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Viscoelastic solids with unbounded relaxation function
C. Giorgi and A. Morro

Linear viscoclastic solids are considered where the relaxation - function is
unbounded in that the initial value of the function and the derivative may
be infinite but the function, freed trom the equilibrium modulus, is in-
tegrable. The second law is given a general form for approximate cycles and
then for cycles. Thermodynamic restrictions are derived in connection with
cycles and shown to be equivalent to those obtained for bounded relaxation
functions. Then the thermodynamic restrictions are shown to be also suffi-
cient for the validity of the second law in the general case of approximate
cycles. Finally, a functional is considered which proves to be endowed with
the characteristic properties of the free energy.

1 Introduction
The model of linear viscoelastic solids rests upon the constitutive relation

T(:) = GoE(1) + | G'(s) E(s — s) ds (1.1)
0

where T is the Cauchy stress tensor and E is the infinitesimal strain tensor.

The (fourth-order) tensor Gy is called the instantaneous elastic modulus and
the tensor function

5

G(s) =Gy + | G'(u) du,
0

on R*, is called relaxation function. It is usually understood that G, and
Go = G’(0) are bounded tensors while the Boltzmann function G’ is absolute-
ly integrable, namely G'€L'(R¥). Yet there are indications that sometimes
such boundedness conditions are overly restrictive.

An indication that G’ may have singularities arose from some rheological
models motivated by molecular behaviour [1—3]. This is the case, for instance,
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of polymer solutions where macromolecules are modelled as freely-jointed
beadrod chains. Another indication came from experimental work of Laun [4]
whereby it seems that for certain materials the unboundedness of G, and/or
Gp has to be allowed.

On the mathematical side a great deal of interest has been attracted by the
suggestive properties of the solution to the Rayleigh problem. In particular
Narain and Joseph [5] have investigated the Rayleigh problem, in the one-
dimensional case, in the form of step jumps in the velocity or displacement
of the boundary of an incompressible fluid in a shearing motion. They have
found that the discontinuity propagates into the interior with a speed vGy/p,p
being the mass density, if the values Gy, Gy are both finite. If Gy is finite but
Gy = — oo, then the boundary of the support of the solution still propagates
with the speed VGy/p. If Gy is finite but Gj vanishes then the amplitude of
the discontinuity turns out to remain constant as it happens in nondissipative
bodies. Finally, in the case Gy = o the fluid shows a parabolic behaviour in
that the discontinuity is felt instantaneously throughout the fluid. Quite
analogous results have been derived by Narain and Joseph [6] for viscoelastic
solids.

In these and similar investigations various assumptions have been con-
sidered for the relaxation function. For instance, monotonicity of G on R™
while being an element of a suitable fractional Sobolev space [7] or
monotonicity of G, G’ and a proper behaviour of G at infinity [6]. While such
conditions are well motivated by technical reasons, there are indications [8]
that they may be too restrictive.

Also from a physical viewpoint, it seems natural to ask about the possible
restrictions, on the relaxation function, placed by thermodynamics. For bound-
ed relaxation functions this question has been completely solved in [9], cf. also
[10]. In this paper we determine necessary and sufficient conditions, on un-
bounded relaxation functions, for the validity of the second law. Then we
establish the expected connection with the analogous conditions for bounded
relaxation functions. Finally we consider a functional which, owing to the ther-
modynamic restrictions, enjoys the properties of a free energy.

The type of unboundedness we mean and the thermodynamic framework
are made precise in the following sections.

2 Constitutive model

Consider the viscoelastic solid as described by (1.1) where G’ need not be an
element of L'(R*). Let G, = lim G(s). Then it is convenient to introduce

§—-00
G(s) = G(s) — G, and to express the constitutive equation in terms of G
and G.. An integration by parts of (1.1) yields

T(1) =GLE() + | G()E(r —5) ds @.n
0
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where the superposed dot denotes the time derivative. To (2.1) we associate
the constitutive assumptions on G

GeL'(R"), G, bounded. (2.2)

Accordingly, we let both Gy and Gg be unbounded but require that the possi-

ble singularity of G(s) at s = 0 be integrable. Of course, in dealing with solids
we have to require that

G, >0 (2.3)

namely G, is positive definite. The strain E and the stress T are allowed to
depend on the particle (position) under consideration. Such dependence is
understood but not written.

The domain of the functional (2.1) is the set of continuous strain histories
E‘ on R* whose values are elements of Sym, the space of symmetric tensors.

