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A B S T R A C T

Although the motion of confined Taylor bubbles through non-Newtonian fluids is typical of many engineering
and biological systems, a fundamental understanding of the problem is still an open problem. In this work,
we investigate the dynamics of Taylor bubbles which move in an inelastic shear-thinning fluid that obeys the
Carreau-Yasuda viscosity model by means of numerical simulations. We focus on regimes where inertia and
buoyancy are negligible to assess the effect of the fluid rheology on bubble characteristics up to finite capillary
numbers. First, we validate the recent lubrication theory by Picchi et al. (2021) by analysis of the trends of the
film thickness and bubble speed in the small capillary number limit. Then, we show the existence of a general
scaling that embeds for both zero-shear-rate and shear-thinning effects and holds up to finite capillary numbers.
Interestingly, the shape of the Taylor bubble is strongly influenced by fluid rheology, which competes with the
capillary number. Finally, the analysis of the viscosity fields shows an interplay between the zero-shear rate
and shear thinning effects in different regions of the bubble, including the presence of recirculating vortexes
that form ahead and behind the bubble.
. Introduction

The motion of elongated Taylor bubbles in micro-channels is fre-
uently encountered in many industrial processes, such as small-scale
eactors, coating processes, and microfluidic devices [e.g., 1–4]. In
edicine, it is crucial for the design of modern targeted microbubbles

or drug delivery [e.g., 5] or understanding lung activity [e.g., 6] and
ir embolism [e.g., 7,8].

In these contexts, viscous forces and surface tension dominate over
uoyancy and inertia, and the bubbles assume a symmetrical bullet
hape. Since the seminal works of Fairbrother and Stubbs [9], Taylor
10], and Bretherton [11], researchers have primarily focused their
ttention on understanding the hydrodynamics of Taylor bubbles that
oves through Newtonian fluids. More recent works investigate the

ffect of finite capillary number, inertia, and surface tension, [see
.g., 12–17].

However, in many applications, the fluids exhibit a non-Newtonian
ehavior. Biological solutions, emulsions, and polymers behave like
hear-thinning fluids and their effective viscosity is a function of the
mposed shear rate. Specifically, at low shear rates, the Newtonian
ffect dominates and the viscosity approaches the zero-shear-rate value.
t higher shear rates, the shear-thinning effect dominates and the
iscosity follows a power-law behavior, see Bird et al. [18]. Although
heological models that capture these features are available in the
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literature (e.g., the Carreau-Yasuda [19,20], and the Ellis models [21]),
most of the efforts in studying Taylor bubbles often ignore those
limiting behaviors, Kamişli and Ryan [22], Kamişli and Ryan [23], de
Sousa et al. [24], Thompson et al. [25], Kawahara et al. [26], Fatehifar
et al. [27] and Zhao et al. [28]. In fact, using the power-law viscosity
model may lead to nonphysical results in the multiphase flow scenario
since, at low shear rates, the viscosity is unbounded, (see e.g., Picchi
et al. [29,30]).

Only recently, few attempts have been made to provide a consis-
tent representation of bubble characteristics, which embeds both the
low- and high shear-rate behaviors. Hewson et al. [31] noticed that
using the Ellis viscosity model in a lubrication approximation tackled
some of the inconsistencies generated by the power-law model. Picchi
et al. [32] generalized Bretherton’s theory to shear-thinning fluids
(described by the Ellis viscosity model) and provided the scaling laws
for the film thickness and the bubble speed as a function of the fluid
rheology. Specifically, in the limit of small capillary numbers, the two-
third scaling law for the film thickness still applies to shear-thinning
fluids when the capillary number is based on the generalized effective
viscosity. This new theory, however, has not been validated yet with
experimental or numerical data. Up to now, numerical simulations of
Taylor bubbles moving into realistic shear-thinning fluids are limited
to the works of Moreira et al. [33] and Sontti and Atta [34]. Without a
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Fig. 1. Sketch of a Taylor bubble (white) moving in the shear-thinning liquid (gray); 𝑈∞ is the average flow velocity far from the bubble; ℎ is the uniform film thickness; the
bubble is moving at speed 𝑈 measured in the center of mass 𝐶𝑀 .
consistent set of experiments or simulations, it is not possible to prove
or disprove the theoretical predictions of Picchi et al. [32]. In addition,
the scaling laws obtained by Picchi et al. [32] are expected to hold
only in the low capillary number limit and, the effect of finite capillary
numbers is still unknown in this context.

To fill those gaps, in this work, we aim at assessing the role of
fluid rheology and the capillary number on the bubble characteristics
(e.g., film thickness, bubble speed, bubble shape) by numerical simula-
tions. We simulate the Taylor bubble moving in a planar microchannel
through a shear-thinning fluid whose viscosity is described by a sim-
plified Carreau-Yasuda model. First, we validate the recent theory
by Picchi et al. [32] by analysis of the trends of the film thickness,
the bubble speed, and the bubble shape in the small capillary number
limit. Then, we investigate the bubble hydrodynamics far from the
validity range of the theory to understand the impact of finite capillary
numbers on the problem. By analysis of the viscosity field, we also
explain the interplay of zero-shear rates and shear thinning effects in
different regions of the bubble, including the presence of recirculating
vortexes ahead and behind the bubble.

2. Numerical simulations

2.1. Problem description

We study a Taylor bubble moving through an inelastic shear-
thinning fluid in a planar microchannel of width 2𝑅, see Fig. 1. Far
from the bubble, the fluid moves with average velocity 𝑈∞ and, once
it reaches the steady-state, the bubble moves at speed 𝑈 . The bubble is
sufficiently long so that a region with uniform film thickness, ℎ, exists.
To ensure the existence of the uniform film region, we consider bubbles
of length 𝐿𝑏 ≈ 8𝑅 above the threshold (𝐿𝑏 = 5𝑅) suggested in Magnini
et al. [16]. The effect of gravity is neglected.

