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In this work, we present a theoretical and experimental study of the response of a lossless polarizer to a signal
beam with a time-varying state of polarization (SOP). By lossless polarizer, we mean a nonlinear conservative
medium (e.g., an optical fiber) that is counterpumped by an intense and fully polarized pump beam. Such a
medium transforms input uniform or random distributions of the SOP of an intense signal beam into output dis-
tributions that are tightly localized around a well-defined SOP. We introduce and characterize an important para-
meter of a lossless polarizer—its response time. Whenever the fluctuations of the SOP of the input signal beam are
slower than its response time, a lossless polarizer provides an efficient repolarization of the beam at its output.
Otherwise, if input polarization fluctuations are faster than the response time, the polarizer is not able to repolarize
light. © 2011 Optical Society of America

OCIS codes: 230.5440, 060.4370, 230.1150, 230.4320.

1. INTRODUCTION
Over the last few years there has been a great deal of interest
in the development of polarization-selective devices for non-
linear optics and telecom applications. The simplest and most
common way to select a desired polarization state out of a
laser source or from a telecom link is to insert a linear polar-
izer. A “standard” linear polarizer outputs only one polariza-
tion state. So one particular state of linear polarization input
will experience 100% transmission, and the input of all others
will experience a reduced transmission equal to the square of
the fraction of the input wave’s electric field vector projection
along the “pass” direction of the linear polarizer. Clearly a
beam with constant intensity but a time-fluctuating state of
polariztion (SOP) may acquire large intensity fluctuations
after passing through a linear polarizer, possibly resulting
in significant degradation of the signal-to-noise ratio after de-
tection. In addition, polarization-dependent losses may be det-
rimental when using nonlinear optical devices. In this work,
we study the nonlinear lossless polarizer (NLP), a device that
transforms all (or most) polarizations of the input beam into
approximately one and the SOP at its output, without introdu-
cing any polarization-dependent losses.

Three types of NLPs for controlling the light SOP have been
proposed so far. Historically, the first lossless polarizer was
proposed and experimentally demonstrated in [1], where the
effect of two-wave mixing in a photorefractive material was
used for the amplification of a given polarization component
of a light beam by using the orthogonal component as a pump
beam. However, the use of such a device in telecommunica-
tion applications is limited by the intrinsically slow (of the
order of seconds and minutes) response time inherent to
photorefractive crystals. In this respect, it appears that NLPs
based on the Kerr nonlinearity of optical fibers are more

promising for fast SOP control. Indeed, a fiber-based NLP
was experimentally demonstrated in a practical configuration
involving a 20km long, low-polarization-mode dispersion tele-
com (randomly birefringent) fiber, counterpumped with a
600mW continuous wave (CW) beam [2]. This NLP was able
to smooth at its output microsecond-range polarization bursts
of the input 300mW signal beam. A recent theoretical study
has analyzed the CW operation of an NLP in the presence
of random fiber birefringence [3]. The third type of lossless
polarizers are also based on a Kerr medium, but do not require
a counterpropagating beam. Here the spontaneous polariza-
tion, which is induced by natural thermalization of incoherent
light in the nonlinear medium, lies at the heart of the repolar-
ization mechanism [4].

In this paper, we devote our attention to the second class of
NLPs. Their principle of operation is based on the so-called
polarization attraction effect: virtually any input SOP of the
signal beam is attracted to the vicinity of a definite SOP to-
ward the device output. When visualized on the Poincaré
sphere, all SOPs that are initially randomly (or uniformly) dis-
tributed over the entire Poincaré sphere contract into a small
well-localized spot. The size of this spot, which is measured in
terms of the degree of polarization (DOP) D,

D ¼ 1
S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

hSii2
vuut ð1Þ

(the smaller the size, the higher the DOP), quantifies the per-
formance of an NLP. In Eq. (1), the average of the Stokes para-
meters that describe the SOP of a beam is performed as either
a time or an ensemble average, as discussed in detail in
Section 3. A practically relevant question involves the choice
of the nonlinear fiber. Historically, the first fiber-based NLP
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was realized in isotropic fibers; see [5,6]. The disadvantage of
this setup is in the necessity to use high-power (∼50W) beams
in order to obtain an efficient nonlinear interaction of two
counterpropagating beams over a highly nonlinear fiber span
of only 1–2m (for the corresponding theory, see [7–10]). A
bold step forward toward the practical use of these devices
was provided by the recent experimental demonstration of
lossless polarization attraction in a 20km long telecommuni-
cation fiber: such a configuration permits 2 orders of magni-
tude reduction in the pump (and signal) power [2]. This
solution is versatile, cheap, and easily integrable with most
optoelectronic devices. As theoretically demonstrated in [11],
lossless polarizers can also be implemented with a relatively
shorter (∼100m) sample of highly nonlinear high birefringent
or unidirectionally spun fiber.

The theoretical model presented in [3] unites all types of
fibers (isotropic, deterministically birefringent, randomly bire-
fringent, and spun) under one umbrella by showing that the
propagation of counterpropagating beams in silica fibers is de-
scribed by the same evolution equations: different fibers lead
to specific values of the coefficients entering these equations.
Fiber-based NLPs have different performances, but all exhibit
the effect of polarization attraction under similar conditions of
operation. Driven by practical considerations, we choose to
work here with a telecommunication (i.e., randomly birefrin-
gent) fiber. Although, so far, the most studied case involves
isotropic fibers, the theory that has been developed for these
fibers cannot be directly applied to telecommunication fibers
for reasons to be discussed over the next sections.

The literature available so far on telecommunication fiber-
based NLPs [2,3] was mainly aiming at the proof-of-principle
experimental and theoretical demonstration of the polariza-
tion attraction effect. Here we set our goal in substantially
extending these results by characterizing through both numer-
ical simulations as well as experiments the temporal polariza-
tion dynamics of NLPs. In Section 2, we formulate the model
for the interaction of time-varying, counterpropagating beams
in a randomly birefringent optical fiber, and provide the defi-
nition of the response time of an NLP. In Section 3, we pro-
vide, first, the definition of the two types of input signals that
will be considered in this work, namely, input unpolarized
light or scrambled light. In Subsection 3.A, we analyze the
temporal response of the NLP to an input polarized beam,
and reveal the possibility of obtaining periodic or even irregu-
lar temporal oscillations of the output SOP in correspondence
of a CW input beam. Next, in Subsection 3.B, we present ex-
tensive numerical simulations where we compare ensemble
and temporal averaging of the output SOP in the presence
of either scrambled or unpolarized signals, respectively. We
show that, whenever the time variations of the input unpolar-
ized light are slow with the respect to the NLP response time,
the repolarization by the NLP is ergodic in the sense that en-
semble and time averages lead to virtually identical results.
However, this property no longer holds when the time varia-
tion of the input unpolarized light is faster than the response
time: in this situation, the repolarization property of the NLP
no longer holds. In order to further investigate this point,
we have numerically and experimentally investigated in
Sections 3.A and 4 the repolarization action of an NLP upon
a short input polarization fluctuation (or burst), as a function
of the relative duration of the burst with respect to the

response time. Simulations and experiments demonstrate
with excellent agreement that uniform repolarization by the
NLP requires polarization burst durations longer than the
NLP response time. A discussion and conclusion is finally pre-
sented in Section 5.

2. MODEL EQUATIONS
The formulation of a model for describing the interaction of
two counterpropagating and arbitrarily polarized beams in a
Kerr medium with randomly varying birefringence in terms of
deterministic coupled differential equations is not a trivial
task. Indeed, such a formulation requires the accurate
evaluation of statistical averages, and it involves a number
of assumptions. In our approach, we make two main
assumptions. The first hypothesis is that, among the two char-
acteristics of the birefringence when represented as a three-
dimensional vector, namely, its magnitude and its orientation,
the magnitude is fixed at a constant value along the total fiber
length L. On the other hand, we suppose that the orientation
varies randomly with distance, with a characteristic correla-
tion length Lc. The second assumption is that the fiber
length L ≫ Lc.

Based upon these two assumptions, one obtains a system of
differential equations with variable coefficients for describing
the mutual polarization coupling of two counterpropagating
waves [3]. We may argue that, in order to obtain a significant
repolarization effect, the differential beat length L0

B ≡

½L−1
B ðωsÞ − L−1

B ðωpÞ�−1 should obey the inequality L0
B ≫ L,

where LBðωsÞ [LBðωpÞ] is the beat length at the signal (pump)
frequency ωsðωpÞ. In fact, if the previous inequality is not sa-
tisfied, then the polarizations of the two beams are scrambled
by linear birefringence before significant nonlinear attraction
may take place. In the limit L=L0

B → 0, the polarization cou-
pling coefficients are no longer variable, and we are left with
a set of equations with constant coefficients. These equations
are conveniently formulated in Stokes space as

∂ξSþ ¼ Sþ × JsSþ þ Sþ × JxS−; ð2Þ

∂ηS� ¼ S− × JsS− þ S− × JxSþ: ð3Þ

For details of the derivation, see [3]. Here ξ ¼ ðvtþ zÞ=2 and
η ¼ ðvt� zÞ=2 are propagation coordinates, where v is the
phase speed of light in the fiber. The sign “×” denotes vector
product. The above equations are written for the three com-
ponents, S�

1 ¼ ϕ��
1 ϕ�

2 þ ϕ�
1 ϕ��

2 , S�
2 ¼ iðϕ��

1 ϕ�
2 − ϕ�

1 ϕ��
2 Þ, and

S�
3 ¼ jϕ�

1 j2 − jϕ�
2 j2, of the signal Sþ ¼ ðSþ

1 ; S
þ
2 ; S

þ
3 Þ and the

pump S� ¼ ðS−
1 ; S

−
2 ; S

−
3 Þ Stokes vectors, respectively. Here

ϕ�
1;2 are the polarization components of the signal and pump

fields in the chosen reference frame. Self- and cross-
polarization modulation (SPM and XPM) tensors are both
diagonal and have the forms Js ¼ γssdiagð0; 0; 0Þ and Jx ¼
8
9 γpsdiagð−1; 1;−1Þ. Note that the condition L0

B ≫ L implies
that the carrier wavelengths of the pump and signal beams
are close to each other (i.e., their wavelength spacing does
not exceed ∼1 nm). Therefore, γss ≈ γps ≈ γ, where γ denotes
the nonlinear coefficient. In our model, the second- and high-
er-order group velocity dispersions are not taken into account
for the reason that the pump and signal beams are considered
quasi-CW. In other words, temporal modulations of the signal
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SOP beam are supposed to be relatively slow, so that disper-
sive effects can be neglected over the distances involved in
our study.

For each beam, we define the zeroth Stokes parameters Sþ
0

and S−
0 according to the equation

S�
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS�

1 Þ2 þ ðS�
2 Þ2 þ ðS�

3 Þ2
q

: ð4Þ

These parameters represent the power of the forward and
backward beams, respectively. Since we are dealing with
wave propagation in a lossless medium, the sum of the powers
of both beams is a conserved quantity along the fiber length.
Moreover, the equations of motion in Eqs. (2) and (3) imply
that the powers of each beam are separately conserved:
Sþ
0 ðz − ctÞ ¼ Sþ

0 ðz ¼ 0; tÞ and S−
0 ðzþ ctÞ ¼ S−

0 ðz ¼ L; tÞ for
all z.

Henceforth, we shall be dealing only with uniform (i.e.,
independent of z) initial conditions. These are related to
the boundary conditions at t ¼ 0 as follows:

Sþ
i ðz ¼ 0; tÞ ¼ Sþ

i ðz; t ¼ 0Þ; ð5Þ

S�
i ðz ¼ L; tÞ ¼ S�

i ðz; t ¼ 0Þ; ð6Þ

with i ¼ 1; 2; 3. The choice of the initial conditions influences
only the short-term polarization evolutions of the two beams,
as they have no influence on the long-term behavior of the
polarization states. It is precisely such long-term evolution
that is of interest to us. Therefore, from now on, we shall spe-
cify only the boundary conditions: for the initial conditions,
we may refer to the previous relationships as given in Eqs. (5)
and (6).

Let us also introduce the nonlinear length LNL ¼ ðγSþ
0 Þ−1,

which has the meaning of the characteristic length of
nonlinear beam evolution inside the fiber. In its turn, the char-
acteristic time is simply defined as TNL ¼ LNL=v. In our simu-
lations, we use LNL as the unit for measuring distances in the
fiber medium in a reference frame with the origin (z ¼ 0) at
the left boundary, where we set the boundary conditions for
the forward (signal) beam. At the right boundary (i.e., at
z ¼ L), we set the boundary conditions for the backward
(pump) beam. The temporal scale in units of TNL is used
for measuring time. In simulations to be carried out in the
Section 3, we set the total fiber length equal to L ¼ 5LNL.
We varied the pump power in the range ½1; 5:5�Sþ

0 . Whenever
the pump power drops below Sþ

0 , the effect of polarization
attraction quickly degrades; therefore, the power range
½0; 1�Sþ

0 is not of interest here.

3. NUMERICAL SIMULATIONS
In the numerical study of polarization attraction, two different
approaches can be distinguished. The first approach is the
study of the response of the polarizer to input scrambled
beams. By scrambled beams, we understand a set of N beams,
where each individual beam is fully polarized, but the ensem-
ble of the N SOPs is randomly or uniformly distributed over
the entire Poincaré sphere. So, the DOP of the ensemble of
beams is exactly zero. In this case, we compute the SOP of
the outcoming signal beam, after its interaction with the non-
linear fiber pumped by the backward-propagating beam. We

performed the integration of Eqs. (2) and (3) based on the nu-
merical method that was proposed in [12]. The outcoming set
of SOPs are averaged, as explained in Appendix A, so that the
mean SOP and the DOP can be obtained. The repolarization
property of the polarizer then leads to an output DOP that is
different from zero. Note that the repolarization quality of the
NLP depends on the specific polarization of the pump beam.
In [3], we considered a set of pump beam SOPs that are re-
presented on the Poincaré sphere by points in the vicinity
of its six poles, namely, ð�1; 0; 0Þ, ð0;�1; 0Þ and ð0; 0;�1Þ.
We observed that, in the last two cases, the NLP works rela-
tively better than in the first four cases. However, the basic
features of the polarization attraction do not critically depend
on the choice of the pump SOP (even though significant var-
iations in the output signal DOP may result when the pump
SOP is varied). Therefore, in the following simulations, we will
restrict our attention for simplicity to the case of a pump SOP
equal to ð0:99; 0:1; 0:1Þ. In this case, the signal SOP is, on aver-
age, attracted to a point in the vicinity of the pole ð−1; 0; 0Þ.

This approach permits us to calculate the average response
of the polarizer to any signal SOP in the stationary regime.
That is, we obtain the output SOP long after all transient pro-
cesses have died away. The studies of NLPs that were under-
taken in [3,11] are based on this approach, which we term
Approach S (scrambled).

An alternative approach involves the study of the response
of an NLP to unpolarized light. By unpolarized light, we mean
a beam whose the SOP is randomly varying in time on the
scale of some characteristic correlation time Tc. Whenever
the observation time T largely exceeds Tc, so that the cover-
age of the Poincaré sphere by the beam’s SOP is uniformly
achieved, then the (time-averaged) DOP is also zero. In this
paper, we develop this approach and call it Approach U
(unpolarized).

In Approach S we perform the ensemble average, while in
Approach U we perform a time average. If these two statistical
approaches yield identical results, then we may say that the
system is ergodic. The numerical verification of the ergodicity
of an NLP is the goal of the next subsection.

