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Abstract

We present a unified framework ensuring well posedness and providing stability estimates to a class of
Initial — Boundary Value Problems for renewal equations comprising a variety of biological or epidemio-
logical models. This versatility is achieved considering fairly general — possibly non linear and/or non local
— interaction terms, allowing both low regularity assumptions and independent variables with or without a
boundary. In particular, these results also apply, for instance, to a model for the spreading of a Covid like
pandemic or other epidemics. Further applications are shown to be covered by the present setting.
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1. Introduction

In a variety of biological models, different species are typically described through their densi-
ties u!, u?, ..., u* and, in general, each ul depends on time 1 € R, on age a € R, on a spatial
coordinate in R? or R3 and possibly also on some structural variables. Thus, a unified treatment
of these models finds its natural setting in the following general mixed Initial — Boundary Value

Problem (IBVP) in X =R’} x R”

dul +divy (Vi x)ul) = g" (¢, x,ut, ), u(t))  (t,x)eRL x X

u(1,6) = uj (1.6, u(®) (1,8) €Ry x 9X (1)
u (0, x) = ug (x) xekX,
where h =1, ..., k. Aiming at a rather general setting while keeping sharp estimates, without

any loss in generality, we write (1) in the form

A’ + divy (vh(t, X) uh) =ph ¢t x,u@®)ul +q" (t,x,u, u(t)) (t,x)eIxX

ul(t, &) = ul (t,&, u(t)) (t,E)elxdX (2)
u"(0,x) = ug (x) xeX,
where h = 1, ..., k. Note that the decomposition of the source term g” in (1) into p” and ¢" is

neither unique nor in any sense restrictive.

We stress that both in (1) and in (2) the term u(#) appearing in the right hand sides is under-
stood as a function, so that both the source and boundary terms in (1), besides being non linear,
also comprise quite general non local, i.e., functional, dependencies.

The current literature comprehends a multitude of well known models fitting into (1): we recall
here for instance [1-9], leaving to Section 3 the highlighting of specific aspects of (1) in other
recent or classical models. In particular, the well posedness and stability theorems below apply
also to model (11) which, to our knowledge, does not fully fit into other well posedness results
in the literature. At the same time, the literature covering particular instances of (1) dates back
to classical milestones, such as [10—13]. Moreover, various textbooks introduce to the analytical
study of models fitting into (1), see for instance [14—-17,9,18].

A multitude of compartmental models share the key features of the chosen framework (1):
they are the domain X of the x variable and the coexistence of rather general local and non local
terms. Indeed, under the choice of X above, we comprise also bounded space/age domains [6],
half lines [19], full vector spaces [7] as well as their combinations [3,5,20,21]. In all these cases,
rather general conditions are assigned along the different types of boundaries that fit into (1),
such as, for instance, natality terms [3,20,21]. The biological meaning imposes that these bound-
ary terms, as well as the sources in (1), may contain both local and non local terms. The former
ones comprehend, for instance, mortality terms [4,5], while the latter can be motivated by na-
tality [3,20], predation [22] or interaction between populations [4], e.g., the propagation of an
infection [5].

We underline that the present framework does not rely on any regularizing effect of diffusion.
The general non local terms here considered need not have any smoothing effect, and can also be
absent. The lack of diffusion operators ensures that any movement or evolution described by (1)
propagates with a finite speed. In particular, the present approach is consistent with deterministic
modeling, while the Laplace operator may also serve to describe various sorts of random effects,
see for instance [23,24].
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Within this general framework, we first prove well posedness, i.e., local existence, unique-
ness and continuous dependence of the solution to (1) on the initial datum. Then, we provide
conditions ensuring the global in time existence and the stability with respect to functions and
parameters defining (1). Throughout, the functional setting is provided by L! and the distance
between solutions is always evaluated through the L norm. As a consequence, we can deal with
non smooth solutions, a necessary feature in view of control problems. Moreover, the bounded-
ness neither of the total variation nor of the L° norm of the data is required. Indeed, among
the different notions of solutions to IBVPs for renewal equations, we choose to establish our
framework on that introduced in [25,26]. This definition not only is stated in terms of integral
inequalities, more convenient in any limiting procedure, but remarkably it does not require any
notion of trace, allowing us to deal with merely L! solutions.

Remark that in (1) both the source terms and the boundary terms are non linear. Thus, a key
tool in the proofs is Banach Contraction Theorem, based on precise estimates on scalar equations.
Merely requiring some sort of local Lipschitz regularity does not rule out the possibility of finite
time blow ups (in any norm), as shown below by explicit examples. We thus resort to a Gronwall
type argument to obtain global in time existence. As a byproduct, we also record a uniqueness
result in the general setting of (1) based, as in the classical Kruzkov case, on a carefully chosen
definition of solution, see § 2.1.

We also note that particular instances of equations falling within (1) can be studied through
other techniques, such as, for instance, analytic semigroup theory, generalized entropy methods
or Laplace transform. We refer, for instance, to [14-16,9].

The present results, besides unifying the treatment of various models, provide tools useful
in tackling control/optimization problems based on (1). Indeed, the stability estimates proved
in Theorem 2.5 ensure that general integral functionals defined on the solutions are Lipschitz
continuous functions of the data and parameters characterizing (1). A further direction that can be
pursued using the present results is that of inverse problems, i.e., exhibiting conditions ensuring
that an optimal choice of data and parameters in (1) is possible, in order to best fit sets of given
experimental data.

This paper is organized as follows. In Section 2 we provide the basic well posedness and
stability results. Then, Section 3 is devoted to specific applications that fit into (1). The technical
analytic proofs are deferred to the final Section 4.

2. Assumptions, definitions and results
Throughout, we set Ry = [0, +o0],
I=R;y or I=[0,T] and X=RY xR" 3)
for a positive 7.
First, we state what we mean by solution to (1). To this aim, we extend to the present case the

definitions in [25,26], see in particular [27, Definition 3.5].

Definition 2.1. A map u, € C*(/; L1(X;R¥)) is a solution to (1) if setting for h = 1,...,k,
tel,xeXand & €0X

G'(t,x)=g" (t, x, un(t, %), () and U, &) =ul (1, &, us(t)) ,
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forh=1,...,k the map uﬁ is a semi—entropy solution to the IBVP

du + divy (V" (1, x)u) = G"(t, x) (t,x)el xX
u(t, &) = U, &) (t,&)el x 3X
u(0, x) = ul(x) xeX.

We recall in Definition 2.6 below the notion of semi-entropy solution.
The main result of this paper concerns the well posedness of the Cauchy Problem (2).

Theorem 2.2. Use the notation (3) and let the following assumptions hold:

(V) ve (CNL®)(I x X; RF<#+m)y diy, vh e L1

toc (L: L (X R)) for h =1, ..., k and there
exists a positive V such that

(vh(t,x))i>V V(t,x)elxaz\’andfor};zi"”

(P) For all w € LY(X; RY), the map (t,x) — p(t,x,w) is in CY%7 x X;R%) and there exist
positive Py and Py such that fort €I, x € X, w,w’ € Ll(/\’; ]Rk)

Ip@, x,w)ll <P+ Pallwlpix.rey
| P2 w) = pt.x,w)| < PofJw — w/”Ll(X;Rk)'
(Q) For all w € LM(X; R¥), the map (¢, x,u) — q(t,x,u,w) is in C%J x X x R¥; R%) and

there exist positive Q1 and Q3 and a function Q> € (L1 NL®)(X; R,.) such that fort € I,
x€X, u,u’ € R¥ w,w e LY(X; R¥):

g, x,u,w)ll < Q1 llull + Q20x) lwlprx.rey + O3 llull lwllpt x.rF) 3
lg @ x,u,w) — gt x,u’, w)| < Q1 |u—u'| + Q3 llwlpix.rey |u—u'|
+0s || Jw = w1 ey -
(BD) up: Ry x 90X x L1(X; R¥) — R is such that for any w € LY(3X; R¥), the map (¢, €) —
up(t, &, w) is measurable. Moreover, there exists a function B € (LINL*®)(3X; R) such

that for everyt € I, £ € X, w, w’ € L1(X; Rb),

lup(2, & w)ll < BE) (1 + llwlipix i)

||Mb(t, 57 U)) - le([, S? w/) ” E B(E) ”U) - w/”Ll(X,Rk) .
(D) u, € L1(X;RY).
Then,

(WP.1) There exists a positive Ty € 1 such that, setting I, = [0, T], the IBVP (2) admits a
solution in the sense of Proposition 2.1 defined on I.
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(WP.2) Assume uy and uy solve (2) in the sense of Definition 2.1 with uy, uy € LI x X; R%).
Then, u; = us.

(WP.3) Let ii,, 11, € LY X; R, If i [ — Rk, respectively i: I — RK, solve (2) in the sense
of Definition 2.1 with initial datum u, = iy, respectively u, = Uiy, then there exists a
function L € Ly, (I Nni; R) such that for all t € ini

i) — i@ ”Ll(x;Rk) < L) [ito — ity ||L1(X;]Rk) :

The proof is deferred to Section 4.
In several applications it is of interest to guarantee that each component in the solution attains
non negative values. To this aim, we state the following Corollary.

