WC/Co coatings are widely applied to different types of components due to their extraordinary performance properties including high hardness and wear properties. In industrial applications High Velocity Oxy-Fuel (HVOF) technique is extensively used to deposit hard metal coatings. The main advantage of HVOF compared to other thermal spray techniques is the ability to accelerate the melted powder particles of the feedstock material at a relatively high velocity, leading to obtain good adhesion and low porosity level. However, despite the mentioned benefits, the surface finish quality of WC-Co HVOF coatings results to be poor (Ra higher than 5 μm) thus a mechanical polishing process is often needed. The main problem is that the high hardness of coating leads the polishing process expensive in terms of time and tool wear; moreover polishing becomes difficult and not always possible in case of limited accessibility of a part, micro dimensions or undercuts. Nowadays a different technique available to improve surface roughness is the laser polishing process. The polishing principle is based on focused radiation of a laser beam that melts a microscopic layer of surface material. Compared to conventional polishing process (as grinding) it ensures the possibility of avoiding tool wear, less pollution (no abrasive or liquids), no debris, less machining time and coupled with a galvo system it results to be more suitable in case of 3D complex workpieces. In this paper laser polishing process executed with a Nd:YOV4 Laser was investigated: the effect of different process parameters as initial coating morphology, laser scan speed and loop cycles were tested. Results were compared by a statistical approach in terms of average roughness along with a morphological analysis carried out by Scanning Electron Microscope (SEM) investigation coupled with EDS spectra.

Nd:YOV4laser polishing on WC-Co HVOF coating

Giorleo, L.
;
Ceretti, E.;Montesano, L.;La Vecchia, G. M.
2017-01-01

Abstract

WC/Co coatings are widely applied to different types of components due to their extraordinary performance properties including high hardness and wear properties. In industrial applications High Velocity Oxy-Fuel (HVOF) technique is extensively used to deposit hard metal coatings. The main advantage of HVOF compared to other thermal spray techniques is the ability to accelerate the melted powder particles of the feedstock material at a relatively high velocity, leading to obtain good adhesion and low porosity level. However, despite the mentioned benefits, the surface finish quality of WC-Co HVOF coatings results to be poor (Ra higher than 5 μm) thus a mechanical polishing process is often needed. The main problem is that the high hardness of coating leads the polishing process expensive in terms of time and tool wear; moreover polishing becomes difficult and not always possible in case of limited accessibility of a part, micro dimensions or undercuts. Nowadays a different technique available to improve surface roughness is the laser polishing process. The polishing principle is based on focused radiation of a laser beam that melts a microscopic layer of surface material. Compared to conventional polishing process (as grinding) it ensures the possibility of avoiding tool wear, less pollution (no abrasive or liquids), no debris, less machining time and coupled with a galvo system it results to be more suitable in case of 3D complex workpieces. In this paper laser polishing process executed with a Nd:YOV4 Laser was investigated: the effect of different process parameters as initial coating morphology, laser scan speed and loop cycles were tested. Results were compared by a statistical approach in terms of average roughness along with a morphological analysis carried out by Scanning Electron Microscope (SEM) investigation coupled with EDS spectra.
2017
9780735415805
File in questo prodotto:
File Dimensione Formato  
2017 - Nd_YOV4 laser polishing on WC-Co HVOF coating.pdf

solo utenti autorizzati

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/499624
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact