
Mathematical Models and Methods in Applied Sciences
c©World Scientific Publishing Company

NON LINEAR SYSTEMS DESCRIBING PHASE TRANSITION
MODELS COMPATIBLE WITH THERMODYNAMICS

Pierluigi COLLI

Dipartimento di Matematica “F. Casorati”, Università di Pavia, Italy.
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This paper is devoted to analyse solutions of a nonlinear evolution system describing the
phase transition in a rigid heat conductor in presence of phase relaxation. First, in a
general framework, a rate type constitutive law for the phase variable is considered and
matched with the Helmholtz free energy involving the state of the material. Thermodi-
namic compatibility of the resulting models is scrutinized. Moreover, a comparison with
a different phase change modelling is performed. Under proper assumptions, a nonlinear
system in the (absolute) temperature and phase variable is achieved. For it, existence
and uniqueness of the solution is proved and positivity of temperature is recovered.

1. Introduction

This paper is concerned with a family of thermodynamically consistent models
for thermally induced phase transitions, when deformation and mass diffusion are
negligible. The energy balance equation governes the evolution of the temperature
θ and the kinetics of the transition is macroscopically described by a non-conserved
phase variable χ. The phase diffusion is neglected by assuming that no interfacial
energy occurs. Therefore, a rate-type consitutive law governing the evolution of χ
accounts for phase relaxation, only.

Our purpose is twofold. First, in the framework of phase-relaxation we develop
a general thermodynamic theory which turns out to include many different models
previously considered as unrelated. For instance, Stefan-type problems with phase
relaxation,20 standard phase field1,14,24 and Penrose-Fife17,18 models with zero in-
terfacial energy, and some models with finite thermal memory proposed by Fabrizio
and Gentili12 enter our general setting. Many of these models have been recently
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considered and their related initial-boundary value problems have been analysed
from the mathematical point of view (see, for instance, Refs. 5, 23 and references
therein). The second goal of this paper is to study a class of mathematical problems
which are related to a special model not yet investigated. In particular, we deal
with the system of differential equations when the heat flux is described by the
linear Fourier law and the constitutive rate-type law for χ is given by

F ′
2(χ)χ̇ =

∂ψ

∂χ
(θ, χ) ,

where ψ denotes the free energy and F2 is a monotone increasing C1-function.
The paper is organized as follows. In the next section, we introduce the set

of balance and constitutive equations together with the Clausius-Duhem inequality
and develop a family of phase-transition models compatible with thermodynamics
(Subsection 2.1). Then, we discuss the choice of the free energy in connection with
the existence of a mushy region and the presence of superheating and undercooling
effects at equilibrium (Subsection 2.2). Finally, we prove that some special choices
of the involved constitutive functions lead to well-established phase relaxation and
phase field problems (Subsection 2.3).

In Section 3 we introduce a class of initial boundary value problems. In Subsec-
tion 3.1, by a suitable mathematical formulation of the problem we state the main
theorems about existence and uniqueness of the solution as well as boundedness and
positivity of the absolute temperature. These last properties are not needed for the
existence proof, nevertheless they appear quite fundamental for the validation of the
physical model. The other subsections are devoted to showing the results. In par-
ticular, in Subsection 3.2, uniqueness of the solution is derived with the help of an
a priori estimate. In Subsection 3.3, we prove existence by using an approximation
method and passage to the limit along with compactness and continuity arguments.
Finally, in Subsection 3.4, we rigorously check that the solution component θ (of
the pair (θ, χ) satisfying the initial boundary value problem) is uniformly bounded
and actually attains non-negative values.

2. Thermodynamically consistent models

This section is devoted to the analysis of some rigid phase transition models de-
pending on temperature. To this end, we consider a rigid heat conductor occupying
a fixed bounded domain. Such a material enters the class of “simple materials”
(see Ref. 13) so that the process is given by the pair (θ̇,∇θ)a” Henceforth, for any

u=u(x,t), u̇ denotes the partial derivative of u with respect to time t, ∇u stands for the gradient

(with respect to space variable x), whereas, if f is a function of one variable only, f ′ denotes its

derivative with respect to the argument. where θ > 0 is the absolute temperature. Here
we assume the state is described by (θ, χ) where χ ∈ [0, 1] is the phase variable
(sometimes called order parameter) which represents the concentration of the more
energetic phase and plays the role of an internal variable for the material.
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Our starting assumptions are resumed into the constitutive equations for the
internal energy e, the heat flux q and the phase variable χ. The internal energy is
assumed to be the sum of a function of θ and a function of χ, that is,

e(θ, χ) = f0(θ) + f1(χ) . (2.1)

Usual properties of the internal energy impose the specific heat to be positive,
namely,

cv =
∂e

∂θ
> 0 .

Moreover, by virtue of the meaning of the phase variable (we remind that χ = 1
represents the more energetic phase density), the energy must increase with χ. The
above assumptions justify the following relations

f ′0(θ) > 0 , f ′1(χ) ≥ 0 . (2.2)

For later convenience, in the sequel we use two suitable C1 functions F0 and F1 such
that f0(θ) = θ2F ′

0(θ) and f1(χ) = θcF1(χ), where θc denotes a critical reference
temperature around which the transition should occur. Thus, we have

e(θ, χ) = θ2F ′
0(θ) + θcF1(χ). (2.3)

The heat flux vector q is supposed to obey Fourier’s law, that is,

q = −κ(θ)∇θ . (2.4)

Finally, we assume that the gradient of the phase variable does not contribute
to the evolution of the material at all, so that no interfacial energy occurs. More
precisely, we take a “rate type” constitutive equation for χ of the general form

χ̇ = γ(θ, χ) . (2.5)

The constitutive functions F0, F1, κ and γ cannot be arbitrarily chosen, but
they have to satisfy the Second Principle of Thermodynamics, as we discuss next.