Concerning the working fluids, the gas is assumed to be Newtonian,
while the liquid viscosity is described by the Carreau-Yasuda model

𝜇 = 𝜇∞ + (𝜇0 − 𝜇∞)[1 + (𝜆�̇�)𝑎]
𝑛−1
𝑎 , (1)

where �̇�, 𝜇0, and 𝜇∞ are the magnitude of the shear-rate tensor, the
viscosity at zero and infinite shear rate, respectively. The parameter
𝜆 is a constant that controls the onset of the shear-thinning behavior
(at high values of 𝜆, the shear-thinning behavior is shifted to lower
shear rates) while the index 𝑛 controls the degree of shear-thinning (for
shear-thinning fluids 𝑛 < 1). The dimensionless parameter 𝑎 is positive
and also describes the transition between the zero-shear-rate and the
shear-thinning regions.

Although the Carreau-Yasuda model describes well the viscosity of
many polymers and aqueous solutions, we will restrict our attention to
fluids where the infinite-shear-rate viscosity is quite small compared to
the zero-shear-rate viscosity, i.e., 𝜇∞ ≪ 𝜇0. This condition is satisfied in
many concentrated polymer solutions as shown in Bird et al. [18],Sousa
et al. [35]. In addition to that, we will consider a simplified version
of the Carreau-Yasuda model assuming that the parameter 𝑎(𝑛) is a
2

function of the shear thinning index in order to match with the Ellis
viscosity model, see Appendix A. This choice does not imply any loss
of generality and has been primarily motivated by the comparison with
the theory by Picchi et al. [32].

2.2. Governing equations and numerical simulations

In this work, we perform numerical simulations using the VOF
solver interFlow of OpenFOAM-v1812, see Scheufler and Roenby
[36]. The motion of the Taylor bubble in a shear-thinning fluid is
obtained by solving the Navier–Stokes equations for the flow of two
immiscible phases, i.e., a Newtonian and a non-Newtonian fluids, re-
spectively. Both phases are assumed to be incompressible and are
treated as a mixture with variable properties across the interface,
see Tryggvason et al. [37]. Therefore, the governing equations for mass
and momentum read

▿ ⋅ 𝒖 = 0, (2)
𝜕
𝜕𝑡
(𝜌𝑚𝒖) + ▿ ⋅ (𝜌𝑚𝒖𝒖) = −▿𝑝 + ▿ ⋅ 𝝉 + 𝑭 𝝈 , (3)

where 𝒖 = (𝑢𝑥, 𝑢𝑦) is the velocity vector, 𝑝 is the pressure, 𝝉 = 𝜇𝑚[∇𝒖 +
∇𝒖𝑇 ] is the stress tensor, and 𝑭𝜎 is the surface tension force vector;
gravity is neglected in this work.

In the fluid domain a volume fraction field 𝛼 identifies the oc-
cupation of the two phases. Specifically, 𝛼 takes values of 1 in the
computational cells occupied by the non-Newtonian fluid, 0 in the
Newtonian bubble, and 0 < 𝛼 < 1 in the bubble–fluid interface. The
evolution of the volume fraction is described by the following advection
equation
𝜕𝛼
𝜕𝑡

+ ▿ ⋅ (𝛼𝒖) = 0, (4)

and the properties of the mixture are computed as

𝜌𝑚 = 𝜌𝑏 + (𝜌 − 𝜌𝑏)𝛼, and 𝜇𝑚 = 𝜇𝑏 + (𝜇 − 𝜇𝑏)𝛼, (5)

where 𝜌𝑏 and 𝜇𝑏 are the bubble density and viscosity, respectively.
The non-Newtonian fluid has a constant density, 𝜌, and its viscos-
ity is given by Eq. (1). The surface tension force 𝑭𝜎 is included in
Eq. (3) as a body force using the Continuum Surface Force (CSF)
method [38] and the interface is reconstructed with the approach
described in Scheufler and Roenby [36]. Such algorithm has been
proven to be more effective in reducing the parasitic currents compared
to previous approaches [see 36,39]. To further reduce the effects of
spurious currents, the time step is constrained as suggested by Brackbill
et al. [40].

Concerning the numerical set up, we used the Crank–Nicolson time
scheme, Lee [41], and the convection terms are discretized by the
Gaussian integration with linear interpolation (second-order schemes
in space and time) as in Silva et al. [42]. The VanLeer limiter [43]
guarantees that the volume fraction remains bounded and we kept the
Courant number below 0.3. Each simulation is initialized by placing
a bubble of volume 𝑉 in the computational domain. The motion of
the Taylor bubble is driven by the flow imposed at the entrance of the
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Fig. 2. Validation of the dimensionless film thickness, ℎ∕𝑅, and relative bubble speed, 𝑈∕𝑈∞, in the Newtonian case.
channel (with average velocity 𝑈∞, see Fig. 1). The no-slip condition is
imposed at the channel wall while the outlet is set as a zero-gradient
boundary [44]. The simulation ends when the bubble reaches the
steady state.

