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Abstract—Learning-based image coding has achieved compet-
itive performance in terms of compression efficiency, while also
gaining a key advantage in the ability to carry out computer
vision tasks directly in the compressed domain. In fact, the latent
representation which is generated using deep learning techniques
may natively encapsulate all visual features needed for processing
tasks, thereby eliminating the need to perform the expensive
synthesis transform process at the decoder side. In this paper, it is
proposed to perform face detection using the latent code present
in the JPEG Al architecture. First, some experiments show how
decoded images can be efficiently processed for face detection
without retraining, albeit with some performance degradation.
Then, for the first time a compressed domain RetinaFace-
based detector applied to JPEG Al latent representations is
competitively proposed. The performance achieved is comparable
to the performance of the original RetinaFace applied to the
reconstructed JPEG Al images, while reducing computational
complexity since it bypasses the image decoding process. It is
expected that this approach might be extended to other vision
tasks since the JPEG AI representation format is not tailored
specifically for any computer vision task.

Index Terms—JPEG Al, learning-based image coding, latent
representation, face detection, compressed domain processing.

I. INTRODUCTION

The creation and consumption of multimedia content have
been growing at an exponential rate due to the emergence
of new trends and sophisticated technologies, including the
Gigabit wireless backed Internet and digital gadgets. For
example, it is estimated that roughly 660 billion photos were
taken worldwide in 2013. However, by 2024 this number has
increased to an unbelievable 1.94 trillion images, and people
post approximately 14 billion images per day on different
social networks [1].

This substantial amount of data highlights the importance
of addressing issues related to multimedia storage and trans-
mission. Consequently, there is a rapidly growing demand for
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efficient image compression technology, which plays a crucial
role. Traditional image compression techniques, such as JPEG
[2], HEVC/H.265 Intra [3], and other end-to-end methods were
designed with the primary goal of preserving the fidelity of
images while operating within predefined bitrate constraints.

Meanwhile, in recent years there has been substantial
progress in the context of image coding using deep learn-
ing models, such as convolutional neural networks, recurrent
neural networks, vision transformers, and generative adver-
sarial networks. Methods based on these technologies have
shown that they can reach a competitive performance in terms
of visual fidelity compared with traditional transform-based
codecs [4]-[6]. However, nowadays the end consumers of
visual content, besides humans, include machines that may
perform image processing or computer vision tasks. For ex-
ample, Video Coding for Machines (VCM) has been proposed
in [7], [8], aiming to bridge the gap between video/image
compression and feature compression.

These insights motivated the development of JPEG Al,
a new learning-based visual compression standard [9]. The
key benefit of JPEG Al is the flexibility of its compressed
domain representation that, besides image reconstruction, can
be utilized to also perform visual processing and computer
vision tasks directly in the compressed domain. Therefore, the
features that are extracted while encoding the original image
can be used instead of the lossy decoded image, performing
these tasks with lower complexity. Importantly, the JPEG
Al encoder builds the latent independently from any visual
task, so there is no need to perform end-to-end training.
This new way of performing learning-based image processing
and/or computer vision in the compressed domain can have
a significant impact in a wide range of applications, such as
cloud storage, surveillance systems, autonomous vehicles, ...

A quintessential computer vision task is face detection,
which serves as the foundation for more specific applications
like face alignment and recognition. The primary objective
of face detection is to accurately detect human faces from
images and to return the spatial locations of faces via bounding



boxes [10]. The main objective is to discriminate facial regions
from complex backgrounds, regardless of factors such as
illumination variations, occlusions, pose changes, and facial
expressions. Over the years, significant advancements in deep
learning have revolutionized face detection techniques, en-
abling more robust and efficient solutions [11].

This paper investigates the impact of using JPEG Al de-
coded images at several bitrates on face detection performance,
compared to using uncompressed images. These experiments
are run on three state-of-the-art face detectors: RetinaFace
[12], TinaFace [13], and YOLOS5Face [14]. Then, the first ever
compressed domain RetinaFace-based detector adapted to the
JPEG Al latent representations is proposed and experimentally
evaluated. It receives as input the JPEG Al latent instead of
the image itself. To achieve this, the feature maps obtained
after entropy decoding (and created by the JPEG Al analysis
transform network) are leveraged to prune the face detector of
the early stages responsible for low-level feature extraction.
Moreover, a so-called bridge that consists of a group of
additional learnable layers is introduced to align the JPEG Al
latent dimensions with the face detector feature map size at
the pruning point. The obtained face detection results demon-
strate that performing the detection directly in the compressed
domain significantly lowers computational complexity while
achieving performance comparable to the original RetinaFace
operating on decoded images.