Corollary 2.3. Let the same assumptions of Theorem 2.2 hold and assume moreover that for an
indexhe{l,...,k}

(Q+) Fortel,ae. xeX, ue RF, we Ll(X; ]R]_‘._), qh(t,x,u, w) > 0.
(BD+) Fortel, & €dX and w € LY(X; R¥), ul (t,&, w) > 0.
(ID+) Fora.e. x € X, ufﬁ(x) > 0.
Then the unique solution u to (2) also satisfies for every t € I, and for a.e. x € X.
ul(t,x)>0. 4

The proof is deferred to Section 4.

The above result is of a local nature and, without further assumptions, it can not be extended
to a global result, as the following examples show. Consider the Cauchy Problem (2) with k = 1,
m=0,n=1,X=R, p(t,x,w)= fol w(x)dx, g =0, which results in

ofu=u folu(t,x)dx 1
solvedby u(t,x)= X (x).
u0,x)= X[O,l](x) (0,11

Note that (P) holds with P; =0 and P, = 1. Clearly, u blows up in any norm at f = 1.
Similarly, setting k =1, m=1,n =0, X =Ry, p(t,x,w) = fR+ w(x)dx, ¢ =0 in (2),
which satisfies (P) with P = 0 and P, = 1, leads to the Cauchy Problem

u+ou=u fR+ u(t, x)dx

1
u(,0)=0 solved by  u(t,x) = T *u. t+1]( x).
u(0,%) = X103

Again, the solution blows up in any norm at t = 1.

Typical biological/epidemiological models have further properties ensuring that solutions are
defined globally in time. In particular, the model described in § 3.3 displays a quadratic right hand
side similar to those in the examples above, differing in the sign. Nevertheless, in this example,

137



R.M. Colombo, M. Garavello, F. Marcellini et al. Journal of Differential Equations 354 (2023) 133—-169

well posedness holds globally in time. Indeed, in general, a lower bound on the solutions is
available since Corollary 2.3 ensures that the components of the solution attain non negative
values. An upper bound, preventing finite time blow up, is obtained through assumption (BD) on
the boundary datum and a further condition, see (5) below, that bounds the overall growth.

Corollary 2.4. Let I = R.. Let the assumptions of Corollary 2.3 hold for all h =1, ..., k. As-
sume moreover that for suitable C, € L (R4; L1(X; R)) and C; € LX.(R,; R),

loc loc
k k
Yo x o wyut + g xuw) < CL )+ Co) ) 5)
h=1 h=1

forallt e Ry, a.e. x € X, u, w € RK. Then, the solution to (2) is defined for all t € R.
Finally, we provide the stability estimates essential to tackle, for instance, control problems.
To this aim, we need to slightly specialize the functional dependence of p, g and u;, on u(t). We

thus obtain sufficient conditions to apply Theorem 2.2 and get stability estimates.

Theorem 2.5. Let assumptions (V) and (ID) hold. Assume that in (2), fort € I, x € X, u € R¥,
w e LY(X; R),

pht, x,w)y = P" (t,x,fX'K;,‘(t,x,x/)w(x’)dx/)
q"(t, x,u,w) = Q" (t,x,u,fX‘K;’(t,x,x/)w(x’)dx’) (6)
up(t, &, w) = Ul (1,€, [ KI (@t & x)wx)dx')

where the functions above satisfy:

(P) There exist Py > 0 and Py > 0 such that, forevery h =1, ...k, the function Pl T x X x
R > R (kp > 1) satisfies

P | < Pt Ballnll and | PP () — P Gexn)| < Pallng = 2

foreverytel, x € X, n,n1,1m € R¥r; ‘Kz e L®(I x X%; RkoK),

(6) There exist Ql, Q3 >0 and Q2 € (L1 N L°°) (X; R+) such that, foreveryh =1, ...k, the
function Q" : I x X x RF x Rf» — R (kg = 1) satisfies

‘Qh (t,x,u, n)‘ < Qtllull + Q2(x)lInll + Q3 llullln|l
0" (1, x, . ) = Q" (%, w2, )| = Q1 s = wal + Qs lwr = wa
+ Qslluzlllim — mal
foreverytel, x e X, u,uy,u; € RF, n, 01,02 € Rka; ’Kg e L™ x Xz;quk).
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(BD) There exists B € (L N L®)(3X; R.y) such that for every h = 1,...,k, the function
U,i’: I x 30X x Rk — R satisfies

Ute e m|=B@OA+InD  and |Uba e ) — U@ & )| < BE I - mal
foreverytel, £ € dX and n,n1, n € Rk ; 7(5 e L®(I x 3X x X; RKkuk),
Then, Theorem 2.2 applies. Moreover, if both systems

dul +divy (VM x)ul) = ph @, x u@) uh + ¢ ¢ x u u@) (L x)eIxX

ul(t, &) =al (t,&,u@)) (t,&)elIxdX  (7)
u(0, x) =il (x) xeX,

dul + divy (V" (¢, x)ul) = ph (e, x u@)uh +G"  x u u@))  (tx) eIxX

Wl (t,&) =l (t,&,u@)) (1,E)eIxdX  (8)
u(0, x) =it (x) xeX,

satisfy the assumptions above, then the following stability estimates hold:

la@) — i) HL‘(X;]R")

o] £ - #| e
- ( )[ LOC([O,t]XXkaP;Rk) p P LOO([O,t]xXZ;Rksz)
+Ho-0 + |, |
e-¢ L1([0,1]x XL (RF x R* :R¥)) T T Lo 0,1 X2 Rk
+|0» - U, + K, — % O
P PPl 0.k L (R REY) ! “ Loo([O,t]XBXXX;Rk“kZ)]

for every t such that i and u are defined on [0, t] and where the Landau symbol O(1) denotes a
constant independent of the initial data.

The proof is deferred to Section 4.

Finally, we note that (V) and Definition 2.1 allow to immediately extend all results in the
present section to the case X = (]_[;”=1 Ii) x R", as soon as Ii,..., I,, are (non trivial) real
intervals bounded below. In particular, any of the /; may well be bounded also above.

2.1. The definition of semi—entropy solution ensures uniqueness

This paragraph provides a definition of solution and the consequent uniqueness statement in
a setting more general than the one usually found in the literature. In particular, it extends the
results in [25, Section 3] to the slightly more general case of the unbounded domain X. Indeed,
with the notation (3), consider the fully nonlinear IBVP

oru +divy f (¢, x,u) = g(t, x,u) (t,x)elI x X
u(t, &) =up(t, §) (1,§)el x 0X )]
(0, x) = uy,(x) xelX.

The following definition is the extension to (9) of [27, Definition 3.5], see also [25,26].
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Definition 2.6. A semi-entropy solution to the IBVP (9) on the real interval / is a map u €
L. (1; L1(X;R)) such that for any k € R and for any test function ¢ € Cg (J—o0,sup I[ x
Rn+m; R+)

//(M(I,X)—K)i d(t, x)dxdt
T X

+ //sgni(u(t,x) — k) (f(t,x,u) — f(t,x,k)) - grad, o(¢, x)dxdt
I X

+ //sgni(u(t, x)—«)[g @, x,ut,x)) —divy f(z, x, k)] @(t, x)dxdt (10)
I X

+ / (to(x) — k)F (0, x)dx
X

+Lip(f)//(ub(f,§)—'<)i @(t,£)dédr >0

I X
where Lip(f) is a Lipschitz constant of the map u — f (¢, x, u), uniform in (¢, x) € I x X.

Above, we use the notation w = max{w, 0} and w~ = max{—w, 0}.
A key feature of (10) is its ensuring uniqueness, which we detail in the next Proposition to
ease comparisons with the current literature.

Proposition 2.7. Consider the general scalar IBVP (9) under the assumptions

& fe C%I x X x R; R"™™) admits continuous derivatives ou f, Ougrad, f, D%xf with 0, f
and grad, f bounded in (t,x) € I x Ry locally inu € R; 0,grad, f is bounded.

(8) g,048,0x,8 € C%I x X x R; R) and for all (t,x) € I x X, |g(t, x,u)| < G(u) for a map
G e L (R; Ry) and 9, g is bounded.

loc
(bd) The boundary datum satisfies up, € L>°(I x dX; R).
(id) The initial datum satisfies u, € L°°(X; R).

If uy, up € L°(I x X; R) both satisfy (10), then they coincide.

This Proposition slightly extends [25, Theorem 18]. However, its proof relies on merely tech-
nical modifications to [25, Lemma 16 and Lemma 17], due to the present unboundedness of the
domain X. Very similar techniques are employed also in [28, § 2.6 and § 2.7], which is devoted
to a hyperplane.
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3. Sample applications

The structure of (1) is sufficiently flexible to comprise a variety of applications of mathematics
to biology, in particular to epidemiology. The general results in the preceding section can be
applied to well known models in the literature, see for instance [1,4,29,9]. In the next paragraphs,
we select sample applications based on analytic structure that differ in the number of equations,
in the number of independent variables, in the presence of (partial) boundaries and in the role
of non local terms. In particular, § 3.1 deals with a recently proposed model, see [5], while the
subsequent ones refer to other classical models that fit into (1).