2.2.1. Computational grid
The computational domain is made of uniform square cells, which

are gradually refined at the wall boundary in order to accurately
capture the near-wall film dynamics. This refinement ensures that the
hydrodynamics of the film region is properly described, in particular at
low capillary numbers, as shown by Hoang et al. [44] and Magnini et al.
[16]. Aimed at identifying the parameters of the simulations, a grid test
has been conducted following the strategy described by Magnini et al.
[16]. The idea is to progressively refine the mesh in the vertical direc-
tion observing the evolution of the main integral variables (i.e., the film
thickness) with respect to the number of computational cells. The mesh
is chosen identifying when the film thickness deviated by less than 0.5%
from those measured with more refined meshes in the most severe case,
i.e., the case with the lowest capillary number investigated. We found
that a mesh including 130 square cells of uniform size along the vertical
direction, followed by 15 gradually refined mesh elements near each of
the two walls satisfies the grid check procedure given by Magnini et al.
[16].

2.3. Parameter space and governing dimensionless numbers

In this work, we are interested only in regimes where viscous forces
and surface tension dominate over buoyancy and inertia. To guarantee
that, we neglect gravity so that the macroscopic Bond number is iden-
tically zero, and we look at conditions in which the bubble density, 𝜌𝑏,
and viscosity, 𝜇𝑏, are negligible when compared to liquid density, 𝜌, and
the zero-shear-rate viscosity, 𝜇0, namely 𝜇𝑏∕𝜇0 = 10−2 and 𝜌𝑏∕𝜌 = 10−3.
Also, the macroscopic Reynolds number (based on the channel half-size
𝑅, the average velocity of the fluid far from the bubble, 𝑈∞, and the
zero-shear-rate viscosity, 𝜇0) is kept constant as 𝑅𝑒 = 𝜌𝑈∞𝑅∕𝜇0 = 1.

The simulations are conducted spanning a wide range of capillary
numbers

𝐶𝑎∞ =
𝜇0𝑈∞
𝜎

∈ [10−3; 1], (6)

where 𝜎 is the surface tension. Specifically, 𝐶𝑎∞ is changed by varying
the surface tension, and, once at the steady state, the corresponding
capillary number based on the bubble speed is calculated

𝐶𝑎 =
𝜇0𝑈
𝜎

. (7)

The effect of the rheology is studied with respect to few dimension-
less parameters. Specifically, if we choose the zero-shear-rate viscosity,
3

𝜇0, the bubble speed, 𝑈 , and the uniform film thickness, ℎ, as the
characteristic scales for liquid viscosity, the velocity, and the spatial
variable, we can make Eq. (1) dimensionless as

𝜇
𝜇0

=
𝜇∞
𝜇0

+
(

1 −
𝜇∞
𝜇0

)

[

1 + (𝐶𝑢�̇�)𝑎
]
𝑛−1
𝑎 , (8)

where �̇� is the dimensionless shear rate and 𝐶𝑢 is the Carreau number
defined as

𝐶𝑢 = 𝜆𝑈
ℎ

. (9)

As mentioned earlier, we neglect the effect of the infinity-shear-rate
viscosity by assuming that 𝜇∞∕𝜇0 = 0. then, when 𝐶𝑢 → 0, the effective
viscosity reduces to the Newtonian limit, while for 𝐶𝑢 → ∞, the shear-
thinning effect dominates and the viscosity matches that of a power-law
fluid, i.e., 𝜇∕𝜇0 ∼ �̇�𝑛−1.

Since both ℎ and 𝑈 are unknown before running the simulation,
we span a range of Carreau numbers based on the average velocity of
the fluid far from the bubble 𝑈∞ and the uniform film thickness in the
small capillary number limit ℎ0

𝐶𝑢0∞ =
𝜆𝑈∞
ℎ0

∈ [10−2; 1.2], (10)

where ℎ0 is obtained from the scaling law by Picchi et al. [32].

2.4. Validation

We validated the numerical setup by comparing the dimensionless
film-thickness, ℎ∕𝑅, and the bubble speed ratio, 𝑈∕𝑈∞, against the
correlation proposed by Balestra et al. [45]. Such correlation is an
extension of the Aussillous and Quéré [12] correlation and it has been
proven to be very accurate in the case of Newtonian fluids up to finite
𝐶𝑎. As shown in Fig. 2(a), the simulations agree well with the model
for the dimensionless film thickness in the entire range of capillary
numbers, while, concerning the bubble speed ratio, there is a deviations
about 2.5% at the highest capillary numbers, see Fig. 2(b). As expected,
the simulations follow the 2∕3 scaling law proposed by Bretherton [11]
at low 𝐶𝑎. Also, the bubble shape and the recirculating pattern agree
with the ones presented in Balestra et al. [45].

3. Results and discussion

3.1. Lubrication film

In this Section, we discuss the impact of fluid rheology and the
capillary number on the uniform film thickness.
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Fig. 3. Uniform film thickness as a function of the capillary number 𝐶𝑎 and the Carreau
number 𝐶𝑢0∞ for 𝑛 = 0.5 and 𝑎 = 0.841.

In Fig. 3 we present the evolution of ℎ∕𝑅 with respect to the
apillary number, 𝐶𝑎, and the Carreau number, 𝐶𝑢0∞, defined in Eqs. (7)
nd (10), respectively. When 𝐶𝑢0∞ is small, the film thickness collapse
ver the Newtonian limit. At higher Carreau numbers, instead, ℎ∕𝑅
ecreases since the shear-thinning effect become important. We explain
his behavior with a reduction of the effective viscosity that diminishes
he effective capillary number (this aspect will be discussed in detail
ater on). Also, the film thickness increases with 𝐶𝑎: the bubble forms
thinner film compared to a Newtonian fluid with the same capillary
umber, see Fig. 3.

