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Abstract

In this paper, we study the existence problem for cyclic

ℓ‐cycle decompositions of the graph K n[ ]m , the com-

plete multipartite graph withm parts of size n, and give

necessary and sufficient conditions for their existence in

the case that ℓ m n2 |( − 1) .
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1 | INTRODUCTION

In this paper, we consider the problem of decomposing the complete multipartite graph into
cycles. We use the notation K n[ ]m to denote the complete multipartite graph with m parts of
size n. Note that if n = 1, then K [1]m is isomorphic to the complete graph Km on m vertices,
whereas K [2]m is isomorphic to K I−m2 , the complete graph on m2 vertices with the edges of a
1‐factor I removed. We denote by ℓ a cycle of length ℓ (briefly, an ℓ‐cycle), and by

ℓc c c( , , …, )0 1 −1 the ℓ‐cycle whose edges are ℓc c c c c c{ , }, { , }, …, { , }0 1 1 2 −1 0 .
We say that a graph Γ is decomposed into subgraphs Γ , Γ , …, Γt1 2 , if the edge sets of the Γi

partition the edges of Γ. If ≅ ≅ ⋯ ≅ ≅ HΓ Γ Γt1 2 , then we speak of an H ‐decomposition of Γ.
A ℓ‐decomposition of a graph Γ is also referred to as an ℓ‐cycle system of Γ. The problem of
decomposing Km if m is odd, or K I−m if m is even, into cycles of fixed length ℓ has a long
history (see [17], Chapter 8 and [16], Chapter VI.12]) until its solution in [1,28] (see also [7]).
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Theorem 1.1 (Alspach and Gavlas [1] and Šajna [28]). There is a ℓ‐decomposition of Km,

m odd, if and only if ≤ ℓ ≤ m3 and ℓ ( )m

2
. There is a ℓ‐decomposition of K I m− ,m

even, if and only if ≤ ℓ ≤ m3 and ℓ m m( − 2)

2
.

A natural next step is to consider ℓ‐cycle decompositions of K n[ ]m . Obvious necessary
conditions for the existence of such a decomposition are that ℓ is at most the number of vertices
in K n[ ]m that the degree m n( − 1) is even and that ℓ divides the number of edges of K n[ ]m ,
summarized in the following lemma.

Lemma 1.2. If there exists a ℓ‐decomposition of K n[ ]m , then ≤ ℓ ≤ mn m n3 , ( − 1) is

even and ℓ ( )nm

2
2.

These conditions have been shown to be sufficient in several cases. The results of [1,28]
show sufficiency when ∈n {1, 2}. Other cases that have been settled include that ≤m 5

[3,4,13], ℓ ∈ {3, 4, 5, 6, 8} [5,14,15,18], and ℓ is prime [22], twice a prime [30], or the square of a
prime [29,33]. Among the most general results are that the obvious necessary conditions are
sufficient if the cycle length ℓ is small relative to the number of partsm, in particular ℓ ≤ m if n
is odd or m2 if n is even [31,32]; see also [2] for some recent works on decompositions into
cycles of variable length. Nevertheless, the existence problem for cycle decompositions of the
complete multipartite graph remains open in general.

In this paper, we consider the problem of constructing cyclic ℓ‐cycle systems of K n[ ]m . To define
this concept, we first recall the definition of a Cayley graph on a group G with connection set Ω,
denoted by GCay[ : Ω]. LetG be an additive group, not necessarily abelian, and let ⊆ GΩ \ {0} such
that for every ∈ω Ω we also have ∈ω− Ω. The Cayley graph GCay[ : Ω] is the graph whose
vertices are the elements ofG and in which two vertices are adjacent if and only if their difference is
an element of Ω (an analogous definition can be given in multiplicative notation).

Consider the natural action of G on the cycles of GΓ = Cay[ : Ω]: given a cycle

ℓC c c c= ( , , …, )0 1 −1 in Γ and ∈g G, we define C g+ to be the cycle c g c( + , +0 1

ℓg c g, …, + )−1 . The subgroup of G consisting of all the elements g such that C g C+ = is
called the G‐stabilizer of C. The set ∣ ∈C C g g GOrb ( ) = { + }G of all distinct translates of C is
called the G‐orbit of C. For GΓ = Cay[ : Ω], a cycle system of Γ is said to be regular under the
action of G, or G‐regular, if it is isomorphic to a cycle system of G G NCay[ : \ ], for a suitable
subgroup N of order n, such that ∈C g+ for every ∈C and ∈g G. In particular, whenG
is the cyclic group n, a G‐regular cycle system is called cyclic.

Clearly, K n[ ]m is isomorphic to G G NCay[ : \ ], where G is a group of ordermn and N is any
of its subgroups of order n. Note that the right cosets of N inG determine them disjoint parts of
K n[ ]m . In this paper, our primary focus is cyclic cycle systems of K n[ ]m , in which case we take

G = mn and  ∈N m mx x= = { | }mn mn .
Cyclic ℓ‐cycle decompositions of Km (ie, the case n = 1) have been extensively studied, and

the existence problem has been solved when ≡ ℓ ℓm 1, (mod 2 ) [6,8,21,27,34], ℓ m= [9],
ℓ ≤ 32 [38], ℓ is twice or three times a prime power [37,38], or ℓ is even and ℓm > 2 [36]. For
n = 2, the existence problem for ℓ‐cycle systems of ≅K K I[2] −m m2 is solved when ≡m 1

(mod ℓ) [6] or ℓ ∣ m2 [20]. Less is known for cyclic ℓ‐cycle systems of K n[ ]m with ≥n 3. The
case ℓ = 3 is solved in [35]. More generally, cyclic ℓ‐cycle decompositions of K n[ ]m have been
studied for ℓ odd and ℓn = [8] and for Hamiltonian cycle systems of K n[ ]m with mn even
[19,24,25].
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In this paper, we focus on the existence of cyclic ℓ‐cycle systems of K n[ ]m when
ℓ m n2 |( − 1) . This is a natural case to consider, as it means that we may construct cyclic cycle
systems in which all cycle orbits are full, that is, the orbit of any cycle has cardinalitymn. Note
that when ℓ ≥ 3 and ℓ m n2 |( − 1) , the conditions of Lemma 1.2 hold, so that an ℓ‐cycle system
of K n[ ]m may exist. A complete solution for cyclic decompositions is known when ∈n {1, 2}, or
when ℓn = and both ℓ and m are odd.

Theorem 1.3 (Buratti and Del Fra [8]). For any integers ℓ ≥ 3 and m such that
ℓ m2 |( − 1), there is a cyclic ℓ‐cycle system of Km.

Theorem 1.4 (Bryant et al [6]). If ℓ ∣ m( − 1), then there is a cyclic ℓ‐cycle system of K [2]m

if and only if ≡m 0 or 1 (mod 4).

Theorem 1.5 (Buratti and Del Fra [8]). Let ℓ ≥m, 3 be odd with ℓ ≠m( , ) (3, 3). Then
there is a cyclic ℓ‐cycle system of ℓK [ ]m .

We will extend these results to the case ≥n 3, giving necessary and sufficient conditions for
the existence of a cyclic ℓ‐cycle system of K n[ ]m when ℓ m n2 |( − 1) . As in the results above, the
main tools are difference methods. Our main result is the following theorem.

Theorem 1.6. Let ℓ ≥m, 3 and ≥n 1 be integers such that ℓ m n2 |( − 1) . There exists a
cyclic ℓ‐cycle system of K n[ ]m if and only if the following conditions hold:

1. If ≡n 2 (mod 4) and ℓ is odd, then ≡m 0 or 1 (mod 4).
2. If ≡n 2 (mod 4) and ℓ ≡ 2 (mod 4), then ≢m 3 (mod 4).

The paper is organized as follows. Section 2 contains basic observations, definitions, and
methods: we first explain the necessity of Conditions 1 and 2 of Theorem 1.6 in Section 2.1; we
then discuss difference families in Section 2.2 and present a recursive construction in Section
2.3 which will be very useful in what follows. In the rest of the paper, we prove the sufficiency
of Conditions 1 and 2 by explicitly constructing a cycle system in all possible cases: we deal with
cycles of even length ℓ in Section 3, whereas the case ℓ odd, which is more complex, is
discussed in Sections 4‐6. In Section 4 we outline the proof of the odd case and present some
preliminary lemmas, and then treat separately the case ℓ m| − 1 in Section 5 and ℓ n| in Section
6. In Section 7 we make some final remarks on what happens if we study regular, rather than
cyclic, systems.

2 | BASICS

2.1 | Necessary conditions for cyclic cycle systems

If there is a cyclic ℓ‐cycle system of K n[ ]m , then the conditions of Lemma 1.2 hold. However,
these conditions are not sufficient for the existence of a cyclic cycle system. In this section, we
state further necessary conditions, which reduce to those of Theorem 1.6 when ℓ m n2 |( − 1) ,
and consider necessary conditions for the existence of regular cycle systems of K n[ ]m more
generally. We start by recalling a result, proven in [24] (see also [12]), which gives us necessary

226 | BURGESS ET AL.
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conditions for the existence of a cyclic ℓ‐cycle system of K n[ ]m . Here, given a positive integer x ,
we denote by x| |2 the largest e for which 2e divides x .

Theorem 2.1 (Merola et al [24]). Let n be an even integer. A cyclic ℓ‐cycle system of K n[ ]m

cannot exist in each of the following cases:

(a) ≡m 0 (mod 4) and ℓ m n| | = | | + 2 | | − 12 2 2 ;
(b) ≡m 1 (mod 4) and ℓ m n| | = | − 1| + 2 | | − 12 2 2 ;
(c) ≡ ≡m n2, 3 (mod 4), 2 (mod 4), and ℓ ≢ 0 (mod 4);
(d) ≡ ≡m n2, 3 (mod 4), 0 (mod 4), and ℓ n| | = 2 | |2 2.

As we are interested in the case where ℓ m n2 |( − 1) , we note the following consequence.

Corollary 2.2. Suppose ℓ m n2 |( − 1) . There does not exist a cyclic ℓ‐cycle system of
K n[ ]m if either of the following hold:

1. ≡ ℓn 2 (mod 4), is odd, and ≡m 2, 3 (mod 4), or
2. ≡ ℓ ≡n 2 (mod 4), 2 (mod 4), and ≡m 3 (mod 4).

2.2 | Difference families

We now describe the general method we use to construct cyclic ℓ‐cycle systems of K n[ ]m in the
case where ℓ2 is a divisor of m n( − 1) .

We will view K n[ ]m as the Cayley graph   mCay[ : \ ]mn mn mn , where by m mn we mean the
only subgroup of order n of mn; thus vertices of K n[ ]m will generally be taken as elements of
mn and the parts of K n[ ]m as the cosets of m mn in mn.

Given a cycle ℓC c c c= ( , , …, )0 1 −1 with vertices in mn, the multiset CΔ = {±

≤ ℓc c h( − )|0 < }h h+1 , where the subscripts are taken modulo ℓ, is called the list of differences
from C. More generally, given a family of cycles with vertices in mn, by Δ we mean the
union (counting multiplicities) of all multisets CΔ , where ∈C .

Notation 2.3. We will frequently consider intervals of consecutive differences, and for
∈a b, with ≤a b, we will use the notation a b[ , ] to denote the set a a b{ , + 1, …, }. If

a b> , then ∅a b[ , ] = .

Definition 2.4. An ℓmn n( , , )‐difference family (DF in short) is a family of ℓ‐cycles
with vertices in mn such that  mΔ = \mn mn. In other words, an ℓmn n( , , )‐DF is a set
of base cycles whose lists of differences partition between them  m\mn mn.

Since ∣ ∣ ℓCΔ = 2 for every ∈C , it follows that  ℓ m m n2 | | = | \ | = ( − 1)mn mn .
Therefore, a necessary condition for the existence of an ℓmn n( , , )‐DF is that ℓ2 is a
divisor of m n( − 1) , so that ℓm n| | = ( − 1) /2 .

Let us recall the following standard result (see, eg, [10]).

Proposition 2.5. If there exists an ℓmn n( , , )‐DF, then ℓ2 is a divisor of m n( − 1) , and
there exists a cyclic ℓ‐cycle system of K n[ ]m .

BURGESS ET AL. | 227
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Proof. Let C C C= { , , …, }t1 2 be an ℓmn n( , , )‐DF. It is easy to check that

⋃ COrb ( )i
t

i=1 mn
is the desired cyclic ℓ‐cycle system of K n[ ]m . □

Note that in the cycle system we obtain from the DF all cycles will have trivial stabilizer, so
that all the orbits on the cycles are full orbits.

Example 2.6. Let ℓ m n= 6, = 7, = 4, and let C = (0, −1, 2, −4, 4, −5)1 and
C = (0, −2, 2, −9, 3, −10)2 be two 6‐cycles with vertices in 28. Since

C CΔ = ±{1, 3, 5, 6, 8, 9} and Δ = ±{2, 4, 10, 11, 12, 13},1 2

we have that  ∪ ⋅C CΔ Δ = ±[1, 13]\ {7} = \71 2 28 28, hence C C= { , }1 2 is a (28, 4, )6 ‐
DF. It is not difficult to check that the set ∈C j C j j{ + , + | }1 2 28 of all translates of C1

and C2 under the action of 28 is a cyclic 6‐cycle system of K [4]7 .

As a consequence of Proposition 2.5, Corollary 2.2 gives further necessary conditions for the
existence of an ℓmn n( , , )‐DF. We thus make the following definition.

Definition 2.7. Let ℓ ≥m, 3 and ≥n 1 be integers. We call the triple ℓmn n( , , )

admissible if ℓ ∣ m n2 ( − 1) , and the following conditions are both satisfied:

1. If ≡n 2 (mod 4) and ℓ is odd, then ≡m 0 or 1 (mod 4).
2. If ≡n 2 (mod 4) and ℓ ≡ 2 (mod 4), then ≢m 3 (mod 4).

Thus if there exists an ℓmn n( , , )‐DF, then ℓmn n( , , ) is admissible.
We note that the results quoted in Theorems 1.3, 1.4, and 1.5 are proved using difference families.

For future reference, we restate these results using the language of difference families.

Theorem 2.8 (Buratti and Del Fra [8]). For any integers ℓ ≥ 3 and m such that
ℓ m2 |( − 1), there is an ℓm( , 1, )‐DF.

Theorem 2.9 (Bryant et al [6]). If ℓ m|( − 1), then there is a ℓm(2 , 2, )‐DF if and only if
≡m 0 or 1 (mod 4).