2.1. Balance equations, free energy and thermodynamic restrictions

The evolution of a rigid phase change phenomenon is governed by the energy balance
equation as

ė+ divq = r , (2.6)

where r is the heat source density. Physically admissible processes are all solutions
of (2.6) satisfying the Second Principle of Thermodynamics, that is here stated by
the Clausius-Duhem inequality

ψ̇ + ηθ̇ +
q · ∇θ
θ2

≤ 0 , (2.7)
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where the free energy ψ(θ, χ) and the entropy η(θ, χ) are state functions, related to
the internal energy e by the standard relation

e = ψ + θη . (2.8)

Thanks to (2.4) and (2.5), as ψ̇ = ∂ψ
∂θ θ̇ + ∂ψ

∂χ χ̇ then (2.7) becomes(
∂ψ

∂θ
+ η

)
θ̇ +

∂ψ

∂χ
γ − κ|∇θ|2

θ2
≤ 0 . (2.9)

Since the heat supply r in (2.6) allows us to choose the value of the process
(θ̇,∇θ) independently of the state (θ, χ), inequality (2.9) implies the following con-
ditions

η(θ, χ) = −∂ψ
∂θ

(θ, χ) , κ(θ) ≥ 0 ,
∂ψ

∂χ
(θ, χ)γ(θ, χ) ≤ 0 . (2.10)

Inequalities (2.10)2 and (2.10)3 have the meaning of thermodynamic restrictions on
the constitutive equations (2.4) and (2.5), respectively, whereas (2.10)1 can be used
to find a general expression of the free energy ψ according to (2.1). In view of (2.8),
(2.10)1 and (2.3), a thermodinamically compatible form of ψ can be deduced by
solving the differential equation

ψ − θ
∂ψ

∂θ
= θ2F ′

0(θ) + θcF1(χ) .

A straightforward calculation leads to

ψ(θ, χ) = −θF0(θ) + θB(χ)− (θ − θc)F1(χ) , (2.11)

where B is an arbitrary function whose choice will be scrutinized later.
We conclude this subsection by discussing a particular setup for the rate-type

constitutive equation (2.5) in agreement with the thermodynamic restriction (2.10)3.
In order to satisfy (2.10)3, henceforth we assume

γ(θ, χ) = − 1
g(θ, χ)

∂ψ

∂χ
(θ, χ) where g(θ, χ) > 0 ∀ (θ, χ) . (2.12)

According to the viewpoint of Frémond and Visintin,15 (2.12) relates the free energy
ψ to a suitable dissipation pseudopotential U(θ, χ, χ̇), which turns out to be convex
and quadratic with respect to χ̇. In fact, postulating that

g(θ, χ)χ̇ =
∂U

∂χ̇
(θ, χ, χ̇) ,

constitutive equation (2.5) can be rewritten as

∂ψ

∂χ
(θ, χ) +

∂U

∂χ̇
(θ, χ, χ̇) = 0 .
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For the sake of simplicity, from now on we let

g(θ, χ) = F ′
2(χ)N(θ) . (2.13)

According to (2.12), N(θ) is required to be a continuous, positive function and F2

a monotone increasing C1-function, viz

N(θ) > 0 , F ′
2(χ) > 0 ∀ (θ, χ) .

In connection with (2.13), we finally achieve

∂ψ

∂χ
(θ, χ) +N(θ)F ′

2(χ)χ̇ = 0 (2.14)

Such an equation is a thermodynamically compatible constitutive relation governing
the evolution of the phase variable χ. It represents the general class of models we
deal with. In the sequel, we are able to show that (2.14) summarizes a lot of well-
known phase transition models. In Section 3, moreover, special attention will be
focused on some particular cases for the function N(θ).

2.2. Expression of B compatible with the phase transition behaviour

As a consequence of (2.14), the evolution of χ is influenced by the dependence of the
free energy on the phase variable. Now, allowing for the general expression (2.11) of
ψ, we comment some peculiar choices of B(χ) by means of the stationary conditions.
In essence, by paralleling the principle of virtual power under unilateral constraints,
we can say that, for any fixed temperature θ, χe is an admissible stationary value
of the phase variable χ if and only if

∂ψ

∂χ
(θ, χe) δχ ≥ 0

for every virtual phase variation δχ compatible with the domain of χ, namely [0, 1].
In other words, we have that

∂ψ

∂χ
(θ, χe) = 0 for internal equilibrium points χe ∈ ]0, 1[

and
∂ψ

∂χ

∣∣∣∣
χe=0

≥ 0 or
∂ψ

∂χ

∣∣∣∣
χe=1

≤ 0

for equilibrium at the end points. In addition, by standard requirements about
stability of equilibria, the free energy ψ is demanded to take its minimum values in
such stationary points. Thus, the stationary behaviour of the material at hand will
constrain the admissible expression of the function B(χ).

(i) First, we discuss the choice of B(χ) in connection with the existence of a “mushy
region” at the equilibrium critical temperature θ = θc. At such a fixed value,
free energy depends on χ through B, only, and takes the form

ψ(θc, χ) = −θcF0(θc) + θcB(χ) .
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We distinguish two possible occurrences.

(ia) If a “mushy region” does exist at θ = θc, then all possible values χe ∈ [0, 1]
are allowed at equilibrium. In this case, function B must be convex and
assume a constant value on [0, 1]. Actually, the indicator function I of the
interval [0, 1], i.e.,

I(χ) =
{

0 if χ ∈ [0, 1]
+∞ otherwise

satisfies such a property and, further, it forces the phase variable χ to sit
between 0 and 1. Thus, the choice B = I is well justified. In this case,
B has no classical derivatives in IR, but, since I is a proper convex lower
semicontinuous function, its subdifferential ∂I exactly meets our purposes.
Indeed, note that ∂I coincides with the inverse H−1 of the Heaviside graph
H (specified by H(ξ) = 0 if ξ < 0, H(0) = [0, 1], H(ξ) = 1 if ξ > 0) and

ζe ∈ ∂I(χe) if and only if ζe(χe − ξ) ≤ 0 ∀ ξ ∈ [0, 1].

(ib) According to material properties of the phase change, the “mushy region”
may be physically unmotivated. If so, the only admissible equilibrium values
for the phase variable are χ = 0 and χ = 1. In such a case, function B(χ)
must exhibit two strict minima at χ = 0 and χ = 1 and the convexity
property fails to hold. Usually B is represented by a double well function.

(ii) Now, taking into account temperature values far from the critical one, and re-
minding that F ′

1(χ) ≥ 0, we examine the admissible choices for B in connection
with the existence of superheating and undercooling effects under stationary con-
ditions. b” Indeed, ifF 1 6= 0, any model related to (ia) exhibits supercooling
and underheating effects under kinetic conditions (see, e.g., Refs. 21, 22). In
what follows, for simplicity, we consider the symmetric case, when both effects
occur or none of them.

(iia) Superheating and undercooling effects do not occur under stationary condi-
tions so that, for any temperature, ψ exhibits only one minimum with respect
to χ which is necessarily located at χ = 0 for θ < θc, and at χ = 1 for θ > θc.
As a consequence, at critical temperature θ = θc, both χ = 0 and χ = 1
are allowed to minimize free energy. Since F1 is required to be a monotone
increasing function in [0, 1], it is quite reasonable to let B = I.

