Monitoring the internal loads acting in a total knee prosthesis (TKP) is fundamental aspect to improve their design. One of the main benefits of this improvement is the longer duration of the tibial inserts. In this work, an electromagnetic energy harvesting system, which is implantable in a TKP, is presented. This is conceived for powering a future implantable system that is able to monitor the loads (and, possibly, other parameters) that could influence the working conditions of a TKP in real-time. The energy harvesting system (EHS) is composed of two series of NdFeB magnets, positioned into each condyle, and a coil that is placed in a pin of the tibial insert and connected to an implantable power management circuit. The magnetic flux variation and the induced voltage are generated by the knee's motion. A TKP prototype has been realized in order to reproduce the knee mechanics and to test the EHS performance. In the present work, the experimental results are obtained by adopting a resistive load of 2.2 kΩ, in order to simulate a real implanted autonomous system with a current consumption of 850 µA and voltage of 2 V. The tests showed that, after 7 to 30 s of walking with a gait cycle frequency of about 1.0 Hz, the EHS can generate an energy of about 70 μJ, guaranteeing a voltage between 2 and 1.4 V every 7.6 s. With this prototype we can verify that it is possible to power for 16 ms a circuit having a power consumption of 1.7 mW every 7.6 s. The proposed generator is a viable solution to power an implanted electronic system that is conceived for measuring and transmitting the TKP load parameters.

An energy harvesting converter to power sensorized total human knee prosthesis

LUCIANO, VINCENZO;SARDINI, Emilio;SERPELLONI, MAURO;BARONIO, Gabriele
2014-01-01

Abstract

Monitoring the internal loads acting in a total knee prosthesis (TKP) is fundamental aspect to improve their design. One of the main benefits of this improvement is the longer duration of the tibial inserts. In this work, an electromagnetic energy harvesting system, which is implantable in a TKP, is presented. This is conceived for powering a future implantable system that is able to monitor the loads (and, possibly, other parameters) that could influence the working conditions of a TKP in real-time. The energy harvesting system (EHS) is composed of two series of NdFeB magnets, positioned into each condyle, and a coil that is placed in a pin of the tibial insert and connected to an implantable power management circuit. The magnetic flux variation and the induced voltage are generated by the knee's motion. A TKP prototype has been realized in order to reproduce the knee mechanics and to test the EHS performance. In the present work, the experimental results are obtained by adopting a resistive load of 2.2 kΩ, in order to simulate a real implanted autonomous system with a current consumption of 850 µA and voltage of 2 V. The tests showed that, after 7 to 30 s of walking with a gait cycle frequency of about 1.0 Hz, the EHS can generate an energy of about 70 μJ, guaranteeing a voltage between 2 and 1.4 V every 7.6 s. With this prototype we can verify that it is possible to power for 16 ms a circuit having a power consumption of 1.7 mW every 7.6 s. The proposed generator is a viable solution to power an implanted electronic system that is conceived for measuring and transmitting the TKP load parameters.
File in questo prodotto:
File Dimensione Formato  
An energy harvesting converter to power sensorized total human knee prosthesis.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/289704
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact