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Abstract: The automatic identification of plant species using unmanned aerial vehicles (UAVs) is
a valuable tool for ecological research. However, challenges such as reduced spatial resolution
due to high-altitude operations, image degradation from camera optics and sensor limitations, and
information loss caused by terrain shadows hinder the accurate classification of plant species from
UAV imagery. This study addresses these issues by proposing a novel image preprocessing pipeline
and evaluating its impact on model performance. Our approach improves image quality through
a multi-step pipeline that includes Enhanced Super-Resolution Generative Adversarial Networks
(ESRGAN) for resolution enhancement, Contrast-Limited Adaptive Histogram Equalization (CLAHE)
for contrast improvement, and white balance adjustments for accurate color representation. These
preprocessing steps ensure high-quality input data, leading to better model performance. For feature
extraction and classification, we employ a pre-trained VGG-16 deep convolutional neural network,
followed by machine learning classifiers, including Support Vector Machine (SVM), random forest
(RF), and Extreme Gradient Boosting (XGBoost). This hybrid approach, combining deep learning for
feature extraction with machine learning for classification, not only enhances classification accuracy
but also reduces computational resource requirements compared to relying solely on deep learning
models. Notably, the VGG-16 + SVM model achieved an outstanding accuracy of 97.88% on a dataset
preprocessed with ESRGAN and white balance adjustments, with a precision of 97.9%, a recall of
97.8%, and an F1 score of 0.978. Through a comprehensive comparative study, we demonstrate
that the proposed framework, utilizing VGG-16 for feature extraction, SVM for classification, and
preprocessed images with ESRGAN and white balance adjustments, achieves superior performance
in plant species identification from UAV imagery.

Keywords: deep learning (VGG-16); image preprocessing; machine learning classifiers; plant species
identification; unmanned aerial vehicles (UAVs)

1. Introduction

The rapid advancement of digital technologies is transforming environmental sciences,
enabling more efficient and sustainable ecosystem management [1,2]. Plant image classifi-
cation using techniques like deep learning offers a promising approach for rapid, precise,
and cost-effective plant identification [3], biodiversity assessment, disease detection [4,5],
and the evaluation of ecosystem services provisioning. This is particularly relevant in the
context of unmanned aerial vehicles (UAVs), which have emerged as valuable tools for
remote sensing and data acquisition, offering cost-effectiveness and flexibility [6].
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UAVs are increasingly employed in various applications, including target detection
for rescue and delivery operations [7], efficient package delivery [8], the cooperative
transportation of goods [9], and the precise mapping of environmental features. However,
their use in plant image classification faces several challenges. Limited flight duration [10]
often necessitates high-altitude operations, leading to reduced spatial resolution [11,12] and
difficulty in detecting fine-scale plant characteristics [13,14]. Additionally, camera optics
and pixel size limitations can compromise image clarity and quality [15], while shadows
cast by terrain features frequently obscure image details [16], hindering accurate analysis.

Despite the potential of UAV-based plant image classification, the existing research
often lacks comprehensive evaluations of image preprocessing techniques and their com-
bined impact on classification accuracy. Previous studies have highlighted the importance
of image preprocessing for enhancing the quality of UAV plant images [17–20]. However,
they often lack rigorous comparisons to determine the most effective techniques for specific
applications. Additionally, there is a gap in research regarding the combination of different
image preprocessing pipelines.

This study addresses these gaps by investigating the effectiveness of various image
preprocessing techniques and their integration into different pipelines for plant species
classification from RGB UAV images. We focus on a real-world case study, aiming to accu-
rately detect seven plant species (Agropyron repens, Ailanthus altissima, Arrhenatherum elatius,
Artemisia verlotiorum, Populus nigra, Rubus caesius, and Ulmus minor) from RGB UAV images.

Our research makes the following key contributions:

• Comprehensive Evaluation of Preprocessing Techniques and Pipelines: We thoroughly
investigated the impact of various image preprocessing techniques on plant species
classification accuracy from RGB UAV images. This includes identifying the most effec-
tive combinations of preprocessing techniques within different pipelines to optimize
classification performance for seven target species.

• Hybrid Deep Learning and Machine Learning Approaches: We explore the perfor-
mance of hybrid models combining a pre-trained VGG-16 for feature extraction with
different classifiers (SVM, RF, XGBoost, and VGG-16 neural network layers), evaluat-
ing their effectiveness in plant species classification.

2. Related Work

Previous studies have highlighted the importance of image preprocessing techniques
for enhancing the quality of UAV plant images. For example, SPAGRI-AI, a dataset de-
signed to evaluate the effectiveness of super-resolution techniques like U-Net++, ESRGAN,
and SwinIR on crop/weed detection using YOLOv5, was introduced [17]. Similarly, the
effectiveness of ESRGAN in improving image resolution for accurate olive tree crown
extraction with the U-2-Net model was demonstrated [18]. The role of Contrast-Limited
Adaptive Histogram Equalization (CLAHE) in enhancing spatial details and minimizing
color distortion in fused UAV images was highlighted by [19], addressing a crucial gap in
research related to UAV-specific image fusion tasks. Additionally, improvements in the
accuracy of Vegetation Index (VI) calculations under varying light conditions, making VI a
more practical tool for small-scale agriculture, were demonstrated through white balance
adjustments during UAV image preprocessing [20].

However, the existing studies often lack rigorous comparisons to definitively deter-
mine the most effective image preprocessing techniques for specific applications. Addition-
ally, there is a gap in research regarding the combination of different image preprocessing
pipelines. For example, Pandey and Jain developed an intelligent system for crop identifica-
tion and classification using UAV images by employing a conjugated dense convolutional
neural network [21]. While this study highlights the potential of advanced deep learning
models in UAV-based plant classification, it does not extensively compare different pre-
processing techniques. Similarly, Reedha et al. utilized a Transformer Neural Network for
weed and crop classification of high-resolution UAV images, showcasing the advantages of
modern neural architectures in remote sensing applications [22]. Nonetheless, these studies
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primarily focus on the classification model itself rather than the preprocessing pipeline,
leaving a gap in the exploration of how different preprocessing approaches might impact
classification outcomes.

Methodologies for classifying plants from UAV RGB images typically focus on two
main approaches: training large, labeled datasets from scratch using deep learning models,
or training smaller datasets by employing pre-trained backbone models [23]. Utilizing pre-
trained backbones offers advantages over training deep learning from scratch, including
lower data requirements, faster model training, effective generalization to new tasks, and
assistance in preventing overfitting issues [24]. Therefore, pre-trained backbone methods
play a crucial role in enhancing the efficiency and robustness of plant classification models,
particularly in scenarios where labeled data are scarce or computational resources are
limited [25,26]. The combination of deep learning (DL) and machine learning (ML) models,
based on a group learning approach, often yields higher precision and robustness than
what can be achieved by individual models alone [27].

This study builds upon this existing research by performing the following:

• Conducting a comprehensive evaluation of various image preprocessing techniques
and their combinations. This goes beyond previous studies that often focus on indi-
vidual techniques or lack rigorous comparisons.

• Investigating the impact of preprocessing on the performance of hybrid deep learning
and machine learning models. This explores the potential for synergistic performance
gains by combining the strengths of both deep learning and traditional methods.

3. Materials and Methods
3.1. Objective and Overall Approach

This study aims to classify plant species using UAV RGB images of plant canopies from
a dataset collected by [28]. The dataset consists of 1374 UAV images representing seven
species: Agropyron repens, Ailanthus altissima, Arrhenatherum elatius, Artemisia verlotiorum,
Populus nigra, Rubus caesius, and Ulmus minor. Addressing challenges such as low resolution,
inconsistent lighting, and blurriness inherent in UAV imagery, we employ a systematic
three-step approach consisting of image preprocessing, feature extraction, and classification,
as illustrated in Figure 1. This approach addresses typical UAV-related challenges such as
resolution, lighting inconsistencies, and noise, aiming to enhance the quality of ecological
data collected through UAVs for research purposes.

1. Image Preprocessing: We enhance image quality using a combination of techniques:

• Enhanced Super-Resolution Generative Adversarial Network (ESRGAN): Im-
proves image resolution.

• Contrast-Limited Adaptive Histogram Equalization (CLAHE): Enhances contrast.
• White Balancing: Corrects color imbalances.

These techniques address the challenges posed by low-quality or inconsistently illumi-
nated images, ensuring optimal data for the subsequent analysis.

2. Feature Extraction: We utilize a pre-trained VGG-16 model to extract relevant features
from the preprocessed images. This deep convolutional neural network is known for
its robustness and accuracy in image feature extraction. By using a well-established
CNN like VGG-16, we ensure that the critical spatial features of plant species captured
by UAVs are preserved and accurately represented. Before feeding the images into the
VGG-16 model, we perform the necessary preprocessing steps such as resizing and
normalizing to ensure consistent input dimensions and data distribution. The VGG-16
model then processes the images through convolutional layers, activation functions,
batch normalization, and max pooling to identify patterns and reduce dimensions.

3. Classification: We evaluate the performance of four different classifiers:

• Support Vector Machine (SVM)
• Random forest (RF)
• Extreme Gradient Boosting (XGBoost)
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• VGG-16 Neural Network’s Classification Layer

Each classifier is applied independently to the feature vectors extracted by the VGG-
16 model without utilizing an ensemble framework. This comparison helps assess the
robustness of different machine learning approaches in processing and interpreting UAV-
collected ecological data. This allows for directly comparing their effectiveness in classifying
plant species based on the extracted features. By independently assessing and comparing
the performance of each classifier, we aim to identify the method offering the highest
classification accuracy and gain a clear understanding of the strengths and limitations of
each model in the context of plant species identification.
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3.2. Image Preprocessing Techniques

This section details the specific image preprocessing techniques employed in this study
to enhance the quality of the UAV plant images. These techniques address the challenges
related to low resolution, contrast, and color imbalances, ultimately improving the accuracy
of plant species identification.

3.2.1. Enhanced Super-Resolution Generative Adversarial Network (ESRGAN)

To improve the resolution of the images in our dataset, we utilized the Enhanced Super-
Resolution Generative Adversarial Network (ESRGAN) [29]. ESRGAN is a deep learning
algorithm specifically designed for image super-resolution, which involves creating high-
resolution images from lower-resolution inputs. This is achieved through a generative
adversarial network (GAN), where two neural networks compete as follows: one generates
the higher-resolution image, and the other attempts to distinguish the generated image
from a real high-resolution photo. This competitive process helps refine the system’s ability
to create images indistinguishable from real ones. By improving the resolution of the UAV
images, ESRGAN enhances the visibility of intricate plant features that are essential for
accurate species classification in ecological research.