(iib) Both superheating and undercooling effects occur. In such a case, ψ must
exhibit two strict minima at χ = 0 and χ = 1 for all temperatures θ such
that |θ − θc|/θc is sufficiently small, in particular when θ = θc. We are thus
compelled to assume that B(χ) is a non-convex double-well function. As F1

is nondecreasing, ψ takes its absolute minimum at χ = 1 when θ > θc, and
at χ = 0 when θ < θc.

As an example of (iib), let consider

B(χ) = νχ2(χ− 1)2 , F1(χ) =
λ

3
χ2(3− 2χ) (2.15)
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with λ > ν > 0. Letting u(θ) = λ(θ − θc)/(νθ), from (2.11) and (2.15) one easily
obtains

∂ψ

∂χ
= 4νθχ(χ− 1)

(
χ− 1− u(θ)

2

)
.

If u(θ) ∈ ]−1, 1[ , then the free energy takes two minima, at χ = 0 and χ = 1, so that
the superheating and undercooling phenomena occur when θ lies in the temperature
region {

λθc
λ+ ν

< θ <
λθc
λ− ν

}
.

Incidentally, the functions B and F1 of example (2.15) are quite similar to those con-
sidered by Wheeler and McFadden24 in discussing a modified Allen-Cahn model.1

We make a comparison with such a model in the next subsection.

Remark 2.1. The situations depicted by (ia) and (iia) are strictly related, in
the sense that both postulate the position B = I. On the other hand, chances
(ib) and (iib) are only compatible with functions B possessing two distinct minima.
Therefore, in the rigid phase transitions described by (2.11), if a mushy region exists
at θ = θc, then undercooling and superheating effects do not occur at equilibrium,
and viceversa.

In order to avoid χ to assume values outside the unitary interval [0, 1], but
preserving strict minima at the ends, the indicator function may be added to either
a double-well or a concave function (the final result will show a double well anyhow
in cases (ib) and (iib), due to the behaviour of the indicator function I outside [0, 1]).
Therefore, we are led to assume henceforth

B(χ) = I(χ) +B1(χ),

where B1 stands for a smooth function forcing B to have only two minima at χ = 0
and χ = 1. On the other hand, B1 may be taken as the null function in chances
(ia) and (iia).

2.3. Comparison with previous models

In this section we show that some previously stated models can be viewed as par-
ticular cases of our general setting, which is summarized by assumptions (2.11), viz

ψ(θ, χ) = −θF0(θ) + θB(χ)− (θ − θc)F1(χ) ,

and (2.14), that is
∂ψ

∂χ
+N(θ)F ′

2(χ)χ̇ = 0 ,

where B = I +B1.

2.3.1. Finite-memory models

Such a class of models physically exhibits a finite-memory relation between the
phase variable χ and the temperature θ. More precisely, if we define, for each fixed
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time t > 0, t̄0 = sup{t̄ ∈ [0, t[ : θ(t̄) = θc} or t̄0 = 0 if the set {t̄ ∈ [0, t[ : θ(t̄) = θc}
is empty, setting χ0 = χ(t̄0) and

θ̃(t) =
∫ t

t̄0

θ(τ)− θc
N(θ(τ))

dτ ,

a finite-memory model can be characterized by a suitable relationship between χ

and θ̃. In particular, we restrict our attention to the following

χ =


0 if G

(
θ̃ +G−1(χ0)

)
≤ 0

1 if G
(
θ̃ +G−1(χ0)

)
≥ 1

G
(
θ̃ +G−1(χ0)

)
otherwise

, (2.16)

where G is an odd and increasing C1-function, whose expression depends on the
nature of the material. If we sketch this model in the (θ̃, χ)-plane, we observe that
the representative point A describes a cycle, quite similar to a hysteresis loop, as
the temperature varies continuously around θc. Actually, suppose to start at time
t0 from the origin (0, 0) of the plane and let the relative temperature be positive,
i.e., θ > θc. As a consequence, (θ−θc)/N(θ) is a positive function of time, so that θ̃
increases. It is worth noting that θ̃ keeps on increasing provided that temperature
stays beyond its critical value. At some point θ̃ = θ̃0 , χ reaches its maximum
(namely, χ = 1) and keeps it as long as θ > θc. If θ − θc vanishes at some instant
t = t1 and becomes negative afterwards, then t̄0 changes its value into t1. According
to (2.16), the point A suddenly jumps to (0, 1), then χ decreases until it reaches
its minimum (that is, χ = 0). The nonlinearity G contributes to the above graph
by fixing the shape of the curves described by A. In particular, the values of θ̃0 is
related to G through θ̃0 = G−1(1)−G−1(χ0).

Constitutive relation (2.16) is quite new and exhibits loops like those involved in
hysteretic phenomena. When N(θ) = 1, such a model is similar to those proposed
by Fabrizio and Gentili.12 However, as we are going to show, here the pair (θ, χ) is
sufficient to describe the state of a material governed by (2.16), whereas the general
models of Fabrizio and Gentili need the additional state variable θ̃.

Now we prove that (2.16) is provided by our general setting when we assume
B1 = 0 and F ′

1 > 0. In fact, in this case (2.14) takes the form

θH−1(χ) 3 (θ − θc)F ′
1(χ)−N(θ)F ′

2(χ)χ̇ . (2.17)

In order to compare (2.16) with (2.17), let J = G−1. Because of the strict mono-
tonicity assumed for G and J , (2.16) can be rewritten as

J(χ) =


0 if θ̃ + J(χ0) ≤ 0
J(1) if θ̃ + J(χ0) ≥ J(1)
θ̃ + J(χ0) otherwise

. (2.18)

8



Consider now two instants t0,1 and t0,2 > t0,1 such that

θ(t0,1) = θ(t0,2) = θc , θ(t) 6= θc for t ∈ ]t0,1, t0,2[ ,

and set χ0,1 = χ(t0,1) and χ0,2 = χ(t0,2). It is not difficult to check that

lim
t→t−0,2

∂

∂t

(
θ̃ + J(χ0,1)

)
= lim
t→t+0,2

∂

∂t

(
θ̃ + J(χ0,2)

)
= 0

Therefore, we can continuously differentiate (2.18), so yielding

J ′(χ)χ̇ =
{

(θ − θc)/N(θ) if θ̃ + J(χ0) = J(χ) ∈ ]0, J(1)[
0 otherwise

. (2.19)

Since J is increasing in [0, 1] and J(0) = 0, (2.19) implies

θ − θc
N(θ)