Differently from the Newtonian case, where the film thickness is de-
ermined uniquely by the capillary number (when inertia and buoyancy
re negligible, see Aussillous and Quéré [12]), inspection of Eq. (8)
uggests that the film thickness for shear-thinning fluids is determined
y the interplay of five dimensionless, i.e., ℎ∕𝑅 = 𝑓 (𝐶𝑎, 𝐶𝑢, 𝑛, 𝑎, 𝜇∞∕𝜇0)

where 𝐶𝑢 is the Carreau number based on the bubble speed and the
film thickness as defined in Eq. (9). Here, due to the simplifications
on the rheological model discussed in Section 2.1, the film thickness
will depend only on the capillary number, the Carreau number, the
shear-thinning index, and the parameter 𝑎 (which is a function of 𝑛
as discussed in Appendix A), i.e., ℎ∕𝑅 = 𝑓 (𝐶𝑎, 𝐶𝑢, 𝑛, 𝑎(𝑛)).

Aimed at finding a consistent scaling law for the film thickness,
we propose an empirical model inspired by the work of Aussillous
and Quéré [12]. This choice is motivated by the fact that such model
captures well the effect of finite capillary numbers on the film thickness
in the case of Newtonian fluids. Here, we adapt the Aussillous and
Quéré [12] scaling law as follows

ℎ
𝑅

=
𝑃 (3𝐶𝑎)2∕3

1 + 𝑃𝑄(3𝐶𝑎)2∕3
, (11)

here both 𝑃 (𝐶𝑢, 𝑛, 𝑎) and 𝑄(𝐶𝑢, 𝑛, 𝑎) are functions of the fluid rheol-
gy. The fitting functions incorporate both the zero-shear-rate and the
hear-thinning effects and are given by

𝑃 = 0.643
[

1 + (𝛽𝐶𝑢)𝑎
]
2(𝑛−1)
3𝑎 , (12)

= 2.32 + 𝛿𝐶𝑢𝜃 , (13)

here 𝛽, 𝛿, and 𝜃 are fitting parameters while 𝑎(𝑛) is computed ac-
ordingly to Appendix A. Such coefficients are designed in such a way
hat, in the Newtonian limit (for 𝐶𝑢 → 0), 𝑃 = 0.643 and 𝑄 ≈ 2.32,
4

F

in accordance with Aussillous and Quéré [12] and Balestra et al. [45].
The fitting functions have been found by fitting Eqs. (12) and (13) on
data presented in Fig. 3 using non linear regression. Specifically, we use
the tool nlinfit of Matlab which finds the fitting parameters though the
Iteratively Reweighted Least Squares method, see Holland and Welsch
[46]. The evolution of 𝑃 and 𝑄 with respect to 𝐶𝑢 is shown in Fig. 4
for the case with 𝑛 = 0.5 and 𝑎 = 0.841.

For the sake of physical interpretation, it should be remarked that
he model for the film thickness, Eq. (11), is still based on the definition
f the capillary number defined with the zero-shear-rate viscosity, see
q. (7). It would be desirable to recast the model embedding both the
ero-shear-rate and the shear-thinning effects. To this aim, we define
n effective capillary number

𝑎𝑒 =
𝜇𝑒𝑈
𝜎

, (14)

where the effective viscosity 𝜇𝑒 is a function of the coefficient 𝑃 (𝐶𝑢, 𝑛, 𝑎)

𝜇𝑒 = 𝜇0

(

𝑃
0.643

)3∕2
. (15)

ig. 5(a) shows a plot of the effective viscosity as a function of the
arreau number, which can be seen as an effective shear-rate for the
roblem. In fact, 𝜇𝑒 reduces to the zero-shear-rate viscosity when 𝐶𝑢 →

and it matches that of a power-law fluid for 𝐶𝑢 → ∞. In other words,
s the shear thinning effect becomes dominant, the effective viscosity
iminishes reducing the effective capillary number of the problem.
nspired by the work of Picchi et al. [32], the effective viscosity can
e described by the following law

𝜇𝑒
𝜇0

=
{

1, if 𝐶𝑢 → 0,
0.136(17 − 12𝑛)𝐶𝑢(1−𝑛), if 𝐶𝑢 → ∞.

(16)

ote that, for 𝐶𝑢 → ∞, the effective viscosity approaches the power-law
imit of Eq. (8)

∼ 𝜅𝐶𝑢1−𝑛, (17)

here 𝜅 = 0.136(17 − 12𝑛).
Substituting the Eqs. (14) and (15) into Eq. (11) yields to a gener-

lized model for the film thickness

ℎ
𝑅

=
0.643 (3𝐶𝑎𝑒)2∕3

1 + 0.643𝑄 (3𝐶𝑎𝑒)2∕3
, (18)

where 𝑄(𝐶𝑢, 𝑛, 𝑎) is given in Eq. (13). Specifically, the functional de-
pendence of the Aussillous and Quéré [12]’s model is preserved in the
case of shear-thinning fluids if the model is formulated in terms of
the effective capillary number. The only difference with respect to the
Newtonian case lies in the definition of the effective viscosity, which is
a function of the Carreau number, and the coefficient 𝑄, which is also a
function of the fluid rheology. When the capillary number is small, the
dimensionless film thickness follows the classical 2∕3 scaling behavior
and Eq. (18) converges to the theory presented by Picchi et al. [32]
ℎ
𝑅

∼ 0.643 (3𝐶𝑎𝑒)2∕3 for 𝐶𝑎𝑒 → 0. (19)

his scaling behavior is confirmed by our simulations in Fig. 5(b) and
t holds approximately up to 𝐶𝑎𝑒 = (10−1). At higher 𝐶𝑎𝑒, instead,
he film thickness saturates for increasing capillary numbers, similarly
o what was observed in Taylor [10] and Aussillous and Quéré [12].
nterestingly, the film problem keeps the same scaling structures as the
ewtonian one once rescaled in terms of the effective capillary number.
he proposed model represents the generalization of the Aussillous and
uéré [12] correlations to shear-thinning fluids.