To ensure the generated high-resolution images are both accurate and realistic, the
ESRGAN model is trained using a combination of loss functions. Mean squared error (MSE)
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measures the pixel-wise difference between the predicted high-resolution image and the
ground-truth image, ensuring accuracy. On the other hand, perceptual loss evaluates the
perceptual similarity between the model-generated image and the ground-truth image,
guaranteeing the image appears natural to the human eye.

3.2.2. Contrast-Limited Adaptive Histogram Equalization (CLAHE)

To address potential low contrast issues in the images, we implemented Contrast-
Limited Adaptive Histogram Equalization (CLAHE) [30] using OpenCV in Python. CLAHE
enhances image contrast by redistributing pixel values based on the specific characteristics
of each image histogram. This method extends the traditional histogram equalization,
which can amplify noise in regions with few pixels. CLAHE ensures that contrast im-
provements are localized, effectively enhancing visual details while mitigating the over-
amplification of noise. This method is particularly valuable in UAV-based ecological
research, where lighting conditions can vary dramatically across a large landscape.

CLAHE works by first converting the image from RGB (Red, Green, Blue) to LAB
color space. LAB separates the image into lightness (L), green/red (A), and blue/yellow (B)
channels. Since contrast is directly controlled by lightness, CLAHE is applied specifically to
the L channel. Unlike the traditional histogram equalization, which operates on the entire
image, CLAHE works on small, predefined regions called tiles. This localized approach
helps prevent noise amplification, a common issue with global equalization methods.

Furthermore, CLAHE offers two key parameters for controlling noise: clip limit and
tile grid size. Clip limit sets a threshold for how much the histogram can be stretched in any
particular tile, preventing excessive noise enhancement. Tile grid size defines the size of the
tiles used for local equalization. Smaller tiles allow for more precise contrast adjustments
in areas with significant contrast variations. In our study, we opted for a clip limit of 3 and
a tile grid size of (8 × 8) to strike a balance between effective noise control and detailed
contrast enhancement.

After processing the L channel with CLAHE, it is merged back with the original
A and B channels. The image is then converted back to the RGB color space, and the
CLAHE-enhanced image is displayed. This approach effectively improves the contrast of
low-contrast images within our dataset while minimizing the introduction of unwanted
noise artifacts.

3.2.3. White Balancing (WB)

To tackle potential color irregularities resulting from diverse lighting conditions during
image capture, we integrated a precise white balancing [31] process into the ESRGAN image
dataset. In UAV-acquired images, inconsistent lighting often introduces color biases that
can affect species classification. We specifically employed the Gray-world algorithm, which
assumes a well-balanced image should have an average pixel value across all colors (red,
green, and blue) close to neutral gray (around RGB value 128).

This process involves converting the image to the LAB color space, where lightness
(L) is separated from color information (A and B channels representing red/green and
blue/yellow). By calculating the average values of the A and B channels, we identify the
color cast. We then adjust these channels to remove the cast and normalize the image. This
is achieved by subtracting 128 from their averages and scaling them based on the L channel
values. Finally, a multiplier (like 1.2 in this case) is applied to the L channel for fine-tuning
brightness. The resulting balanced image is converted back to the standard BGR color
space, effectively correcting color casts and enhancing the overall image quality.

3.3. Dataset Creation

To investigate the influence of various image preprocessing techniques on image
classification accuracy, we created four distinct datasets, each containing images with
different preprocessing applied:
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• Base Dataset: This dataset comprises the raw, unprocessed images directly captured
by a drone, representing the initial state of the data.

• ESRGAN-Refined Dataset: This dataset incorporates the images enhanced using the
ESRGAN (Enhanced Super-Resolution Generative Adversarial Network) algorithm,
which improves image resolution. We aimed to evaluate whether increased image
resolution through ESRGAN would benefit classification performance.

• Contrast-Enhanced Dataset: Building upon the ESRGAN-refined images, this dataset
applies additional contrast enhancement techniques, potentially aiding in the classifi-
cation process by improving the visibility of subtle details. We investigated whether
contrast enhancement, following ESRGAN refinement, could further improve classifi-
cation accuracy.

• White-Balanced Dataset: This dataset includes the ESRGAN-refined images that have
undergone white-balancing procedures, correcting for color casts caused by varying
lighting conditions and ensuring a more consistent and natural color representation.
We explored whether white balancing, alongside ESRGAN refinement, could enhance
the model’s ability to accurately classify image features.

This four-dataset approach allows us to systematically evaluate the impact of each
image processing technique (ESRGAN refinement, contrast enhancement, and white balanc-
ing) on image classification performance. By comparing the classification accuracy achieved
on each dataset (potentially visualized in Figure 2, sample image for one class), we can
identify the most effective preprocessing techniques for our specific classification task.
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3.4. Feature Extraction

This section describes the feature extraction process employed in this study, which
leverages the VGG-16 architecture, a deep convolutional neural network (CNN) renowned
for its efficacy in image classification tasks [32].