− J ′(χ)χ̇ = 0 for χ ∈ ]0, 1[,

θ − θc ≥ 0 , J ′(χ)χ̇ = 0 for χ = 1,

θ − θc ≤ 0 , J ′(χ)χ̇ = 0 for χ = 0

and can be summarized as follows

θ − θc
N(θ)

− J ′(χ)χ̇ ∈ H−1(χ) . (2.20)

Therefore, (2.20) states the “rate type” constitutive relation (inclusion) correspond-
ing to (2.16) and involving χ and θ only. Taking into account that positive factors
can be omitted in front of H−1, (2.17) is easily seen to be equivalent to (2.20)
provided

F ′
1(χ) > 0 for all χ ∈ [0, 1] and J ′(χ) =

F ′
2(χ)
F ′

1(χ)
. (2.21)

2.3.2. Stefan problem and relaxed Stefan problem

The relaxed Stefan problem (see Refs. 20-23) can be derived from our framework
by assuming B1(χ) = 0 and F1(χ) = Lχ/θc, namely

ψ(θ, χ) = −θF0(θ) + θI(χ)− L

θc
(θ − θc)χ .

In this case, the constitutive equation for χ becomes

L(θ − θc)
θcN(θ)

∈ H−1(χ) + F ′
2(χ)χ̇ ,

in view of ∂I = H−1. Then, the phase relaxation system studied by Visintin20−22

is obtained when F ′
2 is a (positive) constant.
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On the other hand, a linearization of the internal energy expression (cf. (2.3)
and (2.8)), namely

e = c0θ + Lχ,

corresponds to the choice F ′
0(θ) = c0/θ. In such a case, the related free energy

ψ(θ, χ) = −c0θ ln θ + θI(χ)− L

θc
(θ − θc)χ

is basically the same as in Frémond and Visintin.15 Incidentally, the dissipation
pseudopotentials used there are of type

U(θ, χ, χ̇) =
1
2
g(χ, θ)χ̇2 ,

which can be combined with (2.13). The classical Stefan problem may be regarded
as the limiting case as F ′

2 goes to 0, whence the constitutive equation for χ is

(θ − θc) ∈ H−1(χ) or, equivalently, χ ∈ H(θ − θc) .

We conclude this subsection by commenting on two phase field models. Actually,
such models are not completely included in our situation since they are based on the
assumption that χ is either 0 or 1 in the most part of the body and the two phases
are separated by a narrow diffusive interface. Therefore, the expression of the free
energy density also contains a term ε|∇χ|2, representing the interfacial energy, and
the indicator function I(χ) may be replaced by other convex functions (cf., e.g.,
(2.15)), but with the sum B having two strict minima in 0 and 1. Nevertheless, we
can compare such models with our setting, by considering their limiting case when
the interfacial energy term vanishes (that is, ε↘ 0).

2.3.3. Standard phase field model

The standard phase field model is mainly due to Cahn1,7 and coworkers, and it has
been subsequently analised by Caginalp.6 In order to carry out some comparison,
it is worth considering the modified Allen-Cahn free energy ψ∗ due to Wheeler and
McFadden24 and mentioned above. Indeed, apart from the interfacial energy term,
ψ∗ exhibits the form

ψ∗(θ, χ) = −θF0(θ) +
1
4a
χ2(1− χ)2 − L(θ − θc)

θc
χ2(3− 2χ) (2.22)

where L still denotes the latent heat, and 1/a is proportional to the barrier height
of the double-well potential. Even if a is often taken as a constant, we note that this
gap usually depends on temperature (see Ref. 24, p. 371). In particular, if we put

1
a

= 4νθ and L =
1
3
λθc ,
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then (2.22) is equivalent to (2.11), (2.15). Such a choice leads to a free energy which
exhibits a double well depending on temperature. Moreover, the related internal
energy e, given by (2.3), is monotone increasing with respect to both θ and χ. On
the contrary, when 1/a is assumed to be constant in (2.22), owing to (2.8) the
related internal energy e∗ takes the form

e∗(θ, χ) = θ2F ′
0(θ) +

1
4a
χ2(1− χ)2 + Lχ2(3− 2χ)

and is non-monotone with respect to χ. Such a situation has been scrutinized by
Caginalp6.

2.3.4. Penrose-Fife model

In recent years Penrose and Fife developed a phase field model on the basis of ther-
modynamic arguments, assuming the following expression for the internal energy

e(θ, χ) = c(χ)f0(θ) + f1(χ) .

If no interfacial energy is present and c is a constant function, then the resulting
phase-field relationship is

µχ̇+ ∂I(χ) 3 s′(χ)− f ′1(χ)
θ

. (2.23)

Thus, taking B1 6= 0, N(θ) = θ, F2(χ) = µχ, it is easy to check that (2.14) becomes

µχ̇+ ∂I(χ) 3 B′
1(χ) +

θ − θc
θ

F ′
1(χ) , (2.24)

which is equivalent to (2.23) if we put

s(χ) = F1(χ) +B1(χ) and f1(χ) = θcF1(χ) .

Therefore the non-diffusive Penrose-Fife equation can also be derived from our set-
ting by means of suitable choices of the constitutive functions.

3. Analysis of a particular model

In this section we focus on the initial boundary value problem for the system of
equations (2.3), (2.4), (2.6), (2.11), (2.14). Therefore, the balance of energy in (2.6)
leads to

∂

∂t

(
θ2F ′

0(θ) + θcF1(χ)
)
− div (κ(θ)∇θ) = r

while, in the case when B = I +B1, (2.11) and (2.14) yield

∂

∂t
F2(χ) + ∂I(χ) +

θ

N(θ)
B′

1(χ) 3 θ − θc
N(θ)

F ′
1(χ) (3.1)
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We complement this evolution problem with adiabatic boundary conditions

q · n = −κ(θ) ∂θ
∂n

= 0 on Σ = ∂Ω× (0, T ),

and the initial conditions (obviously given for the internal energy and the pseudo-
potential F2(χ))(

θ2F ′
0(θ) + θcF1(χ)

)∣∣
t=0

= e0 , (F2(χ))|t=0 = ϕ0 .

Let us notice that n represents the outward normal unit vector to ∂Ω and ∂/∂n
stands for the related normal derivative.

We recall that several models with non-convex B have recently received a good
deal of attention in the literature. In particular, the reduced Penrose-Fife system,
resulting from the choices B1 6= 0 and N(θ) = θ, seems to be of some interest. In
such a case, dividing (3.1) by F ′

2(χ) > 0, the consequent inclusion reads

χ̇+ ∂I(χ) +
B′

1(χ)
F ′

2(χ)
3 θ − θc

θ

F ′
1(χ)
F ′

2(χ)
.