The results presented in this Section are limited to a shear-thinning
ndex 𝑛 = 0.5. However, it can be easily shown that the proposed
ramework also applies to cases when the shear-thinning index varies.
ig. 4 show the results for 𝑛 = 0.65 and 𝑎 = 0.48.
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Fig. 5. (a) Effective viscosity as a function of 𝐶𝑢 for 𝑛 = 0.5 and 𝑎 = 0.841; (b) dimensionless film thickness as a function of the generalized capillary number, 𝐶𝑎𝑒, and 𝐶𝑢 for
= 0.5 and 𝑎 = 0.841.
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.2. Bubble speed

The bubble speed 𝑈 is a critical parameter in the design of many
pplications involving Taylor bubbles. Specifically, the ratio between
he bubble speed, 𝑈 , and the average velocity of the fluid ahead of
he bubble, 𝑈∞, is a function of the dimensionless film thickness only
nd it can be estimated from the mass balance (see Picchi et al. [32])
btaining
𝑈
𝑈∞

= 1
1 − ℎ∕𝑅

. (20)

Substituting Eq. (11) into Eq. (20), we get the following scaling law for
the bubble speed

𝑈 =
1 +𝑄𝑃 (3𝐶𝑎)2∕3

, (21)
5

𝑈∞ 1 + (𝑄 − 1)𝑃 (3𝐶𝑎)2∕3
or, expressing the film thickness in terms of the effective capillary
number, we obtain

𝑈
𝑈∞

=
1 + 0.643𝑄(3𝐶𝑎𝑒)2∕3

1 + 0.643(𝑄 − 1)(3𝐶𝑎𝑒)2∕3
. (22)

Fig. 6(a) shows the bubble speed obtained from the numerical
simulations. The bubble always moves faster than the fluid ahead,
namely 𝑈∕𝑈∞ > 1 in all the ranges of 𝐶𝑎 and 𝐶𝑢0∞. As expected,

hen the Carreau number is small, the bubble moves almost at the
ame speed as a Newtonian fluid with the same 𝐶𝑎. When the shear-
hinning effect dominates, instead, the bubble flows slowly compared
o a Newtonian bubble with the same capillary number 𝐶𝑎.

The evolution of the bubble speed ratio in the limit of 𝐶𝑎 → 0

is depicted in Fig. 6(b): the data are slightly below the theoretical
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Fig. 6. (a) Bubble speed as a function of 𝐶𝑎 for 𝑛 = 0.5 and 𝑎 = 0.841; (b) Bubble speed as a function of the effective capillary number 𝐶𝑎𝑒 for 𝑛 = 0.5 and 𝑎 = 0.841.
Fig. 7. Effect of capillary number and 𝐶𝑢0∞ on bubble profiles and flow streamlines in a reference frame attached to the bubble for 𝑛 = 0.5 and 𝑎 = 0.841. — 𝐶𝑎∞ = 1; —
𝐶𝑎∞ = 0.1; — 𝐶𝑎∞ = 0.01; — 𝐶𝑎∞ = 0.002. Bubbles are aligned with respect to the center of mass.
predictions by Picchi et al. [32]
𝑈
𝑈∞

∼ 1
1 − 0.643 (3𝐶𝑎𝑒)2∕3

for 𝐶𝑎𝑒 → 0. (23)

At finite 𝐶𝑎𝑒, the speed ratio saturates and the trend of numerical
simulations is well captured by Eq. (22). Specifically, the lower the
effective viscosity is (and the effective capillary number), the slower
the bubble is. The little spread of the data is due to the fact that each
simulations has a different 𝐶𝑢, as shown in Fig. 5(a).

3.3. Bubble shape and recirculation patterns

The bubble shape and recirculating flows ahead and behind the
bubble are strongly affected by the capillary number and the fluid
rheology. Specifically, when the capillary number is small, surface
tension dominates over viscous forces and the Taylor bubble has a
symmetrical shape, i.e., the main curvature in the front and in the rear
is almost indistinguishable (see the first row in Fig. 7). As the capillary
number increases, the uniform film thickness increases and the bubble
assumes a bullet shape (see Fig. 7).

The effect of 𝐶𝑎∞ on the bubble shape is summarized in Fig. 8.
Increasing 𝐶𝑎∞ results in a thicker film and, as a consequence, in longer
bubbles. This effect is more pronounced when the Carreau number
is small, Fig. 8(c). Instead, when the Carreau number is high and
6

the shear-thinning effect dominates, changes in the bubble shape are
mitigated due to the competition between a higher flow rate ahead of
the bubble (which increases 𝐶𝑎) and the shear-thinning effect (which
decreases the effective viscosity).

The degree of shear-thinning impact on the bubble shape via the
Carreau number as shown in Fig. 9. Specifically, at low 𝐶𝑢0∞, the
zero-shear-rate effect dominates and the bubble shape is practically
indistinguishable from the Newtonian one. At high 𝐶𝑢0∞, the shear-
thinning effect plays an important role: the uniform film becomes
thinner and the bubble shrinks. In other words, increasing the degree
of shear-thinning of the problem has the same effect of reducing the
effective capillary number of the problem. This effect is evident at all
the capillary numbers investigated in this work, see Fig. 9.