3.1. The spreading of an epidemic

During the spreading of an epidemic, within a population we distinguish among individuals
that are Susceptible, Infective, Hospitalized or Recovered, see [5]. Each of these populations
is described through its time, age and space dependent density: S = S(¢t,a,y), I =1(t,a,y),
H = H(t,a,y) and R = R(¢,a,y), respectively. Remark that the distinction between [ and
H consists in the H individuals that, being hospitalized or quarantined, do not infect anyone
although being ill. In its most general form, the model presented in [5, § 2] to describe the
evolution of these populations, reads

S + 0,8 + div,(vs S) + usS =—(p® DS

Ol + 0,1 +divy(ui ) + il = (p®DS—x1—-v1 ;EEJF an
0 H + 0, H +un H= +xl  —nH CR?
R+ 8,R +div,(vg R) + ug R = +91+nH Y
where the propagation of the infection is described by
(p®1(t))(a,y)=//p(a,a’,y,y’)I(t,a/,y’)dy’da/- (12)

R, R2

Here, the function p plays the key role of describing how infective individuals infect others,
at which distance and with which dependence on age or time, see [5] for more details. In (11),
vs =vs(t,a,y), vy =v;(t,a,y) and vg = vg(t, a, y) describe the time, age and, possibly, space
dependent movements of the S, I and R individuals, while us = us(t,a,y), uy =uni(t,a,y),
ug =ug(t,a,y) and ug = wr(t,a,y) are the mortalities. The term « = k (¢, a, y) describes
how quickly infected individuals are confined to quarantine; ¥ = ¥ (¢, a, y), respectively n =
n(t,a, y), quantifies the speed at which infected, respectively quarantined, individuals recover.
System (11) needs to be supplemented by boundary and initial data:

S(t,a=0,y)=S8,(t,) S(t=0,a,y)=S,(a,y)
I([,Cl:O,y):O I(t:O’asy):IO(avy)
Ht.a=0,y)=0 and N H(=0.a.y)=Hyla.y) (3
R(t,a=0,y)=0 R(t=0,a,y)=Ro(a,y).

Note that a more precise boundary term, though not amenable to be used in the short term, might
be a natality term of the form
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S(t,a=0,y)= / b(t,a',y) S, d,y)dd
Ry

which also fits in the framework of Theorem 2.2 and Theorem 2.5. Note that (11)—-(12)—(13)
is a system with independent variables (a, y) where a is bounded below while y is in R? and
no second order differential operator is present. The model (11)—(12)—(13) fits into (2) in the
form (6) setting X =R x R%, x = (a, y), & = (0, y) and

k=4 m=1 n=2

ul=5 ur=1 w=H u*=R

w! = 8(@) w?=1() w3 = H(@r) w* = R(t)

UIZ ! 1)2: ! v3: 1 U4: 1

Vs vy 0 UR

ué:Sb ui:O uZ:O ui:O

u}}:So u%:lo u?):HU uﬁ:Ro
plt,x,A) = —us — A g (t,x,u,A) =0
pz(t,x,A) = —u;—k—79 qz(t,x,u,A) = Au
[73(t’st) = —UH —1] q3(tvxvuaA) = KU
p4(t,x,A) = —UR q4(t,x,u,A) = Vuy+nus

and the only 2 non zero entries in K}, and K}, are valued p, so that

7@ @) wi@' ey = (p 1) @),
X
96 (1. @5) wid' )ty = (p @ 1) @),
X

Proposition 3.1. Ser 7 = [0, T] or I =R. Let vg, vy, Vg € (C1 NL®) (I x X; RZ) with diver-
gence in L1(I; L (X; R)); p € L*(R% x R*; R) and Sy € (LY NL>®)(Z x R*; R). Let ps, u1,
WH, UR, ¥, n and k be positive and in L™°. Fix an initial datum (S,, I,, H,, R,) in LL(X; RY).
Then:

1. Problem (11)—(12)—(13) fits into Theorem 2.2 and Theorem 2.5 and hence it admits a solution
(S.1,H,R) € C° ([0, T,]; LY(X; RY)), for a T, > 0.

2. Ifthe initial and boundary data (S,, I,, Hy, R,) and Sj, are non negative, if p > 0 and if the
constants k,n, 0 are non negative, then Corollary 2.3 applies, ensuring that the solution is
non negative: (S, 1, H, R)(t) e LY(X; R%), for all t € [0, T,].

3. If, in addition to what required at 2., the mortalities |Ls, L], [LH, LR aFe non negative,
then Proposition 2.4 applies, so that the solution is defined globally in time.

4. If, in addition to what required at 3., (S,, I,, H,, R,) in L®(X; Ri), then the solution is
locally bounded: (S,1,H, R) e L*(J x X; Ri), for any bounded interval J C I. Hence,
(S, 1, H, R) is the unique solution to (11) in the sense of Definition 2.1.

The proof is deferred to Section 4.
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As pointed out in (11), a natural control parameter is the coefficient k = k (¢, a, y), which
determines how quickly infective individuals are isolated in quarantine.

A first natural choice for a cost to be minimized by a careful choice of « is the total number
of deaths on the time interval [0, 7], namely

T
D(K)=///(/u(t,a,y)l(t,a,y)+MH(t,a,y)H(t,a,y)) dydadr.

0 R, R2

Proposition 3.1 ensures that the cost D is a continuous function of «. Hence, standard com-
pactness arguments, for instance in the case of a constant «, ensure the existence of an optimal
control. Moreover, the Lipschitz continuity, again ensured by Proposition 3.1, allows to use stan-
dard optimization algorithms to actually find near—to—optimal controls.

A second reasonable choice is to minimize the maximal number of infected individuals
111l j0, 71x R xR2;R)> aiming at minimizing the maximal stress on the health care system.
Again, the continuity proved in Proposition 3.1 allows to use Weierstrass type arguments to
exhibit the existence of optimal controls, thanks to the lower semicontinuity of the L°° norm
with respect to the L! distance.

3.2. Cell growth and division

Consider the classical model [3, Formula (2)] devoted to the description of cell growth and
cell division, as extended in [21, Formula (1.5)—(1.7)]:

N + 0,N +divy(V(a,y) N) =—A(a,y) N (14)
N(t,0,y) sz+ Jre B((@,¥), y,N(t,a',y))dy'da’
where t € Ry is time, a € Ry is age, (y1,...,yn) € R" is an n—tuple of structure variables,

X = A(a, y) is the age— and state—specific loss rate, N = N (¢, a, y) is the population density and
V = V(a, y) is the (time independent) individual cell’s growth rate. Therefore, (14) fits into (2)
setting

k=1, neN, m=1, X=R xR", x=(a,y), £€=@0,y), u=N, w=N(1),
v(t,(a,y)=V(a,y), p (a,y),N®)=-Aa,y), q((a,y),N,N@)=0,

up(t,y, N, N(1) = / / B((@.y).y, Nt.d'y))da'dy’ .

R'R,

Concerning the assumptions of Theorem 2.2, we have that (V) is satisfied as soon as V € (C1 N
L) (X; R") and divV € L1(Z; L®(X; R)). Condition (P) is met whenever A € C® N L, with
Py = ||Allp R, xR;R) and P2 = 0. Assumption (Q) trivially holds. To comply with (BD), we
need B to be Lipschitz continuous and sublinear in its fourth argument, i.e., 8((d’, y'), y, w) <
B(y) (1 + |w]) for a suitable B € L! N L. Under these assumptions, Theorem 2.2 applies
to (14).

As soon as 8 > 0 and the initial datum is non negative, also Corollary 2.3 applies, ensuring the
solution is non negative. It is reasonable to assume from the biological point of view that A > 0,
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so that also Corollary 2.4 applies (with C1 = 0, C2 = 0), ensuring that the solution is globally
defined in time. It is straightforward to see that, as soon as f§ is linear in its third argument, it is
possible to apply also Theorem 2.5.

3.3. An age and phenotypically structured population model

Within the general form (1) we recover also the recent model [20, Formula (1)], namely

63 Ms + Do (A(a, y) My) = — / / M.(.d,y)da'dy +d(a, y) | M,
+R”

Y —y (15)

1
Ms(t,(l IO,y): A(a:—W //M( . ) b(a/,y/) Mg(t,a/,y/)da/dy/
R.R"

M:(t=0,a,y)=M%a,y).

Here, the dependent variable M, = M, (¢, a, y) describes the population density at time ¢, of age
a € Ry and trait x € R", so that fR+ Jgn Me(t, a, y)dadx is the total population. The growth
function A = A(a, y) describes the age and trait dependent aging. The mortality, on the right
hand side of the first equation in (15), both depends on the crowding, due to intraspecies com-
petition, and on a given mortality d = d(a, y). The function b = b(a, y) quantifies the natality
and is modulated by the mutation probability kernel M, both defining the boundary term along
a =0, see also [30].

Note that the IBVP (15) can be seen as a prototype equation for various other similar models,
see for instance [8, Formula (2.8)].