Related initial boundary value problems have been studied by Colli and Sprekels9,10

under two different constitutive laws for κ(θ). In Ref. 9 (see also Ref. 19), the heat
flux is supposed to be proportional to the gradient of the inverse of the absolute
temperature, namely κ(θ) = −k/θ2, while the case, more delicate from the math-
ematical point of view, of a linear Fourier law (i.e., (2.4) with κ(θ) = k positive
constant), is treated in Ref. 10.

In the sequel, we analyse the situation in which κ(θ) = k and N(θ) is a given Lip-
schitz continuous function, bounded from below by a positive constant (for instance,
one may have N(θ) = θ∗, for some fixed temperature θ∗, or N(θ) = max{θ, θ∗}).
Thus, the ensuing model differs from the Penrose-Fife and standard phase-field mod-
els. Moreover, by looking at other phase relaxation systems (cf. especially Refs. 2,
3, 8, 11, 15, 20-22), it turns out that earlier existence results do not apply to our
initial boundary value problem and, as far as we know, the maximum principle
property yielding positivity of temperature (see Subsection 3.4) was not previously
investigated. We conclude this premise by stressing the physical admissibility of
the above fixed system, on account of the thermodynamically consistent family of
models outlined in the previous section.

3.1. Main result

Let Ω ⊆ IR3 be a bounded domain with smooth boundary ∂Ω. For a given final time
T > 0, we fix the cylinder Q = Ω× (0, T ) and its lateral boundary Σ = ∂Ω× (0, T ).
Our problem consists in finding a pair of functions, θ : Q → IR and χ : Q → [0, 1],
regular enough and such that the relations

∂

∂t

(
θ2F ′

0(θ) + θcF1(χ)
)
− k∆θ = 0 (3.2)

∂

∂t
F2(χ) + ∂I(χ) +

θB′
1(χ)

N(θ)
3 θ − θc
N(θ)

F ′
1(χ) (3.3)

12



are satisfied a.e. in Q, as well as

∂θ

∂n
= 0 a.e. in Σ (3.4)

and(
θ2F ′

0(θ) + θcF1(χ)
)
(x, 0) = e0(x) , F2(χ)(x, 0) = ϕ0(x) for a.a. x ∈ Ω .

(3.5)
Clearly, we are interested to (3.2-5) for suitable choices of the data, which must be
in accord with the physical framework. First of all, we assume that the specific heat
cv = (∂e/∂θ) (= 2θF ′

0(θ) + θ2F ′′
0 (θ)) is well defined and lies between two positive

constants C∗ and C∗. This is fulfilled whenever F ′
0 is a.e. differentiable and

C∗ ≤ ζ (2F ′
0(ζ) + ζF ′′

0 (ζ)) ≤ C∗ for a.a. ζ ∈ IR . (3.6)

Of course, F0 should be defined only in the interval ]0,+∞[, but we let ζ 7→ ζ2F ′
0(ζ)

work on the entire IR and refer to the later Remark 3.7. Moreover, we suppose

N ∈ C0,1(IR) , N(ζ) ≥ θ∗ > 0 ∀ ζ ∈ IR (3.7)

and let F1, F2 and B1 be smooth functions with F2 satisfying the monotonicity
property mentioned in Section 2, namely,

F1, F2, B1 ∈ C2([0, 1]) , (3.8)

F ′
2(ξ) > 0 ∀ ξ ∈ [0, 1] ,

1
F ′

2

∈ L∞(0, 1) . (3.9)

Finally, we prescribe θ0, χ0 ∈ L2(Ω) with

θ0 ∈ H1(Ω) , 0 ≤ χ0 ≤ 1 a.e. in Ω , (3.10)

so that initial data in (3.5) are given by

e0 = θ20F
′
0(θ0) + θcF1(χ0) , ϕ0 = F2(χ0) .

On the other hand, one can alternatively assign e0 and ϕ0, with F2(0) ≤ ϕ0 ≤ F2(1),
and then recover χ0 = F−1

2 (ϕ0) and θ0 via the above equalities. Concerning the
assumptions on F1, F2, B1, we point out that in our analysis we do not need any
monotonicity property for the function F1 (as it was instead postulated in (2.1–
3)). Therefore, our results actually apply to even more general situations like, for
instance, models for solid-solid phase transitions (see, e.g., the free energy expression
coming out from the position (1.8) in Ref. 10).

Next, we set problem (3.2-5) in a convenient formulation. First, we fix a notation
for the function in (3.6), letting

α(ζ) := ζ (2F ′
0(ζ) + ζF ′′

0 (ζ)) , ζ ∈ IR ,
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so that
α ∈ L∞(IR) , C∗ ≤ α(ζ) ≤ C∗ for a.a. ζ ∈ IR . (3.11)

Then, for the sake of simplicity, we also introduce

β1(ξ) :=
F ′

1(ξ)−B′
1(ξ)

F ′
2(ξ)

, β2(ξ) :=
F ′

1(ξ)
F ′

2(ξ)
, ξ ∈ [0, 1] ,

whence
β1, β2 ∈ C1([0, 1]) , β2(ξ)F ′

1(ξ) ≥ 0 ∀ ξ ∈ [0, 1] (3.12)

because of (3.8-9). Observe that the product β1F
′
1 has no sign property (contrary

to β2F
′
1) owing to the derivative of the function B1.

Now, one sees that equation (3.3) can be slightly modified by dividing all terms
by F ′

2(χ) > 0. Remarking that this division does not change the subdifferential
∂I = H−1 and rewriting the inclusion as a variational inequality (cf. point (ia) in
Subsection 2.2), we come to an equivalent formulation of the problem (3.2-5). In
what follows, we also prescribe the regularity that is required for the solutions. In
particular, we seek strong solutions (according to the usual terminology) as we want
that equations and conditions are satisfied almost everywhere.

Problem (P). Find the pair (θ, χ) satisfying

θ ∈ H1(0, T ;L2(Ω)) ∩ C0([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)) , (3.13)

χ ∈ H1(0, T ;L2(Ω)) , (3.14)

α(θ)θ̇ + θcF
′
1(χ)χ̇− k∆θ = 0 a.e. in Q , (3.15)

0 ≤ χ ≤ 1 a.e. in Q , (3.16)

χ̇(χ− ξ) ≤ 1
N(θ)

(θβ1(χ)− θcβ2(χ)) (χ− ξ) ∀ ξ ∈ [0, 1] , a.e. in Q , (3.17)

∂θ

∂n
= 0 a.e. in Σ , (3.18)

θ(·, 0) = θ0 , χ(·, 0) = χ0 a.e. in Ω . (3.19)

We point out that, by virtue of (3.13-14), the terms α(θ)θ̇ + θcF
′
1(χ)χ̇ and χ̇ in

(3.15) and (3.17) actually coincide with the terms
(
∂(θ2F ′

0(θ) + θcF1(χ))/∂t
)

and
(∂F2(χ)/∂t)/F ′

2(χ) of (3.2-3). For the above problem, we prove not only existence
and uniqueness, but some regularity including the expected and reasonable property
that the variable θ, standing for the absolute temperature, attains non-negative
values only.