Theorem 2.10 (Buratti and Del Fra [8]). Let ℓ ≥m, 3 be odd with ℓ ≠m( , ) (3, 3). Then
there is a ℓ ℓ ℓm( , , )‐DF.

2.3 | A blow‐up construction

The following result will be an essential tool in our later constructions to blow up parts in a
cyclic cycle system of K n[ ]m and increase cycle lengths.

Theorem 2.11. If there is an ℓmw w( , , )‐DF, u is a positive divisor of s > 0, and ℓ s( − 1)

is even, then the following hold:

1. there exists an ℓmws ws( , , )‐DF;
2. there exists a cyclic ℓu‐cycle system of K ws[ ]m .

228 | BURGESS ET AL.

 15206610, 2020, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21688 by U

niversita D
i B

rescia, W
iley O

nline L
ibrary on [04/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Proof. Let be an ℓmw w( , , )‐DF, let u be a positive divisor of s and set t s u= / . For
every cycle C of , with ℓC c c c= ( , , …, )0 1 −1 , and for every ∈j s[0, − 1], we define the

ℓu‐cycle ℓ( )C c c c= , , …,j j j
u
j

0 1 −1 as follows:

⎧
⎨
⎪⎪

⎩
⎪⎪

≤ ℓ

≤ ℓ

ℓ

ℓ ≤ ≤ ≤ ℓ

c

c i i

c jmw i i

c jmw i

c qtmw i q r q u r

=

if is even, and − 2,

+ if is odd, and − 1,

+ /2 if = − 1 is even ,

+ if = + with 1 − 1 and 0 < .

i
j

i

i

i

r
j

We point out that the vertices of C are considered as integers in mw[0, − 1], whereas the
vertices of Cj are elements of mws.

We recall that, by assumption, ℓs( − 1) is even, hence s is odd when ℓ is odd. In this
case, the map  ∈ ↦ ∈x mw x mw2mws mws is bijective, which means that for every

∈x mw mws the element x/2 is uniquely determined.
Set ∈ ∈C C j s′ = { | , [0, − 1]}j . We start showing that Δ ′ contains every element

of  m\mws mws. Let  ∈d mwj k m= + \mws mws, where ∈j s[0, − 1] and
∈k mw[0, − 1] is not a multiple of m. Recalling that is an ℓmw w( , , )‐DF, there

exists a cycle ℓC c c c= ( , , …, )0 1 −1 of such that ≡c c k mw+ (mod )i i+1 (replacing k

with k− if necessary). It is not difficult to check that ∈d CΔ h, where ∈h s[0, − 1] is the
following:

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

≡

≤ ℓ

≤ ℓ

ℓ

ℓ

ℓ

h

j i i

j i i

j i

t j i

t j i

if is even, and − 2,

− if is odd, and − 3,

−2 if = − 2 is odd,

2( − ) if = − 1 is even,

( − ) if = − 1 is odd.

s(mod )

Hence,  ⊇ mΔ ′ \mws mws. Since ℓ ℓu u s m wsu|Δ ′ | = 2 | ′ | = 2 | | = ( − 1) , when
u = 1 we have that  mΔ ′ = \mws mws, hence ′ is the desired ℓmws ws( , , )‐DF.

It is left to show that ⋃ ∈ C″ = Orb( )C ′ is a cyclic ℓu‐cycle system of K ws[ ]m , where
COrb( ) denotes the mws‐orbit of C. We denote by ϵ the number of edges of K ws[ ]m —

counted with their multiplicity—covered by the cycles in ″. By construction,
C tmw C+ = for every ∈C ′, then ≤C|Orb( )|

mws

u
, hence

ℓ ≤ ℓ ℓϵ u u
mws

u
us

mws

u
E K ws= | ″| | ′ | = | | = | ( [ ])|.m (1)

Therefore, it is enough to show that every edge of K ws[ ]m lies in at least one cycle of ″.
By recalling that  ⊇ mΔ ′ \mws mws, it follows that every edge x x d{ , + } of K ws[ ]m —
hence with ∉d m ws—belongs to some translate of the cycle of ′ whose list of
differences contains d± . Therefore, ″ is a cyclic ℓu‐cycle system of K ws[ ]m . □

Note that some recursive constructions similar to the one above can be found in [11].

BURGESS ET AL. | 229
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Example 2.12. Let m s= = 3 and ℓ w= = 5. Also, let c =0 c c0, = 1, = 5,1 2

c c= 10, = 83 4 . Setting C c c c c c= ( , , , , )0 1 2 3 4 , we have that CΔ = ±{1, 2, 4, 5, 8}. Hence,
if the vertices of C are considered modulo 15, we obtain a (15, 5, )5 ‐DF.

We take u = 1 and, following the proof of Theorem 2.11, for every ∈j [0, 2] we define

the 5‐cycle ( )C c c c c c= , , , ,j j j j j j
0 1 2 3 4 as follows:

⎧
⎨⎪
⎩⎪

c

c i

c j i

c j i

=

if = 0, 2,

+ 15 if = 1, 3,

+ 30 if = 4.
i
j

i

i

i

Hence C C C= , = (0, 16, 5, 25, 38)0 1 , and C = (0, 31, 5, 40, 23)2 . One can check that
C C C′ = { , , }0 1 2 is a (45, 15, )5 ‐DF.

Finally, we take u = 3, and for every ∈j [0, 2] we let ( )C c c c= , , …,j j j
u
j

0 1 5 −1 be the
u5 ‐cycle defined as follows:

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

∈

∈

c

c i

c j i

c j i

c i

c i

=

if = 0, 2,

+ 15 if = 1, 3,

+ 30 if = 4,

+ 15 if [5, 9],

+ 30 if [10, 14].

i
j

i

i

i

i
j

i
j

−5

−10

We then have

C

C

C

= (0, 1, 5, 10, 8, 15, 16, 20, 25, 23, 30, 31, 35, 40, 38),

= (0, 16, 5, 25, 38, 15, 31, 20, 40, 8, 30, 1, 35, 10, 23),

= (0, 31, 5, 40, 23, 15, 1, 20, 10, 38, 30, 16, 35, 25, 8),

0

1

2

and the set ∈C h h″ = { + | [0, 14]}j is a cyclic 15‐cycle system of K [15]3 .

3 | CYCLES OF EVEN LENGTH

In this section we construct cyclic ℓ‐cycle systems of K n[ ]m when ℓ is an even divisor of
m n( − 1) /2. By Proposition 2.5, it is enough to provide suitable difference families. We will
build these difference families by making use of Lemma 3.2, which can be thought of as a
generalization of Lemma 5.3 in [23], proved using alternating sums.

Definition 3.1. If D d d d= { , , …, }k1 2 2 is a set of positive integers, with d d<i i+1 for
∈i k[1, 2 − 1], the alternating difference pattern of D is the sequence s s s( , , …, )k1 2 , where
s d d= −i i i2 2 −1 for every ∈i k[1, ]. Furthermore, D is said to be balanced if there exists an
integer ∈τ k[1, ] such that∑ ∑s s=

i

τ
i i τ

k
i=1 = +1
.

Lemma 3.2. If D is a balanced set of k2 positive integers, then there exists a k2 ‐cycle C
such that C DΔ = ± and ⊂V C d d( ) [− , ′], where d D= max and d D d′ = max( \{ }).

230 | BURGESS ET AL.
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Proof. Let D d d d= { , , …, }k1 2 2 with d d<i i+1 for ∈i k[1, 2 − 1]. Since D is balanced,
there is ∈τ k[1, ] such that ∑ ∑σ d d= (−1) − (−1) = 0

i

τ i
i i τ

k i
i=1

2

=2 +1

2 . Let δ δ δ, , …, k1 2 2 be
the sequence obtained by reordering the integers in D as follows:

⎧
⎨⎪
⎩⎪

∈

∈δ

d i τ

d i τ k

d i τ

=

if [1, 2 ],

if [2 + 1, 2 − 1],

if = 2 .
i

i

i

t

+1

2 +1

Set c = 00 and ∑c δ= (−1)i h

i h
h=1
for ∈i k[1, 2 − 1]. Since ⋯δ δ δ0 < < < < k1 2 2 −1, we

have that ≠c ci j whenever ≠i j. Also, the following inequalities hold:

∑ ∑ ∑≤ ≤δ δ δ c δ δ δ δ δ0 ( − ) = (−1) = = − + ( − ) +
h

j

h h

h

j

h
h j

h

j

h h j j

=1

2 2 −1

=1

2

2 1

=1

−1

2 2 +1 2 2

for every ∈j k[1, − 1], and

∑ ∑

∑

≤

≤

δ δ δ δ δ

c δ δ δ δ

− ( − ) − = (−1)

= = − + ( − ) −

j

h

j

h h j

h

j

h
h

j

h

j

h h

2 +1

=1

2 2 −1 2 +1

=1

2 +1

2 +1 1

=1

2 2 +1 1

for every ∈j k[0, − 1]. Therefore, every ci belongs to δ δ[− , ]k k2 −1 2 −2 , where
δ D= maxk2 −1 and δ D δ= max( \{ })k k2 −2 2 −1 .

To prove that C c c c= ( , , …, )k0 1 2 −1 is the desired k2 ‐cycle, it is left to show that
C DΔ = ± . Note that

∑ ∑ ∑

∑ ∑

c c c δ d d

d d σ d σ δ

− = = (−1) = (−1) + (−1)

= (−1) − (−1) = − = − .

k k

h

k

h
h

h

τ

h
h

h τ

k

h
h

h

τ

h
h

h τ

k

h
h τ k

2 −1 0 2 −1

=1

2 −1

=1

2

=2 +1

2 −1

+1

=1

2

=2 +2

2

2 +1 2

By recalling that σ = 0, we have that c c δ− = −k k2 −1 0 2 . Finally, c c δ= + (−1)i i
i
i−1 for every

∈i k[1, 2 − 1], therefore C δ δ δ DΔ = ±{ , , …, } = ±k1 2 2 , and this completes the proof. □

Remark 3.3. We note that Lemma 3.2 constructs the cycle C with vertices in . In
practice, we will use this lemma to construct cycles in K n[ ]m with vertices in mn; the
condition ⊂V C d d( ) [− , ′] ensures that C is a cycle provided mn d d> + ′.

Example 3.4. Take k = 6 and D = {1, 3, 5, 7, 8, 9, 10, 12, 14, 15, 17, 19}. Since the
alternating difference pattern of D is (2, 2, 1, 2, 1, 2), D is clearly balanced.
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Following the notation of Lemma 3.2, we have δ δ δ( , , …, ) =1 2 12 (1, 3, 5, 7, 8, 9,

12, 14, 15, 17, 19, 10), and the 12‐cycle C c c= (0, , …, )k1 2 −1 , built using this sequence,
where ∑c δ= (−1)i h

i h
h=1
for ∈i [1, 11] is the following:

C = (0, −1, 2, −3, 4, −4, 5, −7, 7, −8, 9, −10).

Note that ⊆V C( ) [−19, 17] and C DΔ = ± .

3.1 | ℓ ≡ 0 (mod 4)

We first consider the case in which the cycle length ℓ is a multiple of 4 and ℓ m n2 |( − 1) , hence
the nonexistence conditions of Corollary 2.2 are never realized. Indeed, we can use Lemma 3.2
to build an ℓmn n( , , )‐DF, thus proving that in this case we always have a cyclic ℓ‐cycle system
for K n[ ]m .

Theorem 3.5. If ℓ4| and ℓ n m2 | ( − 1), then there exists an ℓmn n( , , )‐DF, and hence
there exists a cyclic ℓ‐cycle system of K n[ ]m .

Proof. Set ⌊ ⌋ ⋅D nm n m= [1, /2 ]\([1, ] ) and note that  D m± = \mn mn. To build an

ℓmn n( , , )‐DF, it is enough to show that D can be partitioned into a family of balanced ℓ‐
sets, and apply Lemma 3.2. The existence of a cyclic ℓ‐cycle system of K n[ ]m then follows
from Proposition 2.5.

Case 1:m is odd. We recall that by assumption D m n| | = ( − 1) /2 is a multiple of ℓ, hence
ℓm n q( − 1) /2 = for some q > 0. Now, let ℓD d d d= { , , …, }q1 2 with d d<i i+1. Since m

is odd, one can check that d d− = 1i i2 2 −1 for every ∈ ℓi q[1, /2]. Therefore, we can
partition D into the subsets ℓ ℓ ℓD d d d= { , , …, }j j j j+1 +2 ( +1) whose alternating difference
pattern is (1, 1, …, 1) for every ∈j q[0, − 1]. Since ℓ ≡ 0 (mod 4), every Dj is clearly
balanced.

Case 2:m is even. In this case, ≡n 0 (mod 8). Let ℓ λ= 4 , n t= 8 for some t > 0, and let ι
be the involutory permutation of the set D defined by ι x tm x( ) = 4 − for every ∈x D.
We notice that if X is a subset of tm[1, 2 − 1] with size λ2 and alternating difference
pattern is s s s( , , …, )λ1 2 , then the set ∪X X ι X= ( ) has size λ4 and its alternating
difference pattern is s s s s s s( , , …, , , …, , )λ λ1 2 2 1 ; hence X is clearly balanced.
Now, let ⋅A tm t m= [1, 2 − 1]\([1, 2 − 1] ). Recall that by assumption ℓ n m2 | ( − 1),
hence λ A2 || |. Let A A A{ , , …, }q1 2 be a partition of A into sets of size λ2 and set

∪A A ι A= ( )i i i . As shown above, each Ai is balanced. Considering that A ι A{ , ( )} is a
partition of D, it follows that the Ai’s partition between them D and this completes the
proof. □

Example 3.6. Let ℓ m= 12, = 4, and n = 16. Following the notation of the proof of
Theorem 3.5 we have ⋅D = [1, 32]\([1, 8] 4), and A = [1, 15]\ {4, 8, 12}. Setting, for
instance, A = [1, 7]\ {4}1 and A = [9, 15]\ {12}2 , we partition D into the two sets

∪A A ι A= ( )i i i for i = 1, 2, where ι A( ) = [25, 31]\ {28}1 and ι A( ) = [17, 23]\ {20}2 . By
applying Lemma 3.2 we build the two cycles:

232 | BURGESS ET AL.

 15206610, 2020, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21688 by U

niversita D
i B

rescia, W
iley O

nline L
ibrary on [04/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



C

C

= (0, 1, −1, 2, −3, 3, −4, 22, −5, 24, −6, 25),

= (0, 9, −1, 10, −3, 11, −4, 14, −5, 16, −6, 17),
1

2

such that C AΔ = ±i i for i = 1, 2. Therefore C C{ , }1 2 is a (64, 16, )12 ‐DF.