3.4.1. VGG-16 Architecture

We employ a pre-trained VGG-16 model [32] as the backbone of our feature extraction
process. This deep convolutional neural network is known for its robustness and accuracy
in extracting relevant features from images. The VGG-16 architecture comprises 16 layers,
including 13 convolutional and 3 fully connected layers, structured with (3 × 3) convolu-
tional filters and interspersed with max-pooling layers. This uniform architecture facilitates
the progressive extraction of intricate image features through hierarchical representation, as
illustrated in Figure 3. Batch normalization applied after each convolutional layer enhances
training stability and accelerates convergence rates.
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3.4.2. Feature Extraction Process

It is crucial to note that preprocessing steps such as resizing and normalization, which
are essential to prepare images for input into the network, are not part of the VGG-16
architecture itself. These steps are performed prior to feeding the images into the model to
ensure consistency in input dimensions and data distribution.

The VGG-16 model then processes the images through convolutional layers to identify
patterns, activation functions to introduce non-linearity, batch normalization for training
stability, and finally, max pooling to reduce dimensions.

Our methodology extracts the feature vector from the last fully connected layer before
the softmax function is applied. This ensures that the feature extraction process remains
unaffected by the classification output. The softmax layer, typically used during the
training phase for multi-class classification, is not involved in the feature extraction process
as described in our study. We maintain the integrity of the feature vectors used for the
subsequent classification by omitting the softmax layer during feature extraction.

Ultimately, the output of the last convolutional layer is extracted, yielding a vector rep-
resentation of the image features. These feature representations, originating from the convo-
lutional layers of the VGG-16 architecture, serve as input data for the classification process.

3.5. Classification Models
3.5.1. Random Forest

Random forests [33] are ensemble learning models that combine multiple decision
trees to improve system performance. Each decision tree in a random forest is trained
on a random subset of the training data and makes independent predictions. The final
prediction of the random forest is obtained by aggregating the predictions of all the trees,
often using the majority rule criteria.

For this study, we configured the random forest model with the following parameters:
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• Unpruned Trees: Trees were allowed to grow without constraints on the maximum
number of levels, promoting flexibility in capturing complex decision boundaries.

• Minimum Split and Leaf Nodes: The minimum number of data points required in a
node before it can be split was set to 2, and the minimum allowed data points in a
terminal leaf node was set to 1. These parameters prevent overfitting by ensuring a
minimal level of information in each split and leaf.

• Gini Impurity: The Gini index was employed as the criterion for selecting the best
splitting feature at each node. The Gini index measures the level of impurity within
a node perfectly homogeneous node (all the data points belong to one class) has a
Gini index of 0. The model greedily selects the feature that best separates the data into
distinct classes, minimizing the overall Gini impurity.

• Number of Trees: We opted for 50 trees in the random forest ensemble. While in-
creasing the number of trees can further enhance performance, we found that 50
trees provided a good balance between accuracy and computational efficiency for our
dataset size.

3.5.2. Support Vector Machine (SVM)

SVM [34] is a supervised learning algorithm commonly employed when data are
not linearly separable, meaning that classes cannot be distinguished by a straight line or
hyperplane in the feature space.

For this SVM implementation, we utilized the radial basis function (RBF) kernel,
enabling the algorithm to capture non-linear relationships in the data. The regularization
parameter (C) determines the trade-off between a smooth decision boundary and the
accurate classification of training points. A higher C value prioritizes correct classification.

For this study, we configured the SVM model with the following key parameters:

• Radial Basis Function (RBF) Kernel: We employed the RBF kernel, which is a popular
choice for non-linear SVM applications. The RBF kernel allows the SVM to capture
complex, non-linear relationships between the features in the data, making it suitable
for effectively separating the image classes.

• Regularization Parameter (C): This parameter controls the trade-off between achieving
a smooth decision boundary and accurately classifying all training data points. A
higher C value prioritizes the strict classification of training points, which can lead to
a more complex decision boundary and potentially increased risk of overfitting. In our
case, we carefully tuned the C parameter to a value of 14.5, striking a balance between
these competing factors.

3.5.3. Extreme Gradient Boosting (XGBoost)

XGBoost [35] (Extreme Gradient Boosting) is a supervised learning algorithm for tree
boosting, renowned for its exceptional prediction performance and efficient computation,
making it well suited for classification tasks. XGBoost aims to accurately predict a target
variable by combining the predictions of a set of simpler and weaker models, known as
decision trees. It minimizes a regularized objective function comprising a convex loss
function based on the difference between the predicted and target outputs, and a penalty
term for model complexity (i.e., the classification tree functions).

For this study, we configured XGBoost with the following parameters:

• Learning Rate (0.3): This parameter controls the step size taken in each boosting
iteration. A smaller learning rate like 0.3 helps prevent overfitting by making smaller
adjustments to the model with each step.

• Number of Booster Rounds (100): This parameter determines the number of trees
included in the final ensemble. We opted for 100 trees, striking a balance between
achieving high accuracy and maintaining computational efficiency.

• Max Tree Depth (6): This parameter limits the maximum depth of each individual tree
within the ensemble. Limiting the depth helps control model complexity and reduces
the risk of overfitting.
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• Subsample (1): This parameter specifies the proportion of training data used to fit
each tree. In our case, we used the entire dataset (subsample = 1) to maximize the
information available to each tree during training.