A. Response to Polarized Light
An ultimate goal of our simulations is to characterize the re-
sponse of an NLP to a signal beam whose SOP is modulated in
time with a characteristic frequency ωm, thus mimicking the
statistics of an unpolarized beam. The three Stokes para-
meters of the input signal beam are specified by the two an-
gles α1 and α2 (which define the position of the tip of the
Stokes vector on the Poincaré sphere) as follows:

Sþ
1 ðz ¼ 0; tÞ ¼ Sþ

0 sin α1ðtÞ cos α2ðtÞ; ð7Þ

Sþ
2 ðz ¼ 0; tÞ ¼ Sþ

0 sin α1ðtÞ sin α2ðtÞ; ð8Þ

Sþ
3 ðz ¼ 0; tÞ ¼ Sþ

0 cos α1ðtÞ: ð9Þ

We choose to vary these angles in time according to the linear
law:

α1 ¼ α0 þ 2:53ωmt; ð10Þ
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α2 ¼ α0 − 3:53ωmt: ð11Þ

For observation times T ≫ ω−1
m , it can be easily verified that

the tip of the input Stokes vector almost uniformly covers the
entire Poincaré sphere. Indeed, for T ¼ 50ω−1

m , the time-
averaged input beam DOP is as low as 0.0074, which is low
enough to consider the beam as virtually unpolarized.

Before coming to the consideration of input unpolarized
beams, we find it instructive to treat the response of the
NLP to fully polarized light: we may set, for example, ωm ¼
0 and α0 ¼ π=4. First of all, let us observe the signal SOP at
the fiber output end (at z ¼ L) as a function of time. After
a short transient process, we observed that the Stokes vector
components enter a regime of fully periodic oscillations, as
demonstrated in Fig. 1. Depending on the input SOP, these
temporal oscillations may have larger or smaller amplitude.
For some input SOPs, we observed a time stationary output.
No other (for instance, chaotic, as earlier reported in the case
of isotropic fibers; see [13]) regimes were detected at least for
the limited range of pump and signal powers considered here.
Also note that, as expected and in spite of the oscillations, the
tip of the output signal SOP is, on average, attracted to a point
that is located in the vicinity of the pole ð−1; 0; 0Þ.

Figure 2 illustrates spatial distributions along the fiber
length of the Stokes components of the signal at four succes-
sive times. Here we consider the same parameters that were

used for generating Fig. 1. The four snapshots in Fig. 2 exactly
cover one period of the temporal oscillations in Fig. 1. Indeed,
the time step between the snapshots is Δt ¼ 6TNL: the first
snapshot is taken at t ¼ 30TNL and the last at t ¼ 48TNL.
Figure 2 demonstrates how the Stokes components “breath”
all across the fiber except for the input end, where the SOP is
clamped by the imposed stationary boundary conditions.

The period of oscillations of the Stokes parameters de-
creases with larger pump power, as demonstrated in the left
panel of Fig. 3. The periodic regime suddenly starts at S−

0 ¼
1:9Sþ

0 (for our particular choice of signal and pump SOPs):
below this pump power value the polarization evolution re-
gime is purely stationary. We may argue that the system ex-
periences a Hopf bifurcation; however, a detailed study of the
bifurcation diagram by methods of nonlinear dynamics is be-
yond the scope of this paper.

The practical consequence of the periodic temporal oscilla-
tions of the Stokes parameters for pump powers larger than
1:9Sþ

0 is the depolarization of the signal at the fiber output end.
In the specific case discussed here, an input fully polarized
beam with DOP ¼ 1 transforms into an output partially polar-
ized beam with DOP ¼ 0:9, as demonstrated in the right panel
of Fig. 3. Here the DOP is calculated as

DUðTÞ ¼
1
T

1
Sþ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

�Z
T

0
dtSþ

i ðL; tÞ
�
2

vuut : ð12Þ

Here, the index U is associated to a time average (over a time
interval T much larger than TNL) that is characteristic of the
previously defined Approach U. In situations where larger am-
plitude oscillations of the SOP of the output signal occur, the
corresponding DOP is further reduced and may, in principle,
even drop below 0.1, as we shall see in Subsection 3.B. From
these observations, we deduce a rather unexpected behavior
for a polarizer: namely, it transforms a fully polarized beam
into a partially polarized or even, for some choice of param-
eters, an almost unpolarized beam. Such a property of frac-
tional and deterministic depolarization of fully polarized
beams may find some interesting applications in nonlinear
photonic devices.

Fig. 1. (Color online) Stokes parameters of the signal beam at z ¼ L
as a function of time: Sþ

1 (black solid curve), Sþ
2 (red dashed curve),

and Sþ
3 (green dotted curve). Time is measured in units TNL. Stokes

parameters are normalized to Sþ
0 ; S

−
0 ¼ 3Sþ
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Fig. 2. (Color online) Stokes parameters of the signal beam inside the medium at four instants of time: (a) t ¼ 30, (b) t ¼ 36, (c) t ¼ 42, and
(d) t ¼ 48. Sþ

1 (black solid curve), Sþ
2 (red dashed curve), and Sþ

3 (green dotted curve). Time is measured in units TNL. All Stokes parameters
are normalized to Sþ

0 . Parameters are as in Fig. 1. The four snapshots cover exactly one period of the oscillations that are shown in Fig. 1.
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Note that the previously described depolarization property
of the NLP does not stand in contradiction with its main fea-
ture, i.e., the capability to repolarize light. As a matter of fact,
the present NLP does not act as a perfect polarizer, in the
sense that it only pulls input SOPs toward the vicinity of some
point, but not exactly to a given point on the Poincaré sphere.
As we shall see in Subsection 3.B, this particular NLP would
transform initially unpolarized light into a partially polarized
beam with DOP ¼ 0:74. This value is the main statistical char-
acteristic of the polarizer. On the other hand, whenever an
NLP is fed not by unpolarized light but by fractionally polar-
ized light or even fully polarized light, its performance remains
to a large extent unpredictable. Indeed, the output DOP may
turn out to be larger or substantially less than 0.74, in a man-
ner that sensitively depends on the size and location of the
spot of input SOPs on the Poincaré sphere.