The above system (15) fits into (2) setting X = R4 x R” and

k=17 m:l, ”21, x=(a,Y), SZ(O,)’), u=M€9 sze(t)v

v=|:A(a,O)’)/8:| ’ p(l,X,U)):_é/w(x)dx_@’ q(t’_x7uyw):0’

R (16)
y =y
&

1 /
up(t,y, w)= m //M( ) b(a/, y’)w(a ,y’)da/dy’.
’ R_an

Proposition 3.2. Let A € (C! N L®)(X;R) with infA > 0 and divy yA € L®(X;R). Let
d € L*(R"; R), M € L®[R"; R) such that M(n) = 0 whenever |n|| > r, for a fixed r > 0.
Moreover, b € L® (R4 x R™; R) such that |b(a, y)| < (1 + |y|)~"*V. Then, for any initial da-
tum u, € (LY NL®)(X; R), Theorem 2.2 applies to the Cauchy Problem for (15) with datum
uy. If moreover u, >0, A0, y) >0, M >0 and b >0, Corollary 2.3 and Corollary 2.4 apply,
ensuring that the solution is non negative and defined on all R ;..

The proof is deferred to Section 4. Thus, the above result ensures existence on [0, +o0o[ as soon
as all the assumptions are available therein, recovering the well posedness results in [30,20].
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3.4. Further applications

We briefly recall here further models considered in the literature that fit within (1). In each
of the cases below, we refer to the original sources for detailed descriptions of the modeling
environments.

The model presented in [7, Formula (5)], devoted to the modeling of leukemia development,
reads (here,i =2,...,M — 1 forafixed M e N, M > 3):

2a1(x)
dny = i — 1 p1x)m
1+ K [y np(r, x")dx’

aj—1(x) 2a;(x)
ani=2|1- i pi-1(x)ni—1+ i —1)pi(x)n;
14K [y np(t, x")dx' 14K [y np (2, x")dx'
apm—1(x)

ony=2(1- i pu—1(x)ny—1 —dny
1+ K [y np(t, x")dx’

n;(0,x) =n?(x).

a7
Remark that (17) can be seen as a system of ordinary differential equations on functions defined
on [0, 1] or, alternatively, as a system of ordinary differential equations coupled also through a
non local dependence on the x variable. Nevertheless, it fits within (1): indeed, set k = M, m =0,
n=1,X=R,u=(ny,...,npy), v=0, the other terms being obviously chosen.

It is worth noting that the recent model [2, Formula (13)], though devoted to an entirely dif-
ferent scenario, is analytically analogous to (17) and also fits within the framework formalized
in Section 2. The use of Theorem 2.2 and Theorem 2.5 thus extends the results in [2,7] compre-
hending L! solutions and providing a full set of stability estimates.

Another example is the model recently presented in [6, Formula (1.1)], devoted to an age—
structured population described by the time, age and space dependent density u = u(t, a, y):

oru+ 0qu =d(J xu(t) —u)+ G (u(t))
u,0,y)=F (u@)) (18)
u©,a,y) =2, y)

considered in [6] fora € [0,aT] and y € Q, where a™ € 10, +-00[ and Q C RY are given. Above,
J is a convolution kernel, while the functionals ' and G are locally Lipschitz continuous with
respect to the L! norm. Model (18) fits into (1) setting k=1, m=1,n =N, X =Ry x RN,

x=(a,y),v= |:(l)i|, the choice of the other terms being immediate. The results in Section 2

immediately apply even if the age interval [0, a™] and the space domain are bounded, thanks
to the generality of the assumptions required on v. This allows to have qualitative information
on the dependence of the solutions exhibited in [6] on the various parameters and functions
defining (18).

We recall also the following competitive population model with age structure as an example
of a system of equations. It was introduced and studied from the optimal management point of
view in [19, Formula (1.1)]:
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A

8tu1 + 8au1 =—ui(a, ul)u1 — fl(t,a)u1 —u' /cl(a/,a) uz(t,a/)da/
0
A

u’ + deu’ = —pa(a, uP)u® — f2(t,a)u* — uz/cz(a’,a)ul(t,a’)da’
0

A
ul(t,0)= /ﬂl(a’)u](t,a’)da/ (19
0

A
u2(t,0)=/ﬁ2(a’) u’(t,a’yda’
0

u'(0,a) =ul(a)
u*(0,a) =u’(a).

Here, we have k=2, m =1,n =0, X =R, v = 1. Under the assumptions of Theorem 2.2 and
Theorem 2.5 we recover the continuity of the profit functional [19, Formula (1.2)]

T A
J(f)z//(Kl(a)fl(t,a)ul(t,a)+Kz(a)f2(t,a)u2(t,a)>dadt,
0 0

now also in the setting of L! solutions.
4. Analytic proofs
4.1. The scalar case

We now consider in detail the affine scalar case, namely (9) with f (¢, x,u) = v(¢,x) u and
glt,x,u)=p, x)u+q(t, x),ie.,

oru + divy (v(t, x)u) = p(t, x)u+q(t, x) (t,x)eRL x X
u(t, &) =up(t,§) (t,6)eRy x 30X (20)
u(0,x) =u,(x) xeX.

Recall the following standard notation. A characteristic of (20) is the solution t — X (¢; t,, x,)
to the following Cauchy Problem for the system of ordinary differential equations

x =v(t,x) (t,x)elI x X @1
x(t)) =x,. (ty,xp) el x X.
For 7,t € I and for x € X, define
'
E(t,t,x) =exp /(p (s, X(s;t,x)) —divyv (s, X (s;¢,x)))ds 22)
T
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and forall (r,x) € I x X, if x € X(¢; [0, ¢[, 0X), we set
T(t,x)=inf{s € [0,¢[: X (s;¢,x) € X} . 23)
With the notation introduced above, we recall the well known formula
uy (X(0;¢,x))EQ,t,x)
t

+/q(r,X(r;t,x)) E(t, t,x)dr xeX(;0,X)

u(t, x) = (24)

0
up (T(t,x), X (T(t,x);t,x)) E(T(t,x),t,x)
t

+ / q(t,X(t;t,x)) E(z,t,x)dt xeX@;[0,¢t[,0X)
T(t,x)

obtained from the integration along characteristics, a standard tool at least since the classical
paper [10]. The following relations are of use below, for a proof see for instance [3 1, Chapter 3],

0 X (1510, x0) =v (1, X(t; 20, X0)) (25)
t

3,0X(t; to, Xo) = —V(to, Xo) eXP/diva (s; X (2,19, x0))ds (26)

fo

M = Dyv (t, X (t; 15, X)) M

M) =1d. @7

Dy, X (t;1t,,x,) = M(t), the matrix M solves {

In order to prove that (24) solves (20) in the sense of Definition 2.6 and to provide the basic
well posedness estimates, a few technical lemmas are in order. First introduce the following
notation: where misunderstandings might arise, we use the positional notation for derivatives.
For instance, with reference to the map (t; #,, x,) — X (; 5, X,), we denote

X(t;to+1,%0) — X (25 19, X0)
" .

0 X(t;ty, x0) = 8t0X(t§ ty, Xo) = lim
t—0

We also set X = (X1, ..., Xjp+n), With X; = X - ¢;, where (ey, ..., ep+n) is the canonical base
of R™*"_ Recall also that 3 X; = ;(X - ¢;) = (X) -¢;,forl =1,2,3andi=1,...,m +n.

Lemma 4.1. Under assumption (V) with k = 1, the map in (23)

T:{(t,x)eRy xX:xeX(#][0,t[,0X)} — R4+ (28)
(t,x) > inf{s € [0, #[: X (s;¢,x) € X}
is well defined. Moreover, forallt € Ry and a.e. x € X such that x € X (t; [0, t[, 0X), there exists
a unique i € {1, ..., m}, depending on t and x, such that
Xi(T(t,x);t,x)=0. (29)
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Givent e Ry, fori € {1,...,m}, call X! the set of x € X such that i is the unique index satisfy-
ing (29). Then, the map

M;: X — R, x RrHm=1

1

x b (T, (X T 00.00) ) (30)

is a local diffeomorphism. The derivatives of the function T are given by

8T (1 x) = — X (T(t,x);t,x) G1)
T i (T, x), X(T(t,x): 1, %))
03, X; (T(t,x);t,x)

vi (T(t,x), X (T(t,x);t,x))

3, T(t,x) = — C=1,....n+m. (32)

Finally the absolute value of the determinant of the Jacobian matrix DM; at x is

T(t,x)
1 m-+n

Y vy (5. X (s51,2)) ds. 33)
j=1

exp
vi (T(t,x), X(T(t,x);t,x)
t

Proof. By (V), the usual Cauchy Theorem for systems of ordinary differential equations ensures
that, for all (z,, x,) € Ry x X, the Cauchy Problem (21) admits a unique solution defined on a
maximal interval [T, ), +oo[, with T(;, 1) € [0, #,]. Then, the map T defined in (23) can be
written 7' (¢, x) = T(;,x) whenever T(; ) > 0 and T (¢, x) = 0 otherwise. Hence, the map (28) is
well defined.

Once x € X (¢; [0, t[, 8X), it is clear that there exists at least one index i such that (29) holds.
The uniqueness follows, since X (¢; -, -) is a diffeomorphism.