In summary, the main contributions of this paper are:

o To study the face detection performance across a wide
range of face detector models under different settings
when JPEG Al decoded images are used.

o To propose the first-ever compressed domain face detec-
tor, consisting of a bridge that adapts the JPEG Al latent
space to a pruned version of the RetinaFace detector.

+ To demonstrate that the proposed model achieves perfor-
mance comparable to an anchor that uses decoded images
and the original RetinaFace detector, while significantly
lowering the overall complexity.

The remainder of the paper is organized as follows. Sec. II
provides a concise survey of prior works on compressed do-
main computer vision tasks. Then, Sec. III outlines the general
framework of the proposed compressed domain RetinaFace-
based face detector, while Sec. IV provides more details about
its design and training process. Lastly, Sec. V discusses the
test conditions and analyzes the experimental results, while
Sec. VI concludes the paper.

II. RELATED WORK

In the literature, many research works have proposed so-
lutions where computer vision tasks are performed directly
in the compressed domain. This section reviews a selection of
previous works that specifically employ learning-based codecs.

Several methods resort to joint training of the image
compression and task networks. In [15], image classification
and segmentation are conducted inputting compact represen-
tations obtained from a convolutional auto-encoder directly
into pruned inference networks, achieving accuracy similar

to when decoded images are used instead, while reducing
computational complexity. In this case, both joint and stan-
dalone training of the inference networks are considered.
In [16], a learning-based compression scheme employing a
variational auto-encoder is proposed, and a bridge network
jointly trained with the encoder network was developed for
visual object detection. A novel feature adaptation module is
introduced in [17], which integrates a lightweight attention
model to dynamically emphasize and enhance key features
within channel-wise information inside a pruned inference
model, in order to improve classification accuracy in the
compressed domain.

Another option explored in the literature is to select only
some of the latent representation channels to perform a
computer vision task. The work in [18] suggests a method
to enhance machine vision tasks in the compressed domain,
using face alignment as an example. It proposes to selectively
choose several channels from compressed representations, to
perform up-sampling with a simple bridge, and finally to
prune the task network. Similarly, [19] also proposes using a
specific subset of compressed features. In particular, this work
shows that learning from the compressed domain achieves
comparable image classification accuracy compared to the
uncompressed domain. In [20], the authors instead propose
a method leveraging the compressed domain information to
enhance segmentation tasks by employing both dynamic and
static channel selection, and knowledge distillation.

Recently, vision transformer based networks have been also
applied to compressed domain processing. In [21], a vision
transformer is applied to enhance image classification in the
compressed domain with an end-to-end joint compression and
analysis architecture. Furthermore, in [22], the authors adopt
and modify the transformer architecture of [21], training it
separately from the compression backbone, to perform image
classification specifically in the compressed domain. The work
in [23] adopts a transformer-based image compression system
offering the flexibility to switch between standard and denois-
ing image reconstruction using the same compressed bitstream
and decoding network for both, introducing a latent refinement
module and a prompt generator for the last decoding layers.

III. FACE DETECTION FRAMEWORKS AND BACKGROUND

A. Pixel and compressed domain approaches

Face detection is typically performed in the pixel domain,
taking a digital image as input. However, computer vision tasks
are increasingly being conducted on compressed multimedia
content rather than original data sources [24], and face detec-
tion is no exception. Naturally, face detection is expected to
have the best accuracy when applied on uncompressed images,
as in the blue block in Fig. 1. When the input image has under-
gone a lossy encoding/decoding process, as in the green block
in Fig. 1, it inevitably impacts the detection performance. This
issue becomes particularly significant at lower compression
rates, where higher distortion in the reconstructed image leads
to impactful coding artifacts. Consequently, this degradation in
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Fig. 1: General face detection framework, illustrating three possible scenarios. A face detector such as RetinaFace can operate
in the pixel domain on either an original, uncompressed image (blue block) or a fully decoded image, thus after a JPEG
Al encoding/decoding process (green block). On the other hand, the proposed compressed domain face detector architecture
operates in the latent space, thus after the encoding process but without fully decoding the image (red block). The depicted
high-level view of its architecture includes the bridge replacing the first layers of the face detector (in this case RetinaFace).

image quality adversely affects the performance of computer
vision tasks in the pixel domain like face detection [24]-[26].