>.m usual we let E'(s) = E(r —5),E(-) being the strain function on R. Any
history E' is taken to be differentiable in time,

il _ d (e
E'(s) s E‘(s)
in the distributional sense.

The state of the body, at time 1, is given by the history E’. The evolution
of the body in a time interval [r,,1,] is determined by the process P = E in
that interval; P may be regarded as piecewise continuous or square integrable.
For formal simplicity, usually we let [0,d) be the domain of the process. For
any history E°, the application of the process P results in the history E¢
given by :

E4(s) = EY(0) + [¢=* P(1)d1, s5€(0,d)
E’(s —d), s€(d, ).

It is usual to write o(E", P) to denote the state produced by applying the
process P to the initial state E°. We say that a process is closed if
dP(1) dt = 0, namely E(d) = E(0). To make the pertinent expressions more
immediate, henceforth we write E, rather than P, for the process.

3 Strain histories space and norm

We assume the existence of a positive-valued function h€L'(R*), monotone
decreasing, such that

|G(a + 1)| = yh(a) h(1), Vo, T€R* @3.1)

for a suitable constant y. Two examples show that the assumption (3.1) is not

severely restrictive. First, consider G such that

i:f
+ 5)2

G(s)| < —
|G(s)| = a
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where a > 1 and k is bounded on R* and positive-valued. As it must be,
GeL'(R*). Let y be the maximum of x on R*. Then

k(o + 1) 4 Y
= L  _=yh(a)h(7)
S+Q+$~=M:$+3+£ + P ! .

|1 +20) (1 + 20"

provided only that we take h(s) = (1 + 2s) ~% This makes (3.1) to hold. Se-
cond, let

|G(5)| = k(s) exp(—as)

where >0 and K is bounded on R and positive-valued. Letting
h(s).= exp (—as) we have

k(g +T)exp[— (@ + D] = yh(a) h(7)
and then (3.1) holds.

Through the function A, to any history E' we associate the norm LHE NIa
given by

IE“ |} = | E‘(0)|? +°_ h(s) | E'(s)|*ds.
Henceforth we confine our attention to the set of histories
#=(E':R* — Sym,||E'lx < ]
which then is a normed space. Incidentally, constant histories E'(s) =E
belong to # and |E'[, =|E|. The set # is the state space.
To each closed process E, of duration d, and strain E, we associate a
(unique) periodic history Z on R* defined as
& (0) = E,,
&(s) =E(s —md), s€(md,(m+1d), m=01,.... (3.2)

In words, & is obtained by applying infinitely many times the process E w0
the strain Eg. For later convenience we show two properties of &

I) If E is piecewise continuous (and hence bounded, |E| = k) then &€ A
For,

__w__wn_mo_:m‘_::mi_g < | Eo|? +»~ME:& < o.

II) If E€L?(0,d) then &€ 7
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._ucr by the definition of -, the properties of h and some rearrangement
we have

o 2 = Az—l»v_vn .
1 £ 08 =1E|* + MU ,Mm h(s)|E(s — md)|*ds

m=0)

®
=|Eo|* + MU m‘.:+=:$_m::~&ﬂ
0

m=0

e d
S|Eol2+ Y h(md) [|E(D) dr.
0

m=0

The integral is finite because E€L*(0,d) and the series converges because
:mh“:ﬁ.v. Hence || % ||, < . Accordingly, if E is closed and is an element
of L2(0,d) then, for each strain E,, the corresponding periodic history Z is
admissible, that is £ ¢ #

The properties | and I1 allow us to say that the results of the present paper
hold for both piecewise continuous and square integrable processes.

The constitutive functional (2.1) is continuous in the norm of Z which
amounts to the requirement of the fading memory principle. For, by (3.1) with
t =0 we have |G(s)| < yh(s) and then

B

IT(E)| =|Gal |E(O)] + § vh(s)|E'(s)|ds
0

where T(E') stands for the functional (2.1). By applying the Schwartz in-
equality, .

9

= 8 ® 12 />
._ h(s)|E'(s)|ds = Q h(s) &v Am \_E_m;:_{hv_ . (3.3)
( 0 -

and letting H?> = [§° h(s)ds we have
IT(EY| = maxl| G|, yHI[|E],

the maximum being finite because heL'(R*) and G, is bounded.

4 Approximate cycles and second law

rnw ﬂo .cn a given initial state and nmh;o..: a given process. A pair
Am.“mv is called a cycle if o(E®,E) = E®. Of course E must be closed for
(E% E) to be a cycle. In viscoelasticity cycles are quite rare. Then it is impor-
tant to characterize neighbourhoods of a given state.