3.2 | ℓ ≡ 2 (mod 4)

Let us now consider the case ℓ ≡ 2 (mod 4). We will show that for any such ℓ, there is a cyclic
ℓ‐cycle decomposition of K n[ ]m whenever the conditions of Theorem 1.6 hold. Our general
approach in this case is as follows. Let ℓλ m= gcd( − 1, )m and let n0 be the smallest value for
which the triple ℓmn n( , , )0 0 is admissible. If ≥λ 3m , we build an mn n( , , )λ0 0 ‐DF, where
λ λ= m (Theorem 2.8) or λ2 m (Lemma 3.7), and if ≤λ 2m , we find an ℓmn n( , , )0 0 ‐DF (Lemma
3.8). We then obtain a cyclic ℓC ‐decomposition of K n[ ]m by applying Theorem 2.11.

We start by recalling that Theorem 2.8 guarantees the existence of an ℓm( , 1, )‐DF
whenever ≡ ℓm 1 (mod 2 ) and ℓ ≡ 2 (mod 4).

We now prove two lemmas which we will need to prove the general existence result.

Lemma 3.7. There exists a ℓm(4 , 4, )‐DF whenever ≤ ℓ ≡6 2 (mod 4) and
ℓ m|2( − 1).

Proof. Let ℓq m= 2( − 1)/ , and note that q m2 < − 1; also let

⎧⎨⎩ ∪

q m

q m m m
=

[1, 2 ] if is odd,

[1, 2 − 2] { − 1, + 1} if is even ,

Since ≢q m (mod 2), there exists a partition ∈a a i q{{ , + 2}| [1, ]}i i of the elements of A
into pairs at distance 2, where a m= − 1q if m is even. Set

⎧⎨⎩
∪

∪ ∪

q m m m m

q m m m m m
=

[2 + 1, − 1] [ + 1, 2 − 1] if is odd ,

[2 − 1, − 2] [ + 2, 2 − 2] {2 + 1} if is even ,

and let ∈B i q{ | [1, ]}i be a partition of such that each Bi contains ℓ − 2 elements and

∈ ∈d dmax < minb B b Bi j
whenever i j< . Note that each Bi can be partitioned into pairs of

consecutive integers except when i q= andm is even. In this case, Bq can be partitioned
into pairs of consecutive integers and a pair at distance three. Finally, for each
∈i q[1, ], set

∪D a a B= { , + 2} .i i i i

Clearly, the ℓ‐sets Di between them partition ∪ , and each Di has the following
alternating difference pattern:
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⎧
⎨
⎪⎪

⎩
⎪⎪

≠

ℓ ∕ ℓ ∕

i q i q m

i q m

i q m

(2, 1, …, 1) if < , or = and is odd ,

(2, 1, …, 1, 3) if = 1 and is even ,

(1, …, 1, 2 , 1, …, 1, 3) if = = 1 and is even.

( +2) 4 ( −2) 4

Therefore, each Di is balanced and the assertion follows from Lemma 3.2. □

Lemma 3.8. There exists an ℓmn n( , , )‐DF whenever ≤ ℓ ≡6 2 (mod 4) and at least
one of the following conditions holds:

1. ≡m 1 (mod 4) and ≡ ℓn2 0 (mod ), or
2. ≡ ℓn 0 (mod 2 ).

Proof. We first consider the case ≡m 1 (mod 4) and ≡ ℓn2 0 (mod ). It is enough to
show that there exists an ℓ ℓ

ℓ( ), ,
m

2 2
‐DF; the result then follows from Theorem 2.11 with

ℓs n= 2 / .
We have that q m= ( − 1)/4 is the number of cycles in an ℓ ℓ

ℓ( ), ,
m

2 2
‐DF. Also, let

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ℓ ℓ
≡

ℓ ℓ
∪

ℓ
≡{ }

m m
m

m m m
m

=

( − 2)

4
+ 1,

− 2

4
if 1 (mod 8),

( − 2)

4
+ 1,

− 6

4

+ 2

4
if 5 (mod 8).

Note that can be partitioned into pairs ∈a a i q{{ , + 2}| [1, ]}i i .
Let ℓ ℓm m= [1, ( − 2) /4]\ [1, ( − 2)/4], and let ∣ ∈B i q{ [1, ]}i be a partition of

such that each Bi contains ℓ − 2 elements and B Bmax < mini j if i j< . Since
≡m 1 (mod 4), it follows that each Bi can be partitioned into pairs of consecutive

integers. Now, for each ∈i q[1, ], set ∪D a a B= { , + 2}i i i i. Clearly, Di has alternating
difference pattern (1, 1, …, 1, 2). Hence each Di is balanced, and by Lemma 3.2 there
exists a set ∣ ∈C i q= { [1, ]}i of ℓ‐cycles with vertices in  ℓ∕m 2 such that C DΔ = ±i i.
Since the sets D± i partition between them  ∪ ℓ ℓm±( ) = \m m/2 /2, it follows that is

the desired ℓ ℓ
ℓ( ), ,

m

2 2
‐DF.

Now suppose ≡ ℓn 0 (mod 2 ). It is enough to construct a ℓ ℓ ℓm(2 , 2 , )‐DF and then
apply Theorem 2.11 with ℓs n= /2 . For ∈i m[1, − 1], let ∣ ∈D i jm j= { +i

ℓ ∪ ℓ[0, − 2] { }}. Each Di has alternating difference pattern m m m( , …, , 2 ); hence Di is
clearly balanced and by Lemma 3.2 there exists a set ∈C i q= { | [1, ]}i of ℓ‐cycles with
vertices in  ℓm2 such that C DΔ = ±i i. Considering that the sets D± i partition between
them  ℓ ℓm\m2 2 , we have that is a ℓ ℓ ℓm(2 , 2 , )‐DF. □

Example 3.9. Let ℓ m= 10, = 13, and n = 5. Following the notation of the proof of
Theorem 3.8, we have that q = 3, the set ∪= [27, 31] {33} is partitioned as

{{27, 29}, {28, 30}, {31, 33}},
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and the set = [1, 26]\ {13, 26} is partitioned as follows:

B

B

B

= {1, 2, 3, 4, 5, 6, 7, 8},

= {9, 10, 11, 12, 14, 15, 16, 17},

= {18, 19, 20, 21, 22, 23, 24, 25}.

1

2

3

Set ∪ ∪D B D B= {27, 29}, = {28, 30}1 1 2 2 , and ∪D B= {31, 33}3 3 . The cycles of a
(65, 5, )10 ‐DF are given by

C

C

C

= (0, −1, 1, −2, 2, −3, 3, −5, 22, −7),

= (0, −9, 1, −10, 2, −12, 3, −14, 14, −16),

= (0, −18, 1, −19, 2, −20, 3, −22, 9, −24).

1

2

3

Example 3.10. Let ℓ m= 6, = 3, and ℓn = 2 = 12. Following the notation of the proof
of Theorem 3.8, we have that q = 2,

D D= {1, 4, 7, 10, 13, 19} and = {2, 5, 8, 11, 14, 20}.1 2

The cycles of a (36, 12, )6 ‐DF are given by

C C= (0, −1, 3, −4, 6, −13) and = (0, −2, 3, −5, 6, −14).1 2

We now prove the main result of this section, which gives necessary and sufficient
conditions for the existence of a cyclic cycle system when ℓ ≡ 2 (mod 4).

Theorem 3.11. Let ℓ ≥m, 3 and ≥n 1 be integers. If ℓ ≡ 2 (mod 4) and ℓ ∣ n m2 ( − 1),
then there exists a cyclic ℓ‐cycle system for K n[ ]m , except when ≡m 3 (mod 4) and
≡n 2 (mod 4).

Proof. When ≡m 3 (mod 4) and ≡n 2 (mod 4), the nonexistence of a cyclic ℓ‐cycle
system for K n[ ]m follows from Corollary 2.2.

We now show sufficiency. Let ≤ ℓ ≡6 2 (mod 4) such that ℓ ∣ n m2 ( − 1), and
assume that ≢n 2 (mod 4) when ≡m 3 (mod 4). Set ℓλ m= gcd( , − 1)m and note that
m and λm have different parities, and ≡λ 2 (mod 4)m when m is odd.

If ≥λ 3m and ≡m 1 (mod 4), then ≡m λ1 (mod 2 )m . By Theorem 2.8, there exists an
m( , 1, )λm ‐DF. The result then follows by Theorem 2.11, taking ℓu λ= / m and s n= . If
≥λ 3m and ≢m 1 (mod 4), then ∣ n4 . Setting λ λ= m if ≡m 3 (mod 4) and λ λ= 2 m

otherwise, by Lemma 3.7 there exists a m(4 , 4, )λ ‐DF. The result then follows by
Theorem 2.11, taking ℓu λ= / and s n= /4.

Finally, we assume that ≤λ 2m . If ≡m 1 (mod 4), then λ = 2m , hence ℓ/2 is a divisor
of n, that is, ≡ ℓn2 0 (mod ). If ≢m 1 (mod 4), then ≡ ℓn 0 (mod 2 ). This is clear when
λ = 1m . If λ = 2m , then ≡m 3 (mod 4), and by assumption ≢n 2 (mod 4). Recalling that
ℓ n m2 | ( − 1), we have that ℓ n2 | . The result then follows from Lemma 3.8 and
Proposition 2.5. □
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4 | CYCLES OF ODD LENGTH

In this section we deal with the existence of ℓ‐cycle systems of K n[ ]m when ℓ is odd and
ℓ m n2 |( − 1) ; the main result is the following theorem.

Theorem 4.1. Let ℓ ≥m, 3 and ≥n 1 be integers. If ℓ is odd and ℓ n m2 | ( − 1), then
there exists a cyclic ℓ‐cycle system for K n[ ]m , except when ≡m 2, 3 (mod 4) and
≡n 2 (mod 4).

We first note that the case ℓ = 3, that is, the existence of cyclic triple systems of K n[ ]m with
no short‐orbit cycles, has been settled in [26,35].

Theorem 4.2 [26,35]. There exists an mn n( , , )3 ‐DF if and only if m m n> 2, 6|( − 1) ,
and ≡m 0, 1 (mod 4) when ≡n 2 (mod 4).

To prove the main result, we first consider in Section 5 the case where ℓ > 3 is a divisor of
m − 1, and ≡n 0 (mod 4), and show the following.

Theorem 4.3. Let ℓ ≥ 5 be odd, and let ≥m 3 and ≥n 1. If ≡ ℓm 1 (mod ) and
≡n 0 (mod 4), then there exists a ℓmn n( , , )‐DF.

Then, in Section 6 we consider the case where ℓ n2 | , and show the following.

Theorem 4.4. Let ℓ ≥ 5 be odd, and let ≥m 3 and ≥n 1. There exists a ℓmn n( , , )‐DF
in each of the following cases:

1. ℓn = 2 and ≡m 0, 1 (mod 4),
2. ≡ ℓn 0 (mod 4 ).

We now have all the ingredients we need to prove Theorem 4.1.

Proof of Theorem 4.1. The case ℓ = 3 is dealt with in Theorem 4.2, so we assume ℓ ≥ 5.
Necessity of the condition that ≢n 2 (mod 4) when ≡m 2 or 3 (mod 4) follows from
Corollary 2.2, so we show sufficiency.

Let ℓ ℓλ m λ λ= gcd( , − 1), = /m n m, and n λ n= 2 ′a
n , where ≥a 0 and n′ is odd. Note

that if a = 0, then the condition ℓ m n2 |( − 1) implies that m is odd.
First, suppose that ≥λ 3m . In this case, Theorems 2.8 and 2.9 (when a = 0, 1), and

Theorem 4.3 (when a > 1) guarantee that there is an m( 2 , 2 , )a a
λm ‐DF, and the result

follows by applying Theorem 2.11 with u λ= n and s λ n= ′n .
Otherwise, λ = 1m so that ℓ n| , and by Theorem 2.10 (when a = 0) and Theorem 4.4

(when a > 0) there exists a ℓ ℓ ℓm( 2 , 2 , )a a ‐DF. The result now follows by applying
Theorem 2.11 with u = 1 and s n= ′. □

We end this section with two lemmas which will be used to construct the difference families
of Theorems 4.3 and 4.4.
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Lemma 4.5. Let ∪D d d= { , }* be a set of λ2 positive integers with d d< *. If  can be
partitioned into pairs of consecutive integers, then there exists a path P p p p= 0, , , …, λ1 2 2 of
length λ2 satisfying the following properties:

i. p p d d d( , ) = (− , − )*1 2 , and ∈p d d d d[ − + 1, − + max ]* *i for i > 2,
ii. p d d λ= − + − 1*λ2 ,
iii. P DΔ = ± .

Proof. Letting  x x x= { , , …, }λ1 2 2 −2 , we can assume that

x x x x> and − = 1,i i j j+1 2 −1 2 (2)

for every ∈i λ[1, 2 − 3] and ∈j λ[1, − 1]. Now, let P p p p= 0, , , …, λ1 2 2 be the trail
defined as follows:

∈

∈{p d d

i i λ i

d i

x i i λ i

= − +

/2 − 1 if [1, 2 ] and is even ,

− if = 1,

+ ( − 3)/2 if [3, 2 ] and is odd.

* *i

i−2

By property (2), it is not difficult to check that the sequence p p, 0, ,1 2

p p p p p, …, , , , …,λ λ λ4 2 2 −1 2 −3 3 is strictly increasing. Therefore, P is a path, and for every
i > 2, we have that ∈p p p d d d d x[ , ] = [ − + 1, − + ]* *i 4 3 1 , where x = max1 . Also,

∪ ∈

∪ ∈

P d d p p p p j λ

d d x x j λ D

Δ = ± { , } ±{ − , − | [1, − 1]}

= ± { , } ±{ , − 1| [1, − 1]} = ± .

*

*

j j j j

j j

2 +1 2 2 +1 2 +2

2 −1 2 −1

Therefore, P is the desired path. □

Example 4.6. Let λ = 3, d d= 9, = 11* , and  = {7, 8, 13, 14}: the path is
(0, −9, 2, 16, 3, 11, 4)

Notation 4.7. We will use the notation a b[ , ]e (resp. a b[ , ]o) to denote the set of even
(resp. odd) integers in a a b{ , + 1, …, }. Also, given nonempty sets ⊆Xi and integers
c c, ′i i , for ∈i t[1, ], we denote by∑ ⋅ ⋅c X c′

i

t
i i i=1

the subset of  defined as follows:

∑ ∑⋅ ⋅ ∈ ∈{ }c X c c x c x X i t′ = | for every [1, ] .′
i

t

i i i

i

t

i i i i i

=1 =1

If some ∅X =i , then we define∑ ⋅ ⋅ ∅c X c =′
i

t
i i i=1

.