This paper instead follows the JPEG Al paradigm, where
face detection can be directly performed on the compressed
domain rather than on the decoded image (see the red block in
Fig. 1). In this scenario, image reconstruction can be skipped
altogether since the compact latent representation of the image
contains enough information to perform both computer vision
and image processing tasks. More details on JPEG Al and its
philosophy are provided in the next section.

B. JPEG Al

JPEG AI [9] is a new learning-based visual compression
project expected to be a standard at the end of 2024. The goal
of the JPEG AI standard is to obtain a substantial improve-
ment over the existing JPEG standards regarding both human
perception and downstream vision consumption systems.

In the JPEG Al framework, to encode an input image,
the latter first goes through an analysis network which is
in essence a decorrelating non-linear transformation. This
process consists of convolutional layers with learnable filters,
incorporating spatial down-scaling in some layers, followed
by non-linear activations. Subsequently, the output of these
layers is quantized to produce a latent representation, which
is a compact form of the input image. The final step involves
entropy coding, to eliminate statistical redundancy and gener-
ate the final bitstream intended for storage or transmission.

On the decoder side, the bitstream is parsed and entropy
decoded, and latent prediction is performed to obtain the latent
representation which can then be used by a synthesis transform
to reconstruct the original image for human consumption.
The alternative is to perform compressed domain image pro-
cessing tasks, such as super-resolution, inpainting, and color
correction, or compressed domain computer vision tasks like
classification, semantic segmentation, and face detection.

C. RetinaFace detector

RetinaFace [12] is a single-stage deep learning model tai-
lored for accurate and efficient face detection across various

scales and orientations. Notably, it can also predict 3D face
shape information. Training is driven by a multi-task loss func-
tion, including face classification, facial landmark regression,
face box regression, and dense regression loss terms.

The architecture of RetinaFace comprises three key com-
ponents (see also the bottom half of Fig. 2). First, the back-
bone acts as the main feature extractor. One of the several
possible backbones employed by RetinaFace is ResNet-50,
which consists of five stages containing multiple units. Each
unit is a residual block consisting of several layers with skip
connections. Next, a Feature Pyramid Network (FPN) serves as
the component enabling face detection across multiple scales.
It generates feature maps at various scales using fully convolu-
tional layers P2 to P6. The FPN is built using both bottom-up
and top-down pathways, complemented by lateral connections
to ensure comprehensive coverage of different face sizes and
orientations. Finally, context modules are employed on feature
pyramids to capture more contextual information around each
face and effectively detect occluded faces [27]. These modules
expand the receptive field, improving performance [28].

IV. PROPOSED COMPRESSED DOMAIN FACE DETECTOR

The high-level overview of the proposed compressed do-
main RetinaFace-based detector is depicted in the red block
of Fig. 1, and its detailed architecture is illustrated in Fig. 2.
It introduces two key innovative elements: the bridge and the
pruned face detector.

The bridge initially processes the JPEG Al latent input, and
its output is then forwarded to the pruned face detector. The
primary role of the bridge is to align the latent representation
with the feature map at the input of the pruned detector. Since
the JPEG Al latent representation is already rich with low-level
features obtained through the convolutional layers of the JPEG
Al encoding network, it is advantageous to prune the face
detector by removing some early stages typically responsible
for low-level feature extraction.

Sec. IV-A provides additional details on the architectural
design, while Sec. IV-B describes the training process.
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Fig. 2: Detailed architecture of the proposed compressed
domain RetinaFace-based detector. Stages 1 and 2 of ResNet-
50 are replaced by the bridge, while the rest of RetinaFace
(FPN and context modules) is unchanged.