In conclusion, we may note that the time scale for reaching
a stationary DOP value, as observed in the right panel of Fig. 3,
is of 1 order of magnitude larger than the time required for
entering the regime of perfectly periodic oscillations of the
Stokes parameters as shown in Fig. 1. The relatively long re-
laxation time (say, TD) toward the stationary DOP is related to
the fact that its value is virtually independent of the initial
polarization states of the beams. From our simulations, we es-
timate that TD is typically equal to 100TNL. In statistics, pro-
cesses with time-invariant mean values are characterized as
stationary. In all our numerical studies, we employed rela-
tively long observation times to make sure that the long-term
dynamics of the average values does not depend on time, as
we are only dealing here with stationary processes.

B. Response to Unpolarized Light
Let us study now the response of a fiber NLP when fed with
unpolarized light at its input. In order to numerically simulate
an unpolarized signal, we replace the previously considered
stationary boundary conditions at z ¼ 0 with the time-varying
polarization state as specified by Eqs. (7)–(11). Quite interest-
ingly, as we shall see, the repolarization capabilities of the
NLP sensitively depend upon the relative value of the input
signal modulation frequency ωm and what can be defined
as the cutoff frequency of the NLP response, or ωc ¼ T−1

NL. Just
as for the case that was illustrated in Fig. 1, a time interval of
the order of a dozen units of TNL is typically enough for reach-
ing an equilibrium (either periodic in time, or stationary) state
for the Stokes parameters of the signal and pump beams
across the entire fiber. Therefore, whenever the input signal
polarization modulation frequency is smaller than the NLP
cutoff frequency (i.e., ωmTNL ≪ 1) one obtains that the re-
sponse of the NLP is quasi-stationary. In this situation, at

any instant of time, the pump and signal beams along the fiber
are in equilibrium with each other. Such an equilibrium distri-
bution of polarization states is what we call a polarization at-
tractor. In our study, we are going to deal with both stationary
and time-periodic polarization attractors.

In Approach S (dealing with averaging the response of the
NLP over scrambled beams), the output SOP of each signal
beam from the ensemble was detected long after all transient
processes have died away and an equilibrium state (i.e., inde-
pendent of initial conditions) was established for both the sig-
nal and the pump beams. Thus, in both Approach S with
detection times T ≫ TNL on the one hand, and Approach U
considered in the limit of ωmTNL ≪ 1 and observation times
T > maxð50ωm; TDÞ (these conditions are necessary for mod-
eling the unpolarized beam at the input and at the same time
obtaining the long-term value of its output DOP) on the other
hand, we are going to deal with equilibrium states for beams
inside the fiber. Also, in both approaches, we are going to scan
the input SOPs across the entire Poincaré sphere. Thus, we
may expect that the statistical averages computed with either
Approach S or Approach U are going to be identical. By sta-
tistical averages, we mean the average values of the three
Stokes parameters of the signal and its DOP. Figure 4 shows
that the results of the two approaches are indeed relatively
close to each other: the small discrepancies may be attributed
to statistical fluctuations. The details of the statistical data
processing for Approach S are presented in Appendix A.

The mean values of the Stokes vector components in
Approach U are simply computed as the time averages:

hSþ
i ðL; TÞiT ¼ 1

T

Z
T

0
dtSþ

i ðL; tÞ; ð13Þ

with i ¼ 1; 2; 3. Next, the DOP is computed as given by
Eq. (12): the value shown in Fig. 4 is exactly the long-term
DOP ¼ 0:74 (for S−

0 ¼ 3Sþ
0 ) for initially unpolarized beams,

which was mentioned in Subsection 3.A.
Let us come back from the comparison of Approaches S

and U to consider Approach U in more detail. For example,
we may observe the temporal dynamics of the output Sþ

1
Stokes component of the signal at z ¼ L whenever its input
SOP changes adiabatically (i.e., ωmTNL ≪ 1). In Fig. 5, we
can see that the output first Stokes component is predomi-
nantly localized in the lower part of the graph. Indeed, for

(a)

(b)

Fig. 3. (a) Period (in units of TNL) of the Stokes parameter oscilla-
tions at z ¼ L versus pump power (in units of Sþ

0 ). (b) DOP versus
time for the same case as in Figs. 1 and 2.

Fig. 4. (Color online) Components of the mean Stokes vector and the
DOP of the output signal beam as a function of the relative power of
the backward beam: Sþ

1 (black solid curve), Sþ
2 (red dashed curve), Sþ

3
(green dotted curve), and DOP (blue dashed–dotted curve), for the
input SOP of the pump beam: ð0:99; 0:1; 0:1Þ. Thick (thin) curves
are calculated with Approach S (U). The Stokes parameters are nor-
malized with respect to Sþ