Theorem 3.1. Problem (P) admits a unique solution (θ, χ).

The proof of such result is given in Subsections 3.2 and 3.3.

Remark 3.2. The presence of a nonlinear heat supply r(x, t, θ, χ) in the right
hand side of (3.15) (and of (3.2)) would not affect the conclusion of this theorem
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provided r(x, t, ζ, ξ) is measurable in (x, t) for any (ζ, ξ) ∈ IR× [0, 1] and Lipschitz
continuous in (ζ, ξ) uniformly with respect to (x, t) ∈ Q. The reader can directly
check such a statement by following and extending our arguments.

Remark 3.3. A basic and useful reference for our existence proof is provided
by Colli and Hoffmann,8 where a general theory is developed for multi-component
phase relaxation systems. However the abstract existence result of Ref. 8 does
not cover our case, since the Lipschitz continuity demanded for the nonlinearity
of (3.17) fails because of the term θβ1(χ)/N(θ). Moreover, no boundedness or
positivity of temperature is discussed there. On the contrary, here the following
theorems establish such properties provided the data are physically admissible.

Theorem 3.4. Assume θ0 ∈ L∞(Ω) besides (3.10) for the initial data. Then the
solution (θ, χ) of (P) satisfies

θ , χ̇ ∈ L∞(Q) . (3.20)

Theorem 3.5. Let the initial (absolute) temperature θ0 be non-negative almost
everywhere in Ω. Then the solution (θ, χ) to (P) is such that

θ ≥ 0 a.e. in Q. (3.21)

Both proofs are postponed till Subsection 3.4.

Remark 3.6. Referring to Remark 3.2, we point out that also in this case, by
adapting the arguments outlined in the proofs, it is easy to check that (3.20-21)
still hold in presence of a heat source r whenever r(·, ·, 0, 0) ∈ L∞(Q), for instance,
and

r(·, ·, ζ, ξ) ≥ 0 a.e. in Q, for all ζ < 0 and ξ ∈ [0, 1] ,

in addition to the properties listed in Remark 3.2. It is worth noting that the last
requirement is not just suggested by mathematical convenience. On the contrary,
it is based on the reasonable physical assumption that the internal energy reaches
its minimum value at the zero absolute temperature. As a consequence, whatever
physically admissible heat source must be non-negative at such a temperature and,
what is more, at (physically not allowable) negative temperatures.

Remark 3.7. Concerning Theorem 3.4, note that (3.16) and (3.20) yield χ ∈
W 1,∞(Q). Moreover, if one collects the conclusions of both theorems, it turns out
that there exists some positive value Θ (≥ θ0) such that 0 ≤ θ ≤ Θ almost every-
where in Q. Owing to this fact, we observe that for our aims it would be essential
to know the function ζ 7→ ζ2F ′

0(ζ) (as well as N , see (3.6-7)) only in the interval
[0,Θ], as this function can be easily extended to the entire IR keeping the validity
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of (3.6) (the same could be said for the dependence of r on θ, if any right hand side
r(x, t, θ, χ) is added to (3.15)).

The collection of the results stated in this subsection can be compared with
Theorem 2.2 in Ref. 10, which basically refers to the problem (3.15-19) resulting
from the choice N(θ) = θ. There, under suitable assumptions on the data, it is
shown that θ remains bounded from below by a positive constant (so that 1/N(θ)
is well defined and lies in L∞(Q)). Here, it is just proved that θ is non-negative, but
we do not need any compatibility conditions between B′

1 and F ′
1 (as it was instead

in hypothesis (A4) of Ref. 10).

3.2. Uniqueness

In order to show Theorem 3.1, first we check that Problem (P) has at most one
solution. Arguing by contradiction, let the pairs (θ1, χ1) and (θ2, χ2) both solve (P)
and put

θ = θ1 − θ2 , χ = χ1 − χ2 .

Integrating the difference of the two equations (3.15) with respect to time, as
θ(·, 0) = χ(·, 0) = 0 a.e. in Ω, we obtain

(A(θ1)−A(θ2) + θc(F1(χ1)− F (χ2)))(x, t)− k∆
∫ t

0

θ(x, s) ds = 0

for a.a. (x, t) ∈ Q , (3.22)

where

A(ζ) :=
∫ ζ

0

α(ξ) dξ , ζ ∈ IR . (3.23)

Then, multiply (3.22) by θ and integrate over Qt := Ω×]0, t[, t ∈]0, T ], using (3.18).
Owing to (3.11) and (3.9), it is straightforward to deduce

C∗

∫∫
Qt

|θ|2 dx ds+
k

2

∥∥∥∥∇ ∫ t

0

θ(·, s)ds
∥∥∥∥2

≤ θc‖F ′
1‖L∞(0,1)

∫∫
Qt

|θ||χ| dx ds , (3.24)

where ‖ · ‖ denotes the norm either in L2(Ω) or
(
L2(Ω)

)3.
Next, we write (3.17) for χ1 choosing ξ = χ2 (and this is admissible thanks to

(3.16)) and for χ2 taking ξ = χ1. In view of (3.7) and (3.12), the sum of the two
inequalities and the subsequent integration plainly leads to

1
2
‖χ(·, t)‖2 ≤ 1

θ∗

∫∫
Qt

(
|θ1| ‖β′1‖L∞(0,1) + |θc| ‖β′2‖L∞(0,1)

)
|χ|2 dx ds

+ ‖(1/N)′‖L∞(IR)

∫∫
Qt

(
|θ1| ‖β1‖L∞(0,1) + |θc| ‖β2‖L∞(0,1)

)
|θ| |χ| dx ds

+
1
θ∗
‖β1‖L∞(0,1)

∫∫
Qt

|θ| |χ| dx ds . (3.25)
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For the sake of simplicity, in the sequel we will often use the symbol C, with possible
subscripts, to denote positive constants depending only on the data. Due to the
dimension 3 of space, H2(Ω) is continuously embedded in L∞(Ω). Hence, recalling
(3.13), it turns out that

1
2
‖χ(·, t)‖2 ≤ C

∫ t

0

(
‖θ1(·, s)‖H2(Ω) + 1

)
‖χ(·, s)‖ (‖χ(·, s)‖+ ‖θ(·, s)‖) ds .