Fixt>0,ie{l,...,m},and x € Xf Locally around (#, x), the constraint (29) remains valid.
To compute the derivatives of the map (¢, x) — T (¢, x), differentiating (29) with respect to ¢
yields

nXi (T(t,x);t,x) 0,T(t,x)+ X, (T(t,x);t,x)=0
and so, using (25),
v (T(t,x), X (T(t,x);t,x))0,T(t,x)+ X, (T(t,x);t,x)=0
which proves (31), while a differentiation with respect to xy (€ € {1, ..., m + n}) yields
X (T(t,x);t,x) 0y, T(t,x)+03,X; (T(t,x);¢,x)=0
and so, using (25),
Vi (T(t,x), X (T(t,x);t,x)) 0, T(t,x)+ 03, X; (T(t,x);t,x) =0,
which proves (32).
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Consider the (n 4+ m) x (n + m) Jacobian matrix DM;. By (32), the first row is

Ui Vi

03, X; 83,1 X
(3x1T(t X), - meT(;,x)) = <_1_’ | — Dndm 2L )

where, for simplicity, we omitted the arguments of the functions X; and v;. The remaining rows,
indexed by j € {1,...,n+m}, j #i, of DM, are given by

(05, X (T (t,x); 1, %), - X;(T(t,x);t,x))

xn +m

8 83]‘1 m
=<—v] 311) + 03, X "'*_UJ+—+83n+m )

Vi

We compute the determinant of DM; using Gauss method. We modify all the rows, except the
first one, by adding to each row a multiple of the first one. In this way the determinant of D M;
equals the determinant of the matrix

_331X; _332X; _33n+mxi
v; Vi v;
93, X1 93, X1 -0 03, X
831 Xn+m 332 Xn+m T a3n+m Xn+m

in the case i # 1,n + m, the other cases being entirely similar. Therefore |det(DM;)| =
% |det (D3X)|. Using (27) and Liouville Theorem [32, Theorem 1.2, Chapter IV], we deduce

T(t.x)
1
det (DM; = tr (D , X (s;t, d
et (DM Dl = o X T 10 P / *(Dev (s, X (31, ))) ds
t
1 T(t’x)m+n

= o T XT3 exp / ]2_; 8xjv.,- (s, X (s;t,x))ds

which proves (33). O
The next two lemmas provide the basic a priori and stability estimates on (20).

Lemma 4.2. Let (V) with k = 1 hold, let p e L®°(I x X;R), g e LY(I x X;R), up e L1(I x
3X;R) and u, € LY(X; R). Then, for every t € I the solution to problem (20) defined through
formula (24) satisfies the following a priori estimates:

e lery < (19100 xar) + lollLi ) eMPIEewnxxr!

b [ e o vicr gravae | el G

tlr
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where I'; = Mi(Xg) with M; as in (30) and Xﬁ is as in Lemma 4.1. If moreover q €
L' (1;L*® (X;R)), u, € L® (X;R), and up € L®(I x 3X; R), then

()L xRy < (||Mo||L°0(X;R) + llup e (0,1x0x:R)) T ||q||L1([0’t];LOO(X;R)))
t

. 35
X exp / (1Pl er) + 1divev (D) e ry) de (33)

0

Proof. The proof of the L° bound directly follows from

&, 1, x) <exp (I Pt (r.q iRy + 1iVavllLsqr.gLe@:R)) -

and (24). In order to get the L! bound, observe that lu@ g xery = NI xe0.x):R) T
Nl @) Il x 210,01, 5.x): Ry - We thus consider two cases and apply a suitable change of variable.
By (24), for t € I, we have that

lu(t, x)|dx < / luy, (X (0;¢,x)]E(, ¢, x)dx

X(#:0,X) X(#:0,X)
(36)

t
+ / /|61 (t, X (z;t,x)|E (1, t, x)drdx.

X(;0,X) 0

Consider the first term in the right hand side of (36). Using Liouville Theorem [32, Theorem 1.2,
Chapter IV], the change of variables £ = X (0; ¢, x) and the assumptions on p,

t
/ |uo<X<o;z,x)>|8<o,r,x)dx=/|uo<s>|exp /p(s,xu;o,s»ds dé
X(t;0,X) X 0

< ||“0||L1(X) ellPlLee o, nxx:R)!

Consider the second term in the right hand side of (36). Using the change of variable £ =
X (t51,x),

/lq(f,X(T;t,x))lg(f,t,x)dfdx
X(1:0,X) 0

t

=/ / lg(z, &) exp /p(s,X(s;r,é))ds de&dr

0 X(;0,X) T
Pl R
<lglltxo.m:0.x):Ry€" P L MONXKRL

Therefore, using (36), for € I, we deduce
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SRy
lu(t, ) |dx < (lluollLi ey + 19 11L1 xqo.7:0.0)R)) PP @@ axxR 37)
X (t;0,X)

To estimate now the term depending on the boundary conditions, for ¢ € I, use (24):

lu(z, x)|dx =Z/|u(r,x)|dx
i=lg:

X (t;10,t[,0X)

< Z/ lup (T(t,x), X (T(t,x);t,x)|E(T(t,x),t,x)dx
i=1

X!

t
m
+Z/ / lg (x, X (z; 1, x))| E (. 1, x) drdx. (38)
=lxeraw
Fori € {1, ..., m}, use the diffeomorphism M; in (30) as change of variables, i.e., T = T (¢, x),

£ =X (T(t,x);1,x) and we set I'; = M;(X}). Thus, we have

/Iub (T, x), X (T, x);t,x)|ET(,x),t,x)dx
X,
t

=//|ub(r,s)|exp /p(s,X<s;r,s>)ds vi(z, &) dr d&
r;

T

<Pl // iy (. )] vy (1. &) de dE.
r;

Fori € {1, ..., m}, using again the change of variables £ = X (t;t, x), define
g = {(r, £)eRHMN t e[ T(t,x)], xeX, £ = X(1; t,x)} (39)
and we have

lg (z, X (z;1,x))|E(T, 1, x)drdx
Xi T(t,x)

T

1
=//|61(T,E)|6Xp /p(s,X(S;T,S))dS drdé

R
< ”q”Ll(E;’R) e”p”Lw([OJ]XX,R) .
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Therefore, using (38), for ¢t € I, we deduce

m
lu(t, x)|dx < ellPlIeoqo.nxx; R)! Z // lup(z, )|v;i(r, £)drdé + ”q”Ll(Ef;R)
i=1

X (5:10,¢[,0X) =1 T
This concludes the proof. 0O

Lemma 4.3. Fix v satisfying (V) with k = 1. Let py, p» e L®°(I x X;R), g1, g2 € LY(I x X; R)
with up,1 and up 2 as in Proposition 4.2 and let u, 1, u, 2 satisfy (ID). Define u1 and uy respec-
tively the solutions to

Oiuy +divy (Vuy) = prur +q1 Oiun +divy (Vuz) = paruz +q2
ur(t, &) =up1(t,%) and ur(t,§) =up2(t,§)
u1(0,x) =u,1(x) u2(0, x) =uy2(x).

Then, for every t € I, the following stability estimate holds

||l/l] (t) - u2(t)”L1(X;R)
<P() Huo,l — u"’ZHLl(X;]R)
PO ol sosnesrem bist — 2o

+P () llg1 — 2l 0. xx:R)

+P(1) (H“o,l ”LI(X;R)HW||L°°([0,t]><X;R”+'") H“b,2”L1([o,t]an;R)) IP1=p2llL1 0. Lo x:R))

+P (1) ||Q2||L1([0,t]><)(;R) Ilp1— P2||L1([(),l];LOO(X;]R)) ) (40)

where P(t) = exXp (t max { ||p] ||L°°([0,I]XX;R)’ ”pZ”LOO([O,t]XX;R) })

Proof. Consider 1| and u; the solutions to the two systems and fix ¢ € I. Define fori = 1,2

t
&Ei(t,t,x) =exp /(pi (s, X(s;t,x)) —divev (s, X(s;¢,x)))ds
T
We have the decomposition
lur (@) —u2(D i x.r) = / 1 (2) — ua(2)ldx + / luy(®) —uz(H)|dx.  (41)

X(t;0,X) X (1;[0,2[,0X)

We treat the two terms in the right hand side of (41) separately. The first one is dealt with the
explicit formula (24):
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lg (t) —ua(t)ldx
X(1;0,X)

< / |to,1 (X (0;1,x))E1(0,2,%) — o2 (X (02, %)) E (0, 1, x)|dx

X(1;0,X)

+ / /Im(T,X(f;t,x))&(r,t,x)—qz(f,X(r;t,X))Sz(r,t,X)ldfdx
X(1;0,X) 0

< / E1(0. 1.3 [ttg.1 (X (05 1.3)) — 112 (X (0 £,.x)|dx
X(t;0,X)