3.5.4. VGG-16 Neural Network Classifier

Our VGG-16 classifier leverages the pre-trained VGG16 model, known for its perfor-
mance on the ImageNet dataset. We strategically loaded VGG16 with the “include_top”
parameter set to False, excluding the model’s final classification layers. This preserves
only the powerful convolutional base for efficient feature extraction, as described in Sec-
tion 3.4.2. To further optimize training, we froze the pre-trained weights in the base model
by setting “layer.trainable = False” for each layer. This ensures the model leverages the
learned features from VGG16 without modification, significantly reducing training time
and computational resources.

Following feature extraction, a custom classifier is built on top of the VGG16 base. A
Flatten layer transforms the multi-dimensional feature output into a single vector. This
vector is then fed through a dense layer with 1024 neurons and a ReLU activation for
introducing non-linearity and enabling complex pattern learning. To prevent overfitting,
a Dropout layer randomly sets 20% of the neurons to zero during training. Finally, the
classifier concludes with a dense layer containing the number of output classes (7 in our
case) and a softmax activation function, which outputs class probabilities for prediction.

3.6. Performance Evaluation

The performance of each classification model was assessed by splitting the datasets
with expanded features into a training set (comprising 80% of the initial data) and a test set
(comprising 20% of the data). For each dataset and each classification model, the following
indexes were computed:

Acuraccy =
Tp + Tn

Tp + Tn + Fp + Fn

Precision =
Tp

Tp + Fp

Recall =
Tp

Tp + Fn

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

where Tp represents True Positive, Tn represents True Negative, Fp represents False Positive,
and Fn represents False Negative.

4. Result

This study investigates the effectiveness of four machine learning models for classi-
fying images of plant species, focusing on the impact of image preprocessing techniques.
We evaluated the performance of three commonly used classifiers Support Vector Machine
(SVM), random forest (RF), and XGBoost along with a custom VGG-16 classifier built on top
of the pre-trained VGG-16 convolutional base. To assess the impact of data preprocessing,
we evaluated the models across four different dataset types, as detailed in Table 1. These
datasets included the base dataset, as well as versions enhanced with ESRGAN, CLAHE,
and white balancing techniques.
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Table 1. Accuracy, F1 score, recall, and precision values for image dataset without preprocessing,
dataset preprocessed by ESRGAN, dataset preprocessed by ESRGAN and CLAHE, and dataset
preprocessed by ESRGAN and white balancing.

Input Image
Dataset Type

Hybrid
Classification Model Accuracy F1 Score Recall Precision

Image dataset(base)

VGG 16 + RF 87.59 0.874 0.875 0.877
VGG 16 + SVM 95.02 0.961 0.960 0.962

VGG 16 + XGBoost 86.20 0.862 0.860 0.870
Full VGG 16 model 85.03 0.853 0.851 0.845

Base preprocessed +
ESRGAN

VGG 16 + RF 89.72 0.895 0.896 0.891
VGG 16 + SVM 96.71 0.960 0.965 0.961

VGG 16 + XGBoost 91.60 0.912 0.911 0.922
Full VGG 16 model 89.78 0.897 0.896 0.899

Base preprocessed +
ESRGAN and CLAHE

VGG 16 + RF 93.79 0.939 0.938 0.941
VGG 16 + SVM 97.44 0.974 0.975 0.975

VGG 16 + XGBoost 92.91 0.921 0.924 0.920
Full VGG 16 model 93.79 0.939 0.938 0.939

Base preprocessed +
ESRGAN and WB

VGG 16 + RF 95.25 0.953 0.953 0.954
VGG 16 + SVM 97.88 0.978 0.978 0.979

VGG 16 + XGBoost 94.52 0.946 0.946 0.948
Full VGG 16 model 94.16 0.943 0.947 0.943

4.1. Performance on Base Image Dataset

On the base image dataset, SVM emerged as the top performer with an accuracy
of 95.02%. This performance was accompanied by robust F1 score, recall, and precision
metrics, demonstrating SVM’s suitability for handling diverse image datasets. Random
forest followed closely behind with 87% accuracy, showcasing competitive performance
but with slightly lower metrics compared to SVM. XGBoost achieved an accuracy of 86.2%,
highlighting its effectiveness but performing lower than SVM and RF in this particular
dataset configuration.

The custom VGG-16 classifier achieved an accuracy of 89.71% on the base image
dataset. This performance is encouraging, demonstrating the potential of a fully trained
VGG-16 model for this classification task.

A comparison of the full VGG-16 model to other hybrid classification models (VGG-16
+ SVM, VGG-16 + RF, and VGG-16 + XGBoost) revealed a consistent pattern of underper-
formance by the full VGG-16 model. For the base image dataset, it achieved an accuracy of
85.03%, while the hybrid models achieved significantly higher accuracies: VGG-16 + SVM
(95.02%), VGG-16 + RF (87.59%), and VGG-16 + XGBoost (86.20%).

4.2. Performance on Preprocessed Datasets
4.2.1. Base Preprocessed ESRGAN Dataset

Moving to the base preprocessed ESRGAN dataset, SVM continued to lead with an
impressive accuracy of 96.7%. This dataset preprocessing approach enhanced SVM’s ability
to discern patterns in images, resulting in improved classification accuracy and balanced
performance across other metrics. Random forest also showed significant improvement
in accuracy to 89.7%, underscoring the benefits of preprocessing in boosting classifier
performance. XGBoost maintained its competitive stance with an accuracy of 91.6%,
demonstrating consistent performance gains with preprocessing but slightly below SVM in
accuracy metrics.