To summarize the effect of the capillary number and the fluid
rheology on the bubble shape, we compute the dimensionless radius
of curvature (𝜅𝑅)−1 at the bubble tip (𝜅 is the dimensional curvature).
The curvature is calculated by fitting an arc of a circle at the bubble
tip. When the capillary number is small, the radius of curvature is well
approximated by the channel radius, while, at higher capillary num-
bers, the film becomes thicker, and, therefore, the radius of curvature
diminishes. Fig. 10(a) shows the evolution of the dimensionless radius
with respect to the effective capillary number. Both the Newtonian and
the shear-thinning data collapse well around the following master curve

(𝜅𝑅)−1 =
(

1 + 𝐶𝑎1∕2
)−1.863

, (24)
𝑒



Journal of Non-Newtonian Fluid Mechanics 314 (2023) 105003A. Aquino et al.
Fig. 8. Effect of capillary number, 𝐶𝑎∞, at different Carreau number, 𝐶𝑢0∞, for 𝑛 = 0.5 and 𝑎 = 0.841. — 𝐶𝑎∞ = 0.002; — 𝐶𝑎∞ = 0.01; — 𝐶𝑎∞ = 0.1; — 𝐶𝑎∞ = 1.
Fig. 9. Effect of the Carreau number, 𝐶𝑢0∞, at different capillary number, 𝐶𝑎∞, for 𝑛 = 0.5 and 𝑎 = 0.841. The — is the Newtonian case, while 𝐶𝑢0∞ = —2.5 ⋅ 100; —2.5 ⋅ 101;
—2.5 ⋅ 102; —2.5 ⋅ 103.
where the effect of the fluid rheology is embedded in the definition of
the effective capillary number. This results shows that, at the bubble
tip, a jump in pressure is maintained due to the interface curvature, as
shown in Figs. B.17 and B.18. On the other hand, in the uniform film
region where the interface is almost flat, the pressure field in the gas
and the shear-thinning liquid is practically uniform.

From the streamlines in the shear-thinning liquid, we can analyze
the characteristics of the recirculating patterns. The simulations where
recirculating vortexes are present are mapped in Fig. 10(b) as a function
of the dimensionless film thickness and the Carreau number based on
the channel half-width and the fluid velocity ahead of the bubble,
𝐶𝑢𝑅∞ = 𝜆𝑈∞∕𝑅. In this case, the vortexes form only when the maximal
velocity ahead exceeds the bubble velocity. The few simulations where
the vortexes are not detected are well predicted by the critical film-
thickness for the appearance of the recirculating vortexes estimated
by Picchi et al. [32], see Fig. 10(b). Since the theoretical model by Pic-
chi et al. [32] is formulated in terms of the Ellis viscosity model and the
current simulations are carried out using the Carreau viscosity model,
7

we show how the two models can be interchanged in Appendix A. Note
that the critical film thickness is a function of the fluid rheology: in the
Newtonian limit (for 𝐶𝑢𝑅∞ → 0), ℎ𝑐𝑟𝑖𝑡∕𝑅 = 1∕3 while the shear-thinning
effect reduces its value.

The dividing streamlines separate the circulating vortex ahead of
the bubble (if present) and the liquid flowing towards the film. Fol-
lowing Picchi et al. [32], its location, 𝑦𝑑 , can be determined through a
mass balance in the moving reference frame between the region ahead
of the bubble and the film region as

(0 − 𝑈 )ℎ = ∫

𝑦𝑑

0

(

𝑢∞(𝑦) − 𝑈
)

𝑑𝑦, (25)

where 𝑢∞(𝑦) is the velocity profile in the liquid ahead of the bubble.
Note that the net flow rate calculated over the vortex region is zero.
Computing Eq. (25) on our simulations, we get the exact location of
the dividing streamline, plotted in Fig. 11(a) in terms of the dimen-
sionless variable 𝑌𝑑 = 𝑦𝑑∕𝑅. The data collapse well over the theoretical
prediction obtained by Picchi et al. [32] when ℎ∕𝑅 ≪ 1 (or 𝐶𝑎𝑒 → 0):
the dividing streamlines scales with the dimensionless film thickness,
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Fig. 10. (a) Dimensionless radius of curvature at the tip of the bubble front as a function of the effective capillary number for a Newtonian fluid and a shear-thinning fluid with
𝑛 = 0.5 and 𝑎 = 0.841. (b) Mapping of simulations where flow recirculation ahead of the bubble appears as a function of 𝐶𝑢𝑅∞ for 𝑛 = 0.5 and 𝑎 = 0.841. The critical film thickness
for the appearance of the flow recirculation predicted by Picchi et al. [32] is also plotted.
Fig. 11. (a) Location of the dividing streamline, 𝑌𝑑 = 𝑦𝑑∕𝑅, as a function of 𝐶𝑎∞ for a shear-thinning fluid with 𝑛 = 0.5 and 𝑎 = 0.841. (b) Heights of the center of the recirculating
vortexes, 𝑌0 = 𝑦0∕𝑅, ahead of the bubble as a function of 𝐶𝑢𝑅∞ for 𝑛 = 0.5 and 𝑎 = 0.841. Lines are computed with the theory given by Picchi et al. [32].
𝑌𝑑 ∼ ℎ∕𝑅 and slightly deviates from such behavior only when the
capillary number is finite and film thickness is thicker than 0.1.