Finally, combining (3.24) and (3.25), with the help of the elementary inequality

ab ≤ ε

2
a2 +

1
2ε
b2 ∀ a, b ∈ IR, ∀ ε > 0 , (3.26)

we easily infer that

C∗
2

∫∫
Qt

|θ|2 dx ds+
1
2
‖χ(·, t)‖2 ≤ C

∫ t

0

(
1 + ‖θ1(·, s)‖2H2(Ω)

)
‖χ(·, s)‖2 ds

for any t ∈ [0, T ]. Since the function t 7→ 1 + ‖θ1(·, t)‖2H2(Ω) belongs to L1(0, T )
(because of (3.13)), the Gronwall lemma implies that the left hand side is zero for
all t ∈ [0, T ], so that θ1 = θ2 and χ1 = χ2 a.e. in Q.

Remark 3.8. Note that the assumption Ω ⊆ IR3 has been already exploited to
establish that H2(Ω) ⊂ L∞(Ω). Anyway, it may be worthwhile to point out that
Theorem 3.1 holds true in dimensions 1 and 2, as well.

3.3. Existence

The existence proof is based on an approximation method complemented with uni-
form estimates and passage to the limit, in which compactness and continuity ar-
guments are used.

Our approximating scheme is chosen in a way to take advantage of the general
results contained in Ref. 8. Then, for any n ∈ IN we introduce the truncated
identity

τn(ζ) = min{max{ζ,−n}, n} , ζ ∈ IR ,
and replace θ with τn(θ) as factor of β1(χ) in (3.17).

Problem (Pn). Find the pair (θn, χn) satisfing (3.13-16), (3.18-19) (where θ and
χ must be substituted with θn and χn, respectively) and such that

χ̇n(χn − ξ) ≤ 1
N(θn)

(τn(θn)β1(χn)− θcβ2(χn)) (χn − ξ)

∀ ξ ∈ [0, 1] , a.e. in Q . (3.27)

Owing to (3.7-8), (3.11-12) and to the boundedness and Lipschitz continuity of
τn, we can extract the following assertion from Theorem 1 of Ref. 8.

Proposition 3.6. For any n ∈ IN there exists a unique solution to Problem (Pn).

Actually, the regularity θn ∈ L2(0, T ;H2(Ω)) is not stated in Ref. 8, but a
comparison in

α(θn)θ̇n − k∆θn = −θcF ′
1(χn)χ̇n (3.28)
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(i.e., (3.15)) yields ∆θn ∈ L2(0, T ;L2(Ω)), which suffices to conclude by virtue of
(3.18) and well-known elliptic estimates.

Now we aim to derive bounds, independent of n, for the pair (θn, χn) with respect
to suitable norms. First, consider the system composed by (3.27), (3.16) and by
the initial condition for χn in (3.19). This is nothing but an evolution equation for
a subdifferential operator, whence we can apply the abstract theory of Brézis.4 In
particular, taking (3.7) and (3.10) into account, from Theorem 3.6, p. 37, of Ref. 4
we can conclude that∫ t

0

|χ̇n(·, s)|2 ds ≤
1
θ∗

∫ t

0

|τn(θn)β1(χn)− θcβ2(χn)|2 ds ∀ t ∈ [0, T ] ,

almost everywhere in Ω, for all t ∈ [0, T ]. By integrating also in space, (3.12) enables
us to infer that ∫∫

Qt

|χ̇n|2 dx ds ≤ C

∫∫
Qt

(
|θn|2 + 1

)
dx ds. (3.29)

Next, the formal test of (3.28) by θ̇n (rigorous computations are performed, for
instance, in Ref. 8) gives

C∗

∫∫
Qt

|θ̇n|2dx ds+
k

2
‖∇θn(·, t)‖2 ≤

k

2
‖∇θ0‖2 + θc‖F ′

1‖L∞(0,1)

∫∫
Qt

|χ̇n| |θ̇n|dx ds

thanks to (3.11) and (3.19). Then, using (3.26) and (3.29), it is not difficult to get

C∗

∫∫
Qt

|θ̇n|2dx ds+ k‖∇θn(·, t)‖2 ≤ C1 + C2

∫∫
Qt

|θn|2dx ds (3.30)

for all t ∈ [0, T ]. Since, by the Hölder inequality,

∫∫
Qt

|θn|2dx ds ≤
∫ t

0

∥∥∥∥θ0 +
∫ s

0

θ̇n(·, σ)dσ
∥∥∥∥2

ds

≤ 2t‖θ0‖2 + 2
∫ t

0

s

∫ s

0

‖θ̇n(·, σ)‖2dσ ≤ C3 + C4

∫ t

0

(∫∫
Qs

|θ̇n|2dx dσ
)
ds ,

one can handle the last term in (3.30) and exploit the Gronwall lemma to deduce
that the left hand sides of (3.30) and (consequently) of (3.29) are bounded inde-
pendently of n. Hence, the same property holds for

∫∫
Qt
|∆θn|2dx ds, due to (3.28),

(3.11) and (3.8). Therefore, we remind (3.18-19) and claim that

‖θn‖H1(0,T ;L2(Ω))∩L2(0,T ;H2(Ω)) + ‖χn‖H1(0,T ;L2(Ω)) ≤ C (3.31)

for any n ∈ IN . The estimate (3.31) allows us to pass to the limit as n↗∞ by weak
compactness, in principle for subsequences. If we prove that the limit of (θn, χn)
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solves problem (P), then the uniqueness of the solution ensure the convergence of
the whole sequences.

Thus, let θ and χ be the weak limits of θn and χn, namely

θn → θ weakly in H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) , (3.32)

χn → χ weakly in H1(0, T ;L2(Ω)) , (3.33)

as n↗∞. Now, (3.32) and a standard compact embedding yield

θn → θ strongly in L2(0, T ;L2(Ω)) ≡ L2(Q) . (3.34)

On the other hand, we would need a strong convergence also for χn, to deal with
the nonlinearities of (3.27-28). Note that

χn → χ strongly in L2(Q) (3.35)

cannot be inferred from (3.33). We show (3.35) by directly checking that {χn} is
a Cauchy sequence in C0

(
[0, T ];L2(Ω)

)
. Writing (3.27) for another index m and

arguing as in the proof of (3.25), by (3.26) one can easily obtain

1
2
‖(χn − χm)(·, t)‖2 ≤ 1

2

∫∫
Qt

|θn − θm|2dx ds

+ C

∫∫
Qt

(|θn|2 + 1)|χn − χm|2dx ds . (3.36)

Moreover, thanks to the embedding H2(Ω) ⊆ L∞(Ω) and the Gronwall lemma,
from (3.36) we conclude that

‖(χn − χm)(·, t)‖2 ≤ ‖θn − θm‖2L2(Q) exp
(
C

(
T + ‖θn‖2L2(0,T ;H2(Ω))

))
for any t ∈ [0, T ]. Then, due to (3.34) and (3.31), ‖(χn − χm)‖C0([0,T ];L2(Ω)) tends
to 0 as n,m↗∞ and (3.35) follows.

At this point, it is not difficult to verify that θ and χ fulfil (3.13-19). The
property θ ∈ C0([0, T ];H1(Ω)) is a consequence of the other inclusions, and (3.16),
(3.18-19) are readily deduced from (3.32-33). In view of (3.7-8), (3.11-12) and
(3.23), the convergences (3.34-35) and the Lipschitz continuity of the involved func-
tions allow us to infer that A(θn) → A(θ), F ′

1(χn) → F ′
1(χ), 1/N(θn) → 1/N(θ),

β1(χn) → β1(χ), β2(χn) → β2(χ) strongly in L2(Q) as n ↗ ∞. In addition, by
(3.31) and (3.11) we have that A(θn) → A(θ) weakly in H1(0, T ;L2(Ω)), whence

∂

∂t
A(θn) = α(θn)θ̇n →

∂

∂t
A(θ) = α(θ)θ̇ weakly in L2(Q) .

Thus, observing that

F ′
1(χn)χ̇n → F ′

1(χ)χ̇ weakly in L1(Q) ,
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taking the limit in (3.28) we obtain (3.15). To pass to the limit in (3.27), we point
out that, analogously, χ̇n(χn−ξ) → χ̇(χ−ξ) weakly in L1(Q) and that inequalities
are preserved by the weak limit. Moreover, the right hand side of (3.27) converges
to the right hand side of (3.17) strongly in L1(Q). Indeed, by (3.7), (3.12) and
(3.16) it is straightforward to realize that

β1(χn)
N(θn)

(χn − ξ) → β1(χ)
N(θ)

(χ− ξ) strongly in L2(Q) ,

while the analogous property for τn(θn) may be checked via the inequalities∫∫
Q

|τn(θn)− θ|2dx dt ≤ 2
∫∫

Q

(
|τn(θn)− τn(θ)|2 + |τn(θ)− θ|2

)
dx dt

≤ 2
∫∫

Q

|θn − θ|2dx dt+ 2
∫∫

{|θ|>n}
|θ|2dx dt.

Then, recalling Subsection 3.2, it is clear that Theorem 3.1 is completely proved.

3.4. Boundedness and positivity of temperature

This last subsection is devoted to the proof of Theorems 3.4 and 3.5.

First, in order to show (3.20), we introduce the set

P := {(x, t) ∈ Q : 0 < χ(x, t) < 1},

which is a measurable subset of Q. Due to (3.14) and (3.16), it turns out that χ̇ = 0
a.e. in Q \ P , since Q \ P = {χ = 0} ∪ {χ = 1} and χ assumes a constant value
in each of the last two sets. On the other hand, if (x, t) is a point in P such that
inequality (3.17) holds, we can take as a test number in (3.17) either some value
ξ > χ(x, s) or some ξ < χ(x, s). Hence, we deduce that

χ̇ =
1

N(θ)
(θβ1(χ)− θcβ2(χ)) a.e. in P .

Let us collect the above remarks in the (almost everywhere) equality

χ̇(x, t) =
{

((θβ1(χ)− θcβ2(χ)) /N(θ)) (x, t) if (x, t) ∈ R
0 if (x, t) ∈ Q \R

(3.37)

and point out that χ̇ ∈ L∞(0, T ;L2(Ω)), owing to (3.7), (3.12) and to the same
regularity for θ (cf. (3.13)). Now, by (3.23) and (3.11) we can rewrite (3.15) as

∂A(θ)
∂t

− k∆θ = −θcF ′
1(χ)χ̇ a.e. in Q .

Note that the function A is Lipschitz continuous along with its inverse function
A−1. Then, if we specify the new variable v := A(θ), we infer that v solves the
linear equation

v̇ − div
(

k

α(θ)
∇v

)
= −θcF ′

1(χ)χ̇ a.e. in Q ,
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with right hand side in L∞(0, T ;L2(Ω)). Since

∂v

∂n
= 0 a.e. in Σ , v(·, 0) = A(θ0) a.e. in Ω

and θ0 ∈ L∞(Ω), thanks to (3.11) we can apply Theorem III.7.1 of Ref. 16 and
conclude that v ∈ L∞(Q), whence (3.20) folllows from θ = A−1(v) and (3.37).

For the proof of (3.21), the idea of the procedure is to test equation (3.15) by
the function (cf. (3.13))

θ− = max{0, − θ} ∈ L2(0, T ;H1(Ω))

and try to show that θ− = 0 almost everywhere in Q. Also here, we make full use
of the equality (3.37). Then, let us multiply (3.15) by − θ− and integrate by parts
in space and time. In view of (3.11) and (3.18-19), it is not difficult to get

C∗
2
‖θ−(·, t)‖2 + k

∫∫
Qt

|∇θ−| dx ds ≤ C∗

2
‖(θ0)−‖2 +

∫∫
Qt

θcF
′
1(χ)χ̇θ− dx ds

for any t ∈ [0, T ]. As (θ0)− = 0 a.e. in Ω, with the help of (3.37) we deduce that

C∗
2
‖θ−(·, t)‖2 ≤

∫∫
Qt∩P

θcF
′
1(χ)θ−

N(θ)
(θβ1(χ)− θcβ2(χ)) dx ds

and consequently

C∗
2
‖θ−(·, t)‖2 ≤ C

∫∫
Qt

|θθ−| dx ds−
∫∫

Qt∩P

θ 2
c F

′
1(χ)β2(χ)θ−

N(θ)
dx ds ,

because of the boundedness of the functions 1/N, F ′
1, β1. But one sees that |θθ−| =

(θ−)2 and θ− ≥ 0, thus (3.7), (3.9) and (3.12) allow us to obtain

C∗
2
‖θ−(·, t)‖2 ≤ C

∫ t

0

‖θ−(·, s)‖2 ds

for all t ∈ [0, T ]. At this point, it suffices to apply the Gronwall lemma achieving
θ− = 0 a.e. in Q, that entails (3.21).
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