0 ðz; tÞ. The observation time in Approach U
is T ¼ 50ω−1

m ¼ 250000TNL and ωmTNL ¼ 0:0002. The observation
time in Approach S is T ¼ 10000TNL and N ¼ 110.
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the pump SOP considered here, the average output signal SOP
is attracted to the vicinity of the ð−1; 0; 0Þ pole on the Poincaré
sphere; see [3]. However, Fig. 5 also shows that some input
SOPs lead to strong spikes in the output SOP, indicating that
these SOPs are not attracted by the polarizer. Such events are
relatively rare. Overall, the output DOP is 0.74. Large excur-
sions of the output SOP from the attraction point can be detri-
mental whenever they occur in polarization-sensitive telecom
links. In order to avoid them, setups with larger values of DOP
should be selected, where such spikes are much less likely.
For instance, DOP can be as high as 0.99 for polarizers based
on high birefringence or spun fibers [11]. Also, in [3], the
DOP ¼ 0:9 was found for polarizers based on the telecom fi-
bers that we study here, whenever the pump beam SOP is in
the vicinity of the pole ð0; 0; 1Þ or ð0; 0;−1Þ. In this paper, we
are interested in studying the time-dependent dynamics or
transient properties of lossless polarizers, and not in their op-
timization. Therefore, high and low output DOPs are equally
good for the present purposes.

Figure 5 also demonstrates that, for the pump power value
S−
0 ¼ 3Sþ

0 , the output signal SOP predominantly exhibits oscil-
latory behavior, although intervals with a stationary response
are also present.

So far we were interested in the adiabatic regime, when
ωmTNL ≪ 1 and the counterpropagating beams are in equili-
brium at any instant of time. An interesting question is: is the
polarizer still effective with higher modulation frequencies,
i.e. whenever ωmTNL ∼ 1? In this case, signal and pump beams
do not have sufficient time to reach an equilibrium state
across the fiber. As a consequence, as seen in Fig. 6, the
DOP quickly degrades whenever ωmTNL approaches unity.
Therefore, we may conclude that it is the presence of a
steady-state equilibrium (polarization attractor) between the
signal and pump beams that enables the NLP to work. In other
words, a signal beam with an input SOP fluctuating faster than
TNL will not be effectively repolarized by the polarizer.

In addition to the previous statistical description, it is in-
structive to study how the polarizer responds to a fast burst
of the input signal SOP that is imposed on the otherwise
fully polarized signal beam. Such a burst can be modeled
by imposing a brief disturbance on the angles α1 and α2:

α1 ¼ α0 þ πsech½2:53ðωmt − 125Þ�; ð14Þ

α2 ¼ α0 −
π
2
sech½3:53ðωmt� 125Þ�; ð15Þ

with α0 ¼ π=4 and ωm ¼ T−1
NL. Figure 7 shows that the burst is

not compensated by the NLP and it survives the propagation,
so that the output Stokes component Sþ

1 is disturbed as se-
verely as the input one. However, this disturbance is as brief
as the input one. This observation means that the equilibrium
state of the signal and the pump beams that is established
across the fiber is only locally perturbed and it is immediately
recovered after the burst has passed. This resistance to fast
perturbations is a natural consequence of the fact that the
NLP cannot react faster than its characteristic response time
TNL.

In practice, the NLP response time may be controlled by
varying the input signal power. Therefore, at least in principle,
an input polarization burst of arbitrary short temporal dura-
tion (say, Tb) may always be compensated by the NLP as long
as the input signal power becomes sufficiently large (so that
Tb > TNL). Such a situation is presented in Fig. 8, where we
display the output value of the Sþ

1 parameter as a function of
the signal power (measured by the number of nonlinear
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Fig. 5. The first component Sþ
1 of the input and output Stokes vector of the signal beam as a function of time: (a), (b) input; (c), (d) output. (b) and

(d) are the exploded views of (a) and (c). The first Stokes component is normalized with respect to Sþ
0 ðz; tÞ. The observation time T ¼ 50ω−1

m ;
ωmTNL ¼ 0:0002; S−

0 ¼ 3Sþ
0 .

Fig. 6. (Color online) DOP of the output signal beam as function of
the pump power for different values of the product ωmTNL: 0.0002
(black solid curve), 0.02 (red dashed curve), 0.2 (green dotted
curve), and 1 (blue dashed–dotted curve). The observation time is
T ¼ 250000TNL.
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lengths in the total fiber length L). As can be seen, whenever
the input signal power is small, the burst propagates through
the fiber almost undistorted. However, as the signal power
grows larger, the burst is almost entirely annihilated. This
compensation is due to shortening of the effective response
time TNL, which gradually becomes shorter than the temporal
duration of the burst. This plot shows an excellent agree-
ment with the experimental plots presented in Section 4
(see Fig. 12).

4. EXPERIMENTAL RESULTS
In this section, we present an experimental validation of the
transient response of the telecom fiber-based NLP that was
described in Section 3 by means of numerical simulations.
Figure 9 illustrates the experimental setup. The polarization
attraction process takes place in a 6:2 km long non-zero
dispersion-shifted fiber (NZDSF). Its parameters are: chro-
matic dispersion D ¼ −1:5 ps=nm=km at 1550nm, Kerr co-
efficient 1:7W−1km−1, polarization mode dispersion (PMD)
0:05ps=km1=2. At both ends of the fiber, circulators ensure in-
jection and rejection of the signal (pump). The 0:7W signal
(1:1W counterpropagating pump) wave consists of a polar-
ized incoherent wave with spectral linewidth of 100GHz
and a central wavelength of 1544 nm (1548 nm). Note that
the spectral linewidth of the signal and pump waves is large
enough to avoid any Brillouin backscattering effect within the
optical fiber. While the pumpwave has a fixed arbitrary SOP, a
polarization scrambler is inserted to introduce random polar-
ization fluctuations or polarization events in the input signal
wave. Finally, the signal is amplified by means of an erbium-
doped fiber amplifier (EDFA) before injection into the optical
fiber. At the fiber output, the signal SOP is analyzed in terms of
its Stokes vector, which is plotted on the Poincaré sphere by
means of a polarization analyzer. In order to monitor the po-
larization fluctuations of the signal wave in the time domain, a

polarizer is inserted at port 3 of the circulator before detection
by a standard oscilloscope.