+ / o2 (X 0: £, x))|1E1 0. 7, x) — & (0, 7, 1)]dx
X(1:0,X)

t
+ / /81(r,r,x)|q1(r,X(r;t,x»—qz(r,X(r;t,x)ndrdx
X(t:0,X) 0

t
+ / /qu(f,X(f;t,x))ll&(f,t,X)—Sz(f,t,X)ldde~

X(t:0,X) 0

Using the two changes of variable £ = X (0; ¢, x) and £ = X (7; ¢, x), we obtain that

luy (7) — ua(2)|dx
X (,0,X)

t

S/exp /Pl (5, X(550,))ds | |up,1 (§) —uo (§)|d&

X 0

t t
+/|uo,z(s>|exp /pl(s,X(s;o,s»ds —CXP(/pz(s,X(S;O,é))dS dé
X

0 0

t t
[ ] mesH-acoe (/m (s,X<s;r,s>>ds) dé d

0 X(1;0,X) T

t
+[ [ el

0 X(r;0,X)

t t
X |€Xp /Pl (s, X(s;7,8))ds | —exp /pg(s,X(s;t,?;))ds dédr
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<P() (||Mo,1 - Mo,2||L1(X;R) +llq1 — 612||L1(X([0,,];0,X);R)>
+ PO o2 |1y 171 = P2llLt 0.1 x:R)

+ P(t)||‘12||L1(x([o,,];0’x);R) 21— p2llLio,n: Lo x:R)) »

where we set

P(t) = exp (max{||p1 Lo (0,175 X:R)E 5 ||P2||L00([o,;]x)(;R)l}) . (42)

Pass now to the second term in the right hand side of (41), splitting among the different faces X/
fori € {1,..., m} as defined in (30):

[ o -woi=3" [0 - o

X(510.11,0X) i=lx

Fixi € {1, ..., m}, i.e. consider each term in the sum separately:

/Iul(t) — up(r)|dx
X;
s/|ub,1(T(t,x>,X(T(z,x);t,x)>81 (T(t.x).1.3)
X;
—up o (T(t,x), X (T(t,x);1,x)) E (T (2, x), 1, x)| dx
t
+/ / lg1 (z, X (751, x))E1 (7,1, x) —qa (T, X (75 ¢, %)) E (7, £, x)|dTrdx

X[{ T(t,x)
5/81 (T(t,x),t,x)
X;
x|up,1 (T(t, %), X (T(t,x); t,x)) —up2 (T(t,x), X (T(t,x); 1,x))|dx

+/|ub,z<T<z,x>,X(T<t,x>;r,x>)||61 (T (), 1,%) = & (Tt ), 1, x)|dx
X!

t
+/ / Si(t,t,x)q1 (r, X (T:1,x)) —q2 (7, X (T; 1, x))|drdx
X; T(t,x)

t
+/ / lg2 (T, X (z5t, x)|1E1 (T, 8, x) — E (t, ¢, x)|drdx.
X! T (t,%)
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We now use the diffeomorphism M; as defined in (30), for i € {1, ..., m}, and we use the set E;
as in (39). We thus obtain, using (42), that

/|u1<z,x>—uz<r,x>|dx
Xf

t

5//6XP /Pl (5, X (557, €))ds | |up,1(z, &) —up (v, §)| vi(z, §)dgde

T T
+//|ub,2(f,§)|
T

t 1

X |exp /PI(S»X(&Tyf))dS —exp /pz(s,X(S;T,E))dS vi(z,§)déde

T T

t
+//CXP /m (s, X(s;7,6))ds | Iq1(1, &) — g2(z, &)|drdE

+//qu(f,€)|

t 1

X |exp /pl(s,X(s;r,é))ds — exp /pz(s,X(s;t,é))ds drdé&

T T

< P) [vllLeeo.ryxx: Rr+m) [[tp,1 — “b’2”L1(r,-;]R)

+P@) [VlLo qo.01xxRem) |62 L1 gy 121 = P2llLio g xRy
+P@) g1 = g2l gigy
+P@O) g2l gir) 1P1 = P2llLio. e x:Rr))

<P@) (Ilvlle([o,z]xX;R"+m) luo = w2, gy + 1 — qz”Ll(Ef?R)>
+ POVl qo.nxarem |12y, r) 121 = P2lluigonieaery

+5D(t)llq2||L1(5;;R) IP1 = P2llLio. e x:R)) -

Therefore, using (41), we deduce that

1 (@) — w2 (Dl xRy
=P <||“0»1 — o2 gy + 91 = ‘12||L1(X;([o,z]:0,X);R)>
P00 1) 121 = P2lLi G0, RY)
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PO g2l x; qo,0:0,0):R) 121 = P2l o, e xRy

m
+ 3 PO (Il qo.nsaresm [0 = w62y gy + a1 — @2l ez
i=1

m

+ 3 POl qonxxrrtm [us2] L, m) 171 = P2lL1 0.1 k)
i=1

m
~I—Z POllg2lpi g r) 1P1 = P2llLigo. e xRy
i=1
<P)|uo,1 — o2 ||L1(X;R)
POVl qo.nxx:rrem [ 6.0 = 62 |10 o)

+P0llg1 — q2llL1qo.xx:R)

+P() (”“o”Ll(x;Rk) + Vil qo,nxx; R +m) U“b,ZHquo,z]xax;R)) IP1 = PallLro,i; o0 ;)

+PO g2l qo.qxx:r) 11 — P2llLtqo. L0 (x:R)) »

proving (40). O

Proposition 4.4. Let v satisfy (V) withk =1, p e L°(I x X; R), g e LY (I x X; R), up, € L1(I x
dX; R) and u, satisfy (ID) with k = 1. Then, formula (24) defines a solution u = u(t, x) to (20)
in the sense of Definition 2.6. Moreover, u € C*(I; L1(X; R)).

Proof. The first part of the proof amounts to a careful piecing together various proofs found in
the literature. In particular, the part of the solution depending on the initial data is dealt with
exactly as in [22, Lemma 2.7] and [33, Lemma 5.1]. The part depending on the boundary datum
is treated in the same way, exploiting the change of variables detailed in Lemma 4.1.

To prove the C° regularity of the solution with respect to time, fix a 7 € I and a sequence 7,
with ;, € I, converging to 7. Then, assuming first that 7, > ¢, we have

luten) = u@ |1 my = / |t x) — u(F, x)|dx

X (17:0,X)

+ / |u(tn, x) — u(f, x)|dx

X\ (X (tr;0,X)UX (7;[0,7[,0X))

+ / |u(t, x) —u(f, x)|dx.
X (1;[0,1[,0X)

The second term vanishes as 4 — +o0, since it is the integral of a bounded quantity over a set
of vanishing measure. Consider now the first term, the third one can be treated similarly.

|u(ty, x) — u(f, x)|dx
X (t3,;0,X)
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:/|u(th,x)—u(t_,x)|XX(th;0’X)(x)dx
X

< / |0 (X (0 14, X)) E(T. th %) — 1o (X (0:7.)) ET.1.2)] Xy, x, O
X

th

+/ /q(r,X(r;th,x»a(r,rh,x) dr

X 10

r
_/q(t,X(r;t_,x)) 8(1’, t_,x) dr XX(th;O,X)(x)dx
0

As h — +00, we have that

1o (X (0; 15, x)) E(x, th, x) = uo (X (0; 7, %)) E(z, 1, x)

th t
/q (r, X (t: ty, %)) E(z, ty, x) dT — /q (t.X(r:7,x)) &(r,1,x) dt
0 0
for a.e. x € X, so that the corresponding integrals vanish by Lebesgue Dominated Convergence
Theorem, which we can apply thanks to the L! a priori bound (34). O
4.2. The general case of a system

Below, in the various estimates we use the following norms:

el x,re) = ZE=1 e Ju" () |dx et oo REy = 2y 0" | enm)
el oo (oLt REy) = 2oper 1" ”LOO(I;L‘(X;]R)) :

Proof of Theorem 2.2. The proof is divided in several steps. Let I = [0, T'] for T > 0.
Construction of the Operator 7. In the Banach space CO(I L1 (X; Rk)), for
M > fluollpagerey + 1, 43)

introduce the closed subset X and the norm ||| x:

X = {w e CO(L LY X R : wllpe i irey < M ] ’ 0
k
h
_ . 45
”w”X th Hw HLOO(I;LI(X§R)) ( )

Define the operator
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7. X — X
w o u= (... ) (46)
where,foreveryhe{l,...,k},uh solves

dul +divy (V" (¢, x)ul) = pt (¢, x, wt)) u”
+q" (t,x, wt, x), wt)  (x)el xX

W1, 6) = ul (1,6, w(0)) woerxox @
uh(O,x)zuﬁ(x) xelX.
T is Well Defined. We prove that, for w € X and h € {1, ..., k}, the source term in (47)
h h
h hy _ ooh h h P, x)=p" (, x, w(t))
G, x,u")y=P"t,x)u" +Q"(t,x) where Q' (t.x)=g" (t. x. w(t. x), w(t))
is such that " € L°(I x X;R) and Q" e L1(I x X; R).
By (P), for every t € I and x € X, using also (44), we have
[P, 0| =" x w))| = P+ PO s
h <P +PM, 48
H HLOO(IXX R) 1+ 52 48)
proving that (¢, x) — Ph(zr, x)is in L°(I x X; R). On the other hand, by (Q) we have
|
L1([0,T]1xX;R)
T
— //‘Qh(t,x)‘dxdt
0 X
T
= //‘q (t,x, wt, x), w(t)|dx dt
0 X
T
//nw(r,x)ndxdr
0
T T
/ 02() lw () s ety d + O / / e, ) (o) s o dx dr
0 0 X
< QiT|wlx + 1 @2l Tlwlix + Q3T wii. 49)

proving that (r, x) = Q" (r, x) is in L1( x X;R).
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Now we prove that, for every w € X and & € {1, ..., k}, the boundary term ‘Ll;’ (t,&) =
ull (t,&, w(t)) in (47) satisfies Uy € L1(I x 3X; R). By (BD) we have

T
h _ h
H(le Ll(IxE)X;R)_//’ub (ff,w(t))‘det
09X
z T
5//B(é)”w(f)”Ll(X;Rk)dEdt+//B(g)dgdt
00X 00X

< ”B”LI(BX;R) (lwllx +1) T.