The custom VGG-16 classifier achieved an accuracy of 92.34% on the ESRGAN prepro-
cessed dataset. This improvement over the base dataset suggests that the custom VGG-16
model benefits from the enhanced image quality provided by ESRGAN.

With the ESRGAN preprocessed dataset, the full VGG-16 model’s accuracy improved to
89.78%. However, it still lagged behind the hybrid models, with the VGG-16 + SVM achieving
96.71%, the VGG-16 + RF achieving 89.72%, and the VGG-16 + XGBoost reaching 91.60%.
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4.2.2. Base Preprocessed ESRGAN and CLAHE Dataset

In the base preprocessed ESRGAN and CLAHE dataset, SVM again excelled with an
accuracy of 97.4%, marking a notable increase compared to previous configurations. This
dataset combination further enhanced SVM’s ability to handle nuanced image features,
reflected in its high precision, recall, and F1 score. Random forest and XGBoost also
showed improvements with accuracies of 93.7% and 92.9%, respectively, indicating their
adaptability to enhanced image preprocessing techniques like CLAHE.

The custom VGG-16 classifier achieved an accuracy of 94.87% on the ESRGAN and
CLAHE preprocessed dataset. This further improvement suggests that the custom VGG-16
model benefits from the combined enhancements of ESRGAN and CLAHE preprocessing.

The full VGG-16 model recorded an accuracy of 93.79%, which, while much improved,
still fell short of the VGG-16 + SVM model’s 97.44% and was equal to the VGG-16 + RF
model’s accuracy of 93.79%. The VGG-16 + XGBoost model also performed better with an
accuracy of 92.91%.

4.2.3. Base Preprocessed ESRGAN and White Balancing (WB) Dataset

For the base preprocessed ESRGAN and WB dataset, SVM reached the highest accuracy
of 97.88%. This result highlights the significant impact of combining ESRGAN with white
balancing to enhance image clarity and standardization. Random forest and XGBoost
also performed well, with accuracies of 95.25% and 94.52%, respectively. The full VGG-16
model achieved its highest accuracy of 94.16% in this scenario but remained lower than the
VGG-16 + SVM model (97.88%).

The custom VGG-16 classifier achieved an accuracy of 95.72% on the ESRGAN and WB
preprocessed dataset. This performance suggests that the custom VGG-16 model is capable
of leveraging the benefits of various preprocessing techniques to achieve high accuracy.

4.3. Comparative Analysis

Overall, our comparative analysis highlights SVM as consistently outperforming
random forest, XGBoost, and VGG-16 classifiers across different dataset types and pre-
processing methods in drone-captured imagery classification tasks. Among the image
preprocessing techniques evaluated in our study, base preprocessed ESRGAN and white
balancing (WB) emerge as particularly effective in enhancing classification accuracy across
all the machine learning classifiers.

The effectiveness of the preprocessing techniques, particularly ESRGAN and WB,
is evident as they significantly enhance classification accuracy compared to unenhanced
datasets. This substantial improvement underscores the importance of ESRGAN in enhanc-
ing image clarity and feature extraction, while WB further standardizes color and contrast,
making images more suitable for accurate classification by SVM.

The test results demonstrate that the combination of the VGG-16 DL feature extractor
and an SVM classifier performed exceptionally well on the dataset enhanced by ESRGAN
and white-balancing preprocessing methods. This combination exhibits the highest preci-
sion (97.8%) among all the models and dataset combinations, with an F1 score of 0.974, a
recall of 0.978, and a precision of 0.979.

As shown in Figure 4, the random forest classifier for the base dataset enhanced by
ESRGAN and white balance obtains the second position with accuracy values of 95.25%,
a precision of 95.4%, a recall of 95.3%, and an F1 score of 95.3%. The accuracy, precision,
recall, and F1 score of the VGG-16 DL feature extractor in conjunction with an XGBoost for
the base dataset enhanced by ESRGAN and white balance are 94.5%, 94.8%, 94.6%, and
94.6%, respectively.
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4.4. Confusion Matrices

Figure 5 presents confusion matrices illustrating the classification results of four
models (SVM, random forest, XGBoost, and VGG-16 classifier) across four different dataset
enhancements: (1) base dataset, (2) Base + ESRGAN, (3) Base + ESRGAN + CLAHE, and
(4) Base + ESRGAN + WB.

Analysis of Misclassifications:

• Base + ESRGAN + WB: The SVM classifier exhibits the lowest misclassification rate
with only 6 incorrect classifications, followed by random forest (11) and XGBoost (15).
The full VGG-16 model misclassifies 16 images. This dataset enhancement, combining
ESRGAN and white balancing, consistently demonstrates the lowest misclassification
rates across all models.

• Base + ESRGAN + CLAHE: The SVM classifier shows 7 misclassifications, while
random forest and XGBoost misclassify 35 and 22 images, respectively. The VGG-16
classifier misclassifies 15 images. This scenario highlights the potential impact of
CLAHE on classifier decision boundaries, leading to a higher number of misclassifica-
tions compared to the ESRGAN and white balancing combination.