In the proofs of Theorems 4.3 and 4.4, a crucial ingredient will be the following Lemma
4.8.

Lemma 4.8. Let I and J be two nonempty intervals of , with I μ| | < , and set
⋅A I J μ= + . For every ∈τ , there is a bijection ∈ ↦ ∈a A a A τ+* such that
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∈ ⋅a a a A I J μ τ I J μ{ − | } = ([1, 2 | |] + [1, 2 | |] ) + − | | − | | .* o o

Proof. It is not difficult to check that the map ∈ ↦ ∈a A a A τ+* , with
a A A τ a= max + min + −* , is a bijection.

Let I i s i= [ − + 1, ]I1 1 and J j s j= [ − + 1, ]J1 1 be intervals of size sI and sJ ,
respectively. For every ∈a i jμ A= + , we have that a =* i s i(2 − + 1 − ) +I1

j s j μ τ(2 − + 1 − ) +J1 , hence

∈ ⋅ ⋅

⋅

a a i i j j μ τ s s μ

s s μ τ s s μ

s s μ τ s s μ

− = 2( − ) + 1 + (2( − ) + 1) + ( − − )

(2 [0, − 1] + 1) + (2 [0, − 1] + 1) + ( − − )

= [1, 2 ] + [1, 2 ] + ( − − ).

* I J

I J I J

I J I J

1 1

o o

Since the map ↦a a a−* is injective, the assertion follows. □

5 | THE PROOF OF THEOREM 4.3

The aim of this section is to prove Theorem 4.3. The case ≡n 4 (mod 8) is treated in
Proposition 5.2, whereas the case ≡n 0 (mod 8) is dealt with in Proposition 5.5 form odd, and
in Proposition 5.8, for m even.

The idea beneath the three proofs is similar: we partition the set ⋅D mn n m= [1, /2]\[1, /2]

of differences to be realized into various sets. A first set A of size q, the cardinality of the DF,
will serve as the set of indices for the cycles in the DF, and it will be paired up with a second q‐
set, the set A*. To each pair of elements ∈a a A A( , ) ×* * we will associate a set ⊂X Da of size
ℓ − 5 that can be partitioned into pairs of consecutive integers, so that we can have a path Pa of
length ℓ − 3, built using Lemma 4.5 for each ∈a A, and whose lists of differences between
them cover ∪ ∪ ∪∈D X A A′ = ( ) *a A a . We obtain an ℓ‐cycleCa by joining the path Pa to a pathQa

of length 3, built to ensure that the differences coming from ∈Q a A,a , will describe the set
D D\ ′. The set ∈C a A= { | }a will be the desired DF. The partitions of D just outlined are given
in Lemmas 5.1, 5.4 and 5.7.

Lemma 5.1. Let ℓ ≥λ= 2 + 3 5 be odd, let ≡ ℓm 1 (mod ), and set ℓs m= 2( − 1)/ .
Then there exists a partition of D m m= [1, 2 − 1]\ { } into five subsets A A B X, , ,* , and Y
satisfying the following properties:

1. ℓA A B s X s| | = | | = | | = , | | = ( − 5)* , Y s| | = 2 ;
2. there is a bijection ∈ ↦ ∈a A a A* * such that ∈B λ a a a A− = { − | }* ;
3. X and Y can be partitioned into pairs of consecutive integers;
4. ∉ ⊂A B λ s1 , − [1, + 1], and ⊂Y m[1, − 1] when ℓ ≥ 7.

Proof. Let ϵ = 0 or 1 according to whether λ is even or odd. Also, let ∪A A A= 0 1 and
∪A A τ A τ= ( + ) ( + )* 0 0 1 1 , where Ah and τh are the following:
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Ah τh

h = 0 s m[− /2, −1] + s/2 + 1

h = 1 s s m[ /2 + 1, ] + s ϵ/2 + 2

and set B λ ϵ λ ϵ s= [ + + 1, + + ]. It is easy to check that A0 and A1 are disjoint, as are
A τ+0 0 and A τ+1 1; hence A A B s| | = | | = | | =* . We need to show that the sets A A, *,
and B are pairwise disjoint. It is straightforward to see that ∩ ∅A A =* . To check that B
is disjoint from ∪A A*, note that the elements of ∪A A* are contained in the interval⎡⎣ ⎤⎦m m ϵ− , + + 2

s s

2

3

2
. Thus, it suffices to show that λ ϵ s m+ + < −

s

2
, or equivalently,

that λ ϵ m+ + <
s3

2
. If ℓ = 5,

λ ϵ
s m m

m+ +
3

2
= 1 + 1 +

3( − 1)

5
=

3 + 7

5
<

since ≥ ℓm + 1 = 6. For ℓ ≥ 7, since ℓ ≤ m m− 1 < , we have

ℓ

ℓ
λ ε

s
ε

m

m m

m

m

+ +
3

2
=

− 3

2
+ +

3( − 1)

<
− 3

2
+ 1 +

3( − 1)

7

=
13( − 1)

14
< .

By Lemma 4.8 (with ⎡⎣ ⎤⎦I = − , −1
s

2
or ⎡⎣ ⎤⎦s J+ 1, , = {1}

s

2
and μ m= ), there are

bijections ∈ ↦ ∈ ∈a A a A τ h+ , {0, 1}*h h h , such that

∈

∈

a a a A s m m s

a a a A s m m ϵ s ϵ

{ − | } = ([1, ] + ) − + 1 = [1, ] ;

{ − | } = ([1, ] + ) − + 2 = [1, ] + 2 .

*

*
0 o e

1 o o

Therefore, ∈a a a A ϵ ϵ s B λ{ − | } = [ + 1, + ] = −* .
Set ∪ ∪W D A A B= \( )* . Note that ℓW s| | = ( − 3) , and both ∩W W m= [1, − 1]1

and ∩W m m[ + 1, 2 − 1] are the disjoint union of intervals of even size. In particular, if
ℓ ≥ 7 then ℓ ≥W m s s s| | = − 1 − 3 /2 = ( − 3) /2 21 . Therefore, W can be seen as the
disjoint union of two subsets X and Y each of which can be partitioned into pairs of
consecutive integers, with ℓX s Y s| | = ( − 5) , | | = 2 , and ⊂ ⊂Y W m[1, − 1]1 . Therefore,
the sets A A B X Y, , , ,* provide the desired partition of m m[1, 2 − 1]\ { }. □

Proposition 5.2. Let ℓ ≥ 5 be odd, and let ≡ ℓm 1 (mod ). Then there is a ℓmν ν(4 , 4 , )‐
DF for every odd ≥ν 1.

Proof. By Theorem 2.11, it is enough to prove the assertion when ν = 1.
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First, if ℓ m= − 1 = 5, take = {(0, 11, 1, 10, 2), (0, 7, 2, 5, 1)}. Since Δ = \24

{0, 6, 12, 18}, then is a C(24, 4, )5 ‐DF. We can therefore assume that ℓ ≠m( , ) (5, 6).
As in Lemma 5.1, let ℓλ = ( − 3)/2 and ∕ℓs m= 2( − 1) . By that lemma, there is a

partition of D m m= [1, 2 − 1]\ { } into five subsets A A B X, , ,* , and Y which satisfy the
following conditions:

1. ℓA A B s X s Y s| | = | | = | | = , | | = ( − 5) , | | = 2* ;
2. there is a bijection ∈ ↦ ∈a A a A* * such that ∣ ∈B λ a a a A− = { − }* ;
3. X and Y can be partitioned into pairs of consecutive integers;
4. ∉ ⊂A B λ s1 , − [1, + 1], and ⊂Y m[1, − 1] when ℓ ≥ 7.

In particular, X can be seen as the disjoint union of s sets Xa of size ℓ − 5, indexed
over the elements of A, each of which can be partitioned into pairs of consecutive
integers, and ∈Y y y a A= { , − 1| }a a .

We will construct a set of ℓs m= 2( − 1)/ base cycles, indexed over the elements of
A, and each obtained as a union of two paths of length ℓ − 3 and 3. By applying Lemma
4.5 (with ∈d a A= and  X= a), we construct the path Pa of length ℓλ2 = − 3 such that

P p a a λthe ends of are 0 and = − + − 1,*a a (3)

⊆ ∪V P a a a a a X( ) {0, − } [ − , − + max ],* *a a (4)

∪P a a XΔ = ±{ , } ± ,*a a (5)

where Xmax = 0a when ℓ = 5. For ∈a A, letCa be the closed trail obtained by joining Pa
and the 3‐path Q y p= 0, − , −1,a a a, and considering its vertices as elements of  m4 . We
claim that ∈C a A= { | }a is the desired DF.

We first show that DΔ = ± . Recalling (5) and that B a a= { − +*

∈ ∈λ a A p a A| } = { + 1| }a , and considering that QΔ = ±a y y p{ , − 1, + 1}a a a , then

⋃ ⋃ ∪ ⋃ ∪

∪ ∈
∈ ∈ ∈

C P Q X a a y y p

D B p a A D

Δ = Δ = (Δ Δ ) = ± ( { , , , − 1, + 1})

= ±( \ ) ±{ + 1| } = ± .

*
a A

a
a A

a a
a A

a a a a

a

It is left to show that each Ca is a cycle. Since ∈ ⊂a a B λ s− − [1, + 1]* , where
ℓs m m= 2( − 1)/ < , and X mmax < 2a , it follows by (4) that

⊆ ∪ ⊆ ∪V P a m s a m( ) {− } [0, 2 + ] {− } [0, 3 − 1].a

But ∈ ⊂y Y m[1, − 1]a , so it follows that Pa and Qa share a vertex other than 0 or pa
modulo m4 if and only if ∈a y− {−1, − }a . Recalling that ∉ A1 and ∩A Y is empty, we
see that the latter condition is not satisfied; thus, Pa and Qa only share their end‐vertices
modulo m4 . Hence Ca is a cycle for every ∈a A, and this completes the proof. □

Example 5.3. Let ℓ = 9 and m = 10; we have to build a (40, 4, )9 ‐DF, so we need
q = 2 base cycles. Here λ = 3 and, following the proof of Lemma 5.1, we have that
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A A A A B= {9}, = {12}, = {11}, = {15}, = {5, 6},* *0 1 0 1

and the index set is A = {9, 12}. Also, we can take Y X= [1, 4], = {7, 8, 13, 14}9 , and
X = [16, 19]12 .

The path P9 is the path 0, −9, 2, 16, 3, 11, 4, and we might take y = 29 so that
Q = 0, −2, −1, 49 , and

∪C P Q= = (0, −9, 2, 16, 3, 11, 4, −1, −2),9 9 9

whereas P12 is the path 0, −12, 3, 22, 4, 21, 5 and Q12 is 0, −4, −1, 5 so that

∪C P Q= = (0, −12, 3, 22, 4, 21, 5, −1, −4).12 12 12

It is easily checked that  ∪ ⋅C CΔ Δ = \109 12 40 40.

Lemma 5.4. Let ℓ ≥λ= 2 + 3 5 be odd, let ≡ ℓm 1 (mod 2 ) and set ℓs m= 4( − 1)/ .
Then for every integer ≥ν 1, there exists a partition of ⋅D mν ν m= [1, 4 ]\([1, 4 ] ) into five
subsets A A B X, , ,* , and Y satisfying the following properties:

1. ℓA A B νs X νs| | = | | = | | = , | | = ( − 5)* , Y νs| | = 2 ;
2. there is a bijection ∈ ↦ ∈a A a A* * such that ∈B λ a a a A− = { − | }* ;
3. X and Y can be partitioned into pairs of consecutive integers;
4. ∉ ⊂A B λ ν m1 , − [1, (2 − 1) ], and ⊂Y ν m[1, (2 + 1) − 1] when ℓ ≥ 7.

Proof. Let ϵ = 0 or 1 according to whether λ is even or odd, and set q sν= .
We start by defining intervals I J,h h, and integers τh, for ∈h {0, 1, 2}, as follows:

Ih Jh τh

h = 0 s[1, /2] ν ν[2 − 1, 3 − 2] ν m s ϵ( − 1) + /2 + 2

h = 1 s[− /2, −1] ν ν[2 , 3 − 2] νm s+ /2 + 1

h = 2 s[− /2, −1] ν{4 − 1} s/2 + 1

For every ∈h {0, 1, 2}, set ⋅A I J m= +h h h , A A τ= +*h h h, and let

⋃ ⋃A A A A= and = .* *
h

h
h

h
=0

2

=0

2

Also, set ⋅B λ ϵ λ ϵ s ν m= [ + + 1, + + ] + [0, − 1] 2 . It is not difficult to check that the
sets A A A A A A, , , , ,* * *0 1 2 0 1 2 , and B are pairwise disjoint; hence A A B νs| | = | | = | | =* . By
Lemma 4.8, there is a bijection ∈ ↦ ∈a A a A* *h h such that

BURGESS ET AL. | 241

 15206610, 2020, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21688 by U

niversita D
i B

rescia, W
iley O

nline L
ibrary on [04/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



∈ ⋅ ⋅

∈ ⋅ ⋅

∈

a a a A s ν m m ϵ ϵ s ν m

a a a A s ν m m s ν m

a a a A s m m s

{ * − | } = ([1, ] + [1, 2 ] ) − + 2 = [1 + 2 , + 2ϵ] + [0, 2 − 2] ;

{ * − | } = ([1, ] + [1, 2 − 2] ) + + 1 = [1, ] + [1, 2 − 2] ;

{ * − | } = ([1, ] + ) − + 1 = [1, ] .

0 o o o e

1 o o e e

2 o e

Therefore, ∈ ⋅a a a A ϵ ϵ s ν m B λ{ − | } = [ + 1, + ] + [0, − 1] 2 = −* .
Now set ∪ ∪W D A A B= \( )* and note that ℓW sν| | = ( − 3) . Also, for every
∈j ν[0, 4 − 1] we have that ∩m jm W([1, − 1] + ) is the disjoint union of intervals of

even size. Therefore,W can be seen as the disjoint union of two subsets X and Y , each of
which can be partitioned into pairs of consecutive integers, with ℓX νs| | = ( − 5) and
Y sν| | = 2 . Since ∪ ∪ ∩A A B ν m ν s|( ) [1, (2 + 1) ]| = ( + 2)* , for every ℓ ≥ 7 we have
that

∩ ℓ

ℓ ℓ ≥ ≥

W ν m ν m ν s s ν ν s

sν s sν sν s sν

| [1, (2 + 1) ] = (2 + 1)( − 1) − ( + 2) = (2 + 1)/4 − ( + 2)

= ( − 2) /2 + ( − 8) /4 2 + /2 − /4 2 .

