)

+∥∥B̄∥∥L1(∂X;R)

∥∥∥K̂h
u − Ǩh

u

∥∥∥
L∞([0,t]×∂X×X;Rkuk)

∥∥ǔ∥∥L1([0,t]×X;Rk)

+
∥∥∥Ûh

b − Ǔh
b

∥∥∥
L1([0,t]×∂X;L∞(Rku ;R))

.

Using (Q) we deduce that

∥∥∥Q̂h − Q̌h
∥∥∥

L1([0,t]×X;R)

≤
tˆ

0

ˆ

X

∣∣∣q̂h
(
τ, x, û(τ, x), û(τ )

)− q̂h
(
τ, x, ǔ(τ, x), ǔ(τ )

)∣∣∣dxdτ

+
tˆ

0

ˆ

X

∣∣∣q̂h
(
τ, x, ǔ(τ, x), ǔ(τ )

)− q̌h
(
τ, x, ǔ(τ, x), ǔ(τ )

)∣∣∣dxdτ

≤ Q1

tˆ

0

∥∥û(τ ) − ǔ(τ )
∥∥

L1(X;Rk)
dτ + Q3

tˆ

0

∥∥û(τ )
∥∥

L1(X;Rk)

ˆ

X

∥∥û(τ, x) − ǔ(τ, x)
∥∥dx dτ

+Q3

tˆ ∥∥û(τ ) − ǔ(τ )
∥∥

L1(X;Rk)

ˆ ∥∥ǔ(τ, x)
∥∥dx dτ
0 X
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+
tˆ

0

ˆ

X

∣∣∣∣∣∣Q̂h

⎛
⎝τ, x, ǔ(τ, x),

ˆ

X

K̂h
q

(
τ, x, x′) ǔ (τ, x′)dx′

⎞
⎠

−Q̌h

⎛
⎝τ, x, ǔ(τ, x),

ˆ

X

Ǩh
q

(
τ, x, x′) ǔ (τ, x′)dx′

⎞
⎠
∣∣∣∣∣∣dxdτ

≤
(
Q1 + Q3

(∥∥û∥∥L∞([0,t];L1(X;Rk))
+ ∥∥ǔ∥∥L∞([0,t];L1(X;Rk))

)) tˆ

0

∥∥û(τ ) − ǔ(τ )
∥∥

L1(X;Rk)
dτ

+
tˆ

0

ˆ

X

sup
η∈Rkq

∣∣∣Q̂h
(
τ, x, ǔ(τ, x), η

)− Q̌h
(
τ, x, ǔ(τ, x), η

)∣∣∣dxdτ

+Q̄3

tˆ

0

ˆ

X

∥∥ǔ(τ, x)
∥∥
∥∥∥∥∥∥
ˆ

X

(
K̂h

q (τ, x, x′) − Ǩh
q (τ, x, x′)

)
ǔ
(
τ, x′)dx′

∥∥∥∥∥∥dx dτ

≤
(
Q1 + Q3

(∥∥û∥∥L∞([0,t];L1(X;Rk))
+ ∥∥ǔ∥∥L∞([0,t];L1(X;Rk))

))∥∥û − ǔ
∥∥

L1([0,t]×X;Rk)

+
∥∥∥Q̂h − Q̌h

∥∥∥
L1([0,t]×X;L∞(Rk×Rkq ;R))

+
tˆ

0

∥∥ǔ (τ )
∥∥2

L1(X;Rk)
dτ

∥∥∥K̂h
q − Ǩh

q

∥∥∥
L∞([0,t]×X2;Rkq )

.

Using (P), we have

∥∥∥P̂h − P̌h
∥∥∥

L1([0,t];L∞(X;R))

≤
tˆ

0

sup
x∈X

∣∣∣p̂h
(
τ, x, û(τ )

)− p̂h
(
τ, x, ǔ(τ )

)∣∣∣dτ +
tˆ

0

sup
x∈X

∣∣∣p̂h
(
τ, x, ǔ(τ )

)− p̌h
(
τ, x, ǔ(τ )