. rn.p &ANJ stand for the v-neighbourhood of E‘ which consists of the
r_mﬁo_,mnm _.u. such that [|[E' — E'[, < v. A pair (E% E) is called v-approximate
a.a_n if ma_m closed and o(E° E) € &,(E°). Since E is closed then the initial
history E” and the final history EY have a common value at s =0, ie,
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E4(0) = E°(0). Accordingly E¢¢ ,(E’) means that
f h(s)|E4(s) — E%(s)|%ds < v.
0
With these notions we state the second law as follows.

Second law. For every & >0 there exists vg > 0 such that

d
[ T(r) E(nydr> —¢ 4.1)
0

for every v -approximate cvcle (E°, E) in [0,d].

The particular case of cycles corresponds to & = 0, v =0. Specifically we
can write

Second law for cycles. The inequality
d .
{T()-E()dt>0 (4.2)
0

holds for any non-constant cycle AMo.mv in [0,d].

Of course, if E' is a constant history then (4.2) is replaced by a trivial
equality.
5 Thermodynamic restrictions

The constitutive functional (2.1) must comply with the general statement 4.1)
of the second law. Meanwhile the statement (4.2) must hold in the particular

case of cycles. Then, to begin with we determine some consequences of the .

second law for cycles. Such consequences involve the half-range Fourier cosine
and sine transform of G. For any real-valued function f€ LY(R*) we define
the half-range Fourier cosine and sine transform f. and f; as

@™

folw) = § flu) coswudu, filw) = [ flu)sinoude, w€R™.
0 0

The Fourier transform fr of f€L'(R™) is defined as
frlw) = § flu) exp (—iwu) du.
0

Letting a star * denote the complex conjugate we have f (@) =fr(—w).
We denote by a superscript T the transpose of a fourth-order tensor, I' say,
such that

A-TB=B-I"A

for any pair of symmetric second-order tensors A, B.
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Theorem 1. The second law of thermodynamics holds only if
G. = GL, (5.1)

G.(w)>0, VweR™". (5.2)

Proof. Letting E,, E, € Sym, consider the periodic tensor function

E(t) =E,coswt + E;sinwr, weR™™.

.mo_. any finite value of w the history E'is an element of ,Z Since the period
is 2n/w, to fix ideas we let d=2n/w. In view of (2.1), substitution in 4.2)
and integration with respect to ¢ yields

mu. Aos - A..m.Nu.ov m_ + E.”m_ 2 Wwﬁﬁev m_
+E G(w)Es + Ey- (G(w) — G/ (@) E]>0. (5.3)

The limit case w —0 and the arbitrariness of E,, E, imply the symmetry
of G.. Accordingly, letting E, = E, we conclude that G,(w) must be positive
definite for any non-zero, finite w. O

Remark. By (5.3), and (5.1), it follows a condition on G which is stronger
than (5.2). In fact, it simply follows that the formal tensor

—ﬂ“ A 1@6 WAﬁcwuﬂ|A‘.l-ﬂvv.
1(GI -Gy G

on pairs of Snmonm'w_ Sym, is positive definite. This means that ther-
modynamics allows GI — G, to be non-zero but forces it to be ‘‘smaller’”
than G.. The positive_definiteness of K can also be expressed, in terms of

> =i(G, +iG,) and E =E, +E,, by
FIE*-ZE] >0
for any non-zero E.

We have just seen that the properties (5.1), (5.2) are necessary conditions
for the validity of the second law. Then we can regard the model of
viscoelastic solids as being characterized by (2.1), (2.2), (2.3) along with (5.1).
Yet the proof of Theorem 1 has shown that really, even in the particular case
of time-harmonic histories, the second law leads to the inequality (5.3) which
is stronger than (5.1), (5.2) and involves also the half-range Fourier sine
transform of G. It is (5.3) that proves to be sufficient for the validity of the
second law.

When the viscoelastic solid is described by the standard relation (1.1), with
G’eL'(R*), the thermodynamic restrictions involve the half-range Fourier

sine transform G;. Precisely, the thermodynamic restrictions are shown to be
expressed by [9]

E,: (G{ — Go) E; —E; G} () E| — E; G{(w) Ey
—E (Gi.(w) = GT(w))E, >0, VweR™ , (5.4)
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whence

Go =G{, - (5.5)
G. =GL, (5.6)
G, (w) <0, VweR™™ . (5.7

Of course (5.4), and then (5.5)—(5.7), are derived in connection with cycles
corresponding to time-harmonic evolutions of the strain.