Therefore, without loss of generality, we can assume that ⊂Y ν m[1, (2 + 1) − 1] when
ℓ ≥ 7, and this completes the proof. □

Proposition 5.5. Let ℓ ≥ 5 be odd, and let ≡ ℓm 1 (mod 2 ). Then there is a

ℓmν ν(8 , 8 , )‐DF for every ≥ν 1.

Proof. Set ℓλ = ( − 3)/2 and let ∈ϵ {0, 1}, with ≡ϵ λ (mod 2). Also, set
ℓs m= 4( − 1)/ and note that the number of required base cycles is q νs= .

By Lemma 5.4, there is a partition of ⋅D mν ν m= [1, 4 ]\([1, 4 ] ) into five subsets
A A B X, , ,* , and Y which satisfy the following conditions:

1. ℓA A B νs X νs Y νs| | = | | = | | = , | | = ( − 5) , | | = 2* ;
2. there is a bijection ∈ ↦ ∈a A a A* * such that ∈B λ a a a A− = { − | }* ;
3. X and Y can be partitioned into pairs of consecutive integers;
4. ∉ ⊂A B λ ν m1 , − [1, (2 − 1) ], and ⊂Y ν m[1, (2 + 1) − 1] when ℓ ≥ 7.

In particular, X can be seen as the disjoint union of q sets Xa of size ℓ − 5, indexed
over the elements of A, each of which can be partitioned into pairs of consecutive
integers, and ∈Y y y a A= { , − 1| }a a . By applying Lemma 4.5 (with ∈d a A= and
 X= a), we construct a path Pa of length ℓλ2 = − 3 such that

P p a a λthe ends of are 0 and = − + − 1,*a a (6)

⊆ ∪V P a a a a a X( ) {0, − } [ − , − + max ],* *a a (7)

∪P a a XΔ = ±{ , } ± ,*a a (8)
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where Xmax = 0a when ℓ = 5. For ∈a A, letCa be the closed trail obtained by joining Pa
and the 3‐pathQ y p= 0, − , −1,a a a, and considering its vertices as elements of  mν8 . We
claim that ∈C a A= { | }a is the desired DF.

We first show that DΔ = ± . Recalling (8) and that B a a λ= { − + |*

∈ ∈a A p a A} = { + 1| }a , and considering that QΔ = ±a y y p{ , − 1, + 1}a a a , it follows that

⋃ ⋃ ∪

⋃ ∪

∪ ∣ ∈

∈ ∈

∈

C P Q

X a a y y p

D B p a A D

Δ = Δ = (Δ Δ )

= ± ( { , , , − 1, + 1})

= ±( \ ) ±{ + 1 } = ± .

*

a A
a

a A
a a

a A
a a a a

a

It is left to show that each Ca is a cycle. By (7), if ℓ = 5, then
V P a p a a( ) = {0, , = − }*a a . By recalling that ⊂A Y mν, [1, 4 − 1], it follows that
∉a y{− , −1}a , hence Ca is a cycle. Again by (7), if ℓ ≥ 7, then

⊆ ∪V P a a a a a X( ) {0, − } [ − , − + max ]* *a a . Recalling Conditions 2 and 4, we have
that ∈ ⊂a a B λ ν m− − [1, (2 − 1) ]* for every ∈a A. Since X mνmax < 4a , then

⊆ ∪V P a ν m( ) {0, − } [1, (6 − 1) − 1]a for every ∈a A. Recalling that ∉ A1 and
⊂Y ν m[1, (2 + 1) − 1] (Condition 4), and that ∩A Y is empty, it follows that

∉y V P{−1, − } ( )a a , that is, Pa and Qa only share their end‐vertices. Hence Ca is a cycle
for every ∈a A, and this completes the proof. □

Example 5.6. Let ℓ m= 9, = 19, and n = 8, so that ν λ ϵ s= 1, = 3, = 1, = 8, and the
size of our (152, 8, )9 ‐DF will be q νs= = 8. Following the proof of Lemma 5.4, we have
that

∅

A A A A

A A B

= [20, 23], = [53, 56], = [26, 29], = [58, 61],

= = , = [5, 12],

* *

*
0 2 0 2

1 1

and our index set is ∪A = [20, 23] [53, 56].
We can take, for instance,

∪ ∪ ∪Y = [1, 4] [13, 18] [24, 25] [30, 33],

and the remaining differences in ⋅D = [1, 152]\([1, 8] 19) can be partitioned to form the
eight 4‐sets ∈X a A,a :

X X X X

X X X X

= [34, 37], = [39, 42], = [43, 46], = [47, 50],

= {51, 52, 62, 63}, = [64, 67], = [68, 71], = [72, 75].
20 21 22 23

53 54 55 56

Following the proof of Proposition 5.5, the paths we can get with this partition
of D are
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P Q

P Q

P Q

P Q

P Q

P Q

P Q

P Q

= (0, −20, 9, 46, 10, 45, 11), = (0, −2, −1, 11),

= (0, −21, 7, 49, 8, 48, 9), = (0, −4, −1, 9),

= (0, −22, 5, 51, 6, 50, 7), = (0, −14, −1, 7),

= (0, −23, 3, 53, 4, 52, 5), = (0, −16, −1, 5),

= (0, −53, 8, 71, 9, 61, 10), = (0, −18, −1, 10),

= (0, −54, 6, 73, 7, 72, 8), = (0, −25, −1, 8),

= (0, −55, 4, 75, 5, 74, 6), = (0, −31, −1, 6),

= (0, −56, 2, 77, 3, 76, 4), = (0, −33, −1, 4),

20 20

21 21

22 22

23 23

53 53

54 54

55 55

56 56

and joining them will give us the eight cycles making up the required DF.

Lemma 5.7. Let ℓ ≥λ= 2 + 3 5 be odd, let ≡ ℓ ℓm + 1 (mod 2 ), and set
ℓs m= 4( − 1)/ . Then for any integer ≥ν 1, there exists a partition of
⋅mν ν m[1, 4 ]\ ([1, 4 ] ) into nine subsets X and A A B Y, , ,*i i i i , for ∈i {0, 1}, which satisfy

the following properties:

1. ℓX νs A A B| | = ( − 5) , | | = | | = | | =*i i i
νs

2
, Y νs| | =i ;

2. there is a bijection ∈ ↦ ∈a A a A* *i i such that ∈B λ i a a a A− + − 1 = { − | }*i i ;
3. X and Y1 can be partitioned into pairs of consecutive integers;
4. Y0 can be partitioned into pairs at distance 2.
5. ∉ ∪ ⊂A A B λ i mν1 , − + − 1 [2, 2 − 1]i0 1 , and ∪ ⊂Y Y mν[1, 2 − 1]0 1 when ℓ ≥ 7.

Proof. Let ϵ = 0 or 1 according to whether λ is even or odd, and set q sν= .
For every ∈h {0, 1, 2}, set ⋅A I J m= +′h h h , where the intervals I J,h h, and the integer

τh are defined as follows:

Ih Jh τh

h = 0 s[− /2, −1] ν ν[2 + 1, 3 ] ν m s( − 1) + /2 + 1

h = 1 s[1, /2 − 1] ν ν[2 , 3 − 1] νm s+ /2

h = 2 {−1} ν[1, ] νm

Also, let B B,0 1, and Y0 be the sets defined below:

⋅

⋅

∪ ∈

B s ν m λ

B s ν m λ

Y Y Y Y B ϵ i

= ([3, + 1] + [0, 2 − 2] ) + ,

= ([0, − 2] + [1, 2 − 1] ) + ,

= , where = + (−1) (2 − 1) for {0, 1}.i i
i

0 o e

1 e o

0 0,0 0,1 0,
+1

It is not difficult to check that the sets A′h ( ∈h {0, 1, 2}), A τ+′k k ( ∈k {0, 1, 2}), Bi
( ∈i {0, 1}), and Y0 are pairwise disjoint. We denote by W ′ their union, and note that
A νs A ν s A ν B B νs| | = /2, | | = ( /2 − 1), | | = , | | = | | = /2′ ′ ′0 1 2 0 1 , and Y νs| | =0 ; hence
W νs| ′ | = 4 .
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Now setW D W= \ ′ and note that ℓW sν| | = ( − 4) . Also, for every ∈j ν[0, 4 − 1], it
is not difficult to check that ∩m jm W([1, − 1] + ) is the disjoint union of intervals of
even size. Therefore,W can be seen as the disjoint union of two subsets X and Y1 each of
which can be partitioned into pairs of consecutive integers, with ℓX νs| | = ( − 5) and
Y sν| | =1 .

By construction, ⊂Y mν[1, 2 − 1]0 and it can be partitioned into pairs at distance 2.
Also, since ∩W mν ν s| ′ [1, 2 − 1]| = 2 ( + 1), we have that

∩ ℓ

ℓ ≥

W mν ν m ν s ν s

sν s sν

| [1, 2 − 1]| = 2 ( − 1) − 2 ( + 1) = 2 (( − 4) /4 − 1)

= (( − 4)/2 − 2/ ) ,

when ℓ ≥ 7, in which case we can assume that ⊂Y mν[1, 2 − 1]1 .
Finally, by Lemma 4.8, there is a bijection ∈ ↦ ∈a A a A τ+′ * ′h h h such that

⎧
⎨⎪
⎩⎪

∈

⋅

⋅

⋅

a a a A

s ν m h

s ν m h

ν m h

{ − | } =

[2, ] + [0, 2 − 2] if = 0,

[2, − 2] + [1, 2 − 1] if = 1,

[1, 2 − 1] if = 2.

* ′h

e e

e o

o

Setting A A A A τ= , = +′ * ′0 0 0 0 0, ∪A A A= ′ ′1 1 2, and ∪A A τ A τ= ( + ) ( + )* ′ ′1 1 1 2 2 , one can
easily check that Condition 2 is satisfied, and this completes the proof. □

Proposition 5.8. Let ℓ ≥ 5 be odd, and let ≡ ℓ ℓm + 1 (mod 2 ). Then there is an

ℓmν ν(8 , 8 , )‐DF for every ≥ν 1.

Proof. We first consider the case ℓ ∈m= − 1 {5, 7}. For every ∈i ν[1, 2 ] and ∈j {0, 1},
set x ν i y i= 2 + , = 2 − 1i i , and let ℓCi j, be the following ℓ‐cycle:

⎧⎨⎩
⎧⎨⎩

C
x y y j

x y y j

C
x y y y j

x y y y y y j

=
(0, 6 − 1, 6 , −4, 6 − 2) if = 0,

(0, 6 − 3, 6 , 5, 6 + 1) if = 1,

=
(0, 8 − 7, 8 , 3, 8 − 1, 4, 8 − 2) if = 0,

(0, 8 − 1, 8 , 16 + 6, 8 + 1, 16 + 5, 8 + 2) if = 1.

i j
i i i

i i i

i j
i i i i

i i i i i i

,
5

,
7

Letting ∈ ∈ℓ ℓC i ν j= { | [1, 2 ], {0, 1}}i j, , since

C x x y y y y

C x x y y y y

C x x y y y y y y

C x x y y y y y y

Δ = ±{6 − 1, 6( − ) − 1, 6 + 4, 6 + 2, 6 − 2)},

Δ = ±{6 − 3, 6( − ) − 3, 6 − 5, 6 − 4, 6 + 1)},

Δ = ±{8 − 7, 8( − ) − 7, 8 − 3, 8 − 4, 8 − 5, 8 − 6, 8 − 2)},

Δ = ±{8 − 1, 8( − ) − 1, 8 + 6, 8 + 5, 8 + 4, 8 + 3, 8 + 2)},

i i i i i i i

i i i i i i i

i i i i i i i i i

i i i i i i i i i

,0
5

,1
5

,0
7

,1
7

and considering that ∈ ∈x y i ν ν i i ν{ − | [1, 2 ]} = {2 − + 1| [1, 2 ]}i i , it follows that
 ⋅ ⋅ℓ mν ν m mΔ = ±[1, 4 ]\(±[1, 4 ] ) = \( )mν mν8 8 , hence ℓ is a set of base cycles for a

cyclic ℓ‐cycle decomposition of K ν[8 ]m .
We now assume that ℓ ∉m( , ) {(5, 6), (7, 8)}. Set ℓλ = ( − 3)/2 and let ∈ϵ {0, 1}, with
≡ϵ λ (mod 2). Also, set ℓs m= 4( − 1)/ and q νs= , and note that the number of base
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cycles in the DF is q. By Lemma 5.7 there is a partition of ⋅D mν ν m= [1, 4 ]\([1, 4 ] ) into
nine subsets, X and A A B Y, , ,*i i i i , for ∈i {0, 1}, which satisfy the following properties:

1. ℓX νs A A B| | = ( − 5) , | | = | | = | | =*i i i
νs

2
, ∣ ∣Y νs=i ;

2. there is a bijection ∈ ↦ ∈a A a A* *i i such that ∈B λ i a a a A− + − 1 = { − | }*i i ;
3. X and Y1 can be partitioned into pairs of consecutive integers;
4. Y0 can be partitioned into pairs at distance 2;
5. ∉ ∪ ⊂A A B λ i mν1 , − + − 1 [2, 2 − 1]i0 1 , and ∪ ⊂Y Y mν[1, 2 − 1]0 1 when ℓ ≥ 7.

In particular, X can be seen as the disjoint union of q sets Xa of size ℓ − 5, indexed
over the elements of ∪A A0 1, each of which can be partitioned into pairs of consecutive
integers. Also, we can write ∈Y y y a A= { , − 2| }a a0 0 and ∈Y y y a A= { , − 1| }a a1 1 .

By applying Lemma 4.5 with ∈ ∪d a A A= 0 1 and  X= a, we construct a path Pa of
length ℓλ2 = − 3 such that

P p a a λthe ends of are 0 and = − + − 1,*a a (9)

⊆ ∪V P a a a a a X( ) {0, − } [ − , − + max ],* *a a (10)

∪P a a XΔ = ±{ , } ± ,*a a (11)

where Xmax = 0a when ℓ = 5. For ∈i {0, 1} and ∈a Ai, let Ca be the closed trail
obtained by joining Pa and the 3‐pathQ y i p= 0, − , − 2,a a a, and considering its vertices
as elements of  mν8 . We claim that ∈C a A= { | }a is the desired DF.