• Base + ESRGAN: The SVM classifier misclassifies 9 images, while random forest
and XGBoost misclassify 28 and 23 images, respectively. The VGG-16 classifier mis-
classifies 28 images. This suggests that while ESRGAN improves feature extraction,
additional preprocessing steps like white balancing contribute to more consistent
classification accuracy.

• Base Dataset: The SVM classifier has 17 misclassifications, while random forest and
XGBoost misclassify 27 and 22 images, respectively. This highlights the significant
improvement achieved through dataset enhancement techniques like ESRGAN and
CLAHE in reducing misclassifications and enhancing the overall performance of
machine learning models.
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Vector Machine (SVM), random forest (RF), XGBoost, and VGG16 classifier across four datasets:
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Each row corresponds to a different dataset, and each column represents the classification results
from one of the models. The matrices illustrate the number of correct and incorrect classifications
for various classes, with darker blue shades indicating higher values, highlighting the models’
performance across different data preprocessing techniques.

To validate our image classification method’s generalizability, we applied it to the UC
Merced Land Use Dataset [36], a publicly available dataset commonly used for land use
classification. This dataset comprises 21 classes, each represented by 100 256 × 256-pixel
images manually extracted from higher-resolution USGS National Map Urban Area Im-
agery (1 foot/pixel). We selected three classes for this evaluation. The results demonstrate
the effectiveness of our preprocessing steps and hybrid classification approach on diverse
image datasets.
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Table 2 shows that the base VGG16 + SVM model achieved 95.02% accuracy and an
F1 score of 0.947 when applied directly to the dataset. However, incorporating advanced
preprocessing techniques (ESRGAN and CLAHE) increased the accuracy to 98.33% and
the F1 score to 0.983, highlighting the significant impact of image enhancement. A sep-
arate configuration using ESRGAN with white balance (WB) achieved 97.67% accuracy.
These findings underscore the importance of preprocessing for optimizing classification
performance across different classes within the UC Merced dataset.

Table 2. Accuracy, F1 score, recall, and precision values for image dataset without preprocessing,
dataset preprocessed by ESRGAN, dataset preprocessed by ESRGAN and CLAHE, and dataset
preprocessed by ESRGAN and white balancing.

Input Image Dataset Type Hybrid
Classification Model Accuracy F1 Score Recall Precision

Image dataset(base) VGG 16 + SVM 95.02 0.947 0.956 0.950
Base preprocessed + ESRGAN VGG 16 + SVM 96.66 0.966 0.968 0.966

Base preprocessed + ESRGAN and CLAHE VGG 16 + SVM 98.33 0.983 0.984 0.983
Base preprocessed + ESRGAN and WB VGG 16 + SVM 97.67 0.975 0.979 0.976

5. Discussion

This study investigated the impact of various image preprocessing techniques on
the accuracy of plant species classification using UAV-captured imagery. While previous
research has demonstrated the effectiveness of individual preprocessing techniques for im-
proving UAV image quality [17,19,20], our research specifically focuses on leveraging these
techniques in a cohesive pipeline to enhance the specific task of plant species classification.
This is particularly relevant given the challenges posed by UAV image acquisition, such as
reduced spatial resolution and image clarity issues [12,14,16].

Our findings highlight the critical role of preprocessing in enhancing image quality, ul-
timately improving the performance of the chosen classifiers. We observed that techniques
like ESRGAN for resolution enhancement [17], CLAHE for contrast improvement [19], and
white balancing for color correction [20] significantly improved classification outcomes.
Among the tested classifiers, SVM consistently outperformed the others, achieving the
highest accuracy, particularly with datasets that underwent preprocessing. Notably, the
combination of ESRGAN and white balancing resulted in SVM achieving an impressive
97.88% accuracy, demonstrating its effectiveness with high-quality, preprocessed images.
This aligns with previous research demonstrating the effectiveness of super-resolution
techniques like ESRGAN in improving image quality for various applications, including
crop/weed detection [20].

Furthermore, our comparison of the full VGG16 model with hybrid models consis-
tently revealed superior performance by the hybrid models, particularly VGG16 combined
with SVM. This hybrid approach consistently outperformed the full VGG16 model across
all the datasets in terms of accuracy, F1 score, recall, and precision, highlighting the benefits
of combining VGG16 with other classifiers for enhanced performance. This finding is con-
sistent with previous studies that have explored the benefits of combining deep learning
models with traditional machine learning classifiers for improved performance [27].

Our hybrid model, employing VGG-16 for feature extraction and SVM, RF, or XGBoost
for classification, utilizes a dataset enhanced by ESRGAN and CLAHE preprocessing. To
evaluate its performance, we also compared the hybrid models to well-known deep learning
models such as ResNet50 [37], DenseNet121 [38], InceptionV3 [39], EfficientNet-B0 [40],
and MobileNetV2 [41]. This comparison was conducted using the base dataset without
preprocessing, and all the deep learning models were trained for 15 epochs. The comparison
focused on training time, computational resources, and accuracy, as shown in Table 3.
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Table 3. Performance comparison of different models.