)∣∣∣dτ

≤ P2

tˆ

0

∥∥û(τ ) − ǔ(τ )
∥∥

L1(X;Rk)
dτ

+
tˆ

0

sup
x∈X

∣∣∣∣∣∣P̂ h

⎛
⎝τ, x,

ˆ

X

K̂h
p(τ, x, x′)ǔ(τ, x′)dx′

⎞
⎠− P̌ h

⎛
⎝τ, x,

ˆ

X

K̂h
p(τ, x, x′)ǔ(τ, x′)dx′

⎞
⎠
∣∣∣∣∣∣dτ

+
tˆ

0

sup
x∈X

∣∣∣∣∣∣P̌ h

⎛
⎝τ, x,

ˆ

X

K̂h
p(τ, x, x′)ǔ(τ, x′)dx′

⎞
⎠− P̌ h

⎛
⎝τ, x,

ˆ

X

Ǩh
p(τ, x, x′)ǔ(τ, x′)dx′

⎞
⎠
∣∣∣∣∣∣dτ

≤ P2

tˆ ∥∥û(τ ) − ǔ(τ )
∥∥

L1(X;Rk)
dτ + t

∥∥∥P̂ h − P̌ h
∥∥∥

L∞
(
[0,t]×X×Rkp ;R

)

0
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+P̄2

tˆ

0

sup
x∈X

ˆ

X

∣∣∣K̂h
p(τ, x, x′) − Ǩh

p(τ, x, x′)
∣∣∣∣∣ǔ(τ, x′)

∣∣dx′dτ

≤ P2

tˆ

0

∥∥û(τ ) − ǔ(τ )
∥∥

L1(X;Rk)
dτ + t

∥∥∥P̂ h − P̌ h
∥∥∥

L∞
(
[0,t]×X×Rkp ;R

)

+P̄2

tˆ

0

∥∥ǔ(τ )
∥∥

L1(X;Rk)
dτ

∥∥∥K̂h
p − Ǩh

p

∥∥∥
L∞

(
[0,t]×X2;Rkpk

).

The above estimate, duly inserted in (56) and followed by a standard application of Gronwall 
Lemma, completes the proof. �
Proof of Proposition 3.1. Checking (V) and (ID) is immediate. It is sufficient to verify that 
the assumptions of Theorem 2.5 hold. It is immediate to check that (P) holds with P̄1 =
max{‖μS‖, ‖μI‖ + ‖κ + θ‖, ‖μH ‖ + ‖η‖, ‖μR‖} (all norms being in L∞(I×R+ ×R2;R)), 
P̄2 = 1, thanks to ρ ∈ L∞. Concerning (Q), choose Q̄1 = max{‖κ‖, ‖η + θ‖}, Q̄2 = 0, Q̄3 = 1
and use ρ ∈ L∞. Finally, (BD) holds with B̄(ξ) = supI ‖Sb(t)‖L∞(X,R).

Positivity is immediate. To apply Corollary 2.4, simply set C1 ≡ 0 and C2 ≡ 0.
To obtain an L∞ bound, note first that since I ∈ C0

(
I;L1(R+ ×R2;R)

)
, the integral in (12)

is bounded on any bounded time interval. Hence, a repeated application of (35) in Lemma 4.2
yields the boundedness of S, I , H and R on any bounded interval. Uniqueness then follows 
from (WP.2). �
Proof of Proposition 3.2. Assumptions (V) and (ID) trivially hold. Condition (P) holds with 
P1 = ‖d‖L∞(Rn;R)/ε and P2 = 1/ε. Verifying (Q) is straightforward. To prove that (BD) holds, 
compute for y ∈Rn with ‖y‖ > r :

|ub(t, y,w)| =

∣∣∣∣∣∣∣
1

A(a = 0, y) εn

ˆ

R+

ˆ

Rn

M
(

y′ − y

ε

)
b(a′, y′)w(a′, y′)da′dy′

∣∣∣∣∣∣∣
≤ 1

εn infA

∣∣∣∣∣∣∣
ˆ

R+

ˆ

Rn

M
(

y′ − y

ε

)
b(a′, y′)w(a′, y′)da′dy′

∣∣∣∣∣∣∣
≤ 1

εn infA

ˆ

R+

ˆ

Rn

∣∣∣∣M
(

y′ − y

ε

)∣∣∣∣
(

sup
|y′−y|<r

∣∣b(a′, y′)
∣∣) ∣∣w(a′, y′)