We first show that DΔ = ± . Recalling (11), and considering that

∈ ∈B a a λ i a A p i a A= { − + − + 1| } = { + 2 − | }*i i a i

and Q y y i p iΔ = ±{ , − 2 + , + 2 − }a a a a , for every ∈i {0, 1} and ∈a Ai, then

⋃ ⋃ ⋃ ⋃ ∪

⋃ ⋃ ∪

∪ ∪ ∈ ∈

∈ ∈ ∈ ∈

∈ ∈

C P Q

X a a y y i p i

D B B p i i a A D

Δ = Δ = (Δ Δ )

= ± ( { , , , − 2 + , + 2 − })

= ±( \( )) ±{ + 2 − | {0, 1}, } = ± .

*

i a A
a

i a A
a a

i a A
a a a a

a i

{0,1} {0,1}

{0,1}

0 1

i i

i

We finish by showing that Ca is a cycle. Recalling (10), if ℓ = 5, then
V P a p a a( ) = {0, , = − }*a a . Considering that ⊂A A Y Y mν, , , [1, 4 − 1]0 1 0 1 , it follows
that ∉a y{− , −1}a , hence Ca is a cycle. Again by (10), if ℓ ≥ 7, then

⊆ ∪V P a a a a a X( ) {0, − } [ − , − + max ]* *a a . By Conditions 2 and 4, we have that
∈ ⊂a a B λ i mν− − + − 1 [2, 2 − 1]* for every ∈a Ai. Since X mνmax < 4a , then
⊆ ∪V P a mν( ) {0, − } [2, 6 − 1]a for every ∈ ∪a A A0 1. Recalling that ∉ ∪A A1 0 1 and

∪ ⊂Y Y mν[1, 2 − 1]0 1 , and that A Y, 0, and Y1 are pairwise disjoint, it follows that
∉y V P{−1, − } ( )a a , therefore Pa and Qa only share their end‐vertices, hence Ca is a cycle,

for every ∈ ∪a A A0 1, and this completes the proof. □
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Example 5.9. Let ℓ m= 9, = 10, and n = 8, so that ν λ ϵ s= 1, = 3, = 1, = 4, and the
size of our (80, 8, )9 ‐DF will be q = 4. Following the proof of Lemma 5.7, we have that

A A A A

B B Y B Y B

= {28, 29}, = {9, 21}, = {31, 32}, = {19, 33},

= {6, 8}, = {13, 15}, = − 1 = {5, 7}, = + 1 = {14, 16}.

* *0 1 0 1

0 1 0,0 0 0,1 1

Our index set is A = {9, 21, 28, 29}, and ∪Y Y Y= = {5, 7, 14, 16}0 0,0 0,1 . We can now
choose, for instance,Y = [1, 4]1 and X =28 {11, 12, 17, 18}, X =29 [22, 25], X = {26, 27, 34,9

X35}, = [36, 39]21 .
Following the proof of Proposition 5.8, the paths we can get with this partition of

⋅D = [1, 80]\([1, 8] 10) are

P Q

P Q

P Q

P Q

= (0, −28, 4, 22, 5, 17, 6), = (0, −7, −2, 6),

= (0, −29, 2, 27, 3, 26, 4), = (0, −16, −2, 4),

= (0, −9, 10, 45, 11, 38, 12), = (0, −2, −1, 12),

= (0, −21, 12, 51, 13, 50, 14), = (0, −4, −1, 14),

28 28

29 29

9 9

21 21

and joining them will give us the four cycles making up the required DF.

6 | THE PROOF OF THEOREM 4.4

The aim of this section is to prove Theorem 4.4. The case ℓn = 2 is treated in Proposition 6.1,
whereas the case ≡ ℓn 0 (mod 4 ) is dealt with in Proposition 6.4 form odd, and in Proposition
6.7 for m even.

These results will be proved using a strategy very similar to the one used in Section 5. Once more,
we partition (in Lemmas 6.3, 6.6) the set D of differences to be realized into various sets, namely

∪ ∪ ∪ ∪D A A B Y W= * , where A is a set of size q, the cardinality of the DF, that will serve as the
set of indices for the cycles in the DF; it will be paired up with a second q‐set, the set A* chosen with
the help of Lemma 4.8. To build the cycle Ca, to each pair of elements a a{ , }* we will associate a set
⊂W Wa of size ℓ − 5 that can be partitioned into pairs at distancem, and a pair of integers y y{ , }′a a

from Y , in such a way that ∪C a a y y δ WΔ = ±{ , , , , } ±* ′a a a a , where δa is an integer depending on a.
Since the pairs a a y y{ , }, { , }* ′a a are chosen to partition, between them, ∪A A* and Y , respectively,
whereas the sets Wa partition W , then ∪ ∪ ∈∈ C D B δ a AΔ = ±( \ ) ±{ | }a A a a . By showing that

∈δ a A B{ | } =a , we prove that ∈C a A{ | }a is the desired DF.
We choose to also prove Proposition 6.1, the case ℓn = 2 , with this strategy to help

familiarize the reader with the techniques we use later in Propositions 6.4 and 6.7. In this
particular case, a simpler proof using Rosa sequences—a variation of Skolem sequences—is also
possible, but adapting such an approach to the general case is not straightforward.

Proposition 6.1. If ℓ ≥λ= 2 + 3 5 and ≡m 0, 1 (mod 4), then there exists a
ℓ ℓ ℓm(2 , 2 , )‐DF.

Proof. Let ϵ = 0 or 1 according to whether λ is even or odd, and let q m= ( − 1); the DF
will have size q.

We begin by considering the case that either m > 4 or m ϵ( , ) = (4, 1). We first
partition the set ℓD m m= [1, − 1] + [0, − 1] of differences to be realized into five
subsets A A B Y, , ,* , andW , with ℓA A B q Y q W q| | = | | = | | = , | | = 2 , | | = ( − 5)* .
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We will set ∪ ∪A A A A= −1 0 1, and ∪ ∪A A A A=* * * *−1 0 1 , where the sets A A, *i i for
∈i [−1, 1] and B are defined as follows. If m is odd, then

∅ ∅A A= and = ,*0 0

and if m is even, then

A m λ ϵ m A A ϵ m= { − 1 + ( − 2 + 2 ) } and = + (1 − ) + 2.*0 0 0

In any case,

⎡
⎣⎢

⎢
⎣⎢

⎥
⎦⎥
⎤
⎦⎥

⎢
⎣⎢

⎥
⎦⎥

⎡
⎣⎢
⎡
⎢⎢

⎤
⎥⎥

⎤
⎦⎥

⎢
⎣⎢

⎥
⎦⎥ℓ

A
m

λ ϵ m A A
m

A
m

m m A A
m

B m λ m

= 1,
− 1

2
+ ( − 2 + 2 ) , = +

− 1

2
,

=
+ 1

2
, − 1 + ( − 2) , = +

+ 1

2
,

= [1, − 1] + ( − 1) .

*

*

1 1 1

−1 −1 −1

Either directly, or by applying Lemma 4.8, it is easy to see that there is a bijection
∈ ↦ ∈a A a A* *i i , for ∈i [−1, 1], such that

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

∈

∅

a a a A

i m

m i m

m i m

ϵ m i m

m i m

m i m

{ − | } =

if = 0 and is odd ,

[1, − 2] if = 1 and is odd ,

[2, − 1] if = −1 and is odd ,

(1 − ) + 2 if = 0 and is even ,

[1, − 3] if = 1 and is even ,

[2, − 2] if = −1 and is even.

* i

o

e

o

e

(12)

Therefore,

∈ ∪ ∈a a i i a A a a ϵm a A

m B λ m

{ − + | = ±1, } { − + ( − 3)| }

= [1, − 1] = − ( − 1) .

* *i 0 (13)

Letting ℓ ℓ ⋅D m λ ϵ λ ϵ m′ = [1, − 1] + { − 2 + 2 , + , − 2, − 1} , ∪ ∪A A A A= −1 0 1,
and ∪ ∪A A A A=* * * *−1 0 1 , we notice that ∪ ⊂A A D′* and ∩ ∅B D′ = . Also, the set

∪Y D A A= ′\( )* has size m A2 − 2 = 2 | | and it is the disjoint union of the following
three intervals:

⎧⎨⎩
⎡
⎣⎢

⎡
⎢⎢

⎤
⎥⎥
⎤
⎦⎥

⎡
⎣⎢
⎢
⎣⎢

⎥
⎦⎥

⎤
⎦⎥

ℓ

ℓ

Y λ ϵ m
m m

m m

Y
m

m

Y
m

m m

= ( + ) +
[1, − 1] if is odd ,

[2, − 1] if is even ,

= 1,
− 1

2
+ ( − 2) ,

=
+ 1

2
, − 1 + ( − 1) .

1

2

3

(14)
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Recalling that ≡m 0, 1 (mod 4), it follows that Y2 and Y3 have even size. Therefore, Y can
be partitioned into pairs of consecutive integers and a pair ⊂y y Y{ ′, ″} 1 such that
y y ϵm±( ′ − ″) = ±( − 3). Using the elements of A to index such pairs, we can thus write

∈ ∪ ∈Y y y a A A y y ϵm a A= { , − 1| \ } { , − ( − 3)| }.a a a a0 0 (15)

Finally, let ∪W D D B= \( ′ ) and note that ∪W m U U m= [1, − 1] + ( )1 2 , where

ℓU λ ϵ U λ ϵ= [0, − 3 + ] and = [ + 1 + , − 3].1 2 (16)

Since both U1 and U2 have even size, and ℓU U| | + | | = − 51 2 , it follows thatW can be
partitioned into m q− 1 = subsets ∣ ∈W a A{ }a each of size ℓ − 5 such that

∈W w w m t λ= { , − | [1, − 1]},a a t a t, , (17)

≥ ≢ ∈w w m w a m t λ+ 2 and (mod ) for every [1, − 2].a t a t a t, , +1 , (18)

We use the partition A A B Y W{ , , , , }* of D to construct the desired DF. Let
∈C a A= { | }a , with ℓC c c c= ( , , …, )a a a a,0 ,1 , −1 , be a set of q closed trails of length ℓ

defined as follows:

⎧
⎨⎪

⎩⎪
⎧
⎨
⎪⎪

⎩
⎪⎪

∈

∈

∈

∈ ℓ

∈ ℓ

ℓ ℓ

c c c a a a

c c

y a A

y a A

ϵm y a A

c a a

w
u

m u

u
m u

( , , ) = (0, , − ),

( , ) =

(−1, − ) if ,

(1, − + 1) if ,

(3 − , − ) if ,

= − +

+
− 3

2
if [3, − 4] is odd ,

− 2

2
if [4, − 3] is even.

* *

*

a a a

a a

a

a

a

a u

a u

,0 ,1 ,2

, −2 , −1

1

−1

0

,

, −1
2

We claim that is a ℓ ℓ ℓm(2 , 2 , )‐DF, that is,  ℓ ℓmΔ = \( )m m2 2 and the vertices of
each Ca are pairwise distinct. For ∈i [−1, 1] and ∈a Ai, we have

⎧⎨⎩∪
ℓ

ℓ

C W
a a y y c i i

a a y y ϵm c ϵm i
Δ = ±

±{ , , , − 1, + } if = ±1,

±{ , , , − ( − 3), + ( − 3)} if = 0.

*

*
a a

a a a

a a a

, −3

, −3

Since ℓc a a λ m= − + ( − 1)*a, −3 , by Condition (13) it follows that

∈ ∪ ∈ℓ ℓc i i a A c ϵm a A B{ + | = ±1, } { + ( − 3)| } = .a i a, −3 , −3 0

Recalling also Conditions (15) and (17), we have that  D mΔ = ± = \( )mn mn . Finally,
we have to show that each Ca does not have repeated vertices. By (12),

∈a a m− [1, + 2]* , and by Conditions (16) and (18) we have that
ℓ ℓm w m( − 3) < < ( − 2)a,1 and ≥w w m+ 2a t a t, , +1 for every ∈a A and ∈t λ[1, − 2].
Hence
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ℓ ⋯

⋯

≥

ℓ

ℓ

ℓ ℓ

m a a w c c c

c a a w λ m

a a λ m c c c

c a a m a a c

> − + = > > >

> = − + + ( − 2)

> − + ( − 1) = > > >

> = − + 2 > − = 1.

*

*

*

* *

a a a a

a a λ

a a a

a a

,1 ,3 ,5 , −6

, −4 , −1

, −3 , −5 ,6

,4 ,2

Also, by (14) ∈ ℓℓc m λm[− , − ]a, −1 . Recalling that ∈ℓc m{3 − , −1, 1, 3}a, −2 , if
∈c a a= − {1, 3}*a,2 , then ∈a A1 by (12), hence ℓc = −1a, −2 . Therefore, c = 0a,0 and

ℓc c c, , …,a a a,2 ,3 , −1 are pairwise distinct. By (18) and considering that ≢a m0 (mod )* and
∈ ℓa m[2, − 1]* , we have that ≠a c c=* a a u,1 , for every ∈ ℓu [0, − 1]. It follows that

each Ca is a cycle, and this completes the proof provided ≠m ϵ( , ) (4, 0).
The casem = 4 and ϵ = 0 is similar, except that in D and D′ we replace the difference

ℓ ℓm − 1 = 4 − 1 with ℓ ℓm + 1 = 4 + 1, and partition the set ∪Y D A A= ′\( )* into
intervals Y λ= [2, 3] + 41 and ℓY = [1, 2] + 4( − 2)2 as before together with the set

⎛
⎝⎜

⎡
⎣⎢
⎢
⎣⎢

⎥
⎦⎥

⎤
⎦⎥

⎞
⎠⎟ℓ ∪ ℓ ℓ ℓY

m
m m m=

+ 1

2
, − 2 + ( − 1) { + 1} = {4 − 2, 4 + 1}.3

Note that Y1 and Y2 each consist of consecutive integers, so that Y is partitioned into
q − 1 = 2 pairs of consecutive integers and one pair y y{ ′, ″} satisfying
y y ϵm±( ′ − ″) = ±3 = ±( − 3). The remainder of the proof proceeds as before. □

Example 6.2.