Compatibility of the approach for G e¢L'(R*), with that for G'¢ L' (R")
requires that the condition (5.3) be equivalent to (5.4), obviously by allowing
G e W!''(R*). To show that this is so we make use of the following proper-
ties. If Ge WHI(R*) then

wG.(w) = =G} (w), VwER (5.8)
and
wG,(w) =Gy — G + G.(w) VweER. (5.9)

The proof is immediate. For, since G’ is integrable we can consider
G)(w), w€R. An integration by parts gives
G (w) = m G’ (u) sin (wu)du = —w m [G(u) — G]cos wudu,

0 0

namely the property (5.8). Similarly we have

Gl (w) = m G’ (u) cos (wu) du = [G(u) — G,|coswu|y
0

+w m [G(u) — G,]sinwudu
0

whence (5.9) follows. An immediate substitution proves the desired
equivalence.

6 Sufficiency of the thermodynamic restrictions

Back to the model (2.1) it is natural to ask whether (5.1), (5.2), and possibly

(5.3), are sufficient for the validity of the second law for approximate cycles.

The question is not trivial because (5.3) arises in connection with a particular

set of cycles. The sufficiency would mean that, for linear viscoelasticity, all

thermodynamic features are contained in the behaviour along cycles and,

moreover, that among cycles it is enough to examine time-harmonic evolutions.
As a first step we show the following property.

Theorem 2. If G sarisfies (5.3), and hence (5.1)—(5.2), then the inequality
(4.2) holds for every periodic history, with period d.
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Proof. Let E: R —Sym be periodic with period d. Then by (5.1) we have

d
| E(r) - GLE(1) dt = 0.
0

This follows immediately by observing that, by (5.1),

. d|!
E(1)- GLE = — | —E() G E
(1) (r) o (1) (1)

Accordingly

0 0

d ) d so . .
L:= [T E(d=] AM G(s)E(r — :&v -E(1) dr.
0
Since E(-) is periodic we can write

E(1) = MU A, cos kwt. + By sin kwt
k=0

where w = 2m/d. Substitution allows the work L, in [0,d], to be written as

d £ i
L=w? _. dt .,. ds M [ — Agsinkwt + By cos kwr].
0 0
kh=1
G (s) [— Ay sin hwt coshws + Ay cos hwt sin hws + By cos hwt cos hws
+ By sin hwt sin hws]).

Term by term integration of the double series with respect to ¢ shows that the
only non-zero terms are those with 4 = k. Then integration with respect to s
yields

L=nw Y [Ac G, (kw) Ay + B~ G (kw) B, + B, (G, (kw) — GT(kw)) Ail.
k=1

In view of (5.3), since not all A, B, can vanish we conclude that L > 0. (I

To prove that the second law for approximate cycles holds it is convenient
to introduce appropriate strain histories. Given a history E%¢ # and a closed
process E of duration d, let E' be the corresponding history at time ¢ € [0, d].

We define E;, n=20,1,2,..., in the form
3 E'(s), s€[0,r),
Ei(s) = {E'(s —md), se[(m—-1)d+1t md+1t), m=1,...,n,

E'(s — nd), s€[nd + 1, ®).

Of course, mm = EF,



160 C. Giorgi, A.Morro

Let mii um“_: — 1). For any 1€ [0,d] we have mis = m:: e mL:.
This 56:8 that
mr+_§ E,(0), m=0,1,... (6.1)

Meanwhile, since ma_iﬁ.v Hms?.v, t€[—md,d], m=0,1,..., then

ELpi(s) =EL(s), se€l0,r+md], m=0,1,... (6.2)
Moreover, by ms_tﬁv = m:.: +d), t€(—o,—md], m=0,1,..., we have
siavlm_alaf s€lt+md, ®), m=0,1,... (6.3)
Quite naturally we define the history mr
E. = lim E..

The history E', is periodic, with period d, and E% = E%. This means that
Am ,E) is a cycle.
Observe that

@

mas M 3+_ |m“~_v

Then by :.n Em:::nm E'=Ej = Ej — E', + E, we have
E'= MU (Epi — Ep). (64

We are now able to show that (5.3) implies the validity of the second law
for approximate cycles.

Theorem 3. If G sarisfies (5.3), and hence (5.1)—(5.2), then the second law
for approximate cycles holds.