A. Detector pruning and bridge design

We considered three possible pruning points in the early
stages of RetinaFace. Following the experimental analysis of
which we defer the details to Sec. V-E, the optimal RetinaFace
pruning point entails removing stages 1 and 2 from ResNet-
50, while leaving the FPN structure intact. This results in the
removal of the first 11 convolutional layers from the backbone.

Thus, the proposed bridge architecture, depicted in Fig. 2,
begins with a Batch Normalization (BN) layer at the input,
followed by two transposed convolution (TConv) layers that
each up-sample the feature maps by a factor of 2 and increase
the number of channels by 32. The bridge TConv layers are
each followed by a BN layer and a ReLU activation. This
design ensures that the bridge incorporates an up-sampling
factor of 4, thus aligning the JPEG Al latent dimension with
the feature map size at the pruned detector input.

B. Training process

A large number of latent representations was first collected
by encoding the images from the training set of the WIDER
FACE dataset [29] with JPEG Al. The images are encoded
using five rate anchors: 0.06 bpp, 0.12 bpp, 0.25 bpp, 0.50
bpp, and 0.75 bpp. For each rate, the proposed compressed
domain face detector was then trained using the same settings
and hyperparameters, accounting for pruning, as those used
for training RetinaFace [12]. In particular, the training process

employs the SGD optimizer with a momentum of 0.9, a weight
decay of 5- 1074, and a batch size of 24. The learning rate
starts at 1073, increases to 10~2 after 5 epochs, and is then
reduced by a factor of 10 at 55 and 68 epochs.

Note that the training process in [12] employs Data Aug-
mentation (DA), which is crucial for improving the detection
accuracy. While DA is straightforward in the pixel domain,
it is more challenging to be performed in the compressed
domain. In this work, we resort instead to include the latent
representations of the augmented images during training.

When employing RetinaFace in the pixel domain (both on
original and decoded images) as a baseline for the experiments
in Sec. V, we use the pre-trained models provided by [12], thus
no training is necessary in those cases.

V. PERFORMANCE ASSESSMENT

A. Test conditions and metrics

The WIDER FACE dataset [29] is a widely recognized and
challenging benchmark for face detection, known for its vari-
ability in scale, pose, expression, occlusions, and illumination.
The dataset is split into 3 detection difficulty levels: easy,
medium, and hard. The dataset randomly allocates 40% of
the data for training, 10% for validation, and 50% for testing.

The performance metric employed for evaluation is the
Average Precision (AP), one of the most commonly used
metric for this purpose, which evaluates the Area Under the
Curve (AUC) of the resulting precision-recall curve.

B. Analysis of face detection performance on decoded images

The first objective is to evaluate the impact of JPEG Al
coding artifacts on face detection. Three recent models are
considered: RetinaFace [12], TinaFace [13], and YOLOS5Face
[14], each involving different backbones and settings. Initially,
face detection is performed in the pixel domain on the original
images. Then, the images are compressed using the JPEG Al
v4.4 tools-on GPU codec at the aforementioned 5 rate anchors
and face detection is performed using the decoded images.

The experimental results are illustrated in Fig. 3. They
demonstrate that high performance can be achieved using
decoded images as inputs for face detectors. However, as
expected, the performance of all considered detectors degrades
at lower bitrates, particularly for the hard level dataset.

C. Face detection results in the compressed domain

Fig. 4 illustrates the performance of the proposed com-
pressed domain RetinaFace-based detector (yellow curve)
compared with RetinaFace using uncompressed (blue curve)
and decoded (red curve) images. Similarly to using decoded
images as input, the performance of the proposed method
is bitrate-dependent, achieving higher performance at higher
bitrates and lower performance at lower bitrates.

However, the results indicate that using the latent represen-
tation as input can achieve performance comparable with using
decoded images instead. For instance, the performance gap is
under 5% AP for the easy level and under 7% AP for the
medium level. Instead, this gap increases for the hard level,
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Fig. 4: Comparison of face detection performance between: (i) RetinaFace on uncompressed images (blue curve); (ii) RetinaFace
on JPEG AI decoded images (red curve); (iii) proposed compressed domain RetinaFace-based detector using JPEG Al latent
space as input with data augmentation (yellow curve); and (iv) proposed compressed domain RetinaFace-based detector using
JPEG Al latent space as input without data augmentation (purple curve).

suggesting that the JPEG Al latent representation may miss
important features in more challenging images.