1. Let ℓ = 9 and m = 5. We have A A= {16, 17}, = {38, 39},1 −1 A = {18, 19},*1
∪ ∪A B Y= {41, 42}, = {11, 12, 13, 14}, = [21, 24] {36, 37} {43, 44}*−1 , so that W =

∪ ∪ ∪[1, 4] [6, 9] [26, 29] [31, 34]. The ℓ ℓ ℓm(2 , 2 , )‐DF consists of the following
four cycles:

C

C

C

C

= (0, 19, 3, 37, 8, 17, 13, −1, −24),

= (0, 18, 1, 34, 6, 14, 11, −1, −22),

= (0, 42, 4, 36, 9, 16, 14, 1, −43),

= (0, 41, 2, 33, 7, 13, 12, 1, −36).

16

17

38

39

2. Let ℓ = 7 and m = 8. We have A A A A= {1, 2, 3}, = {7}, = {45, 46, 47}, *1 0 −1 1

∪A A B Y= {4, 5, 6}, = {17}, = {49, 50, 51}, = [9, 15], = [18, 23]* *0 −1 ∪[41, 44] [52, 55],

so that ∪W = [25, 31] [33, 39]. The ℓ ℓ ℓm(2 , 2 , )‐DF consists of the following seven
cycles:

C C

C C

C C

C

= (0, 6, 5, 39, 13, −1, −20), = (0, 5, 3, 38, 11, −1, −23),

= (0, 4, 1, 37, 9, −1, −42), = (0, 17, 10, 47, 18, 3, −18),

= (0, 51, 6, 44, 14, 1, −43), = (0, 50, 4, 43, 12, 1, −52),

= (0, 49, 2, 35, 10, 1, −54).

1 2

3 7

45 46

47
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3. Let ℓ m= 7, = 4 and n = 14. We have A A A A A= {3}, * = {9}, = {1}, * = {2}, =0 0 1 1 −1

∪ ∪A B Y{23}, = {25}, = [5, 7], = {10, 11} {21, 22} {26, 29}*−1 and ∪W = [13, 15]

[17, 19]. The ℓ ℓ ℓm(2 , 2 , )‐DF consists of the following three cycles:

C

C

C

= (0, 2, 1, 20, 5, −1, −22),

= (0, 9, 6, 23, 10, 3, −26),

= (0, 25, 2, 20, 6, 1, −10).

1

3

23

We now deal with the case where ≡ ℓn 0 (mod 4 ). The partitions of D (ie, the set of differences to
be realized) outlined in the beginning of this section are given in Lemmas 6.3 and 6.6.

Lemma 6.3. Let ℓ ≥λ= 2 + 3 5 be odd, let ≥m 3 be odd, and ℓn ν= 4 with ≥ν 1. Then
there exists a partition of ⋅mn n m[1, /2]\([1, /2] ) into seven subsets, A A, *i i , for i = ±1, and
B Y W, , , satisfying the following properties:

1. A A m ν| | = | | = ( − 1)*i i for i B Y m ν= ±1, 2| | = | | = 4( − 1) , and ℓW| | = 2( − 5)

m ν( − 1) ;
2. There is a bijection ∈ ↦ ∈a A a A* *i i , for i = ±1, such that

∈B λ m a a i i a A− ( − 1) = { − + | = ±1, };* i

3. ≥a a− 2* for every ∈ ∪a A A−1 1;
4. Y can be partitioned into pairs of consecutive integers;
5. W can be partitioned into m ν2( − 1) sets ∈ ∪W a A A{ | }a −1 1 each of size ℓ − 5 such that

(a) ∈W w w m t λ= { , − | [1, − 1]}a a t a t, , , and
(b) ≥a w w m> + 2a t a t, , +1 for every ∈t λ[1, − 2].

Proof. Let ϵ = 0 or 1 according to whether λ is even or odd, and let q m ν= 2( − 1) . We
start by defining the intervals I J,h h, and the integer τh, for ∈h [0, 4], as follows:

Ih Jh τh

h = 0 ⎡⎣ ⎤⎦1,
m − 1

2
ℓ ℓν ν[(2 − 4) , (2 − 3) − 1] νm +

m − 3

2

h = 1 ⎡⎣ ⎤⎦1,
m − 1

2
ℓ ℓν ν[(2 − 2) , (2 − 1) − 1] νm +

m − 1

2

h = 2 ⎡⎣ ⎤⎦m, − 2
m + 1

2
ℓ ℓν ν[(2 − 4) , (2 − 3) − 1] νm +

m1−

2

h = 3 m{ − 1} ℓ ℓν ν[(2 − 4) , (2 − 3) − 1] νm

h = 4 ⎡⎣ ⎤⎦m, − 1
m + 1

2
ℓ ℓν ν[(2 − 2) , (2 − 1) − 1] νm +

m1−

2
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For every ∈h [0, 4], set ⋅A I J m= +′h h h , A A τ= +′ ′h h h+5 . Also, set
⋅B m λ λ ν m= [1, − 1] + [ − 1, − 2 + 2 ] . Furthermore, by Lemma 4.8, there is a

bijection ∈ ↦ ∈a A a A′ * ′h h+5, for ∈h [0, 4], such that

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

∈

⋅

⋅

⋅

⋅

⋅

a a a A

m ν m h

m ν m h

m ν m h

m ν m h

m ν m h

{ − | } =

[0, − 2] + [0, 2 − 1] if = 0,

[0, − 2] + [0, 2 − 1] if = 1,

[2, − 1] + [0, 2 − 1] if = 2,

{ } + [0, 2 − 1] if = 3,

[2, ] + [0, 2 − 1] if = 4.

* ′h

e o

o o

o e

e

e e

Considering that the sets A′h and B are pairwise disjoint, it is not difficult to check that B and
the sets ∪ ∪A A A A A A= , =′ ′ * ′ ′1 0 1 1 5 6, ∪ ∪A A A A= ′ ′ ′−1 2 3 4, and ∪ ∪A A A A=* ′ ′ ′−1 7 8 9

satisfy Conditions 1‐3.
Now, denoting by D the set of all elements of ⋅mn n m[1, /2]\([1, /2] ) not lying in any

of the sets A A, *i i , for i = ±1, or B, we have that D can be partitioned into the following
two subsets:

∪ ⋅

∪

Y m λ ν λ ν λ νϵ m

W m U U m

= [1, − 1] + ([ − 1 + 2 , − 3 + 6 ] { − 2 + 6 }) ,

= [1, − 1] + ( ) ,1 2

where U λ ϵ= [0, − 3 + ]1 and ℓU λ ν ϵ ν= [ − 2 + 6 + , (2 − 4) − 1]2 .
Note that Y has size ∪m ν A A4( − 1) = 2 | |−1 1 and it is the disjoint union of ν4

intervals of size ≡m − 1 0 (mod 2); hence Y can be partitioned into ∪A A| |−1 1 pairs of
consecutive integers, therefore Condition 4 holds.

Finally, since U1 and U2 have even size, and ∪ ℓU U ν| | = 2( − 5)1 2 , thenW has size
ℓ ℓ ∪m ν A A2( − 5)( − 1) = ( − 5)| |−1 1 and there exists a partition ∣ ∈ ∪W a A A{ }a −1 1 of

W satisfying Condition 5, and this completes the proof. □

Proposition 6.4. Let ℓ ≥ 5 be odd, and let ≡ ℓn 0 (mod 4 ). There exists a ℓnm n( , , )‐
DF for every odd ≥m 3.

Proof. Set ⋅D mn n m= [1, /2]\([1, /2] ), let ℓn ν= 4 with ≥ν 1, and set q m ν= 2( − 1) ,
noting that q is the size of the DF to be constructed. Also, set ℓλ = ( − 3)/2 and let ϵ = 0

or 1 according to whether λ is even or odd. By Lemma 6.3, there is a partition of
⋅D mn n m= [1, /2]\([1, /2] ) into seven subsets, A A, *i i , for i = ±1, and B Y W, , which

satisfy the Conditions 1‐5 of Lemma 6.3.
By Condition 4, we can write ∈ ∪Y y y a A A= { , − 1| }a a 1 −1 . Now, let

∈ ∪C a A A= { | }a 1 −1 , with ℓC c c c= ( , , …, )a a a a,0 ,1 , −1 , be a set of q closed trails of
length ℓ defined as follows:
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⎧⎨⎩
⎧
⎨
⎪⎪

⎩
⎪⎪

∈

∈

∈ ℓ

∈ ℓ

ℓ ℓ

c c c a a a

c c
y a A

y a A

c a a

w
u

m u

u
m u

( , , ) = (0, , − ),

( , ) =
(−1, − ) if ,

(1, − + 1) if ,

= − +

+
− 3

2
if [3, − 4] is odd ,

− 2

2
if [4, − 3] is even.

* *

*

a a a

a a
a

a

a u

a u

,0 ,1 ,2

, −2 , −1
1

−1

,

, −1
2

We claim that is the desired DF, that is,  mΔ = \( )mn mn and the vertices of each Ca
are pairwise distinct.

For i = ±1 and ∈a Ai, we have that

∪ℓC a a y y c i WΔ = ±{ , , , − 1, + } .*a a a a a, −3

Since ℓc a a λ m= − + ( − 1)*a, −3 , by Condition 2 it follows that ∣ℓc i i{ + = ±1,a, −3

∈a A B} =i , therefore  D mΔ = ± = \( )mn mn .
Finally, considering that, by Conditions 3 and 5 of Lemma 6.3, m w< a,1

≥a w w m< , + 2a t a t, , +1 , and ≥a a− 2* , for every ∈ ∪a A A1 −1 and ∈t λ[1, − 2], it
follows that

⋯

⋯

≥

ℓ

ℓ

ℓ ℓ

mn a c a a w c c c

c a a w λ m

a a λ m c c c

c a a m a a c

/2 > = > − + = > > >

> = − + + ( − 2)

> − + ( − 1) = > > >

> = − + 2 > − = 2

* *

*

*

* *

a a a a a

a a λ

a a a

a a

,1 ,1 ,3 ,5 , −6

, −4 , −1

, −3 , −5 ,6

,4 ,2

and this guarantees that each Ca is a cycle. □

Example 6.5. Let ℓ m= 7, = 5, and n = 28, so that ν λ q= 1, = 2, = 8. We have

A A A A

A A A A

A A

= {51, 52}, = {57, 58}, = {61, 62}, = {68, 69},

= {53}, = {56}, = {54}, = {59},

= {63, 64}, = {66, 67},

′ ′ ′ ′

′ ′ ′ ′

′ ′

0 5 1 6

2 7 3 8

4 9

so that A A A= {51, 52, 61, 62}, = {57, 58, 68, 69}, = {53, 54, 63, 64},*1 1 −1 and A =*−1

{56, 59, 66, 67}.
Also, ∪B = [6, 9] [11, 14] and ∪ ∪ ∪Y = [1, 4] [16, 19] [21, 24] [26, 29], so that

W = [31, 49]\ {35, 40, 45}. For the sets ∈ ∪W a A A,a 1 −1 we can choose, for instance,

W y W y

W y W y

W y W y

W y W y

= {36, 31}, = 2, = {37, 32}, = 4,

= {38, 33}, = 17, = {39, 34}, = 19,

= {46, 41}, = 22, = {47, 42}, = 24,

= {48, 43}, = 27, = {49, 44}, = 29.

51 51 52 52

61 61 62 62

53 53 54 54

63 63 64 64
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The ℓmn n( , , )‐DF we obtain from this choice consists of the following eight cycles:

C C

C C

C C

C C

= (0, 58, 7, 43, 12, −1, −2), = (0, 57, 5, 42, 10, −1, −4),

= (0, 69, 8, 46, 13, −1, −17), = (0, 68, 6, 45, 11, −1, −19),

= (0, 56, 3, 49, 8, 1, −21), = (0, 59, 5, 52, 10, 1, −23),

= (0, 67, 4, 52, 9, 1, −26), = (0, 66, 2, 51, 7, 1, −28).

51 52

61 62

53 54

63 64

Lemma 6.6. Let ℓ ≥λ= 2 + 3 5 be odd, let ≥m 4 be even and ℓn ν= 4 with ≥ν 1. Then
there exists a partition of ⋅mn n m[1, /2]\([1, /2] ) into 10 subsets, A A, *i i for ∈i {−2, −1, 1},
and B Y Y W, , ,1 2 , satisfying the following properties:

1. A ν A m ν A mν B m ν| | = 2 , | | = ( − 4) , | | = , | | = 2( − 1)−2 −1 1 ,
ℓY ν m Y ν W m ν| | = 4 ( − 2), | | = 4 , | | = 2( − 5)( − 1)1 2 ;

2. there is a bijection ∈ ↦ ∈a A a A* *i i for ∈i {−2, −1, 1} such that
∈ ∈B λ m a a i i a A− ( − 1) = { − + | {−2, −1, 1}, }* i ;

3. ≥a a− 2* for every ∈ ∪ ∪a A A A−2 −1 1;
4. Yj can be partitioned into pairs at distance j, for ∈j {1, 2};
5. W can be partitioned into m ν2( − 1) sets ∈ ∪ ∪W a A A A{ | }a −2 −1 1 each of size ℓ − 5

such that
(a) ∈W w w m t λ= { , − | [1, − 1]}a a t a t, , , and
(b) ≥a w w m> + 2a t a t, , +1 for every ∈t λ[1, − 2].

Proof. Let ϵ = 0 or 1 according to whether λ is even or odd, and set q m ν= 2( − 1) and
μ ϵ m= (2 − ) . We start by defining the intervals I J,h h, and the integer τh, for
∈h {−2, −1, 1} × {1, 2}, as follows:

ℓ ℓJ ν ν ν= [2 ( − 2) , 2 ( − 2) + − 1], andh
ϵ ϵ

h Ih τh

(−1, 1) ⎡⎣ ⎤⎦m+ 2, − 1
m

2
μν − − 1

m

2

(1, 1) ⎡⎣ ⎤⎦1, + 1
m

2
μν + − 2

m

2

(−1, 2) ⎡⎣ ⎤⎦ν m m(2 ) + + 1, − 2ϵ m

2
μν −

m

2

(1, 2) ⎡⎣ ⎤⎦ν m(2 ) + 1, − 1ϵ m

2
μν + − 1

m

2

(−2, 1) { }ν m(2 ) +ϵ m

2

μν − 1

(−2, 2) ν m m(2 ) + { − 1}ϵ μν
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For ∈h {−2, −1, 1} × {1, 2}, set ⋅A I J μ= +h h h and A A τ= +*h h h. Also, let B and
∪Y Y Y= ′ ″j j j , for ∈j {1, 2}, the sets defined as follows:

⎪

⎪

⎧
⎨
⎩

⎧⎨⎩

⋅

⋅
∪

⋅
∪

B ν μ λ m m m

Y ν μ λ m mν
m m j

j

Y ν m ν λ ϵ m
m m j

j

= [1, 2 ] + ( − 1) + ([− + 1, − 1]\ {0}),

= [1, 2 ] + ( − 1) + 2 +
[− + 1, −2] [2, − 1] if = 1,

{−1, 1} if = 2,

= [1, 2 ] + (4 + − ) +
[− + 1, −2] [2, − 1] if = 1,

{−1, 1} if = 2.