Hence Proposition 4.4 applies to (47). To conclude this step, we show that the solution u(z, x) =
(u'(t,x),...,uk(t, x)) belongs to X in (44). By (34), (48), (49) and since w € X, fort € I,

h

o

<ewﬁﬁM»@Qq )
L1(X:R)

LI(X;R) —

h
u"(t ‘ +‘
H ) L1([0,1]xX;R)

Le(PrPaM) Z // ‘uﬁ (,&, w(t))‘ vl (z, £)drdé

=17

h
Uy,

=[ (@1 +102lremy + Qs Iwlx) T lwllx + .

+uBnLu&mR>nanwuXXﬂyxmﬂm>T<nwnx-+1>]e““+ﬁ”“’

h
Uy

< . M)T M ‘
<[(@ +10pr + Qs TM+ ]

Bl Ry 1V ooz s rixemy TOM + 1)]e<Pl+P2M>'

(I

whence [[u(?)[lp1x.rr) < M, once T is sufficiently small, thanks to the choice (43) of M.

h
o

LI(X:R) 2k

1 )e(P1+P2M)T’

T is a Contraction. Fix w and w in X and call # =7 w, u =7 w. Use the notation

P, x)=p" (t,x,00)), @, x)=¢" (t,x, 0, %), D)), UL, &)=ull (1,&, D)),
P, x)=p" (t,x,0(1)), @, x)=¢" (t,x,0(t, %), (), U@, &)=ul (1,&0()).

Then, by Lemma 4.3 and by (48), we have:

() — ﬁh(t)‘

L1(X;R)
Y 1 rh
7”{17 - (le ‘

Pi+PM
< PrP2M1 VllLo00,1x X: R+

L1([0,1]xdX;R)

4 e(PrPaM || A _éh‘

L1([0,r]x X;R)
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+ (M + [Vllgoo (1 xx:RAx (rtm) LL([0 z]vaR))

V +|@
bllLio,xax:R)

o(P1HP2M || ph i)h‘ ) (50)
LL([0,1];L®(X:R))
By (P) we have:
PP /HPh(s) Pis)|
LI([0.f;L®(X;R)) — L®(X; R)
<P, / [1(5) = 5) g g e 05
<P |b—w|,T. (51)
By (Q) we have:
Q"
L1([0,1]xX;R)
=01 ”ﬁ) - 11)||L1([0,t]><X;Rk) + 03 ”li)”LOC([O,t];Ll(X;Rk)) ”'2) —w ”Ll([o,z]xx;Rk)
+0s3 ”"V}“Lw([o,z];Ll(x;Rk)) ”’D - ’I’“Ll([o,r]xx;Rk)
<(Q1+2MQ3) | — |, T. (52)
Similarly, by (BD), we have:
H(uh ([l ‘ LL([0,/]x0X:R) — = IBllLt ox:R) ||w wa (53)

Therefore 7 is a contraction as soon as 7 is sufficiently small.

Existence of a Solution for Small Times. Proving that the unique fixed point of 7 solves (1) in
the sense of Definition 2.1 amounts to pass to the limit in the integral inequality (10). This is
possible thanks to the strong convergence ensured by the choice (45) of the norm in X. The
proof of (WP.1) is completed.

Uniqueness. Assume that (2) admits the solutions # and u in the sense of Definition 2.1. Then,
their difference § = &t — 1 solves

8,8" + div (v (1, x)8") = Gh(t,x)—G"(t,x)
8"t &) = UP(t, &) — U2, &)
8"0,x)=0

in the sense of Definition 2.1, where

G'(t,x)=p" (t,x,a@)a" +q" (
G (t.x)=p" (t.x. i) i + ¢" (



R.M. Colombo, M. Garavello, F. Marcellini et al. Journal of Differential Equations 354 (2023) 133—-169

A straightforward application of the classical doubling of variable method [34], see [25,
Lemma 16, Lemma 17], [28, Theorem 7.28], and also [22, Proposition 2.8], leads to the sta-
bility estimate

o

/thm—gh( )|

LI(X;R) — Li(X; ]R)

/H%(v)—fub( )|

|| ax
Loo(I x X;Rn+m) L1(3X;R)

The assumptions (P) and (Q) allow now to use Gronwall Lemma, proving that § = 0.

Continuous Dependence on the Initial Datum. With the notation in (WP.3), define

P (1, x)=p" (1, x, (1)), Qh(r,x)zqh (1, x, (e, %), 4(0)), UL, &) =ull (1,8, 04(1)),
Ph(r,x) = p" (t,x, (1)), Q(t,x)=¢" (t, x,1(t, x), (1)), (Llh(t,é):ub (t.&,u@),

fortelandh €{l,...,k}. A further application of Lemma 4.3 allows to estimate the difference
between the solutions # and .

”ﬁh(t) — ﬁ"(r)‘

L1(X;R)

0.1 = tion | L1 .y F IV ILo0 (0,11 X RA+m)

Se(PlJerM)z( p (54)

,i[h_(ilh‘

Ll([O,t]an;R))

+ K| - P

1 (PrHPM) HQh _ &
L1([0,r]xX;R)

Ll([o,z];wa;R))) '

where, by (Q) and (BD),

— 5 h
K= laon]per) + 10l o.nxxrom LIQ0.11x0XR) H ‘

LL1([0,:]xX;R)
<M + vl qogxxrem 1Bl gxr) M+ D T+ Q1 TM + | Qallpi gy TM + Q3T M2

Using (BD), (Q) and (P), we have:

u -t

Ll([O,I]X3X'R) = ”B||L](8X§R) ||M - u”Ll([O,t]XX;]Rk)’

HQh_ h

< Q1Hﬁh

L1([0.1]xX;R) L1([0,]xX;R)
+0s3 (”ﬁHLO"([O,t];LI(X;Rk)) + i ||L°°([o,t]:L1<X:Rk>>)
X Hﬁ —u ”Ll([o,z]xx;Rk)

<0 |d" - |

L1([0,1]xX;R) +2M 05 Hﬁ — ”Ll([O,t]xz\’;R")’
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ﬁh Hh

- [lpo-l

LL([0,/];L®(X;R)) L®(X; ]R)

t
= / th (s, )) = p" (5. Lvt(s))HLOO(XR)dS
0

< P [ 106) = 563

=P Hf‘ — ”Ll([o,z]xx;Rk)'

Inserting these estimates into (54) we deduce that

<
@) — i ()’Ll)(R)

< e(P1+PzM)z Huo — i, “LI(X;R’C)

+ e(PlJ’_PZM)t (”U ||L°°([0,t]></\’;]R"+m) ”B ”LI(B,\’;R) + Q] +2M Q3 +KP2) ”l2 — ||L1([O,I]XX;R")'
Sum over h =1, ..., k and use Gronwall Lemma to prove (WP.3), completing the proof. O

Proof of Corollary 2.3. For every w € X, with X as in (44), define u = 7w as the image of
w through the operator 7, defined in (46). By (24), we deduce that uh(t, x) >0 forae. x € X.
This implies that also the unique fixed point of the operator 7 has the same property, thus (4)
holds. 0O

Proof of Corollary 2.4. By Theorem 2.2, we know that there exists a solution u € CO([O, TI;
L!(X;R¥)) and that this solution can be uniquely extended beyond time T as long as
lu(T)IIL1x.R¥y 18 bounded. By Corollary 2.3, [u(2)lly1x.rt) = Zﬁ:l fX u (¢, x)dx. Using (2),
the Divergence Theorem and (BD), we have

d
a”M(t)HLl(&Rk)

k k
Z/(p” (t, %, u(@®) u(t) +¢" (t,x,u(t,x),u(t)))derZ/uZ (t.&,u(r))d§
h=1%

h=15x

IA

/ <c1 (t.2) + C2(0) Zu (1, x)) dx + / B(E) (k + lu() It xre) d&
X

h=1 X

(|| 1||L90([0; LI(X; R))+k ||B||L1(ax ]R)) (||C2||L°°([Ot )+||B||L1(8X R)) ||“(f)||Ll(x R¥)
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and usual ODE estimates ensure that [|lu(7)||1(y.rk) is bounded on bounded intervals. O
Proof of Theorem 2.5. We divide the proof in several steps. Theorem 2.2 applies. We first check

that the assumptions of Theorem 2.2 hold.
(P) holds. Fix h € {1,...,k},t € I and x € X. If w € L1(X; R¥), then

’ph (@, x, w)‘ <P +P /‘KZ (t,x, x") w(x")dx’

<P +P H‘Kh H lwllLx.re)-

PlILoo([0,11x X2; Rk PF)

If wy, wy € LI(X; RX), then

P, x,w)) — pt @, x, wz)‘ <P /)‘Kﬁ (l,x,x’)“wl(x’) — wa(x)|dx’
X
< 2|

w; —w 1(x-RkY-
Lo ([0, Z‘]XX2 Rkpk) ” 1 2||L (/\’,]R )

Therefore (P) holds with P; = P, and Py = P» Hv([’; .
(10,11 x X+; R P

(Q) holds. Fix h e {1,...,k},t €I and x € X. If u € R¥ and w € L1(X; R¥), then

q" ¢, x,u,w)|=|0" t,x,u,/‘Ké’ (t,x,x’)w(x/)dx’

IA

O1llull+02(x) /7( (. x, x") wx")dx'|| + Qs lul / "t x,x') wix')dx'
X

”wnLl(X;]Rk).