It is important to remark that the proposed method is able to
reduce the overall complexity by skipping the image decoding
process. The complexity is analyzed in the next section.

D. Complexity results

In addition to the significant complexity reduction gained
from performing computer vision tasks directly in the latent
domain, the proposed architecture further simplifies the face
detector by removing the first 11 convolutional layers from
the ResNet-50 model. On the other hand, it was included a
bridge consisting of only two transposed convolutional layers.

Table I shows that the complexity of the proposed com-
pressed domain RetinaFace-based detector is reduced by 81.34
GMAC compared to the original image domain RetinaFace,
which also includes the complexity of the JPEG Al decoder.

E. Ablation studies

To determine the optimal detector pruning strategy, three
pruning points were identified, the resulting models for each
configuration were trained, and their performance on the
validation set at 0.75 bpp rate was evaluated.

The first pruning point involved removing stages 1 and
2 as well as the initial two convolutional layers in the first

unit of stage 3 within ResNet-50, resulting in the elimination
of 13 convolutional layers. For the second pruning point,
stages 1 and 2 were removed, leading to the removal of 11
convolutional layers. Finally, the third pruning point involved
removing stage 1 and the first unit of stage 2, resulting in
the elimination of 5 convolutional layers. The corresponding
performance evaluation, obtained without employing DA, is
detailed in Table II. The results indicate that the second
pruning point achieved the best performance.

Regarding DA, the latent representation of the augmented
images was also extracted and used for training. The purple
line in Fig. 4, instead, shows the performance of the proposed
compressed domain face detector without including the latent

TABLE I: Complexity (GMAC) comparison between pixel and
compressed domain approaches for 640 x 640 input images.

Approach \ Architecture Complexity (GMAC)

. JPEG-AI decoder 90.52
Pixel R

domain RetinaFace 44.56

! Total 135.08

Bridge 15.69

Co(ll'npre:ssed Pruned RetinaFace 38,05

omam | Total 53.74




TABLE II: Pruning point selection: detection performance for
various detector pruning point locations at 0.75 bpp.

Level \ Pruning point 1 Pruning point 2 Pruning point 3
Easy 71.39% 79.28% 77.83%
Medium 67.68% 76.62% 75.20%
Hard 39.89% 45.82% 43.93%

TABLE III: Impact on face detection accuracy when testing
images at single scale (0.75 bpp).

Level \ Multiresolution  Single scale
Easy 95.01% 90.05%
Medium 93.44% 88.13%
Hard 82.65% 67.36%

representations of the augmented images in training. It is clear
that the performance significantly degrades without DA.
Furthermore, it is important to note that the image domain
RetinaFace detector performs inference on testing images at
multiple target sizes, which significantly impacts detection
accuracy. However, this approach has not been adopted here.
To elaborate, Table III reports the RetinaFace performance
when using decoded images (at 0.75 bpp) at a fixed single
scale. The performance degrades compared to using a multi-
resolution approach. For example, the performance for the hard
level when tested at a single scale is 67.36% AP, while the
proposed model achieves 69.39% AP at the same rate. This
suggests that the proposed compressed domain detector per-
formance could also exceed that of the pixel domain detector
at the same conditions. Thus, implementing multi-resolution
inference in the proposed technique would likely narrow the
performance gap with the image domain RetinaFace.

VI. CONCLUSIONS

In this paper, a compressed domain RetinaFace-based de-
tector that operates on JPEG Al latent representations is
proposed. Our results demonstrate comparable performance to
the original RetinaFace when processing decoded images from
the WIDER FACE dataset, especially for images classified as
easy and medium difficulty levels. Importantly, our approach
eliminates the need for image decoding, thereby reducing com-
plexity. Additionally, it was assessed how the JPEG Al codec
compression artifacts at different rates affect face detection
accuracy, using various state-of-the-art face detection methods.
Finally, our ablation studies suggest that implementing multi-
resolution inference in the compressed domain could lower
the performance gap with the image domain RetinaFace. This
investigation will be conducted in future works.
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