Also, the location of the center of the recirculating zone 𝑦0 can be
computed by looking for the point where the velocity in the liquid
ahead equals the bubble velocity, see Picchi et al. [32]. Fig. 11(b)
shows the location of the vortex center in terms of the dimensionless
coordinate, 𝑌0 = 𝑦0∕𝑅: as the film thickness, ℎ∕𝑅, increases, the
vortexes shifts closer to the channel axis. In fact, we do not expect
the existence of the recirculating vortexes when ℎ∕𝑅 is bigger than the
critical value plotted in Fig. 10(b). The comparison between our results
and the model by Picchi et al. [32] is quite satisfactory in the range
𝐶𝑢𝑅 = [0.1, 120].
8

∞

3.4. Viscosity field around the Taylor bubble

To better understand the impact of the shear-thinning effect on the
bubble characteristics, we examine the viscosity field in the surround-
ings of the Taylor bubble. Fig. 12 shows the effective viscosity field and
its value at the wall computed at the steady state in the small capillary
limit, 𝐶𝑎∞ = 0.002, as a function of the Carreau number. When the
Carreau number is small, the fluid almost behaves like a Newtonian
one and the shear-thinning effect is negligible over the entire meniscus,
see Fig. 12(a). When the Carreau number increases, the shear-thinning
effects dominate near the nose and the rear of the bubble (in proximity
to the typical meniscus oscillations). There, the shear-rate presents local
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Fig. 12. The viscosity field in the shear-thinning liquid surrounding the bubble; the red line is the effective viscosity computed at wall (—); the dashed line represents the
Newtonian limit (- -). In all cases 𝐶𝑎∞ = 0.002, 𝑛 = 0.5 and 𝑎 = 0.841, while (a) 𝐶𝑢0∞ = 2.5 ⋅ 10−2, (b) 𝐶𝑢0∞ = 2.5 ⋅ 10−1, (c) 𝐶𝑢0∞ = 2.5 ⋅ 100, (d) 𝐶𝑢0∞ = 2.5 ⋅ 102.

Fig. 13. The viscosity field in the shear-thinning liquid surrounding the bubble; the red line is the effective viscosity computed at wall (—); the dashed line represents the
Newtonian limit (- -). In all cases 𝐶𝑎∞ = 0.05, 𝑛 = 0.5 and 𝑎 = 0.841, while (a) 𝐶𝑢0∞ = 2.5 ⋅ 10−2, (b) 𝐶𝑢0∞ = 2.5 ⋅ 10−1, (c) 𝐶𝑢0∞ = 2.5 ⋅ 100, (d) 𝐶𝑢0∞ = 2.5 ⋅ 102.
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Fig. 14. The viscosity field in the shear-thinning liquid surrounding the bubble; the red line is the effective viscosity computed at wall (—); the dashed line represents the
Newtonian limit (- -). In all cases 𝐶𝑎∞ = 0.1, 𝑛 = 0.5 and 𝑎 = 0.841, while (a) 𝐶𝑢0∞ = 2.5 ⋅ 10−2, (b) 𝐶𝑢0∞ = 2.5 ⋅ 10−1, (c) 𝐶𝑢0∞ = 2.5 ⋅ 100, (d) 𝐶𝑢0∞ = 2.5 ⋅ 102.

Fig. 15. The viscosity field in the shear-thinning liquid surrounding the bubble; the red line is the effective viscosity computed at wall (—); the dashed line represents the
Newtonian limit (- -). In all cases 𝐶𝑎∞ = 1, 𝑛 = 0.5 and 𝑎 = 0.841, while (a) 𝐶𝑢0∞ = 2.5 ⋅ 10−2, (b) 𝐶𝑢0∞ = 2.5 ⋅ 10−1, (c) 𝐶𝑢0∞ = 2.5 ⋅ 100, (d) 𝐶𝑢0∞ = 2.5 ⋅ 102.
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Fig. A.16. (a) Carreau number 𝐶𝑢 vs the Ellis number, 𝐸𝑙; (b) The fitting parameter 𝑎 in the Carreau viscosity model plotted as a function of the shear-thinning index 𝑛 (or (1∕𝛼).
Fig. B.17. The pressure field in both the bubble and the shear-thinning liquid at 𝐶𝑎∞ = 0.05, 𝑛 = 0.5 and 𝑎 = 0.841, while (a) 𝐶𝑢0∞ = 2.5 ⋅10−2, (b) 𝐶𝑢0∞ = 2.5 ⋅10−1, (c) 𝐶𝑢0∞ = 2.5 ⋅100,
(d) 𝐶𝑢0∞ = 2.5 ⋅ 102.
maxima that corresponds to local minima of the effective viscosity. This
effect is more pronounced at large 𝐶𝑢0∞, see Fig. 12(b)–(d).

Interestingly, the uniform film region is dominated by zero-shear-
rate effects confirming that we can always identify a region of the
bubble where the liquid exhibits a Newtonian behavior in the small
𝐶𝑎 limit, see Picchi et al. [32]. In the uniform film, 𝜇∕𝜇0 ≈ 1 since the
fluid is at rest. Far from the bubble, the effective viscosity can either
approach again the Newtonian limit, Fig. 12(b), or approach a region
dominated by the shear-thinning effect depending on the magnitude
of the Carreau number, Fig. 12(d). Both these behaviors agree with
the theoretical predictions of Picchi et al. [32]. The scenario changes
11
while we approach finite capillary numbers, see Figs. 13, 14, and 15.
Specifically, at a fixed Carreau number, the decrease in the effective
viscosity in the bubble front and the rear becomes more pronounced.
Although the film thickness increases with the capillary number, the
uniform film region is still dominated by zero-shear-rate effects, except
for extremely large 𝐶𝑢 where the liquid is sheared enough to get a
reduction of the effective viscosity, see Fig. 13(d). In regimes where
𝐶𝑎∞ = 1 and 𝐶𝑢0∞ ≫ 1 the uniform film is the less sheared region,
suggesting that neglecting the zero-shear-rate behavior (for example,
considering the power-law viscosity model) would lead to nonphysical
results.