Figure 10 illustrates the polarization attraction efficiency in
Approach S. At the input of the fiber, the SOP of the signal
randomly fluctuates on a millisecond scale by means of the
polarization scrambler. That is to say, we inject a set of N ¼
128 beams fully polarized but all with a random SOP. Conse-
quently, on the Poincaré sphere, all the points are uniformly
distributed on the entire sphere [Fig. 10(a)]. To the opposite,
whenever the counterpropagating pump wave is injected
[Fig. 10(b)], we observe an efficient polarization attraction
process that is characterized by a small area of output polar-
ization fluctuations, indicating that the SOP of the output sig-
nal is efficiently stabilized. The signal DOP is thus increased
by the NLP from 0.15 in Fig. 10(a) to 0.99 in Fig. 10(b).

A. Polarized Signal Beam
As predicted in Section 3, temporal oscillations or even chaos
can be observed during the attraction process in a telecom-
fiber-based NLP. Indeed, even if the input signal has a con-
stant SOP and a DOP near unity, closed trajectories can be
monitored onto the Poincaré sphere at the output of the
NLP, which leads to a slight decrease of the DOP. An example
of this phenomenon is presented in Fig. 11. A 700mW CW in-
put signal, which is fully polarized (DOP ¼ 1, i.e., no input
time fluctuations) is injected into the fiber. As can be seen
on the Poincaré sphere [Fig. 11(a)] as well as on the Stokes
parameters [dashed lines in Fig. 11(c)], the input signal SOP is
stationary in time. Quite to the opposite, whenever the 1:1W
counterpropagating pump wave is injected into the fiber, a cir-
cularlike trajectory can be observed on the signal SOP at the
NLP output [Fig. 11(b)]. This corresponds to periodic tempor-
al oscillations of the output signal wave Stokes parameters
[Fig. 11(c), solid curves). The periodic evolution of Sþ

1 , S
þ
2 ,

and Sþ
3 with a temporal period around 180 μs, which

Fig. 7. (Color online) The first Stokes component of the signal beam
at the input (red dashed curve) and output (black solid curve) of the
medium as a function of time. The polarization burst imposed on the
otherwise steady-state input SOP is described by Eqs. (14) and (15).
S−
0 ¼ 3Sþ

0 .

Fig. 8. Illustration of the burst annihilation: the first Stokes compo-
nent of the signal beam at the output of the medium as the function of
time for increasing values of the signal power (from bottom to top).
T0 ¼ L=v.

Fig. 9. Experimental setup.
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corresponds to 60 TNL. We have, therefore, experimentally
confirmed the so far unexpected behavior that an NLP can
transform a fully polarized wave into a partially polarized
beam with periodic polarization oscillations, in good agree-
ment with the theoretical predictions of Subsection 3.A.

B. Burst Annihilation
To experimentally highlight the transient stage of the attrac-
tion process, we recorded the evolution of a fast polarization
event as a function of signal power, that is to say, as a function
of TNL. More precisely, a 30 μs polarization burst was gener-
ated on the signal wave by means of the polarization scram-
bler. The burst was then injected into the fiber along with the
counterpropagating pump wave. At the output of the fiber, we
finally detected the burst profile in the time domain thanks to
a polarizer. The evolution of the burst was then recorded on
both axes of the polarizer as a function of signal power for a
constant pump power of 1:1W. The experimental results are
illustrated in Fig. 12.

First of all, we may observe a perfect complementarity be-
tween the evolution of the burst of both axes, which provide a
general overview of the attraction process. At low signal
powers (10mW), the nonlinear length (55km) is much longer
than the fiber length (6 km), so that no attraction process can
be developed. As the signal power is increased, the nonlinear
length decreases until it reaches the fiber length for signal
powers of around 70mW. At this point, the nonlinear response

time TNL is close to the burst duration and the attraction pro-
cess begins to develop. A transient regime can then be ob-
served with the formation of a short spike on the falling
edge of the burst and even slight oscillations, in good agree-
ment with the theoretical predictions of Fig. 8. As the signal
power is further increased, the nonlinear length decreases be-
low 1 km and the polarization attraction process acts in full
strength in order to entirely annihilate the polarization burst.

The previous results are confirmed by calculating the ratio
of energy on both axes contained in the polarization burst
(Fig. 13). Starting with half of the energy on each component,
the attraction process leads to the pulling of 95% of the entire
burst energy on the 0° axis of the polarizer.

A similar behavior was also experimentally observed when-
ever the pump (as opposed to the signal) power was in-
creased. Figure 14 presents two examples of compensation
of a 30 μs 630mW polarization burst as a function of pump
power. As in Fig. 12, the burst profile was detected at the out-
put of the fiber in the time domain thanks to a polarizer. Once
again, a transient regime can be observed with the formation

Fig. 10. (a) SOP of the input signal. (b) SOP of the output signal.