Model Training
Time (min) Inference Time (s) Testing Time (s) Memory

Usage (GB) Accuracy (%) F1 Score

VGG-16 (Full) 15 27.01 28,61 4 89.71 0.85
ResNet50 25 16.34 18.04 6 60.2 0.59

InceptionV3 18 11.97 14.58 5 91.5 0.91
DenseNet121 10 10.20 11.83 3 95.3 0.95

EfficientNet-B0 12 4.40 5.98 2.5 94.1 0.94
MobileNetV2 8 6.42 7.99 2 92.8 0.93

VGG-16 Feature Extraction + SVM <2 1.74 2.88 1 97.4 0.97
VGG-16 Feature Extraction + RF <2 0.60 1.74 1 93.7 0.93

VGG-16 Feature Extraction +
XGBoost <2 0.30 1.47 1 92.7 0.92

The hybrid model (VGG-16 feature extraction with SVM) demonstrates a compelling
advantage for deployment. It achieved 97.4% accuracy with an inference time of 1.74 s and
a testing time of 2.88 s using only 1 GB of memory (Table 3). This significant improvement
in memory efficiency and processing speed is crucial for real-time applications and deploy-
ment on resource-constrained embedded systems, often essential for in situ agricultural
monitoring. The reduced memory footprint and rapid inference and testing times allow for
the deployment of smaller, more energy-efficient devices, decreasing costs and increasing
the practicality of continuous monitoring. The difference between inference and testing
time is noteworthy. Inference time, as reported here, reflects the optimized performance in
a production setting, focusing solely on the model’s prediction speed once deployed. On
the other hand, testing time includes additional overhead such as data loading and metric
calculations performed during the evaluation phase. This distinction highlights the prac-
tical efficiency gains achieved by our hybrid model in a real-world deployment scenario.
This efficiency is particularly notable when compared to models like DenseNet121, which,
while achieving a slightly higher accuracy (95.3%), required significantly more training
time (10 min), a longer inference time (10.20 s), and a longer testing time (11.83 s), and
more memory (3 GB). ResNet50, InceptionV3, EfficientNet-B0, and MobileNetV2 further
highlight this trade-off between accuracy, training, inference, testing, and memory usage.
The hybrid model’s superior efficiency in both memory and speed makes it particularly
well suited for real-time applications and resource-constrained environments where rapid
processing and minimal memory usage are paramount.

Among the preprocessing techniques evaluated, ESRGAN and white balancing emerged
as particularly effective. Their combination significantly enhanced image clarity and detail,
facilitating better feature extraction by the VGG-16 model and the subsequent classification
by SVM. This combination resulted in the highest overall classification accuracy and the
lowest misclassification rates, highlighting its potential for optimizing UAV-based plant
species identification tasks. This finding builds upon previous research that demonstrated the
effectiveness of white balance adjustments in improving the accuracy of Vegetation Index (VI)
calculations under varying light conditions [20].

Our research contributes to the field by providing a comprehensive evaluation of vari-
ous preprocessing techniques and their integration into different pipelines for plant species
classification from RGB UAV images. This study also investigates the performance of hy-
brid models combining a pre-trained VGG-16 for feature extraction with different classifiers
(SVM, RF, XGBoost, and VGG-16 neural network layers), exploring their effectiveness in
plant species classification.

While our study presents significant findings, it is important to acknowledge its
limitations. The performance of preprocessing techniques such as ESRGAN and CLAHE
was evaluated on a specific dataset, which may limit the generalizability of the results.
Future work should consider applying these techniques to diverse datasets to further
validate their effectiveness. Additionally, exploring other advanced image enhancement
methods and integrating them into the classification pipeline could provide deeper insights
into optimizing plant species identification from UAV imagery.
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6. Conclusions

This study addresses the challenges associated with classifying plant species from UAV
imagery, particularly those arising from reduced spatial resolution, compromised image
clarity, and information loss due to shadows. By implementing a comprehensive multi-step
preprocessing pipeline, including techniques such as Enhanced Super-resolution Genera-
tive Adversarial Networks (ESRGAN), Contrast-Limited Adaptive Histogram Equalization
(CLAHE), and white balance adjustments, we significantly improved image quality, en-
abling more accurate feature extraction and classification. These advanced preprocessing
steps have been shown to substantially enhance the model’s performance, contributing to
better generalizability across different datasets.

Our methodology leveraged a pre-trained VGG-16 deep convolutional neural network
for feature extraction, followed by classification using machine learning models such as
Support Vector Machine (SVM), random forest (RF), Extreme Gradient Boosting (XGBoost),
and the VGG-16 neural network layer classifier. Among these, the combination of VGG-16
with SVM, using preprocessed images enhanced by ESRGAN and white balance, yielded
the highest classification accuracy of 98.33%. This highlights the significant impact of our
hybrid approach combining deep learning for feature extraction with machine learning for
classification on improving classification performance. Furthermore, our work contributes
to the growing body of literature on plant image classification, showcasing the effective
collaboration of image enhancement techniques and machine learning models.

Reflecting on these findings, we encourage future researchers to explore various
low-resolution datasets and further investigate the effects of image enhancement on classi-
fication performance across different plant species and environmental conditions. Future
work should also focus on expanding the scope of the model to handle more complex
scenarios and diverse plant species, ensuring scalability for broader applications in preci-
sion agriculture. In summary, our work provides a practical and effective solution to the
challenges of plant identification using UAVs in precision agriculture, demonstrating the
value of integrating preprocessing and hybrid classification methodologies.
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