∣∣da′dy′

≤ 1

εn infA
‖M‖L∞(Rn;R)

1

(1 + ‖y‖ − r)n+1

ˆ

R+

ˆ

Rn

∣∣w(a′, y′)
∣∣da′dy′

proving the first requirement in (BD). Lipschitz continuity is proved by the same procedure.
The assumptions on the signs of data and parameters allow to apply Corollary 2.3 and ensure 

that (5) holds. �
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[28] J. Málek, J. Nečas, M. Rokyta, M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Applied 
Mathematics and Mathematical Comp., vol. 13, Chapman & Hall, London, 1996.

[29] R.M. Colombo, M. Garavello, Control of biological resources on graphs, ESAIM Control Optim. Calc. Var. 23 (3) 
(2017) 1073–1097, https://doi .org /10 .1051 /cocv /2016027.

[30] S. Mischler, B. Perthame, L. Ryzhik, Stability in a nonlinear population maturation model, Math. Models Methods 
Appl. Sci. 12 (12) (2002) 1751–1772, https://doi .org /10 .1142 /S021820250200232X.

[31] A. Bressan, B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS Series on Applied Mathematics, 
vol. 2, American Institute of Mathematical Sciences, Springfield, MO, 2007.

[32] P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, vol. 38, SIAM, Philadelphia, PA, 
2002, corrected reprint of the second (1982) edition, https://doi -org .proxy.unimib.it /10 .1137 /1 .9780898719222.

[33] R.M. Colombo, M. Herty, M. Mercier, Control of the continuity equation with a non local flow, ESAIM Control 
Optim. Calc. Var. 17 (2) (2011) 353–379.

[34] S.N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) 81 (123) (1970) 
228–255.
169

https://doi.org/10.1137/0148032
https://doi.org/10.4310/CMS.2015.v13.n2.a6
https://doi-org.proxy.unimib.it/10.4310/CMS.2015.v13.n2.a6
http://refhub.elsevier.com/S0022-0396(23)00013-X/bib78054C4B3CE9E114867489D319F48158s1
http://refhub.elsevier.com/S0022-0396(23)00013-X/bib78054C4B3CE9E114867489D319F48158s1
https://doi.org/10.1006/jmaa.1997.5554
https://doi.org/10.1016/j.jde.2007.02.007
https://doi.org/10.1007/s002110100307
https://doi.org/10.1142/S0219891618500133
http://refhub.elsevier.com/S0022-0396(23)00013-X/bibC0DA7A741B00CB1FDDA08EA32997DC27s1
http://refhub.elsevier.com/S0022-0396(23)00013-X/bibC0DA7A741B00CB1FDDA08EA32997DC27s1
https://doi.org/10.1051/cocv/2016027
https://doi.org/10.1142/S021820250200232X
http://refhub.elsevier.com/S0022-0396(23)00013-X/bib39A785E858D977B45FEFD712A7532D34s1
http://refhub.elsevier.com/S0022-0396(23)00013-X/bib39A785E858D977B45FEFD712A7532D34s1
https://doi-org.proxy.unimib.it/10.1137/1.9780898719222
http://refhub.elsevier.com/S0022-0396(23)00013-X/bib4FB7DC898A20735887BDE2DF97DB8D0Es1
http://refhub.elsevier.com/S0022-0396(23)00013-X/bib4FB7DC898A20735887BDE2DF97DB8D0Es1
http://refhub.elsevier.com/S0022-0396(23)00013-X/bib3C4FC674BD69B7217E68E06A6CC64608s1
http://refhub.elsevier.com/S0022-0396(23)00013-X/bib3C4FC674BD69B7217E68E06A6CC64608s1

	General renewal equations motivated by biology and epidemiology
	1 Introduction
	2 Assumptions, definitions and results
	2.1 The definition of semi--entropy solution ensures uniqueness

	3 Sample applications
	3.1 The spreading of an epidemic
	3.2 Cell growth and division
	3.3 An age and phenotypically structured population model
	3.4 Further applications

	4 Analytic proofs
	4.1 The scalar case
	4.2 The general case of a system

	Data availability
	Acknowledgments
	References