Fig. 11. (Color online) (a) SOP of the input signal. (b) SOP of the
output signal. (c) Stokes parameters as a function of time (dashed
curve, input; solid curve, output).

Fig. 12. Evolution of a signal polarization burst as a function of sig-
nal average power and detected at the output of the fiber behind a
polarizer: along (a) the 0° axis and (b) the orthogonal axis.

Fig. 13. Ratio of energy on 0°=90° axes contained in the polarization
burst.
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of a short spike on the falling edge of the burst. As the pump
power increases, around 10 of nonlinear lengths are covered
in the fiber, so that the polarization attraction process acts
in full strength in order to entirely annihilate the polarization
burst.

5. CONCLUSION
In this paper, we studied by both numerical simulations and
experiments the transient behavior of telecom fiber-based
lossless polarizers. Our main interest is to define the regime
for stable long-term behavior of these devices, i.e., when the
process of polarization attraction is statistically stationary. In
this regime, the statistical characteristics of the polarizer
(mean SOP and DOP) do not depend on time and, therefore,
represent its universal characteristics. For the polarizer to be
in a stationary regime, it is sufficient that the observation time
is much longer than the average time that characterizes the
time scale of fluctuations of the input signal SOP: ωmT ≫ 1.

We found that the most important time scale to characterize
an NLP is its response time TNL. The polarizer exhibits the
best performance when fed by signal beams whose input
SOP varies in time slowly with respect to its response time.
On the other hand, its performance degrades when the rate
of fluctuations of the input SOP approaches the characteristic
response time TNL. For even faster fluctuation rates, the po-
larizer is no longer able to perform its function.

For signal power around 1W and typical for telecom fibers
nonlinear coefficients γ ∼ 1 ðW · kmÞ−1, the nonlinear length
LNL ∼ 1 km and the corresponding response time TNL ∼ 3 μs.
For a nonlinear photonic crystal fiber with γ ¼ 0:1 ðW ·mÞ−1,
as used in [14], the response time can be reduced to 30ns. For
tellurite photonic crystal fiber with γ ¼ 5:7 ðW · mÞ−1, as used
in [15], the response time drops below 1 ns. Overall, higher
nonlinear coefficients and correspondingly shorter fibers, like
those proposed in [11], are more favorable in applications
where the SOP of the signal beam varies faster than 3 μs.

APPENDIX A: CALCULATION OF THE
STATISTICS OF THE STOKES VECTORS IN
APPROACH S
As explained in the body of the text, for calculating the re-
sponse of the NLP in Approach S, we used N ¼ 110 or 420
signal beams with different SOPs uniformly distributed over
the Poincaré sphere. Then we computed the polarization evo-
lution along the fiber for each of these N realizations, where a
pump beam with constant SOP was launched from the oppo-
site end of the fiber. For each realization, we measured Sþ

1 ðLÞ,
Sþ
2 ðLÞ, and Sþ

3 ðLÞ. At the end of the simulations, we calculated
the mean values:

hSþ
i ðLÞi ¼

1
N

XN
j¼1

½Sþ
i ðLÞ�j ; ðA1Þ

where i ¼ 1; 2; 3. In this form, these averages do not define the
mean direction of the Stokes vector on the Poincaré sphere,
simply because the sum of squares of these means does not
yield the square of the power, ðSþ

0 Þ2. The length of the vector

satisfies the inequality
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSþ

1 ðLÞi þ hSþ
2 ðLÞi þ hSþ

3 ðLÞi
q

≤ Sþ
0 ,

and can even be zero for unpolarized light.
However, the information that is contained in the three

means is sufficient to restore the direction of the Stokes vec-
tor and, moreover, to quantify the degree of polarization of the
outcoming signal light. The two angles θ0 and ϕ0 (also called
circular means) that determine the direction of the Stokes vec-
tor on the Poincaré sphere are defined as

θ0 ¼ arccos

0
B@ hS3iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hSþ
1 i2 þ hSþ

2 i2 þ hSþ
3 i2

q
1
CA; ðA2Þ

ϕ0 ¼ a tan 2ðhSþ
2 i; hSþ

1 iÞ: ðA3Þ

Here,

a tan 2ðx; yÞ ¼

8>>>>>><
>>>>>>:

arctanðy=xÞ x > 0
π þ arctanðy=xÞ y ≥ 0; x < 0
�π þ arctanðy=xÞ y < 0; x < 0
π=2 y > 0; x ¼ 0
π=2 y < 0; x ¼ 0
undefined y ¼ 0; x ¼ 0

: ðA4Þ

Finally, the Cartesian coordinates of the Stokes vector are
restored as

�S1 ¼ Sþ
0 sin θ0 cosϕ0; ðA5Þ

�S2 ¼ Sþ
0 sin θ0 sinϕ0; ðA6Þ

�S3 ¼ Sþ
0 cos θ0: ðA7Þ

These values characterize the SOP, while values displayed in
Fig. 4 are simple ensemble averages given by the formulas
in Eq. (A1).

Fig. 14. Two examples of polarization burst evolution as a function
of pump power and detected at the output of the fiber behind a po-
larizer. In contrast to the rest of the paper, here the nonlinear length
LNL is defined in terms of the pump power.
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The DOP is defined as

DS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSþ

1 i2 þ hSþ
2 i2 þ hSþ

3 i2
q

=Sþ
0 : ðA8Þ

This is the DOP that is used in Approach S, and for this reason
supplied with index S. Its values are displayed in Fig. 4.
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