Journal of Non-Newtonian Fluid Mechanics 314 (2023) 105003A. Aquino et al.
Fig. B.18. The pressure field in both the bubble and the shear-thinning liquid at 𝐶𝑎∞ = 0.1, 𝑛 = 0.5 and 𝑎 = 0.841, while (a) 𝐶𝑢0∞ = 2.5 ⋅10−2, (b) 𝐶𝑢0∞ = 2.5 ⋅10−1, (c) 𝐶𝑢0∞ = 2.5 ⋅100,
(d) 𝐶𝑢0∞ = 2.5 ⋅ 102.
In the bubble rear, the viscosity field reflects the typical oscillations
of the meniscus. Specifically, the shape oscillations induce changes in
the sign of the driving force leading to the formation of recirculating
vortexes. The stagnant region between two adjacent vortexes corre-
sponds to the spikes where the effective viscosity tends to approach
unity. In correspondence of the vortex center, the shear is maximum
and, therefore, the effective viscosity is minimum. This behavior is
qualitatively consistent with the lubrication theory of Picchi et al. [32].

4. Conclusions

In this work, we studied the dynamics of Taylor bubbles which
move in a shear-thinning fluid up to finite capillary numbers by means
of numerical simulations. We focused on regimes where inertia and
buoyancy can be neglected, investigating the effect of the fluid rheology
on bubble characteristics (i.e., the film thickness, bubble speed, bubble
shape, and the formation of recirculating patterns). The numerical
simulations are carried out considering a shear-thinning fluid, whose
viscosity follows the Carreau viscosity model, aimed at accounting for
both zero-shear-rate and shear-thinning effects.

We show the existence of a general scaling law for the effective
viscosity that allows the definition of the generalized capillary number
of the problem. Specifically, the film thickness follows the two-third
scaling law only when the effective capillary number is small (in agree-
ment with the lubrication theory of Picchi et al. [32]). Otherwise, at
finite capillary numbers, the film thickness saturates with the capillary
number. To capture this behavior, we generalized the scaling law
of Aussillous and Quéré [12] capturing the interplay between the zero-
shear-rate and the shear-thinning effects. Also, starting from the mass
balance, we derived a general scaling law for the bubble speed that
applies up to finite capillary numbers.
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The fluid rheology strongly influences the shape of the Taylor
bubble. In particular, we quantify the interplay between the effect
of the capillary number (which tends to increase the film thickness
and elongates the bubble) and the shear-thinning effect, which tends
to decrease the effective viscosity and, therefore, reduce the effective
capillary number of the problem. The presence of recirculating vortexes
ahead and behind the Taylor bubble and its location agrees well with
the theory of Picchi et al. [32]. Interestingly, the uniform film region
is dominated by zero-shear-rate effects confirming that we can always
identify a region of the bubble where the liquid exhibits a Newtonian
behavior while, in the bubble rear, the viscosity field reflects the typical
oscillations of the meniscus.

Although the motivation of our work is oriented to understanding
the dynamics of a single Taylor bubble, the scaling laws obtained may
serve as a base to construct more sophisticated models for trains of
bubbles.
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Appendix A. Correspondence between Carreau and Ellis viscosity
models

Motivated by the fact that the theoretical model by Picchi et al.
[32] is formulated in terms of Ellis viscosity model and the present
simulations where done in terms of the Carreau viscosity model, here,
we explain how the two models can be interchanged. Specifically, the
Ellis viscosity model is given by

𝜇 =
𝜇0

1 +
(

𝜏∕𝜏1∕2
)𝛼−1

, (A.1)

where 𝑛 = 1∕𝛼 and 𝜏1∕2 is a parameter that controls the onset of the
shear-thinning effect representing the effective shear stress at which
the viscosity is 50% of the Newtonian limit.

Since the Carreau and the Ellis viscosity models have four and three
fitting parameters, respectively, it is possible to fit the Carreau viscosity
curve upon the Ellis one. Doing so, we get a correspondence between
the two rheological models (in dimensionless coordinates)
𝜇
𝜇0

= [1 + (𝐶𝑢�̇�)𝑎]
𝑛−1
𝑎 ⟷

𝜇
𝜇0

= 1
1 + (𝜏∕𝐸𝑙)𝛼−1

, (A.2)

where the Carreau and the Ellis numbers are defined based on a
characteristic length  and a characteristic velocity  as

𝐶𝑢 = 𝜆


𝐸𝑙 =
𝜏1∕2 
𝜇0

, (A.3)

The shear-thinning index in the Carreau model is 𝑛 = 1∕𝛼 while
𝐶𝑢 as function of 𝐸𝑙 follows the evolution presented in Fig. A.16(a).
Specifically, since 𝐶𝑢 and 1∕𝐸𝑙 acts as representative dimensionless
shear rates, therefore, 𝐶𝑢 ∼ 𝐸𝑙−1. This trend can be easily seen in the
power-law limit where 𝐶𝑢 ≫ 1 and 𝐸𝑙 ≪ 1

𝜇𝐶𝑎𝑟𝑟𝑒𝑎𝑢 ∼ 𝐶𝑢𝑛−1�̇�𝑛−1 𝜇𝐸𝑙𝑙𝑖𝑠 ∼ 𝐸𝑙1−𝑛�̇�𝑛−1. (A.4)

The fitting parameter 𝑎 in the Carreau viscosity model is a function of
the shear-thinning index 𝑛 as shown in Fig. A.16(b). Based on those
plots it is always possible to find the correspondence between the Ellis
and the Carreau viscosity models.

Appendix B. Pressure fields

Here, we present the pressure filled within the bubble and the shear-
thinning liquid as a function of the Carreau number for 𝐶𝑎∞ = 0.05, 0.1.
Specifically, a pressure jump is maintained between the bubble tip and
the surrounding liquid while, in the uniform film region, the pressure
13

field is almost uniform, see Figs. B.17 and B.18.
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