Proof. Consider a v-approximate cycle (E°, E) of duration d. Let E' be
the corresponding state at time ¢ € [0, d]. By (6.4) and the linearity of the stress
functional we can write

T(E) = T(E%) - M T(Eps1 — En).

Then the work L along the approximate cycle Amc.mv is given by
L=Lc—-L, (6.5)

where

& ol . = — .
= TEL) Emd, L=} _ﬁms: —Ep) - E@) dr
lo
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By Theorem 2, Lc >0 in that it is the work performed along the cycle
(E%,E). By (6.1), the present value E! ¢ +1(0) —E(0) vanishes and hence

d > a
: E(r)- G (s) [Epy i (5) — Eb(s)]dsdr.

uMs

By (6.2) and (6.3) we have

® d o . i =
Li= Y § § E@-G(s)[En(s —d) — Ep(s)]dsdr

0 md+t

m=0

whence, by the definition of Mr
b n\ od . - . ._
=Y [ § E® GOIE(= (m+1)d) - E'(s —md)]dsdr.
00 md+
Now observe that

E'(s— (m+1)d) =E4s —1-md),
E'(s —md) = E's —t—md),

for ‘any s>md+1t,1€[0,d], m=0,1,.... The change of variables
s—og=s—md—t and t =1 =md + r yields
®  (m+l)d ®
=Y | _m:lac G(o + 1) [E‘(0) — E*(0)]dodr
md

0

m

whence, in terms of Z (cf. (3.2)),

Cemyg

_ #(1)- G(o + 1) [E%(0) — E°(0)]da dr.
0

Now ma, E°, Z are admissible histories with E4(0) = E’(0) = £(0). Then,

in view of (3.3),

|L4l S J vh(a) | E(a) — E*(a)| ()| £ (7)| da dt
0

< V|E = E° (| £l -1 £ (0! “om h(s)ds.

Letting ¢ = (| ||} —| £ (0)|>)"? [§ h(s) ds and using (6.5) we can write
LzLc—c|E!—E%, > —c|EY = E°lls.
Since (E°,E) is a v-approximate cycle then

IE! - E%ls =
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Hence, letting ¢ = v¢, we have
L> —e.

So the second law for approximate cycles holds with v =¢/c. O

7 Free energy

A functional is now examined, which takes the meaning of free energy, in con-
nection with histories E* in L*(R™) while the values of the function E(r)
are bounded on R. Such a functional is reminiscent of analogous ones con-
sidered in [11], § 4, and [12].

Let W(E') be the work performed by the stress tensor in connection with
the history E’, namely

t
W(E') = | T(E")-E(1)dr.
Consider strain histories on R* associated to functions which are constant up
to r = 0, namely
E'(s) =Ey, sz

we denote by % C # the set of such histories. Correspondingly we have

W(E) = [ E(1)- | GLE(1) + | G(5) E'(s)ds | dt
0 0

=1E(1) GLE(1) =} EgG.Es + [E(1)- | [ G(s) E*(s)ds | dr.
0 0

This suggests that we consider the energy functional
F(E") :=} Eg- GuEo + W(E")
U . r - .
=1E() GLE() + [|E(1)- | | G(s)E*(s)ds | dr
0 0
which is well defined on #;. For formal convenience we take the function
E(7) to be constant after time r, namely
E(og) =E(1), o=t
Meanwhile we extend the range of G to R~ by letting
G(s) =0, s<o0. .1
Then we can write

\:.wru_m:v _ G(s)E(s)ds | dr = _s | E()- G(s)E(r — 5) dsdr.

<
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The integral on s is the convolution of G and E. Hence

m G(Gs)E(r—s)ds = g_ _ OlEvmlevmxvtac:&E
200 N -=

Integration on t yields

. I 2. " 8
F(E) = = | Ef(w)- Gp(w) Ep(w) dw.

2N - =

Since ﬂl:; =G (w) — _OLEV and G AEV is odd in w we have
_

F(EY = . _ Ef(w) G (w) Ex(w) dw.

Incidentally, since
¥ {

ml.twn _ mﬁkvnxvpleuv.\uunxvnl_.E: _ m_:vnxvtsq?:
0 ]

=exp (—iwr) :.ﬂ;E:*

we can write

F(EY) = . _ [Ex(w)]* - Go(w) [Ef(w)]dw,

which makes it explicit that . is a functional of £
The condition (5.2) makes 7 to be strictly positive for any non-zero func-
tion E. Then

F(EY) = E() - GLE(W) + A(E) 2 JE(1) - GLE().