′

″

j
ϵ

j

o

o

o

It is tedious but not difficult to check that

A A B Y Ythe sets , , , , and are pairwise disjoint.*h k 1 2 (19)

Also, by Lemma 4.8, there is a bijection ∈ ↦ ∈a A a A* *h h such that

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

∈ ⋅a a a A ν μ

m h

m h

m h

m h

h

h

{ − | } = [1, 2 ] +

[− + 2, −4] if = (−1, 1),

[−2, − 2] if = (1, 1),

[− + 3, −3] if = (−1, 2),

[1, − 3] if = (1, 2),

{−1} if = (−2, 1),

{0} if = (−2, 2).

* h o

e

e

o

o

Recalling (19), it is not difficult to check that the sets B Y Y, ,1 2, ∪A A A=i i i( ,1) ( ,2) and
∪A A A=* * *i i i( ,1) ( ,2), for ∈i {−2, −1, 1}, satisfy Conditions 1‐3. Furthermore, since Y1 has

size ∪ν m A A4 ( − 2) = 2 | |−1 1 and it is the disjoint union of ν4 intervals of size
≡m Y− 2 0 (mod 2), 1 can be partitioned into ∪A A| |−1 1 pairs of consecutive integers,

hence ∈ ∪Y y y a A A= { , − 1| }a a1 −1 1 . Similarly, since Y2 is the disjoint union of
ν A2 = | |−2 pairs at distance two, we can write ∈Y y y a A= { , − 2| }a a2 −2 ; hence, Condition
4 holds.

Finally, denoting by W the set of all elements of ⋅mn n m[1, /2]\([1, /2] ) not
lying in any of the sets defined above, we have that W has size
ℓ ℓ ∪ ∪m ν A A A2( − 5)( − 1) = ( − 5)| |−2 −1 1 . Also, ∪W U U m m= ( ) + [1, − 1]1 2 ,

where U λ ϵ= [0, − − 1]1 and ℓU λ ϵ ν ν= [ − + 6 , (2 − 4) − 1]2 . Since U1 and U2 have
even size, and ∪ ℓU U ν| | = 2( − 5)1 2 , there exists a partition ∈W a A{ | }a ofW satisfying
Condition 5, and this completes the proof. □

Proposition 6.7. Let ℓ ≥ 5 be odd, and let ≡ ℓn 0 (mod 4 ). There exists a ℓmn n( , , )‐
DF for every even ≥m 4.

Proof. Set ⋅D mn n m= [1, /2]\([1, /2] ), let ℓn ν= 4 with ≥ν 1, and set q m ν= 2( − 1) .
Also, set ℓλ = ( − 3)/2 and let ϵ = 0 or 1 according to whether λ is even or odd.

By Lemma 6.6, there is a partition of ⋅D mν ν m= [1, 4 ]\([1, 4 ] ) into 10 subsets A A, *i i

for ∈i {−2, −1, 1}, and B Y Y W, , ,1 2 satisfying the Conditions 1‐5 of Lemma 6.6.
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Set ∪ ∪A A A A= −2 −1 1 and let ∈C a A= { | }a , with ℓC c c c= ( , , …, )a a a a,0 ,1 , −1 , be a
set of q closed trails of length ℓ defined as follows:

⎧
⎨⎪

⎩⎪
⎧
⎨
⎪⎪

⎩
⎪⎪

∈

∈

∈

∈ ℓ

∈ ℓ

ℓ ℓ

c c c a a a

c c

y a A

y a A

y a A

c a a

w
u

m u

u
m u

( , , ) = (0, , − ),

( , ) =

(1, − + 1) if ,

(−1, − ) if ,

(2, − + 2) if ,

= − +

+
− 3

2
if [3, − 4] is odd ,

− 2

2
if [4, − 3] is even.

* *

*

a a a

a a

a

a

a

a u

a u

,0 ,1 ,2

, −2 , −1

−1

1

−2

,

, −1
2

We claim that is the desired set of base cycles, that is,  mΔ = \( )mn mn and the
vertices of each Ca are pairwise distinct. For every ∈i {−2, −1, 1} and ∈a Ai, we have
that

∪

∪

ℓ ℓC a a y y i c c W

a a y y i a a λ m i W

Δ = ±{ , , , − | | , − }

= ±{ , , , − | | , − + ( − 1) + } .

*

* *

a a a a a a

a a a

, −3 , −2

By Conditions 1‐5, it follows that  D mΔ = ± = \( )mn mn .
Finally considering that, by Conditions 3 and 5 of Lemma 6.6,

≥m w a w w m< < , + 2a a t a t,1 , , +1 , and ≥a a− 2* , for every ∈a A and ∈t λ[1, − 2], it
follows that

⋯

⋯

≥

ℓ

ℓ

ℓ ℓ

mn a c a a w c c c

c a a w λ m

a a λ m c c c

c a a m a a c

/2 > = > − + = > > >

> = − + + ( − 2)

> − + ( − 1) = > > >

> = − + 2 > − = 2

* *

*

*

* *

a a a a a

a a λ

a a a

a a

,1 ,1 ,3 ,5 , −6

, −4 , −1

, −3 , −5 ,6

,4 ,2

and this guarantees that each Ca is a cycle. □

Example 6.8. Take ℓ m= 7, = 4, and n = 28, so that ν λ q= 1, = 2, = 6. We have

∅ ∅

∅ ∅

A A A A

A A A A

A A A A

= , = , = {41, 42, 43}, = {49, 50, 51},

= , = , = {45}, = {54},

= {46}, = {53}, = {47}, = {55},

* *

* *

* *

(−1,1) (−1,1) (1,1) (1,1)

(−1,2) (−1,2) (1,2) (1,2)

(−2,1) (−2,1) (−2,2) (−2,2)

so that A A A A= {41, 42, 43, 45}, = {49, 50, 51, 54}, = {46, 47}, = {53, 55}* *1 1 −2 −2 , whereas
in this case ∅A A= =*−1 −1 .

Also, ∪ ∪ ∪B Y Y= [9, 11] [13, 15], ′ = [17, 18] [22, 23], ″ = [25, 26] [30, 31]1 1 , and
Y Y′ = {19, 21}, ″ = {27, 29}2 2 , so that ∪W = ([1, 7]\ {4}) ([33, 39]\ {36}). For the sets Wa

and elements ∈ ∪ ∪y a A A A, ( )a 1 −2 −1 we can choose, for instance,
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W y W y

W y W y

W y W y

= {5, 1}, = 18, = {6, 2}, = 23,

= {7, 3}, = 26, = {37, 33}, = 31,

= {38, 34}, = 19, = {39, 35}, = 27.

41 41 42 42

43 43 45 45

46 46 47 47

The ℓmn n( , , )‐DF we obtain from this choice consists of the following six cycles:

C C

C C

C C

= (0, 51, 10, 15, 14, −1, −18), = (0, 50, 8, 14, 12, −1, −23),

= (0, 49, 6, 13, 10, −1, −26), = (0, 54, 9, 46, 13, −1, −31),

= (0, 53, 7, 45, 11, 2, −19), = (0, 55, 8, 47, 12, 2, −27).

41 42

43 45

46 47

7 | CONCLUDING REMARKS

Recall that Corollary 2.2 gives certain definite exceptions to the existence of a cyclic ℓ‐cycle
system of K n[ ]m . The reader may wonder if these exceptions can be ruled out if we consider
regular ℓ‐cycle systems under a group G which is not necessarily cyclic. The following two
results will partially answer this question. The first provides us with a necessary condition for
the existence of a G‐regular ℓ‐cycle system of K n[ ]m under the assumption that the G‐stabilizer
of each cycle has odd order.

Theorem 7.1. Let be a G‐regular ℓ‐cycle system of K n[ ]m . If each cycle of has a G‐
stabilizer of odd order, then either ≢m 2, 3 (mod 4) or ≢n 2 (mod 4).

Proof. We assume for a contradiction that ≡m 2, 3 (mod 4) and ≡n 2 (mod 4), hence
≢G| | 0 (mod 8). Let be a G‐regular ℓ‐cycle system of K n[ ]m . Without loss of

generality, we can assume that

1. K n G G N[ ] = Cay[ : \ ]m , where N is a subgroup of G of order n, and
2. ∈C g+ for every ∈C and ∈g G.

We first show that every element of G of order 2 (ie, involution of G) belongs to N . In
fact, if G N\ contains an element y of order 2, then the edge y{0, } must be contained in
some cycle of , say C. Hence the edge y{0, } belongs to C y+ , which is still a cycle of .
Since is a cycle system of K n[ ]m , every edge of K n[ ]m is contained in exactly one cycle
of . Therefore C y C+ = , meaning that y belongs to the G‐stabilizer of C, which
therefore has even order in contradiction to our assumption.

We now show that a Sylow 2‐subgroup of G, say P, is cyclic. If ≡G| | 2 (mod 4), then
P| | = 2, and hence P is cyclic. Since ≢G| | 0 (mod 8), it is left to consider the case where

≡G| | 4 (mod 8), hence P is either cyclic or isomorphic to  ×2 2. But in the latter case,
all nonzero elements of P have order 2, hence P is a subgroup of N which therefore has
order divisible by 4 contradicting the assumption. We have thus proven that all Sylow 2‐
subgroups of G are cyclic.

From the above arguments, we can prove that G has a subgroup of index 2. Indeed,
since all Sylow 2‐subgroups P are cyclic we can apply the Cayley normal 2‐complement
theorem, so that G has a normal subgroup S of order G P| | /| | with G P S= + . Since the
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factor groupG S/ is isomorphic to P, it is cyclic so it has a subgroup H S/ of index 2, and H
is therefore a subgroup of G of index 2.

Also, if H has even size, then it contains all the involutions ofG. Indeed, denoting by y
any element of G of order 2, then y belongs to a suitable Sylow 2‐subgroup of G, say Q.
Since Q is cyclic, y is the only involution of Q. Considering that ∩H Q is a Sylow 2‐
subgroup of H , then ∩ ≥H Q| | 2 is even, hence ∈ ∩y H Q.

Finally, recalling that G mn| | = with ≡m 2, 3 (mod 4) and ≡n 2 (mod 4), we can
show that

⎧⎨⎩∩
≡

≡
N H N

m

m
| /( )| =

1 if 2 (mod 4),

2 if 3 (mod 4).
(20)

Since H has index 2 in G, then ∩ ∈N H N| /( )| {1, 2}. If ≡m 2 (mod 4), then
≡H| | 2 (mod 4). Since ≡N n| | = 2 (mod 4), by the Cayley normal 2‐complement

theorem we have that N N y= ′ + {0, }, where N′ is a subgroup of index 2 and y is any
involution of N . Since H contains all the involutions ofG, and N N| ′ | = | | /2 is odd, then

⊂N y H′, {0, } , that is, ⊂N N y H= ′ + {0, } ; therefore ∩H N N= and ∩N H N| /( )| = 1.
If ≡m 3 (mod 4), then H| | is odd and ∩N H N| /( )| = 2.

Let C C C= { , , …, }t1 2 be a complete system of representatives for theG‐orbits of , let
∈S g G C g C= { | + = }i i i be the G‐stabilizer of Ci, and set s S= | |i i for ∈i t[1, ]. Since by

assumption si is odd, and recalling that the automorphism group of an ℓ‐cycle is the
dihedral group ℓ2 of size ℓ2 , then each Si is isomorphic to a subgroup of  ℓ2 and si is a
divisor of ℓ, for ∈i t[1, ]. Also, considering that all subgroups of ℓ2 of odd size are cyclic,
then each Si is cyclic. Therefore, letting ℓλ s= /i i and ℓ( )C c c c= , , …,i i i i,0 ,1 , −1i

, we have
that

c c ax= +i aλ b i b i, + ,i (21)

for every ∈a s[0, − 1]i and ∈b λ[0, − 1]i , where xi is a suitable generator of Si.
Now set ∈D δ j λ= { | [0, − 1]}i i j i, , where δ c c= −i j i j i j, , +1 , for every ∈i t[1, ] and
∈j λ[0, − 1]. Since every edge of K n G G N[ ] = Cay[ : \ ]m is contained in exactly one

cycle of and recalling that any translation preserves the differences, it follows that

∈D D i t G N{ , − | [1, ]} is a partition of \ .i i (22)

Also, by (21) it follows that ⋯δ δ δ c c c x+ + , + = = +i λ i λ i i i λ i i, , −1 ,0 ,0 , ,0i i i
. Since xi has

odd order, it follows that ∈x Hi . Considering that ∕G H is abelian (since it has order 2),
the following equality involving cosets of N holds:

∑δ H x H H+ = + = .
j

λ

i j i

=0

,

i

(23)

This means that∑ ∈δ H
j

λ
i j=0 ,

i . In other words, each Di contains an even number of elements
belonging toG H\ ; hence, by (22) it follows that ≡G N H|( \ ) \ | 0 (mod 4). However, by (20) it
follows that ⌊ ⌋ ≡G N H m n|( \ ) \ | = /2 2 (mod 4) which is a contradiction. □
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It follows that a regular ℓ‐cycle system of K n[ ]m over a noncyclic group G and satisfying
Condition 2 of Corollary 2.2 must necessarily contain cycles with nontrivialG‐stabilizers of even
size. On the contrary, regular ℓ‐cycle systems of K n[ ]m satisfying Condition 1 of Corollary 2.2 do
not exist, as shown below.

Corollary 7.2. LetG be an arbitrary group of ordermn. Then there is noG‐regular ℓ‐cycle
system of K n[ ]m whenever ℓ is odd, ≡m 2, 3 (mod 4), and ≡n 2 (mod 4).

Proof. Since ℓ is odd, it is easy to note that theG‐stabilizer of any cycle of aG‐regular ℓ‐
cycle system has odd size. Indeed, an involution ofG fixing an ℓ‐cycle of must fix one
of its vertices contradicting the assumption that G acts sharply transitively on the vertex
set. Then the assertion follows from Theorem 7.1. □
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