< Oullull + (02) + Os ) [

L ([0,1]x X2;R*a%)
If uy, up € R¥ and wy, wy € L1(X; R¥), then
h h
‘q (t,x,u,w)—q (t,x,uz,wz)‘

< O1lur — wall + O3 | %

WL (X RF) 11 — U2
LOO([o,l]sz;quk)” LRy I

w1 — w2y 1 xRk -
e qonxazriaty! luteems

Therefore, condition (Q) holds with Q1 = 01, Q2(x) = Q2 (x) H?(h ”Loo( 011X XL RYA)’ and Q3 =
ool

+) is straightforward.
L°([0,1]x X2 Rk k) Q4+ &
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(BD) holds:
‘uz(t,g,w)‘gé(g) 1+ /Wg(t,s,x’)w(x’)dx’
X

||w||L1(X;Rk)) .

i1+
= (S) ( + u LOO([O,f]XBXXX;Rkl‘k)

< B©)|«

h h 1 /
u,(t,§,w) —u,(t,§,w w—w .
p(t:8,w) =iy (1. 5, w) Lo ([0,1]x X x X; Rkuk) ” ”Ll(X!Rk)

so (BD) holds with B(¢) = B(¢) (1 + 1K ”L"O([O,t]xaz\’xz\’;Rkukz))' Clearly, also (BD+) holds.

Stability Estimates. We now pass to the stability estimates. In each of the following cases, we
keept €1 fixedand h € {1, ..., k}. Define

U, e)=a) (1,6,40)), Q'(t,x)=§" (t,x,a(t,x),4(0)), P, x)=p"(1,x,4(0)),
U, &)=l (1,&,0(), Q' t,x)=¢" (t,x,i(t,x), i), P, x)=p"(r,x,0@).

(55)
In order to use Proposition 4.3, compute preliminarily

¢h

P(t) =exp (t max { Hf’h H }) <exp(t (P + P2M)),

L ([0,7]xX;R) ’ ‘Lm([o,t]XX;R)

where M is an upper bound for the L™ in time and L! in space norms of both solutions. There-
fore, Proposition 4.3 implies that

() — ﬁh(t)’

L1(X;R)

<P(0) [VllLoo 0,01 Rr-m) +P0) | -

rh /' h
‘(le—([/b

L1([0,1]x3X;R) L1([0,1]xX;R)

-

56)

Ll([O,t]xX;R)) LL([0,/;L°(X;R))

Uy

+P () <|Iuo et rey + Héh

Hh Hh

+ P(0) 1V llLo0 0,17 x X:RFx (rm))

L1([0,r]x3X;R¥) Ll([O,t];LOO(X;R)).

Then, we estimate the terms in (56). Using (BD) and (55) we deduce that

frh rrh
(uh _(ub‘

L1([0,r]x3dX;R)

t
2//‘5/5 (. &, 4(z)) — i) (t,é,ﬁ(r))‘dédt

00X

-/

0 0X

il (z.&.4(0)) — il (. €. ii(1)) ’dédt
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t
+//‘ﬁ’g (1. & ii(r)) — it (I,S,ﬁ(r))‘dgdt
0 X
= ||B||L‘(6X;]R) ”ﬁ - ’;”Ll([O,t]XX;Rk)

// Ut rs/v(h(rsx)u(zx)dx -0t

0 X

// Ub ré/‘](h(t?;x)u(rx)dx —Ubh T,§,

00X

Mt &, x) (e, x)dx' | |d& de

e

K" (2, &, x)ii(z, x")dx' | |de de

><\

<IBlipxR) & — ||L1([O,t]><X;Rk)

//B(&)HW

0 X

Lo ([0,£]x 0 X x X; Rkuk) “ (®) ”LI(X;Rk)d%-dt

of - v
+” b T L0, % 0K Lo (R R))

< IBllLioxr) @ — i ||L1([O,t]><X;Rk)

! e
| oo (10,11 x 0 X x X:Rkak) I ILE(0.11x X:RK)

By | K -

L1([0,1]x 3X; L (Rku; R))

+|op -0
Using (Q) we deduce that

Q-
L1([0,r]xX;R)

t
S//’é T, x, (7, X), M(T)) h(T x,u(t, x), u(r) ‘dxdr
0

t
+//‘qA T, x, (T, %), #(1)) — ¢" (v, x, 1 (T, ), i (1) )dxdr
0
t t
=01 [ i(0) = 50 |y 07 + 03 [ 13 ey [ oo = e Jaxar
0 0 X

t
+03 / i@ = @) L1 m, / |it(z, )| dx dr
0 X
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t
+// ok r,x,ﬁ(r,x),/?A(qh (r,x,x’)ﬁ(r,x’)dx’
0 X X

L t,x,zl(r,x),/ V;’ (t,x,x") i (r,x")dx" | | dxdr
X
= (Ql +03 <”12”L°C([0,t];L1(X;IRk)) + ”12HLO"([O,t];Ll(X;Rk)))> / i) - ﬁ(r)”Ll(X;Rk)dt
0
// sup
ne]Rk‘I

t
+Q3//||ﬁ(r,x)|| /(ﬁg(t,x,x/)—7?;’(t,x,x/)>ﬁ(t,x’)dx’ dxdr
0 X X

r x,u(t, x), n) — Qh (r, x,u(t, x), n)‘dxdr

A

< (Ql + 03 <||12||L°C([0,t]:L1(X;IRk)) + ||5‘HLOO([o,t];Ll(X:R"”)) |

UL (0,11 X RE)

~ v

M 2 rh > h
+ u(t . ,dtH‘K — H
L1(0,1]x X; Lo (R xRk ;R )) /” e q
0

Using (P), we have

f)h_i)h‘

L([0,/1;L>°(X;R))

t t

§/sup‘p T,x,0(1)) — " (t, x,di(r) ‘dt—i—/sup‘p T, x,00(1)) — (7,' x, (1) ‘dr
xeX xeX
0 0

< P [ @) = 0] o

t
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xeX
0 X X

t
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xeX
0

t
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t
+ﬁ2/sup/“k;‘(t,x,x/)—7v(f,‘

xeX
0

< P2/ ”M(T) M(T)HLI(X Rk)df +t” Ph Ph”Loo [Ot XXXRkp R)

h
+P2/ ””(T)”Ll(x Rk 7 ”7( ”Loo(lo AxX2RAPE)

The above estimate, duly inserted in (56) and followed by a standard application of Gronwall
Lemma, completes the proof. O

Proof of Proposition 3.1. Checking (V) and (ID) is immediate. It is sufficient to verify that
the assumptions of Theorem 2.5 hold. It is immediate to check that (P) holds with P, =
max{ |l wsll, Il + e 4+ 61, lwall + Inll. |z} (all norms being in L®(Z x Ry x R*; R)),
P> =1, thanks to p € L. Concerning (Q), choose O = max{|k]|, ln+6]}, 02=0, 03 =1
and use p € L. Finally, (BD) holds with B(£) = sup; [|Sp ()l (x,R)-

Positivity is immediate. To apply Corollary 2.4, simply set C; =0 and C, =0.

To obtain an L® bound, note first that since / € C? (I L1 R4 x RZ; ]R)), the integral in (12)
is bounded on any bounded time interval. Hence, a repeated application of (35) in Lemma 4.2
yields the boundedness of S, I, H and R on any bounded interval. Uniqueness then follows
from (WP.2). O

Proof of Proposition 3.2. Assumptions (V) and (ID) trivially hold. Condition (P) holds with

Py = ||d | =R R)/€ and P, = 1/e. Verifying (Q) is straightforward. To prove that (BD) holds,
compute for y € R” with ||y] > r:

sty = | o y)gn// (

R, R»

1 v
<
=i ||/ 1
+R7
1 y -
<
~ g"infA //‘M(

R+R11

1 1
— M|y oo Rn- —//wa/’ /da/d/
e" infA IMIlL R™R) 1+ Iyl _r)n+1 | (a,y )| y
R+R11

) b, y)Yw(a', y)da'dy’

Y ) b, y)w(d. y)dd'dy

y)‘ ( sup !b(a’,y’)|> lw(a’, y')|da’dy’

[y'=yl<r

IA

proving the first requirement in (BD). Lipschitz continuity is proved by the same procedure.
The assumptions on the signs of data and parameters allow to apply Corollary 2.3 and ensure
that (5) holds. O
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