We now show that .7 is endowed with the characteristic properties of the free
energy.

Letting ¢(E) =35 E- GLE we can write

-

F(EY) z 0(E(). (7.2)

This means that w_:osm the histories ending with the value E(s) the constant
history E' _has the_minimal value of .

Let T(E) = T(E") be the value of the functional T(E') when E‘(s) =
s€R™, namely
T(E) = G.E
It follows immediately that

3 = s =
% (E) = T(E). (1.3)
mmﬁv (E)
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For any ¢, t» in (0,7), 1, < t, let

I

;= T(EY) E(r)dr
L

= _“ﬁma.m:vﬁu [ T(E")-E(r)dr.
0 0

Hence

i (E) = W(E?) - W(E").

We can view 7. (E') as the work of the stress T in passing from the
history E to the history E". It is immediate to see that

F(E%) - F(E") =77 (E). (7.4)
Two more properties of .5 hold. One property is
7. (E") z ¢ (E()) — ¢ (E(1)),

where equality holds if and only if E(t) =0, vr€ (ty,1). To show that this
is so observe that, by (7.4), .

0<tf<n<t, (7.5)

Lot . .
7 (EY) =} E(1)-GoE(1) =} E(1))- GLE(1)) + | [E(7)- G(s) E(r —s)dsdr.
60
The integral may be viewed as .# evaluated in conjunction with functions
E(r) which are constant outside the interval [r),7]. Then the integral is
positive and (7.5) follows.
The other property is

3.7 (E" f .
N g "\H ' —3 t T
(D (E") = GLE(1) + o_ G(s)E‘(s)ds, 1>0. (7.6)

For,

F(E") =1 Ey- G E) + GTJ:S. E(7) dt.

Upon integrations by parts we have

F(E') =1Eg- G.E)+ [T(E")- E(1)]f — c_fﬁms. E(7)dr
=T(E" - E(1) sc?na_..“:v + Mwﬁl s)E(s)ds]- E(7) dt
=T(E")-E(1) =} (E(1) — Eg) - G (E(1) — Eg)

oo

- JE()- | G"(tr - s)E(s)dsdr.

0 —~ o

The integral is independent of the value E(r) and then (7.6) follows.

Viscoelastic solids with unbounded relaxation function 165

Reference

w

e

n

Cs

Rouse, P. E.: A theory of the linear viscoelastic properties of dilute solutions of
coiling polymers. J. Chem. Phys. 21 (1953) 1271

Zimm, B. H.: Dynamics of polymer molecules in dilute solutions: viscoelasticity,
flow birefringence and dielectric loss. J. Chem. Phys. 24 (1956) 269

Curtiss, C. F.; Bird, R. B.: A kinetic theory for polymer melts. I. The equation for
the singlelink orientational distribution function. J. Chem. Phys. 74 (1981) 2016
Laun, H. M.: Description of the non-linear shear behavior of a low density
polyethylene melt by means of an experimentally determined strain dependent
memory function. Rheologica Acta 17 (1978) 1

Narain, A.; Joseph, D. D.: Linearized dynamics for step jumps of velocity and
displacements of shearing flows of a simple fluid. Rheologica Acta 21 (1982) 228
Narain, A.; Joseph, D. D.: Classification of linear viscoelastic solids based on a
failure criterion. J. Elasticity 14 (1984) 19 .

Renardy, M.: Some remarks on the propagation and non-propagation of discon-
tinuities in linearly viscoelastic liquids. Rheologica Acta 21 (1982) 251

Fabrizio, M.; Morro, A.: Mathematical problems in linear viscoelasticity. To appear
Fabrizio, M.; Morro, A.: Viscoelastic relaxation functions compatible with ther-
modynamics. J. Elasticity 19 (1988) 63

Fabrizio, M.; Morro, A.: Fading memory spaces and approximate cycles in linear
viscoelasticity. Rend. Sem Mat. Univ. Padova 82 (1989) 239

Fabrizio, M.; Giorgi, C.; Morro, A.: Minimum principles, convexity, and ther-
modynamics in viscoelasticity. Continuum Mech. Thermodyn. I (1989) 197
Morro, A.; Vianello, M.: Minimal and maximal free energy for materials with
memory. Boll. Um. Mat. Ital. A 4 (1990) 45

Giorgi

Dipartimento di Matematica
Universita’ della Calabria
Cosenza, [taly

A.

Morro

DIBE, Universita’
Genova, Italy

Received June 10, 1991



